
Efficiently-Searchable and Deterministic

Asymmetric Encryption

Mihir Bellare1 Alexandra Boldyreva2 Adam O’Neill2

1Dept. of Computer Science and Engineering, University of California at San Diego,

mihir@cse.ucsd.edu www.cse.ucsd.edu/∼mihir

2College of Computing, Georgia Institute of Technology,

{aboldyre,amoneill}@cc.gatech.edu www.cc.gatech.edu/{∼aboldyre,∼amoneill}

Abstract

Outsourcing data storage is a topic of emerging importance in database security. In
this paper, we consider exact-match query functionality in the public-key setting. Solutions
proposed in the database community lack clarity and proofs of security, while encryption-
with-keyword-search schemes from the cryptographic community require linear search time
(in database size) for each query, which is prohibitive. To bridge the gap, we introduce a
new cryptographic primitive we call (asymmetric) efficiently-searchable encryption (ESE),
which allows users to store encrypted data on a remote, untrusted server in such a way
that the server can index the data and retrieve or update required parts on request just as
efficiently as for unencrypted data. We give an appropriate definition of security for ESE
and several constructions that provably-achieve the definition, in the random oracle model,
while providing various computation- and bandwidth-efficiency properties. As deterministic
encryption implies ESE, the security definition and several of the constructions are also the
first for asymmetric deterministic encryption schemes in general.

Keywords: asymmetric encryption, searchable encryption, deterministic encryption, database
security.

1 Introduction

The Basic Setup. Despite a continuous decrease of storage-hardware prices, the costs to
store and manage data, providing availability, recoverability, security and regulatory compliance,
are rapidly increasing. For many organizations, it is most cost-effective to outsource data to
specialized off-site service providers [52]. Data is usually divided into records (aka. tuples)
with attributes (aka. fields) and stored in a relational database. The service must provide at a
minimum the following:

• Query support. Users should be able to actively retrieve a desired portion of the data
on request.

• Computation and communication efficiency. The server should efficiently support
indexing and query processing and provide data availability.

1

• Security. Very often users are concerned about the confidentiality of their data, as it
may contain some sensitive financial, medical, or intellectual information. In a medical
context, securing the data is actually required by law. In 2003, the U.S. Department of
Health and Human Services issued the Privacy Rule to implement the requirement of the
Health Insurance Portability and Accountability Act [1], whose Section 164.306 requires
the health care organizations to “ensure the confidentiality, integrity, and availability of
all electronic protected health information the covered entity creates, receives, maintains,
or transmits.” Even though the remote database service providers may employ strong
security measures against outsider attacks, they themselves cannot always be trusted not
to mistreat the data of their clients. Therefore, clients must appropriately protect sensitive
information before outsourcing it to a remote service provider.1

The basic setup constitutes the so-called outsourced database model (aka. Database-as-a-
Service or DAS). Finding a good security-functionality tradeoff for DAS is a challenging research
problem that has been recently receiving a great deal of attention in the database community [29,
46, 31, 30, 18, 19, 46, 4, 32, 3, 33, 39]. Following M. Kantracioglu and C. Clifton [33], we observe
that standard cryptographic (i.e., semantic-security-strength) security definitions are too strong
to allow the server to perform any useful indexing on encrypted data, forcing it to scan the whole
database on each query. Database practitioners do not seriously consider protocols with search
time linear in the database size because medium-size to very large databases, which can occupy
up to several terabytes of space, do not fit in memory and having many disk accesses per query
is prohibitively slow. This is perhaps why prior research did not produce any provably-secure
solutions: practitioners required functionality for which the schemes satisfying the standard
security notions were not suitable, and theoreticians did not see the need to look beyond the
strong definitions.

Previous and Related Work. On the one hand, previous works in the database commu-
nity focuses mostly on supporting flexible (i.e., SQL) queries and efficient and optimized query
processing. They propose ad-hoc cryptographic schemes to index encrypted data that support
these tasks [46, 4, 29, 19, 31, 32, 30] and often refer to such primitives as order-preserving hash
functions and encryption or deterministic encryption, without suggesting proper definitions of
security or candidate constructions. Indeed, the drawbacks inherent in this approach cause [33]
to call for a new direction for research on secure database servers aiming instead for “efficient
encrypted database and query processing with provable security properties.”

On the other, research done by cryptographers in the area of database security targets strong
security goals and provides provably-secure constructions. Most works, starting with a paper by
D. Song, D. Wagner and A. Perrig [53] in the symmetric-key setting and one by Boneh et al. [12]
in the asymmetric setting, focus on the better-defined subproblem of secure keyword search
on encrypted data [12, 28, 25, 13, 2, 6]. These schemes allow a server, just when given some
secret information, to locate the ciphertexts containing particular keywords, without revealing
the keywords or any other information about the message. But using them to answer queries
asking to find records containing a particular keyword basically requires testing each record
in the database one-by-one, which, as explained above, is prohibitive. While symmetric-setting
indexing methods of [17] allow constant time retrievals with even stronger security guarantees for
this context, all records and possible keywords must be known in advance and the corresponding
index pre-computed by the client, and updates remain prohibitive. One would like instead to
simply give encrypted data to the server as needed, which it may then index as appropriate.

1There are additional security concerns that we do not address, such as whether the server correctly responds
to queries. We note that the server is either trusted in this regard or some special measures [51, 38] can be
employed.

2

Our Contributions. Our results address exact-match queries, where queries ask to retrieve,
update, or insert new records containing given attribute values. Exact-match is a basic operation
that happens to be particularly frequent in existing databases because it is the basis of a more
complex operation called equijoin. We focus on the asymmetric (aka. public-key) setting, where
querying the database requires only the public key, which allows anyone or a group of people
who are not necessarily trusted to submit data for another group of people or a single person
with the corresponding secret key. In Section 3, we introduce a definition of what it means
for (asymmetric) encryption to efficiently support this additional functionality, a primitive that
we call efficiently-searchable encryption (ESE) (Definition 3.1). Informally, there should exist
two extra functions: one that takes the public key and a plaintext, and one that takes the
public key and any ciphertext for the same plaintext, such that their output strings (called
the tag) agree, and for all distinct messages, their tags under a given public key agree only
with exceedingly small probability (taken over the coin tosses of the key-generation algorithm).
Presence of the tags thus ensures that by (separately) encrypting searchable attributes with
an ESE scheme, exact-match search mechanisms used for retrievals, updates, and inserts on
encrypted databases will be essentially the same as on unencrypted ones (this is what we mean
by “efficiently”), which is appealing to implementors and means that search time has not gone
up over unencrypted databases. For example, the server can index records according to the tags
of their ESE-encrypted attributes using a tree-based index such as a B-tree, allowing logarithmic
search time (in the size of the database) when a tag or new (encrypted) record is (re-)submitted.

Disregarding other attacks for the time being, querying the database at least amounts to
encrypting and decrypting messages of the adversary’s choice. But it turns out that finding a
suitable security definition for ESE is not straightforward. We would like to capture the intuition
that no useful information about the underlying message can be computed given a ciphertext, but
clearly the the tag is always such useful information. Moreover, the adversary, given a ciphertext,
can always compute its tag (which is the same as that of the underlying message) and compare
it with the tag of candidate plaintexts. Hence we make two important relaxations in our security
definition of privacy against chosen-plaintext (resp. -ciphertext) attacks (priv-cpa [resp. -cca])
(Definition 3.4), as compared to the standard indistinguishability-based ind-cpa or -cca notion.
For one, to make the definition achievable we do not allow the challenge ciphertext and the
useful information that the adversary needs to compute to depend on the public key, which we
argue is fine in practice. We also consider message spaces that have “enough entropy;” security
otherwise is shown to be impossible with the given functionality. Note that non-searchable parts
of records, in particular those with small entropy, would still be encrypted normally. We refer
the reader to Section 3 for a discussion of ESE security and its implications for DAS.

In Section 4, we propose and analyze several ESE schemes, the high-level ideas for which,
namely using the hash of message as its tag or else some form of deterministic encryption (for
which the tag and ciphertext coincide), derive from the database literature. We show that
the former construction, which we call “hash-and-encrypt” (Construction 3.2), yields a priv-
cpa (resp. priv-cca) scheme in the random-oracle (RO) model [7] if the underlying encryption
scheme is ind-cpa (resp. ind-cca) (Theorem 4.1). Then we propose a general “encrypt-with-
hash” deterministic ESE construction (Construction 4.2) that replaces the randomness used
in encryption by a standard scheme with the hash of the message, giving greater bandwidth-
efficiency over the network and reduced computation-cost at the client side. We show it also
achieves priv-cca in the RO model assuming that the underlying encryption scheme is only ind-
cpa and satisfies a slight additional property (Theorem 4.3). In fact, we show that any ind-cpa
scheme can be easily modified to achieve this additional property, which is needed only to achieve
priv-cca (vs. priv-cpa) in the construction based on ind-cpa security of the underlying scheme,
but in practice this is unnecessary since known practical ind-cpa schemes already posses it.

3

Our last construction is a deterministic, length-preserving (in terms of ciphertext vs. plaintext
length) ESE scheme based on RSA-OAEP [8, 22], which we call RSA-DOAEP (Construction 4.4).
Note that for the first two constructions the underlying scheme can be a hybrid encryption
scheme (i.e., one that encrypts a message under a symmetric key that is then encrypted it-
self under the public key and sent along with the ciphertext), so can be used to efficiently
encrypt messages of various lengths. RSA-DOAEP, however, allows one to efficiently encrypt
messages of arbitrary length without making use of any hybrid scheme, meaning it also saves
on bandwidth for long messages by not having to include an (encrypted) symmetric key. We
prove that RSA-DOAEP is priv-cpa in the RO model assuming RSA is one-way (Theorem 4.5).
Then, in Section 5 we show that in addition to providing data authenticity, analogous to in the
standard (i.e., non-ESE) asymmetric setting [5], digital signatures can actually boost security of
efficiently-searchable encryption when used in an “encrypt-then-sign” fashion (Theorem 5.2). In
particular, this implies that by using encrypt-then-sign with a secure digital signature scheme,
RSA-DOAEP in fact achieves priv-cca in applications requiring authentication of data anyway.

Though we typically discuss them in the context of DAS, we stress that there is nothing
“application-specific” about our deterministic ESE schemes. In addition to helping researchers
and developers working on securing outsourced databases, we expect our work would be of
independent interest as providing the first definitions and constructions for asymmetric deter-
ministic encryption schemes, which can be used more generally whenever messages to encrypt
contain “enough entropy,” such as with symmetric keys.2 Cryptographic schemes are proven
secure assuming a source truly random bits whereas computers are in actuality deterministic,
and implementing “randomness” generation in practice remains a tricky process that can end
up compromising security. Using a deterministic scheme instead is therefore attractive whenever
possible in terms of security guarantee.

Further Related Work. Obfuscated databases, studied in [44], allow public access to data
for those who know for what exactly they search (i.e., a phone number for Bob) while preventing
mass-harvesting (getting all email addresses). The solutions of [44] asymmetrically distinguish
between obfuscated, searchable attributes (e.g., phone numbers) and possibly-encrypted data
attributes (e.g., email addresses), in that one cannot later search for an email address and
retrieve the corresponding phone number. In our setting, however, one typically wants various
attributes to be simultaneously searchable and decryptable, and in any case these protocols also
require an entire database scan on each query.

Works on secure multiparty computation [54, 27], private information retrieval [15, 37, 21],
searching on streaming data [45], oblivious RAM [26] and secure data mining and statistical
databases [48, 16, 34, 14, 36, 20, 11] also study related but fundamentally different problems in
which a server stores data that is usually not encrypted, and its privacy shall be protected as
the privacy of the users querying the data. The protocols are also usually not efficient.

2 Preliminaries

Notation. We refer to members of the set {0, 1}∗ as strings. If X is a string then |X| denotes
its length in bits and if X, Y are strings then X ‖Y denotes the concatenation of X and Y . If S

is a set then X
$← S denotes that X is selected uniformly at random from S. For convinience,

k ∈ N we write X1, X2, . . . , Xk
$← S as shorthand for X1

$← S, X2
$← S, . . . ,Xn

$← S. “RPT”
(resp. “PT”) stands for “randomized, polynomial-time,” (resp. “polynomial-time”) and “RPTA”

2We do not imply, however, that priv-cpa or priv-cca asymmetric deterministic schemes can be securely used
in all known applications, e.g., hybrid encryption.

4

(resp. “PTA”) for “RPT algorithm” (resp. “PT algorithm”). If A is a randomized algorithm then
A(x, y, . . . ;R), or A(x, y, . . .) for short, denotes the result of running A on inputs x, y, . . . and with

coins R, and a
$← A(x, y, . . .) means that we choose R at random and let a = A(x, y, . . . ;R). By

convention, the running-time of an algorithm here is measured relative to bit-length of the input
and refers to both the actual running-time and program size, including that of any overlying
experiment, all relative to some fixed RAM model of computation.

Recall that a function f : N → [0, 1] is called negligible if it approaches zero faster than
the reciprocal of any polynomial, i.e., for any polynomial p, there exists np ∈ N such that
for all n ≥ np, f(n) ≤ 1/p(n). We also recall the standard syntax and security definitions
for asymmetric encryption schemes in Appendix A. Note that the definition for security of
encryption there (Definition A.2) allows the adversary multiple lr-encryption queries (allowing
one such query is equivalent up to a multiplicative factor of the original number of queries),
which is to better interface with our new definitions below.

We will need to consider vectors of messages and ciphertexts. Following [10], we denote them
like x, where x[i] denotes the ith component of the vector x. We allow encryption and decryption
to operate on such vectors component-wise, so, for example, if (K, E ,D) is an encryption scheme

then y ← E(pk,x) means for all i do: y[i] $← E(pk,x[i]). We also extend set-membership
notation to vectors, writing x ∈ x to mean that there exists i such that x = x[i].

3 Efficiently-Searchable Encryption (ESE) and its Security

We formulate an extension of Definition A.1 to capture encryption schemes that allow to ef-
ficiently search encrypted databases, a new primitive we call efficiently-searchable encryption
(ESE) schemes. We refer the reader to the introduction for a discussion of how the schemes can
be used and why they are useful.

Definition 3.1 [Efficiently-searchable encryption scheme] Let SPE = (K,SE ,SD) be
a public-key encryption scheme with associated security parameter k ∈ N and message space
MsgSp(k) that can also depend on some public parameters, e.g., a group description. We say
that SPE is efficiently-searchable encryption (ESE) scheme if there exist PTAs F,G and a
negligible function ε such that the following conditions hold:
(1) Completeness:

Pr
[

(pk, sk) $← K(1k) : F (pk,m1) = G(pk,SE(pk,m1))
]

= 1 and

(2) Soundness:

Pr
[

(pk, sk) $← K(1k) ; (m0,m1)
$←M(pk) : F (pk,m0) = G(pk,SE(pk,m1))

]
≤ ε(k) ,

for every message m1 ∈ MsgSp(k) and every RPTAM that outputs distinct messages m0,m1 ∈
MsgSp(k) when given the public key. We refer to the output of F,G as the tag of a message m
or a corresponding ciphertext C.

Note that the soundness condition, which prevents false-positive results in searches (possibly
due to malicious data entry), is “computational,” in the spirit of [2]. A stronger, chosen-
ciphertext version of this condition would give M access to a decryption box as well. We omit
to do this for simplicity and remark that all our proposed constructions also meet this stronger
version (in the random oracle model) anyway.

Next let us formally define the examples of ESE discussed in the introduction. The first
one is a simple approach one can take here in which the tag of a message is its hash, while the
second shows that deterministic encryption can also be used to achieve ESE.

5

Construction 3.2 [Hash-and-encrypt construction] Let PE = (K, E ,D) be a (standard)
pubic-key encryption scheme and H be a hash function. We define a new public-key encryp-
tion scheme whose ciphertexts include some extra, “searchable” information. Namely, define
HPE = (K,HE ,HD), where HE(pk,m) = H(m) ‖ E(pk,m) and HD(sk, h ‖ C) = D(sk, C) if
H(D(sk, C)) = h and ⊥ otherwise. Then it is easy to see that HPE is efficiently-searchable
under Definition 3.4 if H is a randomly-chosen member of a collision-resistant family of hash
functions. Here we let F and G be the PTAs that on inputs pk,m and pk,H(m) ‖ E(pk,m),
respectively, return the tag H(m).

Construction 3.3 [Deterministic encryption schemes] LetDPE = (K,DE ,D) be a public-
key encryption scheme such that DE is deterministic (meaning PT). Then letting F and G be
the PTAs that on inputs pk,m and pk,DE(pk,m), respectively, return DE(pk,m), we see that
every deterministic encryption scheme is effciently-searchable under Definition 3.1. The function
ε in the definition is identically zero here due to the consistency requirement in Definition A.1.

It is easy to see that no ESE scheme can be ind-cpa. Thus we introduce a definition of
security for asymmetric ESE schemes, which captures the intuition that a ciphertext should
not reveal any information about the corresponding plaintext beyond what is needed for the
server to index and search for it efficiently. The high-level idea originates from the definition
of semantic security in [40]; however, we make several important modifications in our definition
that are explained below.

Definition 3.4 [Privacy of efficiently-searchable encryption schemes] Let SPE =
(K,SE ,SD) be an asymmetric ESE scheme with associated security parameter k ∈ N and the
message space MsgSp(k). Let A = (Am, Ag) be a pair of algorithms, the latter with oracle access.
(We clarify that Am, Ag are distinct algorithms that share neither coins nor state.) Am takes
input the security parameter, and returns a vector of distinct messages x with x[i] ∈ MsgSp(k)
for all i, together with a string t that represents some information about x. Later, Ag gets a
public key and an encryption of x under this key, and tries to compute t. (Note that t is not
required to be efficiently computable given x. For example, Am could output x, t such that
x[1] = f(t) for a one-way function f). For atk ∈ {cpa, cca}, define the following experiments:

Experiment Exppriv-atk-1
SPE,A (k)

(t1,x1)
$← Am(1k)

(pk, sk) $← K(1k)

g
$← A

O(sk,·)
g (pk,SE(pk,x1))

If g = t1 then return 1
Else return 0

Experiment Exppriv-atk-0
SPE,A (k)

(t0,x0)
$← Am(1k) ; Am(t1,x1)

$← (1k)

(pk, sk) $← K(1k)

g
$← A

O(sk,·)
g (pk,SE(pk,x0))

If g = t1 then return 1
Else return 0

where O(sk, ·) = D(sk, ·) if atk = cca and is the empty oracle otherwise. For the corresponding
case, we say that A = (Am, Ag) is a priv-atk adversary if there are functions v, l such that for
every k:

Pr
[

(t,x) $← Am(1k) : |x| = v(k) ∧ |x[i]| = l(k)
]

= 1 for all i ,

the messages in the output vector of Am are always distinct, and Ag does not query any com-
ponent of its challenge-ciphertext vector to its decryption oracle. The privacy-advantage of a
priv-atk adversary A against SPE is the function defined for all k via:

Advpriv-atk
SPE,A (k) = Pr

[
Exppriv-atk-1

SPE,A (k) = 1
]
− Pr

[
Exppriv-atk-0

SPE,A (k) = 1
]

.

6

It would be natural to now define an asymmetric ESE scheme SPE = (K,SE ,SD) to be
private against chosen-plaintext attack or priv-cpa for atk = cpa and private against chosen-
ciphertext attack or priv-cca for atk = cca if for every RPT priv-atk adversary A the function
Advpriv-atk

SPE,A (·) is negligible. (When we say that A is RPT we mean that Am, Ag are both RPTAs.)
However, under this definition, no ESE scheme is private. To see this, consider the RPTA Am

that on input 1k picks t at random from {0, 1} and returns (0, 0k) (the second component
being a vector of size one) if t = 0 and (1, 1k) if t = 1. Let Ag be the RPTA that on input
pk, C returns 0 if G(pk, C) = F (pk, 0k) and 1 otherwise. Then according to Definition 3.1
Pr

[
Exppriv-atk-1

SPE,A (k) = 1
]

= 1. However, Pr
[
Exppriv-atk-0

SPE,A (k) = 1
]
≤ 1/2 because Ag gets no

information about the bit t1 chosen by Am in the experiments. So A = (Am, Ag) is a RPT
priv-atk adversary such that Advpriv-atk

SPE,A (k) ≥ 1/2, meaning the scheme is not private. What
this shows is that the best we can hope for is security against priv-atk adversaries A = (Am, Ag)
where the message space implicitly defined by Am has large min-entropy. To capture this, we
say that meA(·) is a message space min-entropy function for A if for every m∗ ∈ {0, 1}∗ and
every k:

Pr
[

(t,x) $← Am(1k) : m∗ = x[i]
]
≤ 1

2meA(k)
for all i .

Then we will see that security can be achieved against adversaries for which this function is
super-logarithmic, which we take as our definition.

Note that lack of security when the message space min-entropy is small is an inescapable
consequence of having an efficiently-searchable scheme, not a weakness in our definition. Thus
in this respect what we show is the best possible. Of course, this requirement is not meant
to preclude a given attribute value drawn from a message space with large min-entropy from
being encrypted and stored in many records, as is the nature of database encryption. Thus it is
unavoidable that the adversary will detect ciphertexts corresponding to equal plaintexts, as well
as the query-access patterns for the encrypted records. We also stress that non-searchable at-
tributes, in particular those with poor min-entropy, should always be encrypted with a standard
ind-cca encryption scheme as a hedge against “statistical” attacks arising from a priori semantic
relationships in the data. (For example, if an attribute “profession” has the value “student,” it
may mean that other attributes like income are more likely to take certain values as compared
to an arbitrary record.)

Moreover, to make the definition achievable Am is not given the public key in the experiments,
meaning we only provide security for messages unrelated to the public key. In practice this is
just fine, because no normal data set is related to any public key. In real life, adversaries do not
pick the data and public keys are just abstractions hidden in our software, not strings that we
look at. Because of this restriction, however, considering vectors of messages is needed to ensure
achieving multi-message security from our definition, allowing the adversary to see encryptions
of some related messages (which is done in the standard indistinguishability-based definitions
by equivalence to multiple lr-encryption queries). For example, a scheme that appends the
encryption of the bit-wise complement of the plaintext to the ciphertext can still be shown
insecure under our definition.

As mentioned above, the proofs of security for all ESE schemes we propose will be done
in the random oracle (RO) model [7]. According to the RO model, a random function with
appropriate domain and range (the RO) is chosen during the key generation algorithm, and
then all the algorithms (adversaries included) are given oracle access to this function. Thus
in the above definition Ag will also have access to the RO. However Am will not because, as
explained above, it does not have the public key, which in practice contains a key for the hash
function family used to instantiate the RO, meaning Am cannot compute a hash without it.

7

4 Secure ESE Constructions

We propose and analyze several constructions of ESE schemes. To begin with, we analyze the
“simple” construction given in Construction 3.2, where the hash of a message is its tag.

4.1 Hash-and-Encrypt

We analyze security of the hash-and-encrypt construction given in Construction 3.2.

Theorem 4.1 Let PE = (K, E ,D) be a public-key encryption scheme and let H be a hash
function. Let HPE = (K,HE ,HD) the ESE scheme defined according to Construction 3.2.
Then HPE = (K,HE ,HD) is priv-cpa (resp. priv-cca) secure in the RO model if PE = (K, E ,D)
is ind-cpa (resp. ind-cca). More precisely, for atk ∈ {cpa, cca}, let A = (Am, Ag) be a RPT
priv-atk adversary against HPE that outputs a vector of length v(·), having message space
min-entropy function meA(·) and making at most qh(·) queries to its hash oracle and qd(·) to its
decryption oracle. Then there exists an RPT ind-atk-adversary B against PE such that for all
k,

Advpriv-atk
HPE,A (k) ≤ Advind-atk

PE,B (k) +
2qh(k)v(k)

2meA(k)
. (1)

Furthermore, the running-time of B is at most that of A plus O(qh(k)v(k)l(k)).

The proof is in Appendix B.
To get an idea of its security in practice, note that, assuming the underlying (standard)

scheme is secure, the theorem implies that an adversary’s maximal advantage against the con-
struction (in the analogous sense) when its message space min-entropy is at least, say, 120 bits
is small unless it makes about 260 hash queries or related-encryption computations (the number
of the latter given by v(k)), at which point it still has around a 1/260 chance of breaking the
resulting scheme.

Also note that the underlying scheme can be a hybrid encryption scheme, so can be used to
efficiently encrypt messages of various lengths.

4.2 Encrypt-with-Hash

We propose a general deterministic ESE construction (as per Construction 3.3) replacing the
coins used by a standard encryption scheme with the hash of the message, which, as compared to
the previous hash-and-encrypt construction, offers better bandwidth-efficiency over the network
and computation-efficiency on the client side. The construction is also priv-cca in the RO model
assuming only the underlying scheme is ind-cpa and satisfies a slight additional property met
by ind-cpa schemes in practice (for priv-cpa security of the construction, ind-cpa security of the
underlying scheme alone suffices). Recall that we introduced deterministic encryption in general
and showed it implies ESE in Example 3.3. The construction is as follows.

Construction 4.2 [Encrypt-with-hash construction] Let PE = (K, E ,D) be a public-key
encryption scheme and let H be a hash function. Then we define a public-key deterministic
encryption scheme DPE = (K,DE ,DD), where DE(pk,m) = E(pk,m;H(m)) and DD(C) =
D(sk, C) if E(pk,D(sk, C);H(D(sk, C)) = C and ⊥ otherwise. Here we assume that when the
security parameter is k then the output of H has the same length as the random tape of E .

To define the extra property of the underlying encryption scheme that we will need, consider
the probability that a message encrypts twice to the same ciphertext using independent random

8

coins. Namely, we say that a public-key encryption scheme PE = (K, E ,D) has a max-collision
probability mcPE(·) if we have that:

Pr
[

(pk, sk) $← K(1k) ; C1, C2
$← E(pk,m) : C1 = C2

]
≤ mcPE(k)

for every m ∈ MsgSp(k). (Note that m here can depend on pk.) We will show that the
construction achieves priv-cca if the underlying encryption scheme is ind-cpa and moreover has
negligible max-collision probability.

Note that ind-cpa schemes that would typically be used in practice have negligible max-
collsion probability. For example, one can check that the ind-cpa version of RSA-OAEP (i.e.,
without needing to pad zeros onto the plaintext) [9] has max-collision probability equal to
1/2n(k), where n(·) is the length of the messages to encrypt, and ElGamal [23] has max-collision
probability 1/|G|, where G is the used group (which also depends on k). Thus in practice this
does not amount to any extra assumption. Moreover, we show how in general any ind-cpa scheme
PE = (K, E ,D) can be modified to achieve this property. Let r be the number of coins E uses,
and let k be the security parameter. Define PE∗ = (K, E∗,D∗) as follows. E∗(pk, m;R1 ‖ R2)
returns (E(pk, m;R1) ‖ R2), where |R2| = k, meaning E∗ uses r + k coins; and D∗(sk, C ‖ R)
returns D(sk, C). It easy to see that PE∗ is ind-cpa and mcPE∗(k) ≤ 2−k.

We now state the security result.

Theorem 4.3 Let PE = (K, E ,D) be a public-key encryption scheme with max-collision prob-
ability mcPE(k) and let H be a hash function. Let DPE = (K,DE ,DD) be the determinis-
tic encryption scheme defined according to Construction 4.2. Then the ESE scheme DPE =
(K,DE ,DD) is priv-cca in the RO model if PE = (K, E ,D) is ind-cpa. More precisely, let
A = (Am, Ag) be a RPT privacy adversary against DPE that outputs a vector of length v(·),
having message space min-entropy function meA(·) and making at most qh(·) queries to its hash
oracle and qd(·) to its decryption oracle. Then there exists an RPT ind-cpa-adversary B against
PE such that for all k,

Advpriv-cca
DPE,A (k) ≤ Advind-cpa

PE,B (k) +
2qh(k)v(k)

2meA(k)
+ 2qd(k)mcPE(k) . (2)

Furthermore, the running-time of B is at most that of A plus O(qh(k)l(k)(v(k)+TE(k)+qd(k))),
where TE(k) is the time for one computation of E when the security parameter is k.

The proof is in Appendix C. The weaker result about priv-cpa security analogous to the above,
but with the last additive term in (2) removed, can be stated and proved, but we omit to do
this in light of the above discussion.

As a secure public-key deterministic encryption scheme is simply a family of (injective)
trapdoor functions with some extra security properties, we remark that by a result of Gertner
et al. [24] showing that in the standard model there is no black-box reduction from trapdoor
functions to trapdoor predicates, it will be hard to build a secure public-key deterministic
encryption scheme based solely on a secure standard one without random oracles.3 However,
it does not preclude building a secure deterministic one without random oracles using other
primitives not implied by secure public-key encryption, such as a collision-resistant family of
hash functions, though we do not imply this is actually possible.

4.3 RSA-DOAEP, A Length-Preserving ESE scheme

It is desirable to minimize the number of bits transmitted over the network, for example, when
users have a low-bandwidth connection to the database or a battery-constrained device ([43],

3More specifically, as discussed in [24], according to this result such a construction will either have to rely in
an intrinsic way on the semantic security of the standard encryption scheme or be non-black-box.

9

Section 2). Our final scheme is optimal in this regard, being length-preserving. (Note that it
is a standard fact that this cannot be achieved using ind-cpa encryption, a further draw for
this scheme in any application requiring length-preserving encryption where message space min-
entropy is large.) The scheme, which we term RSA-DOAEP (“D” for deterministic), is based
on RSA-OAEP [8, 22]. The design is also reminiscent of the more-recent “3-round OAEP”
scheme of Phan and Pointcheval [47], which achieves ind-cca security in the RO model without
redundancy.

While for the previous two ESE constructions the underlying scheme can be a hybrid en-
cryption scheme so can be used to efficiently encrypt messages of various lengths, as can be seen
from the construction below with RSA-DOAEP one can efficiently encrypt messages of arbitrary
length without making use of any hybrid scheme. Hybrid encryption can in some sense never
be length-preserving because an (encrypted) symmetric key is included with a ciphertext, thus
RSA-DOAEP also saves on bandwidth for long messages in this respect.

The security of our scheme assumes the existence of one-way trapdoor permutations, the
basics for which we recall in Appendix A. In particular, we will use the well-studied RSA
trapdoor permutation generator FRSA [50], which is widely assumed as one-way. For FRSA, the
security parameter k represents the allowable range of the modulus N , namely 2k−1 < N < 2k.

For simplicity, we will further assume that all messages have length n(k) for some polynomial
n. In practice, to bypass this assumption and maintain the length-preserving property, one can
use a variable-length instantiation for the ROs. For example, one can use a common instantiation
heuristic first suggested in [7] where one obtains the RO output for a given string x by computing
H(K, x ‖ 〈1〉) ‖H(K, x ‖ 〈2〉) ‖ . . . to sufficient length, where H is a cryptographic hash function
with key K derived from the public key and 〈k〉 denotes k ∈ N encoded as a binary string in
the natural way, and then truncating the result as needed. To apply our security analysis in
this case, one can model the scheme by (mentally) fixing the message length to the shortest
allowable length, the worst case from a security standpoint.

Construction 4.4 [RSA-DOAEP] Let FRSA be the RSA trapdoor-permutation generator.
The scheme is parameterized by length functions k0, k1 satisfying and n(k) > 2k0(k) and n(k) ≥
k1(k) for all k. The key-generation algorithm of the ESE scheme RSA-DOAEP on input 1k runs
FRSA on the same input and returns its output, meaning it returns f as the public key and f−1 as
the secret key. The encryption and decryption algorithms have access to (independent) oracles
H1,H2 : {0, 1}n(k)−k0(k) → {0, 1}k0(k) and R : {0, 1}k0(k) → {0, 1}n(k)−k0(k), and are defined as
follows:

Algorithm EH1,H2,R
f (m)

Parse m as ml ‖mr,
where |mr| = n(k)− k0(k)

S0 ← H1(mr)⊕ml ; T0 ← R(S0)⊕mr

S1 ← H2(T0)⊕ S0

Parse S1 ‖ T0 as X1 ‖X2,
where |X2| = k1(k)

Y ← X1 ‖ f(X2)
Return Y

Algorithm DH1,H2,R
f−1 (Y)

Parse Y as X1 ‖ Y ′,
where |Y ′| = k1(k)

X ← X1 ‖ f−1(Y ′)
Parse X as S1 ‖ T0

where |S1| = k0(k) and |T0| = n(k)− k0(k)
S0 ← H2(T0)⊕ S1 ; mr ← R(S0)⊕ T0

ml ← H1(mr)⊕ S0

Return ml ‖mr

Theorem 4.5 Let FRSA be the RSA trapdoor permutation generator. Let A = (Am, Ag) be
an RPT privacy adversary against RSA-DOAEP that outputs a vector of length v(·), having
message space min-entropy function meA(·) and making at most qHi(·) queries to oracle Hi for

10

i ∈ {1, 2} and at most qR(·) to oracle R. Then RSA-DOAEP is priv-cca in the RO model if FRSA

is one-way. More precisely, we divide the result into two cases:
• Case 1: n(k) − k0(k) < k1(k) ≤ n(k). Then there exists an RPT inverter I against FRSA

such that for all k,

Advpriv-cpa
RSA-DOAEP,A(k) ≤ qH2(k)v(k)

√
Advowf

FRSA,I(k) + 24k0(k)−2k1(k)+10 − 22k0(k)−k1(k)+5

+
2qR(k)v(k)

2k0(k)
+

2qH1(k)qR(k)v(k)
2meA(k)

. (3)

• Case 2: k1(k) ≤ n(k) − k0(k) ≤ n(k). Then there exists an RPT inverter I against FRSA

such that for all k,

Advpriv-cpa
RSA-DOAEP,A(k) ≤ v(k)Advowf

FRSA,I(k) +
2qR(k)v(k)

2k0(k)
+

qH1(k)qR(k)v(k)
2meA(k)

. (4)

Furthermore, in the first case the running-time of I is at most twice that of A plus O(v(k)l(k)+
qH2(k) log qH2(k) + k3), while in the second it is at most that of A plus
O(v(k)l(k) + qH2(k) log qH2(k)).

The proof is in Appendix D. In fact, when combined properly with a digital signature scheme
RSA-DOAEP achieves priv-cca security, as we shall see in the following section.

To conclude this section, let us discuss parameter settings to maximize “exact” security with
respect to RSA, where we fix, say, k = 1024, since presently with a 1024-bit modulus RSA
takes on the order of 280 basic computations to invert [49]. Thus n must be at least 1024 bits,
and we set k1 to 1024 bits. In fact, we can also set k0 to, say, 80 bits, regardless of the exact
value of n. To see this, first suppose n is at least 1104 bits. Evidently we should set k0 as high
as possible, or high enough to thwart brute-force guessing on oracle R, under the inequality
k1 ≤ n − k0 ≤ n, so to, say, 80 bits, and Case 2 of the theorem then applies to give the better
security guarantee of the two cases (the multiplicative factor v(k) here is not abnormal, a factor
like this being implicit if using an indistinguishability-based definition allowing an adversary
only one lr-encryption query, as in [22]). If instead n(k) is between 1024 and 1103 bits, we are
resigned to Case 1. The expression under the radical in (3) increases super-linearly as a function
of 2k0(k), so we see that in this case k0(k) should be set as low as possible, again to (say) 80
bits. Here the security guarantee is analogous to the state-of-the-art for RSA-OAEP [22, 49];
following Section 3.3 of [49], we stress that any published algorithm satisfying the hypothesis in
Lemma D.1 is simply an algorithm to invert RSA.

5 Efficiently-Searchable Signcryption

Signcryption [5] is an asymmetric-setting primitive where the sender has a signing key and the
receiver’s public key, designed to simultaneously protect the receiver’s privacy and the sender’s
authenticity. In this section, we obtain analogues of some results of [5], which show that an
“encrypt-then-sign” (ETS) construction of ESE and digital signatures can provably achieve this
goal. The motivation is two-fold: for one, it also addresses the issue of data authenticity with
respect to its origin and not having been modified over the network or at the server side. Note
that it will guarantee this at the field level, and not on the record level or for the database as a
whole; the adversary can still, for example, switch (encrypted) attribute values stored in different
records. If the data is updated and returned as whole records, then one can simply authenticate
at the record level instead. In many applications, however, the server can be trusted to return
the correct ciphertexts to its paying customers, even though it may try to learn and sell their

11

data. (And otherwise, ensuring that the server returns all the current, requested data on each
query, which is outside our scope, can be dealt with using the methods of [41, 42, 43, 38].)

Furthermore, we show that an ETS construction can actually be used to boost security
of ESE; in particular, RSA-DOAEP, shown in the last section to achieve priv-cpa security
as a stand-alone scheme, in fact achieves priv-cca in this way for applications that require
authentication of data anyway.

We recall the standard syntax and security definitions for digital signature schemes in
Appendix A. Next we formalize the “encrypt-then-sign” construction of an efficiently-searchable
signcryption scheme. (We omit more general definitions, which trivially extend from [5].)

Construction 5.1 [Encrypt-then-sign efficiently-searchable signcyption] Let SPE =
(KE , E ,D) be an ESE scheme and let DS = (KS ,S,V) be a digital signature scheme scheme.
We define the “encrypt-then-sign” (ETS) efficiently-searchable signcryption scheme, which we
denote ET SSPEDS = (KES , ES,VD), as follows:

Algorithm KES(1k)

(pkE , skE) $← KE(1k)

(pkS , skS) $← KS(1k)
Return ((pkE , skS), (skE ,pkS))

Algorithm ES((pkE , skS),m)

c
$← E(pkE ,m)

σ
$← S(skS , c)

Return (c, σ)

Algorithm VD((skE ,pkS), (c, σ))
b← V(pkS , c, σ)
If b = 0 then return ⊥
m← D(skE , c)
Return m

The notion of security for the above scheme is to evaluate the “induced” signature and
efficiently-searchable encryption schemes under their respective appropriate definitions, uf-cma
and priv-cca. Namely, the induced encryption scheme is simply (KES , ES,VD) (it is easy to check
that this meets Definition 3.1), and the induced signature scheme is (KES , ES,VD′), where the
verification algorithm VD′ runs VD on its input and returns 1 just when the output is not ⊥.
But, as discussed in [5], we do not allow the adversary (e.g., the server) in the experiments with
the induced schemes access to the secret signature key despite the fact that it is a component
of the “public” signcryption key. This means that to also prevent legitimate signers (e.g., the
nurses) from modifying or forging messages from other legitimate signers, they all need distinct
key-pairs for signatures.

Here then is the security result for the above construction.

Theorem 5.2 Let DS be a digital signature scheme that is uf-cma, and SPE be an ESE scheme
that is priv-cpa. Then the induced signature scheme of the efficiently-searchable signcryption
scheme ET SSPEDS is uf-cma and the induced efficiently-searchable encryption scheme of ET SSPEDS
is priv-cca secure.

The proof of the first part (induced uf-cma security) is identical to part of the proof of
Theorem 1 in [5], hence omitted. The proof of the second part (induced priv-cca security) is
nearly the same as the proof of Theorem 2 in [5], but we use a different security definition for
encryption. Thus there is an obvious difference in the functionality of the adversaries, but oracle
simulation remains identical. While we omit the details, note that the intuition from [5] still
applies: if the adversary can make a valid query (c, σ) to its decryption oracle without having

12

first received it from its encryption oracle (in which case the simulator knows the underlying
message), then the query constitutes a valid forgery against DS.

As promised, we observe that Theorem 5.2 together with Theorem 4.5 in the previous section
implies that DOAEP achieves priv-cca security when used with a uf-cma secure signature scheme
in the ETS construction of an efficiently-searchable signcryption scheme.

6 Conclusions

In this paper, we formally developed efficiently-searchable encryption (ESE) as a tool to support
practical exact-match query processing on encrypted databases. We defined asymmetric ESE
and its security and provided several constructions with provable security (in the RO model)
and various efficiency properties. In particular, we saw how the essential “weakness” of deter-
ministic encryption for general use, namely its injectivity, actually makes it a useful primitive in
this setting. Also, we discussed how to simultaneously achieve privacy and authenticity in ESE
schemes. We believe that our work will both help researchers and developers in the area of out-
sourced databases and be of independent interest for other applications where our deterministic
asymmetric encryption schemes can be used securely.

7 Acknowledgements

We thank Jun Li and Ed Omiecinski for introducing the problem to us, Brian Cooper for useful
comments and references, and Alex Dent and Ulrich Kühn for their feedback on an earlier draft
of this paper.

References

[1] The final HIPAA security rule. Federal Register. Available at http: // www. hipaadvisory. com/

regs/ finalsecurity/ index. htm , 2003.

[2] M. Abdalla, M. Bellare, D. Catalano, E. Kiltz, T. Kohno, T. Lange, J. Malone-Lee, G. Neven,
P. Paillier, and H. Shi. Searchable encryption revisited: Consistency properties, relation to anony-
mous IBE, and extensions. In V. Shoup, editor, Crypto 2005, Lecture Notes in Computer Science.
Springer.

[3] G. Aggarwal, M. Bawa, P. Ganesan, H. Garcia-Molina, K. Kenthapadi, R. Motwani, U. Srivastava,
D. Thomas, and Y. Xu. Two can keep a secret: A distributed architecture for secure database
services. In CIDR, pages 186–199, 2005.

[4] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu. Order preserving encryption for numeric data. In
SIGMOD ’04: Proceedings of the 2004 ACM SIGMOD international conference on Management of
data, pages 563–574, New York, NY, USA, 2004. ACM Press.

[5] J.-H. An, Y. Dodis, and T. Rabin. On the security of joint signature and encryption. In EU-
ROCRYPT ’02: Proceedings of the International Conference on the Theory and Applications of
Cryptographic Techniques, pages 83–107, London, UK, 2002. Springer-Verlag.

[6] J. Baek, R. Safavi-Naini, and W. Susilo. Public key encryption with keyword search revisited.
Cryptology ePrint Archive, Report 2005/151.

[7] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing efficient
protocols. In ACM Conference on Computer and Communications Security, pages 62–73, 1993.

[8] M. Bellare and P. Rogaway. Optimal asymmetric encryption. In EUROCRYPT, pages 92–111, 1994.

[9] M. Bellare and P. Rogaway. The game-playing technique and its application to triple encryption.
Cryptology ePrint Archive, Report 2004/331, 2004.

13

[10] Mihir Bellare, Anand Desai, David Pointcheval, and Phillip Rogaway. Relations among notions of
security for public-key encryption schemes. In CRYPTO, pages 26–45, 1998.

[11] A. Blum, C. Dwork, F. McSherry, and K. Nissim. Practical privacy: the SuLQ framework. In PODS
’05: Proceedings of the twenty-fourth ACM SIGMOD-SIGACT-SIGART symposium on Principles
of database systems, pages 128–138, New York, NY, USA, 2005. ACM Press.

[12] D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiano. Public key encryption with keyword
search. In C. Cachin and J. Camenisch, editors, EUROCRYPT, volume 3027 of Lecture Notes in
Computer Science, pages 506–522. Springer, 2004.

[13] Y.-C. Chang and M. Mitzenmacher. Privacy preserving keyword searches on remote encrypted data.
In J. Ioannidis, A. D. Keromytis, and M. Yung, editors, ACNS, volume 3531 of Lecture Notes in
Computer Science, pages 442–455, 2005.

[14] S. Chawla, C. Dwork, F.McSherry, A. Smith, and H. Wee. Toward privacy in public databases. In
Kilian [35], pages 363–385.

[15] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Private information retrieval. In FOCS: IEEE
Symposium on Foundations of Computer Science (FOCS), pages 41–50, 1995.

[16] C. Clifton, M. Kantarcioglu, and J. Vaidya. Defining privacy for data mining. National Science
Foundation Workshop on Next Generation Data Mining, H. Kargupta, A. Joshi, and K. Sivakumar,
Eds., Baltimore, MD, Nov. 1-3 2002, pp. 126–133. 21, 2002.

[17] Reza Curtmola, Juan Garay, Seny Kamara, and Rafail Ostrovsky. Searchable symmetric encryption:
Improved definitions and efficient constructions. Cryptology ePrint Archive, Report 2006/210, 2006.
http://eprint.iacr.org/.

[18] E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, and P. Samarati. Computing range queries
on obfuscated data. In Information Processing and Management of Uncertainty in Knowledge-Based
Systems, 2004.

[19] E. Damiani, S. De Capitani Vimercati, S. Jajodia, S. Paraboschi, and P. Samarati. Balancing
confidentiality and efficiency in untrusted relational DBMSs. In CCS ’03: Proceedings of the 10th
ACM conference on Computer and communications security, pages 93–102, New York, NY, USA,
2003. ACM Press.

[20] I. Dinur and K. Nissim. Revealing information while preserving privacy. In PODS ’03: Proceedings of
the twenty-second ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems,
pages 202–210, New York, NY, USA, 2003. ACM Press.

[21] M. J. Freedman, Y. Ishai, B. Pinkas, and O. Reingold. Keyword search and oblivious pseudorandom
functions. In Kilian [35], pages 303–324.

[22] E. Fujisaki, T. Okamoto, D. Pointcheval, and J. Stern. RSA-OAEP is secure under the RSA as-
sumption. In J. Kilian, editor, CRYPTO 2001, volume 2139 of Lecture Notes in Computer Science.
Springer, 2001.

[23] T. El Gamal. A public key cryptosystem and a signature scheme based on discrete logarithms. In
Proceedings of CRYPTO 84 on Advances in cryptology, pages 10–18, New York, NY, USA, 1985.
Springer-Verlag New York, Inc.

[24] Y. Gertner, T. Malkin, and O. Reingold. On the impossibility of basing trapdoor functions on
trapdoor predicates. In FOCS, pages 126–135, 2001.

[25] E.-J. Goh. Secure indexes. Cryptology ePrint Archive, Report 2003/216, 2003. http://eprint.
iacr.org/2003/216/.

[26] O. Goldreich. Towards a theory of software protection and simulation by oblivious rams. In STOC,
New York, May 1987. ACM Press.

[27] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game. In STOC ’87: Proceedings
of the nineteenth annual ACM conference on Theory of computing, pages 218–229, New York, NY,
USA, 1987. ACM Press.

14

[28] P. Golle, J. Staddon, and B. Waters. Secure conjunctive keyword search over encrypted data. In
M. Jakobsson, M. Yung, and J. Zhou, editors, Proc. of the 2004 Applied Cryptography and Network
Security Conference, pages 31–45. Lecture Notes in Computer Science 3089, 2004.

[29] H. Hacigümüs, B. Iyer, C. Li, and S. Mehrotra. Executing SQL over encrypted data in the database-
service-provider model. In SIGMOD ’02: Proceedings of the 2002 ACM SIGMOD international
conference on Management of data, pages 216–227, New York, NY, USA, 2002. ACM Press.

[30] H. Hacigümüs, B. R. Iyer, and S. Mehrotra. Efficient execution of aggregation queries over encrypted
relational databases. In Y. Lee, J. Li, K.-Y. Whang, and D. Lee, editors, DASFAA, volume 2973 of
Lecture Notes in Computer Science, pages 125–136. Springer, 2004.

[31] B. Hore, S. Mehrotra, and G. Tsudik. A privacy-preserving index for range queries. In M. A.
Nascimento, M. Tamer Özsu, D. Kossmann, R. J. Miller, J. A. Blakeley, and K. B. Schiefer, editors,
VLDB, pages 720–731. Morgan Kaufmann, 2004.

[32] B. R. Iyer, S. Mehrotra, E. Mykletun, G. Tsudik, and Y. Wu. A framework for efficient storage secu-
rity in rdbms. In E. Bertino, S. Christodoulakis, D. Plexousakis, V. Christophides, M. Koubarakis,
K. Böhm, and E. Ferrari, editors, EDBT, volume 2992 of Lecture Notes in Computer Science, pages
147–164. Springer, 2004.

[33] M. Kantracioglu and C. Clifton. Security issues in querying encrypted data. In DBSec, 2005.

[34] A. Kiayias and A. Mitrofanova. Testing disjointness of private datasets. In Financial Cryptography
’05, 2005.

[35] J. Kilian, editor. Theory of Cryptography, Second Theory of Cryptography Conference, TCC 2005,
Cambridge, MA, USA, February 10-12, 2005, Proceedings, volume 3378 of Lecture Notes in Com-
puter Science. Springer, 2005.

[36] L. Kissner and D. Song. Private and threshold set-intersection. In V. Shoup, editor, CRYPTO 2005,
Lecture Notes in Computer Science, 2005.

[37] E. Kushilevitz and R. Ostrovsky. Replication is not needed: Single database, computationally-private
information retrieval. In FOCS, pages 364–373, 1997.

[38] F. Li, M. Hadjieleftheriou, G. Kollios, and L. Reyzin. Dynamic authenticated index structures for
outsourced databases. In SIGMOD. ACM Press, 2006.

[39] J. Li and E. Omiecinski. Efficiency and security trade-off in supporting range queries on encrypted
databases. In DBSec, pages 69–83, 2005.

[40] S. Micali, C. Rackoff, and B. Sloan. The notion of security for probabilistic cryptosystems. SIAM
J. Comput., 17(2):412–426, 1988.

[41] E. Mykletun, M. Narasimha, and G. Tsudik. Authentication and integrity in outsourced databases.
In NDSS, 2004.

[42] M. Narasimha and G. Tsudik. DSAC: integrity for outsourced databases with signature aggregation
and chaining. In CIKM, pages 235–236, 2005.

[43] M. Narasimha and G. Tsudik. Authentication of outsourced databases using signature aggregation
and chaining. In DASFAA, pages 420–436, 2006.

[44] A. Narayanan and V. Shmatikov. Obfuscated databases and group privacy. In CCS ’05. ACM Press,
2005.

[45] R. Ostrovsky and W. E. Skeith III. Private searching on streaming data. In V. Shoup, editor,
CRYPTO 2005, volume 3621, 2000.

[46] G. Özsoyoglu, D. A. Singer, and S. S. Chung. Anti-tamper databases: Querying encrypted databases.
In S. De Capitani di Vimercati, I. Ray, and I. Ray, editors, DBSec, pages 133–146. Kluwer, 2003.

[47] D. H. Phan and D. Pointcheval. OAEP 3-round: A generic and secure asymmetric encryption
padding. In ASIACRYPT, pages 63–77, 2004.

15

[48] B. Pinkas. Cryptographic techniques for privacypreserving data mining. SIGKDD Explorations,
4(2), Dec. 2002., 2002.

[49] D. Pointcheval. How to encrypt properly with RSA. RSA Laboratories’ CryptoBytes, 5(1):9–19,
Winter/Spring 2002.

[50] R. L. Rivest, A. Shamir, and L. M. Adelman. A method for obtaining public-key cryptosystems and
digital signatures. Technical Report MIT/LCS/TM-82, 1977.

[51] R. Sion. Query execution assurance for outsourced databases. In VLDB ’05: Proceedings of the 31st
international conference on Very large data bases, pages 601–612. VLDB Endowment, 2005.

[52] Arsenal Digital Solutions. Top 10 reasons to outsource remote data protection. Available at http:
// www. arsenaldigital. com/ services/ remote data protection. htm .

[53] D. X. Song, D. Wagner, and A. Perrig. Practical techniques for searches on encrypted data. In IEEE
Symposium on Security and Privacy, pages 44–55, 2000.

[54] A. Yao. Protocols for secure computations. In Twenty-third annual IEEE Symposium on Foundations
of Computer Science (FOCS), pages 160–164. IEEE, 1982.

A Basics of Asymmetric Encryption and Digital Signatures

We recall the standard syntax and security definitions for asymmetric (aka. public-key) encryp-
tion and digital signature schemes and, following this, trapdoor permutations.

Asymmetric encryption.

Definition A.1 [Public-key encryption scheme] An asymmetric (aka public-key) encryp-
tion scheme PE = (K, E , D) with associated security parameter k ∈ N and message space
MsgSp(k) that can also depend on some public parameters, e.g., a group description, consists
of three algorithms:
• The key generation RPTAK takes as input the security parameter and returns a pair (pk, sk)

consisting of a public key and a corresponding secret key; we write (pk, sk) $← K(1k).
• The encryption RPTA E takes input the public key pk and a plaintext m ∈ MsgSp(k) and

returns a ciphertext; we write C
$← E(pk,m) or C ← E(pk,m;R). If C = E(pk,m, R) for

some coins R then we say C is a valid ciphertext for m under pk.
• The decryption PTAD takes the secret key sk and a ciphertext C to return the corresponding

plaintext or a special symbol ⊥ indicating that the ciphertext was invalid; we write m ←
D(sk, C) (or ⊥ ← D(sk, C).)

Consistency: we require that D(sk, (E(pk,m)) = m for all messages m.

Definition A.2 [Security of encryption schemes] Let PE = (K, E ,D) be a public-key en-
cryption scheme. Let LR be the oracle that on input m0,m1, b returns mb. For atk ∈ {cpa, cca},
adversary Batk and b ∈ {0, 1} define the experiment:

Experiment Expind-atk-b
PE,Batk

(k)

(pk, sk) $← K(1k)

d
$← B

E(pk,LR(·,·,b)),O(·)
atk (pk)

Return d

where O(sk, ·) = D(sk, ·) if atk = cca and is the empty oracle otherwise. We call Batk an
ind-atk adversary if every query (m0,m1) it makes to its left-or-right encryption oracle satisfy

16

|m0| = |m1|, and does not query the challenge ciphertext to its oracle. The advantage of a
ind-atk adversary Batk is defined for every k as follows:

Advind-atk
PE,Batk

(k) = Pr
[
Expind-atk-0

PE,Batk
(k) = 0

]
− Pr

[
Expind-atk-1

PE,Batk
(k) = 0

]
.

The scheme PE is said to be secure against chosen-plaintext attack or ind-cpa (resp. chosen-
ciphertext attack or ind-cca) if for every RPTA Batk the function Advind-atk

PE,Batk
(·) is negligible in

k, where atk = cpa in the former case and atk = cca in the latter.

Digital Signatures.

Definition A.3 [Digital signature scheme] A digital signature scheme DS = (K,S,V) with
associated security parameter k ∈ N a message space MsgSp(k) that can also depend on some
public parameters, e.g., a group description, consists of three algorithms:
• The key generation RPTAK takes as input the security parameter and returns a pair (pk, sk)

consisting of a public key and a corresponding secret key; we write (pk, sk) $← K(1k).
• The signature RPTA S takes input the public key pk and a plaintext m ∈ MsgSp(k) and

returns a signature for m; we write σ
$← E(pk,m).

• The verification PTA V takes the secret key sk, a message m, and a signature σ to return
a bit b ∈ {0, 1}. We write b← V(sk,m, σ). In the case that the above b is 1 we say that σ
is a valid signature for m under pk.

Consistency: we require that V(sk,m, (S(pk,m)) = 1 for all m ∈ MsgSp(k)

Definition A.4 [Security of signature schemes] Let DS = (K,S,V) be a digital signature
scheme scheme. For an adversary B define the experiment:

Experiment Expuf-cma
DS,B (k)

(pk, sk) $← K(1k)

(m,σ) $← BS(sk,·)(pk)
Return V(pk,m, σ)

We call B an uf-cma adversary if it does not query m to its signing oracle. The advantage of a
uf-cma adversary B is defined for every k as follows:

Advuf-cma
DS,B (k) = Pr

[
Expuf-cma

DS,B (k) = 1
]

.

The scheme DS is said to be unforgeable against chosen-message attack or uf-cma if for every
RPTA B the function Advuf-cma

DS,B (·) is negligible in k.

Trapdoor permutations. A trapdoor-permutation generator with associated security param-
eter k is an RPTA F that on input 1k returns a pair (f, f−1), where f : {0, 1}n(k) → {0, 1}n(k)

for some polynomial n is an RPT encoding of a permutation and f−1 (called the “trapdoor”)
is an RPT encoding of its inverse. An inverter I against F is an algorithm that takes as input
f, f(x) and tries to compute x. We say that F is one-way if for every RPT inverter I the
function Advowf

F ,I(·) defined as:

Pr
[

(f, f−1) $← F(1k) ; x
$← {0, 1}n(k) ; x′

$← I(f, f(x)) : x = x′
]

is negligible.

17

Adversary BE(pk,LR(·,·,b)),D(sk,·)(pk)

(t0,x0)
$← Am(1k) ; (t1,x1)

$← Am(1k)
For all i do:

H
$← {0, 1}l(k)

y[i] $← H ‖ E(pk,LR(x0[i],x1[i], b))
Run Ag on input pk,y, replying to its oracle queries as follows:

On hash query x:
If x ∈ x0 then

If one = false then zer← true
If x ∈ x1 then

If zer = false then one← true
If H[x] is undefined

then H[x] $← {0, 1}l(k)

Return H[x]
On decryption query y:
Parse y as Hy ‖ Cy

If Cy = C then return ⊥
m← D(sk, Cy)
If m = ⊥ then Return ⊥
If H[m] is undefined then

H[m] $← {0, 1}l(k)

If H[m] = Hy then Return m
Else Return ⊥

Let g be the output of Ag

If zer = true then d← 0
Else If one = true then d← 1

Else If g = t1 then d← 1 else d← 0
Return d

Figure 1: Ind-cca adversary B for proof of Theorem 4.1.

B Proof of Theorem 4.1

We prove the theorem here for atk = cca. For atk = cpa, the decryption oracle in the games
and adversary should be removed.

Ind-cca adversary B is depicted in Figure 1. The analysis used to establish (1) uses the
game-playing technique in the style of [9]. In particular, we consider the games depicted in
Figure 2. Let us begin by recalling some game-related language and conventions from [9] that
we use here.

A game consists of an Initialize procedure, procedures that respond to adversary oracle
queries (in this case, two: one to respond to hash oracle queries and one to respond to decryption
oracle queries) and a Finalize procedure. Figure 2 presents a total of five games. All have the
same Initialize procedure and procedure to respond to decryption queries. The first four have
the same procedure to respond to hash oracle queries, this being the one shown when the boxed
statements are included, while for the last game, namely G5, the procedure omits the boxed
statements. The Finalize procedures are as shown, with those of Games G2, G3 the same except

18

procedure Initialize All games

b
$← {0, 1}

(t0,x0)
$← Am(1k) ; (t1,x1)

$← Am(1k)

(pk, sk) $← K(1k)
For i← 1, 2 do:

Hi,0, . . . ,Hi,v(k)
$← {0, 1}l(k)

For all j do:

y[j] $← Hb,j ‖ E(pk,xb[j])
Return pk,y

On hash query x: Games G1–G4/G5

If H[x] is undefined then

H[x] $← {0, 1}l(k)

If ∃i such that x = x0[i] then
If one = false then zer← true

H[x]← H0,i

If ∃j such that x = x1[j] then
If zer = false then one← true

H[x]← H1,j

Return H[x]

On decryption query y: All games
Parse y as Hy ‖ Cy

If Cy = C then Return ⊥
m← D(sk, Cy)
If m = ⊥ then Return ⊥
If H[m] is undefined then

H[m] $← {0, 1}l(k)

If H[m] = Hy then Return m
Else Return ⊥

procedure Finalize(g) Game G1

If g = t1 then d← 1 else d← 0
Return d

procedure Finalize(g) Games G2/G3

If zer = true then d← 0
Else If one = true then d← 1

Else If g = t1 then d← 1 else d← 0
If (b = 1 ∧ zer = true) ∨ (b = 0 ∧ one = true)

then bad← true ; d← b
Return d

procedure Finalize(g) Games G4, G5

If zer = true then d← 0
Else If one = true then d← 1

Else If g = t1 then d← 1 else d← 0
Return d

Figure 2: Games for the proof of Theorem 4.1. All 5 games have the same Initialize procedure and
procedure to respond to decryption queries. The procedure to respond to hash queries includes the
boxed statements for games G1, G2, G3, G4 and excludes them for G5. The Finalize procedure of Game
G2 includes the boxed statement, while that of G3 does not. The Finalize procedures of G4, G5 are the
same.

that the former includes the boxed code statement while the latter does not, and those of G4, G5

being the same. We will be executing Ag with each of these games. The execution of Ag with
Gi is determined as follows. First, the Initialize procedure executes, and its outputs pk, C, as
given by the Return statement, are passed as inputs to Ag. Now the latter executes, its hash
and decryption oracle queries being answered by the procedures for this purpose associated to
Gi. The output g of Ag becomes the input to the Finalize procedure of Gi. The output of the

19

game is whatever is returned by the Finalize procedure. We let “G
Ag

i ⇒b” denote the event that
the output of Game Gi, when executed with Ag, is the bit b chosen at random in the Initialize
procxedure.

Both for the games and for the adversary in Figure 3, we adopt the convention that boolean
variables like bad, zer, one are automatically initialized to false and arrays like H[·] begin every-
where undefined.

Equation (1) follows from the following sequence of inequalities, which we will justify below:

1
2

+
1
2
Advpriv-cca

HPE,A (k) = Pr
[

G
Ag

1 ⇒ b
]

(5)

≤ Pr
[

G
Ag

2 ⇒ b
]

(6)

≤ Pr
[

G
Ag

3 ⇒ b
]

+ Pr[GAg

3 sets bad] (7)

≤ Pr
[

G
Ag

3 ⇒ b
]

+
qh(k)v(k)
2meA(k)

(8)

= Pr
[

G
Ag

4 ⇒ b
]

+
qh(k)v(k)
2meA(k)

(9)

= Pr
[

G
Ag

5 ⇒ b
]

+
qh(k)v(k)
2meA(k)

(10)

=
1
2

+
1
2
Advind-cca

PE,B (k) +
qh(k)v(k)
2meA(k)

. (11)

An advantage that, defined in Definition 3.1 as the difference in the probabilities that two
experiments return 1, is, as usual, also equal to 2p − 1 where p is the probability that the
adversary correctly guesses the challenge bit b in a game where we pick b at random and run
the adversary with the first experiment if b = 1 and the second if b = 0. Game G1 is exactly
this game written in a convenient way. It makes the choices of H(xi[1]), . . . ,H(xi[v(k)]) for
i ∈ {0, 1} upfront, these being justified by the fact that the messages in the output vector of Am

are distinct, and also sets a few flags, but the flags do not influence the game output. We have
justified (5).

The Finalize procedure of Game G2 begins by defining its output bit d in certain ways
depending on the flags zer, one if either of these are true, and otherwise defining it as in G1.
However, in case the value of d set by the first two “If” statements is wrong, meaning not equal
to b, the third “If” statement corrects, setting d to b. The net result is that in the cases that
G2 assigns d differently from G1, the assignment made by G2 is correct, meaning equal to b.
Additionally G2 sets a flag bad but this does not influence its choice of d. So the probability
that the output of Ag equals b can only go up. We have justified (6).

Games G2, G3 differ only in statements that follow the setting of bad, meaning are, in the
terminology of [9], identical-until-bad games. The Fundamental Lemma of Game Playing [9] thus
applies to justify (14). The probability that Ag makes a hash query x ∈ x1−b when executed
with G3 is at most qh(k)v(k)/2meA(k) because Ag gets no information about x1−b. This justifies
(15). Since the third “If” statement in G3 only sets a flag that does not influence the game
output, dropping this entire statement results in an equivalent game that we have called G4.
This justifies (9).

As in the proof of the Fundamental Lemma in [9], we can consider a common finite space
of coins associated to the executions of Ag with either G4 or G5. Consider the execution of Ag

with G4 when a particular coin sequence is chosen at random from this set. One of the boxed
statements in the procedure to respond to a hash query can be executed only if either one = true
or zer = true, due to the “If” statements that precede the boxed statements. However, once one
of these flags is set to true, the output of the Finalize procedure is determined. (Nothing further

20

Adversary BE(pk,LR(·,·,b))(pk)

(t0,x0)
$← Am(1k) ; (t1,x1)

$← Am(1k)

y $← E(pk,LR(x0,x1, b))
Run Ag on input pk,y, replying to its oracle queries as follows:

On hash query x:
If x ∈ x0 then

If one = false then zer← true
If x ∈ x1 then

If zer = false then one← true
Return H[x]
On decryption query y:
If ∃xy such that E[xy] = y then

Return xy

Else Return ⊥
Let g be the output of Ag

If zer = true then d← 0
Else If one = true then d← 1

Else If g = t1 then d← 1 else d← 0
Return d

Figure 3: Ind-cpa adversary B for proof of Theorem 4.3.

that happens in the execution can change it. Note we use here that at most one of zer, one can
be true, never both, and once one of them is true, it never becomes false.) This means that the
boxed statements have no effect on the output of the game, and eliminating them results in the
equivalent game G5. We have justified (11).

Now (11) is easy to see by comparing the code of B to that of Game G5 and taking into
account the definition of the advantage of B.

It remains to justify the running-time analysis of B. Recall our convention to include in
the running-time of A that of its overlying experiment, so the only extra overhead for B is
initially selecting v(k)-many l(k)-bit random numbers, and then on each hash query made by
Ag searching through two vectors of size v(k) vectors with each component an l(k)-bit message
and setting some flags accordingly, as well as checking those flags at the end of its execution.
This gives us the O(qh(k)v(k)l(k)) overhead stated in the theorem.

C Proof of Theorem 4.3

The proof utilizes the game-playing technique in the style of [9]. We refer the reader to the be-
ginning of the proof of Theorem 4.1 in the previous appendix for a summary of the fundamentals
of the technique.

Ind-cpa adversary B is depicted in Figure 3. Equation (2) follows from the following se-
quence of inequalities, which we will justify below:

21

procedure Initialize All games

b
$← {0, 1}

(t0,x0)
$← Am(1k) ; (t1,x1)

$← Am(1k)

(pk, sk) $← K(1k)
For i← 1, 2 do:

Ri,0, . . . , Ri,v(k)
$← {0, 1}l(k)

For all j do:

y[j] $← E(pk,xb[j];Rb,j)
Return pk,y

On hash query x:
Games G1–G4/G5–G7

If H[x] is undefined then

H[x] $← {0, 1}l(k)

E[x]← E(pk, x;H[x])
If ∃i such that x = x0[i] then

If one = false then zer← true

H[x]← R0,i

If ∃j such that x = x1[j] then
If zer = false then one← true

H[x]← R1,j

Return H[x]

On decryption query y:
Games G1–G5/G6

If ∃xy such that E[xy] = y then
Return xy

m← D(sk, y)
If m = ⊥ then return ⊥
If H[m] is undefined then

H[m] $← {0, 1}l(k)

E[m]← E(pk,m;H[m])
If E[m] = y then

bad1 ← true ; Return m
Else Return ⊥

On decryption query y: Game G7

If ∃xy such that E[xy] = y
then Return xy

Else Return ⊥

procedure Finalize(g) Game G1

If g = t1 then d← 1 else d← 0
Return d

procedure Finalize(g) Games G2/G3

If zer = true then d← 0
Else If one = true then d← 1

Else If g = t1 then d← 1 else d← 0
If (b = 1 ∧ zer = true) ∨ (b = 0 ∧ one = true)

then bad0 ← true ; d← b
Return d

procedure Finalize(g) Games G4–G7

If zer = true then d← 0
Else If one = true then d← 1

Else If g = t1 then d← 1 else d← 0
Return d

Figure 4: Games for the proof of Theorem 4.3.

22

1
2

+
1
2
Advpriv-cca

DPE,A (k) = Pr
[

G
Ag

1 ⇒ b
]

(12)

≤ Pr
[

G
Ag

2 ⇒ b
]

(13)

≤ Pr
[

G
Ag

3 ⇒ b
]

+ Pr[GAg

3 sets bad0] (14)

≤ Pr
[

G
Ag

3 ⇒ b
]

+
qh(k)v(k)
2meA(k)

(15)

= Pr
[

G
Ag

4 ⇒ b
]

+
qh(k)v(k)
2meA(k)

(16)

= Pr
[

G
Ag

5 ⇒ b
]

+
qh(k)v(k)
2meA(k)

(17)

≤ Pr
[

G
Ag

6 ⇒ b
]

+
qh(k)v(k)
2meA(k)

+ Pr[GAg

6 sets bad1] (18)

≤ Pr
[

G
Ag

6 ⇒ b
]

+
qh(k)v(k)
2meA(k)

+ qd(k)mcPE(k) (19)

= Pr
[

G
Ag

7 ⇒ b
]

+
qh(k)v(k)
2meA(k)

+ qd(k)mcPE(k) (20)

=
1
2

+
1
2
Advind-cpa

PE,B (k) +
qh(k)v(k)
2meA(k)

+ qd(k)mcPE(k) . (21)

The justification for games G1 − G5 is essentially identical to that given in the proof
Theorem 4.1, thus we justify only the remaining games here. Note that to prove instead that the
construction achieves priv-atk assuming the underlying scheme is priv-atk for atk ∈ {cpa, cca}
we would basically be done at this point.

We bound the probability that Ag when executed with G5 makes a query y to its decryption
oracle that is a valid ciphertext for some message m but Ag has not queried m to its hash oracle
H, i.e., H[m] is not defined as follows. Since Ag gets no information about the random string
H[m] in this case, it can do no better in order to make such a decryption query for a particular
message m (in terms of the probability it makes such a query, taken as usual over a common
finite set of coins as in the proof of the Fundamental Lemma in [9]) than to make the query a
ciphertext E(pk,m, R) for coins R chosen by Ag at random (here Ag may or may not actually
know m; the point is that it can do no better than this regardless), because in this case the
distributions on the values of the ciphertexts E(pk,m;H[m]) and E(pk,m, R) induced by the
choices of H[m] and R, respectively, are the same. This means that the probability that a query
made by Ag to its decryption oracle satisfies the above condition for any plaintext cannot be
more than mcPE(k), which in turn justifies (19).

Unlike game G7, game G6 may make a choice of H[m] prematurely during the procedure
to respond to a decryption oracle query. But this choice does not effect the response to the
decryption oracle query, so it has no influence on the output of the game as compared to making
this choice only when the particular hash oracle query m is made. Dropping the relevant code in
the G6 in order to do the latter therefore results in the equivalent game G7. This justifies (20).

Now (21) is easy to see by comparing the code of B to that of Game G7 and taking into
account the definition of the advantage of B.

Finally, to justify the claim about the running-time of B, recall the convention to include in
the running-time of A that of its overlying experiment. So extra overhead for B here includes
encrypting each hash query made by Ag and storing the result in an array (indexed by the

23

l(k)-bit query), and searching the array for a corresponding message to each decryption query.
The rest of its overhead analogous to in the proof of Theorem 4.1 in the previous appendix.

We remark that in general ind-cpa security does not seem to be enough to imply that the max-
collision probability of a public-key encryption scheme is negligible. To see this, let us take an
ind-cpa scheme PE = (K, E ,D) and modify it such that the resulting scheme PE ′ = (K′, E ′,D′)
is also ind-cpa but any max-collision probability mcPE ′(·) equals one. We will also assume
the existence of a one-way function generator F on {0, 1}k (defined analogously to trapdoor
permutation generators in Appendix A). Note that this is not an extra assumption given that
we are assuming PE to be ind-cpa in the first place. The constituent algorithms of PE ′ work as
follows:

• On input 1k, K′ runs K and F on the same input to receive outputs (pk, sk) and f , respec-
tively. It then chooses x∗ ∈ {0, 1}k at random, sets y ← f(x∗) outputs (pk ‖ f ‖ y, sk ‖ x∗).

• On input (pk ‖ f ‖ y, m), E ′ outputs 0 if f(m) = y and E(pk,m) otherwise.
• On input (sk ‖ x∗, C), D′ outputs x∗ if C = 0 and D(sk, C) otherwise.

(For PE ′ to meet Definition A.1, we add x∗ above to MsgSp(k) if necessary and assume 0 is
a special ciphertext not used by PE .) It is straightforward to show that PE ′ is also an ind-cpa
public-key encryption scheme but has max-collision probability always equal to one. Moreover,
an ind-cpa adversary against PE ′ simulating the interaction of a priv-cca adverssary against the
corresponding “encrypt-with-hash” ESE scheme with its experiment has no hope of correctly
answering a query 0 made by the latter to its decryption oracle, since this requires the ind-cpa
adversary to invert the one-way function f . What this shows is that one is unlikely to get
away without an extra assumption in order to prove priv-cca security of the construction based
on the ind-cpa security of the underlying scheme. Actually, with a little more work than in
current proof, one can show that an apparently weaker assumption (also violated by PE ′ above)
suffices here, namely that an algorithm given only the public key pk can, with at most negligible
probability over the coin tosses of both the key generation and encryption algorithms, output
a ciphertext for a message such that it yields the same ciphertext when re-encrypted under the
same pk using fresh random coins. But we use the present condition for simplicity, which is met
in practice anyway.

D Proof of Theorem 4.5

We prove Case 1, meaning we assume that n(k) − k0(k) < k1(k) ≤ n(k) (and of course n(k) >
2k0(k), which is true in either case). The proof for Case 2 is nearly identical. Let us first recall
Lemma 6 from [22], stated in a form convenient to us.

Lemma D.1 [22] Let FRSA be the trapdoor-permutation generator. Let A be an RPT algo-

rithm that on input f , where (f, f−1) $← FRSA(1k), and y ∈ k1(k), with probability δ(k) outputs
x ∈ {0, 1}n(k)−k0(k), such that there exists z ∈ {0, 1}k1(k)−n(k)+k0(k) such that f(z ‖x) = y. Then
there exists an RPT inverter I against FRSA such that

δ(k) ≤
√

Advowf
FRSA,I(k) + 24(k0(k)−n(k))−6k1(k)+10 − 22(k0(k)−n(k))−3k1(k)+5 ,

where the running-time of I is at most twice that of A plus O(k3).

Note that in the above A is not required to actually find z. We remark that the algorithm
in the above lemma is a partially one-way adversary against FRSA as defined in [22].

24

Algorithm GetQuery(f, Y)
ctr ← 0

j
$← {1, . . . , qH2} ; w

$← {1, . . . , v(k)}
y $← {0, 1}n(k) × · · · × {0, 1}n(k) /* pick random v(k)-size vector */

Y ′ $← {0, 1}n(k)−k1(k)

y[w]← Y ′ ‖ Y
Run Ag on input f,y, replying to its oracle queries as follows:

On query x to oracle H1:
If H1[x] is undefined then

H1[x] $← {0, 1}n(k)−k0(k)

Return H1[x]
On query x to oracle R:
If R[x] is undefined then

R[x] $← {0, 1}k0(k)

Return R[x]
On query x to oracle H2:
ctr ← ctr + 1
If H2[x] is undefined then

H2[x] $← {0, 1}n(k)−k0(k)

If ctr = j then
T ← x

Until Ag halts
Return T

Figure 5: Algorithm GetQuery for proof of Theorem 4.5. The algorithm translates to an RPT
inverter I against FRSA as per Lemma D.1. See [22] for details of the construction.

The strategy for our proof is to construct an algorithm satisfying the hypothesis of the
above lemma and conclude the existence of an RPT inverter against FRSA by the lemma. The
algorithm, which we call GetQuery, is depicted in Figure 5, and the games for the proof are
depicted in Figure 6. (Here, as in the previous proofs, we use the game-playing technique of [9].
See the beginning of Appendix B for a brief summary of this technique.)

To simplify the proof, in a game with multiple boolean variables badi defined, we will assume
in the analysis when considering the probability that badi is set that no other badi′ for i 6= i′

has been set previously. This is justified because the contrary would be subsumed by another
case anyway, i.e., some badi has to be set first.

Equation (3) of Theorem 4.5 follows from the following sequence of inequalities, which we
will justify below:

25

1
2

+
1
2
Advpriv-cpa

DOAEP,A(k) = Pr
[

G
Ag

1 ⇒ b
]

(22)

≤ Pr
[

G
Ag

2 ⇒ b
]

+ Pr[GAg

1 sets bad0] (23)

≤ Pr
[

G
Ag

2 ⇒ b
]

+
qR(k)v(k)

2n(k)
(24)

≤ Pr
[

G
Ag

3 ⇒ b
]

+
qR(k)v(k)

2n(k)
+ Pr[GAg

2 sets bad1] (25)

≤ Pr
[

G
Ag

3 ⇒ b
]

+
qR(k)v(k)

2n(k)
+

qH1(k)qR(k)v(k)
2meA(k)

(26)

≤ Pr
[

G
Ag

4 ⇒ b
]

+
qR(k)v(k)

2n(k)
+

qH1(k)qR(k)v(k)
2meA(k)

+ Pr[GAg

3 sets bad2] (27)

= Pr
[

G
Ag

5 ⇒ b
]

+
qR(k)v(k)

2n(k)
+

qH1(k)qR(k)v(k)
2meA(k)

+ Pr[GAg

3 sets bad2] (28)

≤ Pr
[

G
Ag

6 ⇒ b
]

+
qR(k)v(k)

2n(k)
+

qH1(k)qR(k)v(k)
2meA(k)

+ Pr[GAg

3 sets bad2]

+ Pr[GAg

5 sets bad3] (29)

= Pr
[

G
Ag

7 ⇒ b
]

+
qR(k)v(k)

2n(k)
+

qH1(k)qR(k)v(k)
2meA(k)

+ Pr[GAg

3 sets bad2]

+ Pr[GAg

5 sets bad3] (30)

≤ Pr
[

G
Ag

8 ⇒ b
]

+
qR(k)v(k)

2n(k)
+

qH1(k)qR(k)v(k)
2meA(k)

+ Pr[GAg

3 sets bad2]

+ Pr[GAg

5 sets bad3] + Pr[GAg

7 sets bad4] (31)

≤ qH2v(k)
√

Advowf
FRSA,I(k) + 24k0(k)−2k1(k)+10 − 22k0(k)−k1(k)+5

+
qRv(k)
2k0(k)

+
qH1(k)qR(k)v(k)

2meA(k)
. (32)

Equation (22) follows easily upon inspection of the code for game G1 and the definition of
the experiments in Definition 3.4.

Then we obtain (23) via application of the Fundamental Lemma in [9]. The probability that
Ag when executed with game G1 queries Si,0 to R for some i, while previously having queried
neither Ti,0 to H2 nor mi,0 to H1, is at most qRv(k)/2n(k) since Ag cannot have any information
about any such Si,0 in this case, as it is also easy to see from the code that the responses to all
its previous oracle queries and hence also its input (using the fact that if a string r is random
and independent from Si,0 then so is r ⊕ x for any string x) and are random and independent
from Si,0, up to the point in the execution that this query is made. This justifies (24).

Now (25) is again obtained via application of the Fundamental Lemma. We bound the
probability that Ag when executed with game G2 queries mi,r for some i to H1 and later queries
Si,0 to R, without querying Ti,0 to H2 at any point prior, as follows. First observe that the string
H∗

i,1 given in response to query mi,r to H1 is random and independent from the view of Ag up
to the point that query Si,0 to R is made. This is because without querying Ti,0 to H2, Ag gets
no information about H∗

i,2 so can obtain information about H∗
i,1 only by computing Si,0 ⊕mi,l,

but can obtain information about S0 only by querying it to R. Similarly, without querying Si,0

to R, Ag gets no information about the random string Ti,0 = R∗
i ⊕mi,r (more accurately, it can

26

only obtain an alleged value for R∗
i that it cannot verify), and without querying Ti,0 to Hi,2

it gets no information about Si,1 = H∗
i,2 ⊕ Si,0. So until these queries are made, in the input

Si,1 ‖ f(Ti,0) the strings Si,1, Ti,0 are also independent and random from the view of Ag. This
means that if bad1 is set here then Ag has “guessed” mi,l ‖mi,r without getting any information
about it, in the technical sense that, since mi,l is equal to Si,0 ⊕H[mi,r], another RPTA K (a
“knowledge extractor”) can, with the same probability that this happens, output a list of strings
containing mi,l ‖mi,r on input the transcript of queries that Ag made to oracles H1, R and their
responses when executed in a game where all input, including the oracle query responses, are
given independently at random. (Here we use the assumption that no other badj for j 6= 1 has
been set previously. Also note that as usual and as in the proof of the Fundamental Lemma in
[9], this probability is taken over a common finite set of coins with which these algorithms are
executed, which will not be explicitly mentioned again.) Namely, K outputs a list comprised
of q ⊕H[s] || s, for every query s made to oracle R and every query r made to oracle H. We
thus regard each pair of queries that that Ag makes to H1, R as a single “guess” for mi,l ‖mi,r,
and then we see from the definition of message space min-entropy in Definition 3.4 that the
probability K outputs such a list containing mi,l ‖mi,r is at most qH1qRv(k)/2meA(k). We have
justified (26).

As usual, the Fundamental Lemma justifies both (27) and (29). If Ag when executed with
game G4 queries Si,0 for some i to R and later queries mi,r to H1 without having queried Ti,0

to H2 at any point prior, then it is given a random string independent from everything else in
the game as the response to query Si,0 to R, and, after it queries mi,r to H1, if it later queries
Ti,0 to H2 the response is likewise random and independent. Thus the string H∗

i,1 given to Ag

in response to query mi,r to H1 in this case is random and independent from its view during
its entire execution with G4. What this means is that we can drop the single-boxed “Else If”
statement in the procedure to respond to oracle queries to H1 in game G4 without influencing
the distribution of oracle query responses given to Ag in this game and hence the game output;
doing so therefore results in an equivalent game that we have called G5, which justifies (28).

Now consider when Ag, executed with game G6, queries mi,r for some i to H1 but prior to
this has queried neither Si,0 to R nor Ti,0 to H2. After it queries mi,r to H1 (to receive response
H∗

i,1), from inspection of the code one sees that the responses given to Ag for the queries to
any of its oracle are random and independent of H∗

i,1, meaning the string H∗
1 given to Ag as the

response to its query mr to H1 here is also random and independent from the point of view of
Ag during the rest of its execution. Thus by the same reasoning as for (28) above we drop the
double-boxed “Else” statement, which gives us an equivalent game G7 and justifies (30).

We then change the Initialize procedure to pick the random strings Si,1, Ti,0 for all i at
random independently from everything else, which cannot affect the output distribution of the
game now since any information given to Ag is likewise random and independent from everything
else, justifying (31).

Next we want to show that in each of the following cases, up to the point in its execution
that the relevant badj is set, all queries made by Ag to its oracles can (if they are not already) be
answered independently and at random from everything else without influencing the distribution
of oracle query responses from the view of Ag up to that point (again using the assumption that
bad′j for j 6= j′ has been set previously, which will not be mentioned below): game G3 sets
bad2, game G5 set bad3, and game G7 sets bad4. The claim is that if this is true then we are
done, because, first of all, these cases exhaust the possible execution sequences in which Ag

queries Ti,0 for some i to H2, and the algorithm GetQuery, which answers all oracle queries at
random independently from everything else, evidently succeeds with some positive probability in
outputting Tw,0 (with w defined as in GetQuery) just when such a query is made. Namely, in the
games, the procedure to respond to queries to oracle H2 explicitly checks whether a query to H2

27

is equal to Ti,0 for some i, while algorithm GetQuery simply guesses at random that this is case
for some particular such query. Since w is random and independent its guess has a 1/(qH2v(k))
chance of being equal to Tw,0; Equation (32) then follows by Lemma D.1.

So let us examine each of these cases in turn. First consider when Ag, executed with G3,
queries Ti,0 for some i to H2 after querying Si,0 to R but without querying mi,r to H1 at any
point prior. We see directly from the code that the responses given to Ag to its oracle queries
to up to the point in its execution that it queries Ti,0 to H2 are random and independent from
everything else. So the first case is settled. For the second case, consider when Ag, executed
with game G5, queries Ti,0 for some i to H2 after having queried mi,r to H1. Here we see that
the only previous query was not answered independently of everything else in the game is query
mi,r to H1. But until Ag queries Ti,0 to H2 it gets no information about H∗

i,1 because, as noted
in the justification of (26), such information can only be obtained by computing Si,0 ⊕mi,l, and
information about Si,0 cannot be obtained in this game without querying Ti,0 to H2 since until
this query is made all queries to oracle R are answered independently at random. Thus query
mi,r to H1 made by Ag can also be answered at random independent of everything else without
influencing the distribution of oracle query responses from the view of Ag in the game up to the
point that bad3 is set, as desired. Finally, consider when Ag, executed with G7, queries Ti,0 for
some i to H2, without previously having queried Si,0 to R. Again it is clear that the responses to
its oracle queries that Ag receives up to this point in its execution are random and independent
of everything else in the game, which concludes the last case.

To finish the proof, note that it is straightforward to see the running-time analysis of I by
taking into account Lemma D.1 and the convention that the running-time of A includes that of
its overlying experiment: the extra overhead for GetQuery mostly consists of picking v(k)-many
l(k)-bit random numbers and maintaining a counter up to at most qH2 , incremented each time
Ag makes a query to oracle H2.

28

procedure Initialize Game G1 −G6

b
$← {0, 1}

(t0,x0)
$← Am(1k) ; (t1,x1)

$← Am(1k)

(f, f−1) $← FRSA(1k)
For i← 1, . . . , v(k)

Parse xb[i] as mi,l ‖mi,r,
where |mi,l| = |mi,r| = n(k)

H∗
i,1,H

∗
i,2

$← {0, 1}n(k)−k0(k)

R∗
i

$← {0, 1}k0(k)

Si,0 ← H∗
i,1 ⊕mi,l ; Ti,0 ← R∗

i ⊕mi,r

Si,1 ← H∗
i,2 ⊕ Si,0

y[i]← Si,1 ‖ f(Ti,0)
Return (f,y)

procedure Initialize Game G8

b
$← {0, 1}

(t0,x0)
$← Am(1k)

(f, f−1) $← FRSA(1k)
For i← 1, . . . , v(k)

Si,1
$← {0, 1}n(k)−k0(k) ; Ti,0

$← {0, 1}k0(k)

y[i]← Si,1 ‖ f(Ti,0)
Return (f,y)

On query x to H1:
Games G1 −G4/G5 −G6/G7

If H1[x] is undefined then

H1[x] $←{0,1}n(k)−k0(k)

If ∃i such that x = mi,r then
If Hi,2[T0] is defined then

H1[x]← H∗
i,1

Else If R[Si,0] is defined then
H1[x]← H∗

i,1

Else H1[x]← H∗
i,1

Return H1[x]

On query x to R: Games G1/G2/G3

If R[x] is undefined then

R[x] $←{0,1}k0(k)

If ∃i such that x = Si,0 then
If H2[Ti,0] is defined then

R[x]← R∗
i

Else If H1[mi,r] is undefined then
bad0 ← true ; R[x]← R∗

i

Else bad1 ← true ; R[x]← R∗
i

Return R[x]

On query x to H2:
Games G1 −G3/G4, G5/G6

If H2[x] is undefined then

H2[x] $←{0,1}n(k)−k0(k)

If ∃i such that x = Ti,0 then
If R[Si,0] is defined
∧H1[mi,r] is undefined then
bad2 ← true ; H2[x]← H∗

i,2

If H1[mi,r] is defined then

bad3 ← true ; H2[x]← H∗
i,2

Else H2[x]← H∗
i,2

Return R[x]

On query x to H2: Games G7/G8

If H2[x] is undefined then

H2[x] $←{0,1}n(k)−k0(k)

If ∃i such that x = Ti,0 ∧ R[Si,0] is undefined
bad4 ← true ; H2[x]← H∗

i,2

Return R[x]

procedure Finalize(g) All games
If g = t0 then Return 1
Else Return 0

Figure 6: Games for the proof of Theorem 4.5. Here the single versus double-boxed statements indicate
which statements are removed first and second, respectively, in the transitions indicated by the labels.
(For example, the label “Game G1/G2, G3/G4” means that the single-boxed statement contained therein
is absent for the games following (meaning in particular not including) G1, while the double-boxed
statement is absent just for the games following G3. Thus both statements are absent for G4.)

29

