
Cryptanalysis of the Dual Elliptic Curve Pseudorandom
Generator

Berry Schoenmakers and Andrey Sidorenko
Dept. of Mathematics and Computer Science, TU Eindhoven,

P.O. Box 513, 5600 MB Eindhoven, The Netherlands.

berry@win.tue.nl, a.sidorenko@tue.nl

29 May 2006

1 Introduction

The Dual Elliptic Curve Pseudorandom Generator (DEC PRG) is proposed by Barker and
Kelsey [2]. It is claimed (see Section 10.3.1 of [2]) that the pseudorandom generator is secure
unless the adversary can solve the elliptic curve discrete logarithm problem (ECDLP) for the
corresponding elliptic curve. The claim is supported only by an informal discussion. No security
reduction is given, that is, it is not shown that an adversary that breaks the pseudorandom
generator implies a solver for the ECDLP.

Our experimental results and also empirical argument show that the DEC PRG is insecure.
The attack does not imply solving the ECDLP for the corresponding elliptic curve. The attack
is very efficient. It can be run on an ordinary PC.

Actually, the generator is insecure because pseudorandom bits are extracted from points of
the elliptic curve improperly. The authors of [2] assume that 240 least significant bits of x-
coordinate of a random point of the elliptic curve over the prime field Fp, where dlog2 pe = 256,
are indistinguishable from 240 uniformly distributed random bits. We show that this is not
the case. Based on this observation, we construct an algorithm (an adversary) that efficiently
distinguishes the pseudorandom sequences produced by the DEC PRG from the sequences of
uniformly distributed random bits.

We note that the complexity of our attack is proportional to 2256−240 = 216, so extracting less
than 240 bits (say, 2176 bits) makes the attack impractical. However, extracting less random bits
does not guarantee that there exists no other attack that successfully breaks the pseudorandom
generator. The reason is that the DEC PRG is not provably secure, its security does not
provably rely on the intractability of the ECDLP. To make a real provably secure pseudorandom
generator one has to construct a security reduction, that is, to show that breaking the generator
does imply solving a well-known and supposedly difficult problem (e.g., ECDLP, factoring, etc.)

In fact, provable security might be the only argument in favor of the relatively slow DEC
PRG versus more efficient generators based on hash functions and block ciphers (e.g., the

1



generators described in Sections 10.1 and 10.2 of [2]). Unfortunately, the DEC PRG is not
secure so there are no reasons to use this generator rather than the others.

2 The Dual Elliptic Curve Pseudorandom Generator

Let p = 2256 − 2224 + 2192 + 296 − 1. Let E(Fp) denote the elliptic curve over Fp consisting of all
points (x, y) ∈ Fp × Fp such that

y2 = x2 + ax + b,

where

a = 115792089210356248762697446949407573530086143415290314195533631308867097853948,

b = 41058363725152142129326129780047268409114441015993725554835256314039467401291

and a point at infinity O. Let P = (xP , yP ) and Q = (xQ, yQ) be two points of the elliptic
curve E(Fp) such that

xP = 48439561293906451759052585252797914202762949526041747995844080717082404635286,

yP = 36134250956749795798585127919587881956611106672985015071877198253568414405109,

xQ = 91120319633256209954638481795610364441930342474826146651283703640232629993874,

yQ = 80764272623998874743522585409326200078679332703816718187804498579075161456710.

The constants are taken from Appendix A.1 of [2]. Note that the constant α such that P = αQ
is difficult to determine due to the intractability of the elliptic curve discrete logarithm problem
(ECDLP).

The seed of the Dual Elliptic Curve pseudorandom generator (DEC PRG) is a random
integer s0 ∈ {0, 1, . . . , #E(Fp)− 1}, where #E(Fp) denotes the number of points on the curve.
Let x : E(Fp) 7→ Fp denote a function that gives the x-coordinate of a point on the curve. Let
lsbi(s) denote the i least significant bits of an integer s. The DEC PRG transforms the seed
into the pseudorandom bit sequence of length 240k, k > 0, as follows.

Algorithm 2.1 (Dual Elliptic Curve pseudorandom generator).

• Input s0 ∈ {0, 1, . . . , #E(Fp)− 1}

• For i = 1, 2, . . . , k

1. Assign si = x(si−1P )

2. Output ri = lsb240(x(siQ))

The authors of [2] claim that

“Backtracking resistance is built into the design, as knowledge of s1 does not allow
an adversary to determine s0 (and so forth) unless the adversary is able to solve
the ECDLP for that specific curve. In addition, knowledge of r1 does not allow an
adversary to determine s1 (and so forth) unless the adversary is able to solve the
ECDLP for that specific curve.”

2



Note that backtracking (in other words, predicting) is equivalent to distinguishing the output
of the pseudorandom generator from the sequence of uniformly distributed random bits [6]. In
the next section we show that the output of the DEC PRG can be efficiently distinguished from
the sequence of uniformly distributed random bits. The distinguishing attack does not imply
solving the ECDLP for the given curve. It means that the pseudorandom generator is insecure
and cannot be used for cryptographic purposes.

3 The Distinguishing Attack on the DEC PRG

The output of the pseudorandom generator consists of k 240-bit blocks. For a block r ∈ {0, 1}240

let φ(r) denote the number of points T on the elliptic curve E(Fp) satisfying lsb240(x(T )) = r.
At each step i, the DEC PRG outputs ri = lsb240(x(siQ)). The generator is secure if and

only if ri is indistinguishable from 240 uniformly distributed random bits for all i = 1, . . . , k.
We will see, however, that ri can be distinguished from 240 uniformly distributed random bits.

The argument below does not pretend to be a strict justification of the attack. On the
contrary, it just gives the reader an intuition of how the attack works.

It is shown by Gjøsteen [4] and Brown [3] that the sequence of points siQ is indistinguish-
able from the sequence of points chosen uniformly at random if the decisional Diffie-Hellman
assumption holds in E(Fp). Therefore, it reasonable to assume that siQ behaves like a random
point on the curve, i = 1, . . . , k. Then, for r ∈ {0, 1}240 the probability that a certain output
block is equal to r is φ(r)/#E(Fp). Thus, if φ(r1) > φ(r2) for rk ∈ {0, 1}240, k = 1, 2, the prob-
ability that a certain output block is equal to r1 is larger than the probability that this block
is equal to r2. Moreover, we will see that the difference between the probabilities is observable.

The number of points on the elliptic curve is close to 2256 (the difference is of order 2224).
Therefore, for r ∈R {0, 1}240, where the notation ”∈R” means that the element is chosen uni-
formly at random from the corresponding set, the average expected value of φ(r) approximately
equals 2256−240 = 216. On the contrary, for a block r generated by the DEC PRG the expected
value of φ(r) is larger than 216. Figures 1 and 2 provide experimental evidence for this fact.
Figure 1 gives the number of output blocks r with a certain value of φ(r) (the total number
of generated blocks is 1320000). Intuitively, the outcome distribution should fit the normal
distribution. The least-squares method shows that the closest normal distribution has para-
meters µ = 65537.0 (rather than 216 = 65536) and σ = 255.6. Figure 2 shows that the two
distributions are very close indeed.

The latter observation suggests a simple attack on the pseudorandom generator. Take
an output block r and calculate φ(r). The calculation takes time proportional to 216. If
φ(r) > 216 conclude that the sequence is produced by the DEC PRG. Otherwise, conclude that
the sequence is random with uniform distribution. Due to the above argument, for a block r
output by the DEC PRG

Pr[φ(r) > 216] = 1− 1

σ
√

2π

∫ 216

−∞
exp[(z − µ)2/(2σ2)]dz ≈ 0.50156.

Therefore, our attack guesses correctly with probability about 0.50078.

3



The success probability of the attack can be improved if one takes into account more than
one output block, say k blocks, k > 1, and calculates the average value of φ(r). In our
experiments, we used k = 4000. Note that the sum of k random variables that have normal
distribution with mean µ and variance σ2 has normal distribution with mean kµ and variance
kσ2. Then,

Pr[φ(r1) + · · ·+ φ(rk) > k216] = 1− 1

σ
√

2kπ

∫ k·216

−∞
exp[(z − kµ)2/(2kσ2)]dz ≈ 0.59757,

so the success probability of the improved attack is 0.548785. The running time is proportional
to 4000 · 216 ≈ 228.

The simulation was implemented in C++ using the NTL library [5] both for Windows
and Linux platforms. In total 330 files of pseudorandom data were generated by the DEC
PRG. Each file contained 4000 240-bit blocks. The seed for the DEC PRG was obtained using
the RtlGenRandom() generator of the Platform SDK that is claimed to be cryptographically
secure1. The analysis of one file took about 2 hours and 30 minutes on a 3GHz Linux machine
with 1Gb of memory.

Independent work by Gjøsteen [4] shows that there exists an algorithm that predicts the
next bit of the DEC PRG with advantage 0.0011. The work by Gjøsteen is based on similar
ideas to those proposed in this paper.

4 Conclusion

The following lines open Section 10.3 of [2].

“A DRBG2 can be designed to take advantage of number theoretic problems (e.g.,
the discrete logarithm problem). If done correctly, such a generators properties of
randomness and/or unpredictability will be assured by the difficulty of finding a
solution to that problem. This section specifies a DRBG based on the elliptic curve
discrete logarithm problem.”

Our result shows that the Dual Elliptic Curve pseudorandom generator is not done correctly.
The authors of [2] only claim the generator to be secure, no security proof is given. We present
an efficient algorithm that distinguishes the output of the generator from the sequence of
uniformly distributed random bits, which demonstrates that the generator is in fact insecure.

The main conclusion of this paper is that when designing a provably secure cryptographic
scheme (e.g, a pseudorandom generator) one has to pay attention to the security proof (the
reduction). An informal argument like the one in Section 10.3.1 of [2] is certainly not good
enough. The scheme with a certain choice of parameters can be claimed to be provably secure
only if it is shown that for these parameters breaking the scheme is as hard as solving a difficult
problem faster than the fastest algorithm known so far.

1This pseudorandom generator is built according to FIPS 186-2 Appendix 3.1 with SHA-1 as the iterated
function [1]. It gets the seed from the system status (current process ID, current thread, current time, etc.).

2DRBG stands for “deterministic random bit generator”.

4



References

[1] FIPS 186-2, Digital signature standard, Federal Information Processing Standards Publica-
tion 186-2, U.S. Department of Commerce/N.I.S.T., National Technical Information Service,
Springfield, Virginia, 2000.

[2] E. Barker and J. Kelsey, Recommendation for random number generation using determin-
istic random bit generators, December 2005, NIST Special Publication (SP) 800-90.

[3] D. Brown, Conjectured security of the ANSI-NIST Elliptic Curve RNG, Cryptology ePrint
Archive, Report 2006/117, 2006, http://eprint.iacr.org/.

[4] Kristian Gjøsteen, Comments on Dual-EC-DRBG/NIST SP 800-90, Draft December 2005,
March 2006, http://www.math.ntnu.no/~kristiag/drafts/dual-ec-drbg-comments.

pdf.

[5] V. Shoup, NTL: A library for doing number theory, http://www.shoup.net/ntl/.

[6] A. C. Yao, Theory and application of trapdoor functions, IEEE Symposium on Foundations
of Computer Science, 1982, pp. 80–91.

5



65000 65500 66000 66500

1000

2000

3000

4000

Figure 1: Number of 240-bit blocks r versus φ(r) (1320000 blocks were generated in total).

65000 65500 66000 66500

1000

2000

3000

4000

Figure 2: The distribution of Fig. 1 fits the normal distribution with µ = 65537.0 and σ = 255.6.

6


