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Abstract. We construct the first several efficient threshold ring signatures (TRS) without ran-
dom oracles. Specializing to a threshold of one, they are the first several efficient ring signatures
without random oracles after the only earlier instantiation of Chow, Liu, Wei, and Yuen [22].
Further specializing to a ring of just one user, they are the short (ordinary) signatures without
random oracles summarized in Wei and Yuen [41].

We also construct the first hierarchical identity-based threshold ring signature without
random oracles. The signature size is O(nλs) bits, where λs is the security parameter and n is
the number of users in the ring. Specializing to a threshold of one, it is the first hierarchical
identity-based ring signature without random oracles. Further specializing to a ring of one user,
it is the constant-size hierarchical identity-based signature (HIBS) without random oracles in [44]
- the signature size is O(λs) bits which is independent of the number of levels in the hierarchy.

1 Introduction

Anonymity is one of the most important properties in many cryptographic applications. Prac-
tical applications like e-cash or e-voting need to ensure that information about the signer is
not revealed. A ring signature scheme specifies a set of possible signers, such that the verifier
cannot tell which member actually produced the signature. Therefore a ring signature scheme
achieves signer anonymity. In addition, it is not possible to decide whether two signatures have
been issued by the same member. The concept of ring signatures was proposed by Cramer
et al. [24] and ring signatures were first formalized by Rivest et al. [36]. Many different ring
signature schemes are proposed, such as [1], [12], [16], [23], [25], [43] and [46]. Different from
a group signature scheme (e.g. [6], [18], [20]), the group formation is spontaneous and there
is no group manager or open authority to determine the identity of the signer of a ring sig-
nature. Therefore assume users’ public keys are readily available, a user can form a group by
simply collecting the public keys of all the group members including his own. These group
members can be totally unaware of being conscripted into the group. Ring signature schemes
can be used for whistle blowing [36], anonymous membership authentication for ad hoc groups
[16] and many other applications which do not want complicated group formation stage but
require signer anonymity.

[16] extended the notion of ring signature schemes to a threshold setting and proposed the
first threshold ring signature scheme. Later on, some other threshold ring signature schemes
(e.g. [42], [32], [33], [29]) have been proposed. A θ-out-of-n threshold ring signature scheme is
defined as a ring signature scheme of which at least θ corresponding private keys of n public
keys are needed to produce a signature. The setup-free and signer anonymity properties of a
conventional ring signature scheme are preserved in the threshold setting.
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Signatures without random oracles. The random oracle model [7] is a popular technique
in provable security. Many signature schemes used rewindings of hashings with observable
hashing input and output in their reductionist security proofs, like the Schnorr signature or
other schemes using the Fiat-Shamir paradigm. However the result of Barak el al. [3, 4] and
Goldwasser and Kalai [28] proved the insecurity of the random oracle model as it is used in
the Fiat-Shamir paradigm. Several papers proved that some popular cryptosystems previously
proved secure in the random oracle were actually provably insecure when the random oracle
was instantiated by any real-world hashing functions [19, 5]. As a result, recently there are
many new signature schemes which try to prove their security without random oracles, such
as group signatures [2, 15], blind signatures [30], group-oriented signatures [40], undeniable
signatures [31, 48], etc.

Wei and Yuen [41] proposed some short signautures without random oracles. The signa-
tures originate from the signature schemes in [10, 45, 17, 14]. They showed how these signatures
can be consturcted from new assumptions without random oracles. Our new threshold ring
signatures wihout random oracles mainly originate from these signatures.

Most of the existing ring signature (including threshold or non-threshold version) schemes
rely on the random oracle assumption. Recently, [8] propose a ring signature scheme for any
number of users based on general assumptions, and an efficient construction for two users.
Both constructions do not rely on random oracles. [22] proposed the first efficient instantiation
for any number of users. However, no existing threshold ring signature schemes is provably
secure without random oracles.

Identity-based cryptography. Identity-based cryptography, introduced by Shamir [38],
allows the users’ public keys to be their identity. Usually a trusted third party computes
the private key from an identity (any arbitrary string such as name and email address).
Comparing with certificate from certificate authority (CA), the identity based public key can
identify a user immediately. Besides, the problem of distribution of public keys is avoided in
identity-based cryptography. Hierarchical identity-based cryptography [26] is a generalization
of identity-based cryptography that mirrors the hierarchy of organizations. An identity at
level ` of the hierarchy tree can issue private keys to its descendant identities, but cannot
sign/decrypt messages on behalf of any identity which are not his descendant. Identity-based
threshold ring signature was proposed in [21]. However there is no existing ring signature
using hierarchical identity based key pairs.

Our Contributions are
1. We construct new ring signatures and threshold ring signatures without random oracles.

The proposed seven different threshold ring signature schemes are the first which are
provably secure without random oracles in the literature. In particular, except one of the
ring signature is proposed in [22], the other six schemes are new ring signature schemes
whose reductionist security proofs do not rely on the random oracles.

2. We propose a new security notion and model for hierarchical identity-based threshold ring
signature (HIBTRS). In particular, if θ = 1, we have a new security notion and model for
hierarchical identity-based ring signature (HIBRS).

Our Intuition. Outsourcing is a powerful technique in proving the security of cryptographic
schemes. When we prove the security of a scheme, usually the most difficult part is to simu-
late the signing oracle or the decryption oracle of the gauntlet (challenge) user. Outsourcing
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means that we use the help from the problem instance to answer those oracle queries. Here
we introduce different types of outsourcing techniques and then discuss how they can be ap-
plied to construct threshold ring signatures without random oracles. We divide the related
intractability assumtpions into two types: interactive and non-interactive.

Interactive intractability assumtpions: An interactive intractability problem instance means
that an attacker can adaptively query an external oracle for q times and can get distinct valid
tuples from the oracle which satisfy a relation R. Finally he needs to return a new valid tuple
which satisfies R. [34] proposed a LRSW assumption with an external oracle. In proving the
security of a signature scheme, the simulator simply forwards all signing oracle queries to this
external oracle and returns its output to the adversary. Signature schemes like [17] use this
type of assumption. The problem of interactive intractability assumptions is that we need
to assume that the tuples return by the oracle should not help the attacker to solve the in-
tractability problem. Therefore we need to be extremely careful when formulating interactive
intractability assumptions.

Non-interactive intractability assumtpions: A non-interactive intractability problem instance
does not have any interactive external oracle as the above type of assumptions. For outsourc-
ing, the non-interactive intractability assumtpions can be further divided into two categories.
[35] proposed a CAA (Collusion Attack Algorithm) assumption. In this type of assumption,
the problem instance gives q tuples in one time at the beginning, which satisfy a relation R.
Then the simulator can use these tuples to handle adaptive signing oracle queries from the
adversary for q times. Finally the adversary outputs a new tuple which satisfies R. Schemes
like [47] use this type of assumption.

[10] proposed a SDH (Strong Diffie-Hellman) assumption and used it to prove the security
of a short signature scheme. In this type of assumption, the problem instance gives a tower of
powers like (g, gx, . . . , gxq

). The simulator can use these values to setup the public parameters
and to simulate the signing oracle for q times. Then the simulator uses the adversary’s answer
to compute some power of x. Assumptions like DHI [35], BDHI [9], BDHE [13] also have
similar structure.

We notice that CAA type assumptions or interactive intractability assumptions can be
used to prove the security for threshold ring signature schemes. We do not find (threshold)
ring signature schemes that can be proven secure using SDH type assumptions. Although [43]
claimed to do so, but they do not give rigorous proof. [22] proposed the first ring signature
scheme without random oracles by using the CAA type assumption.

In this paper, we proposed seven threshold ring signature schemes without random ora-
cles. Three of those use CAA type assumptions in the security proofs, while the remaining
four use interactive intractability assumptions. [41] proved the security of signature scheme B
in [17] by a CAA type assumption (while the orignal paper used external oracle type assump-
tion). We use both versions in constructing two threshold ring signature schemes. Schemes of
[10] and its variant can be used to construct threshold ring signatures, which can be proven
secure using either CAA type assumptions or interactive intractability assumptions. However
we notice that some signature schemes like [14] or scheme A of [17] can be transformed to
threshold ring signature schemes by using only interactive intractability assumptions, but not
the CAA types. For the hierarchical identity-based threshold ring signature, we also use an
interactive intractability assumption for the security proof.
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Organization
This paper is organized as follow: The next section contains preliminaries about the underlying
cryptographic primitive used in this paper. In Section 3, we review the definition of secure
threshold ring signature schemes and introduce the definition of secure hierarchical identity
based threshold ring signature schemes. In Section 4 we show the constructions of some
threshold ring signature schemes and give the security proofs. Then we propose our new
hierarchical identity-based threshold ring signature instantiation in Section 5 and give the
security proofs. Finally, we conclude the paper in Section 6.

2 Preliminaries

Before presenting our results, we review the definitions of groups equipped with a bilinear
pairings and some related assumptions.

2.1 Bilinear Pairings

Here we follow the notation in [14]. Let G1 and G2 be two (multiplicative) cyclic groups
of prime order q1. Let g1 be a generator of G1 and g2 be a generator of G2. We also let
ψ be an isomorphism from G2 to G1, with ψ(g2) = g1, and ê be a bilinear map such that
ê : G1 ×G2 → GT with the following properties:

1. Bilinearity: For all u ∈ G1, v ∈ G2 and a, b ∈ Z, ê(ua, vb) = ê(u, v)ab.
2. Non-degeneracy: ê(g1, g2) 6= 1.
3. Computability: There exists an efficient algorithm to compute ê(u, v).

2.2 Intractability Assumptions

We review several intractability assumptions for existing signature schemes.

Definition 1. q-SDH [10]: The q-SDH Problem is given g1 ∈ G1, gxi

2 ∈ G2, 0 ≤ i ≤ n,
output (c, g1/(x+c)

1 ). The q-SDH Assumption is that no PPT algorithm can solve the q-SDH
problem with running time T and with probability ≥ ε, over the random choice of x and the
random bits consumed by A.

Assume G2 = G1. We have the following assumption:

Definition 2. LRSW [34]: The LRSW Problem is given g,X = gx, Y = gy ∈ G1, and an
oracle OX,Y (·) which, upon input m, returns random a and the tuple (b = ay, c = ax+mxy);
output (m∗, a∗, b∗ = (a∗)y, c∗ = (a∗)x+m∗xy) and m∗ has never been queried to OX,Y (·). The
LRSW Assumption is that no PPT algorithm can solve the LRSW problem with non-negligible
probability.

3 Security Model

We use textbook security models [27] for ACP-UF of standard signature schemes. Hereafter
we review the definition and the security notion of threshold ring signature schemes and
introduce the one for hierarchical identity based threshold ring signature schemes.

Notice that for unforgeability, we use the static attacker model here. The attacker is given
n public keys and θ − 1 corresponding private keys. All signing oracle queries correspond to
these n public keys, and the attacker’s final output should be a (n, θ)-threshold ring signature
for these n public keys.
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3.1 Threshold Ring Signature

Let λs ∈ N be a security parameter and m ∈ {0, 1}∗ be a message.

Definition 3. A threshold ring signature scheme is a triple (Setup, Sign, Verify) where

– (s, P ) ← Setup(1λs) is a probabilistic polynomial time algorithm (PPT) which takes as
input a security parameter λs, produces a private key s and a public keys P .

– σ ← Sign(1λs , ŝ, L,m) is a PPT which accepts as inputs a security parameter λs, a set of
private keys ŝ, a set of public keys L including those corresponding to the private keys in
ŝ and a message m, produces a threshold ring signature σ.

– 1/0← Verify(1λs , L,m, σ, θ) is a PPT which accepts as inputs a security parameter λs, a
set of public keys L, a message m, a signature σ and the number of signers θ, returns 1
or 0 for accept or reject, respectively.

For simplicity, we usually omit the input of security parameter in the rest of the paper. L
may include public keys based on different security parameters. The security of the signature
scheme defined above is set to the smallest one among them. Setup may also be extended to
take the description of key types.

The security of a ring signature scheme consists of three requirements, namely Correct-
ness, Anonymity and Existential Unforgeability. They are defined as follows.

Correctness. We require that Verify(L, m, Sign(ŝ, L, m), |ŝ|) = 1 for any message m and any
set of private keys ŝ which are generated by Setup(1λs) and any set of public keys L including
those corresponding to the private keys in ŝ.

We have the following oracle for the adversary to query in the security game:

– Signing Oracle SO(m,L′): On input any message m, a set of n users L′ ⊆ Lmax; returns
a ring signature σ ← Sign(ŝ, L′,m), such that Verify(L′, m, σ, θ) = 1 where ŝ is the set of
θ private keys that correspond to θ public keys in L′.

Anonymity. For a (n, θ)-threshold ring signature scheme of θ signers with n public keys, the
anonymity is defined as the following game between a simulator and an adversary A:

1. The simulator runs algorithm Setup. Let Lmax = {P1, · · · , Pnmax} be the set of nmax ≥ n
public keys in which each key is generated as (si, Pi)← Setup(1λsi ) for some λsi ∈ N. Let
λs = min(λs1 , · · · , λsnmax

). A is given Lmax, s1, . . ., snmax and the public parameters.
2. A queries SO qS times in arbitrary interleaf.
3. A randomly selects a message m∗, two distinct sets of θ users L0, L1 and a ring L∗ ⊆ Lmax

for which L0, L1 ⊂ L∗ and sends to the simulator. The simulator randomly picks a bit b
and returns σ ← Sign(ŝb, L

∗,m∗) to A, where ŝb is the set of secret keys of Lb.
4. Finally A outputs a bit b′.

A wins if b = b′. Denote AdvA be the probability that A wins in the above game over 1/2,
taken over the coin flips of A and the simulator.

Definition 4. A threshold ring signature scheme is anonymous if no PPT adversary A win
the anonymity game with non-negligible AdvA.
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It means that even all the private keys are known, it remains uncertain that which |ŝ|
signers out of n possible signers actually generates a threshold ring signature.

Existential Unforgeability. For threshold ring signature, we would like to consider the
security model for existential unforgeability. It models the adaptive chosen message attack.
For a (n, θ)-threshold ring signature scheme of θ signers with n public keys, the existential
unforgeability is defined as the following game between a simulator and an adversary A:

1. The simulator runs algorithm Setup. Let Lmax = {P1, · · · , Pnmax} be the set of nmax ≥ n
public keys in which each key is generated as (si, Pi) ← Setup(1λsi ) for some λsi ∈ N.
Let λs = min(λs1 , · · · , λsnmax

). A is given L, a set of θ − 1 private keys ŝ and the public
parameters.

2. A queries SO qS times in arbitrary interleaf.
3. Finally A outputs a tuple (L∗,m∗, σ∗).

A wins if Verify(L∗,m∗, σ∗, θ) = 1, L∗ ⊆ Lmax containing the public keys of ŝ, |L∗| = n and
(m∗, L∗) has never been queried to SO. Denote AdvA be the probability that A wins in the
above game, taken over the coin flips of A and the simulator.

Definition 5. A threshold ring signature scheme is ACP-UF if no PPT adversary A has
non-negligible AdvA.

Note that our security model is similar to the “Unforgeability against chosen-subring
attacks” as in [8].

We say that a threshold ring signature scheme is secure if it satisfies Correctness, Anonymity
and Existential Unforgeability.

3.2 Hierarchical Identity-Based Threshold Ring Signature

Let λs ∈ N be a security parameter and m ∈ {0, 1}∗ be a message.

Definition 6. A hierarchical identity-based threshold ring signature scheme is a triple (Setup,
Der, Sign, Verify) where

– (sk, pk)← Setup(1λs) is a PPT which takes as input a security parameter λs, produces the
hierarchical manager’s secret key sk and public key pk.

– (skid.r) ← Der(id, skid, r) produces a private keys skid.r for identity id.r using his parent’s
secret key skid.

– σ ← Sign(1λs , ŝ, L,m) is a PPT which accepts as inputs a security parameter λs, a set of
private keys ŝ, a set of public keys L including those corresponding to the private keys in
ŝ and a message m, produces a hierarchical identity-based threshold ring signature σ.

– 1/0← Verify(1λs , L,m, σ, θ) is a PPT which accepts as inputs a security parameter λs, a
set of public keys L, a message m, a signature σ and the number of signers θ, returns 1
or 0 for accept or reject, respectively.

For simplicity, we usually omit the input of security parameter in the rest of the paper. The
security of a hierarchical identity-based threshold ring signature scheme consists of three re-
quirements, namely Correctness, Anonymity and Existential Unforgeability. They are defined
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as follows.

Correctness. We require that Verify(L, m, Sign(ŝ, L, m), |ŝ|) = 1 for any message m and any
set of private keys ŝ which are generated by Setup(1λs) and any set of public keys L including
those corresponds to the private keys in ŝ.

We have the following oracles for the adversary to query in the security game:

– Signing Oracle SO(m,L′): On input any message m, a set of n users L′ ⊆ Lmax; returns
a ring signature σ ← Sign(ŝ, L′,m), such that Verify(L′, m, σ, θ) = 1 where ŝ is the set of
θ private keys that correspond to θ public keys in L′.

– Key Extraction Oracle KEO(id): On input any identity id, return its corresponding secret
key skid.

Anonymity. For a (n, θ)-threshold ring signature scheme of θ signers with n public keys, the
anonymity is defined as the following game between a simulator and an adversary A:

1. The simulator runs algorithm Setup. Let Lmax = {P1, · · · , Pnmax} be the set of nmax ≥ n
public keys in which each key is generated as (si, Pi)← Setup(1λsi ) for some λsi ∈ N. Let
λs = min(λs1 , · · · , λsnmax

). A is given L, s1, . . ., snmax and the public parameters.
2. A queries SO qS times in arbitrary interleaf.
3. A randomly selects a message m∗, two distinct sets of θ users L0, L1 and a ring L∗ ⊆ Lmax

for which L0, L1 ⊂ L∗ and sends to the simulator. The simulator randomly picks a bit b
and returns σ ← Sign(ŝb, L

∗,m∗) to A, where ŝb is the set of secret keys of P̂ b.
4. Finally A outputs a bit b′.

A wins if b = b′. Denote AdvA be the probability that A wins in the above game over 1/2,
taken over the coin flips of A and the simulator.

Definition 7. A threshold ring signature scheme is anonymous if no PPT adversary A win
the anonymity game with non-negligible AdvA.

Existential Unforgeability. We would like to consider the security model for existential un-
forgeability. It models the adaptive chosen message attack. For a (n, θ, `)-hierarchical identity-
based threshold ring signature scheme of θ signers with n public keys (identities with level at
most `), the existential unforgeability is defined as the following game between a simulator
and an adversary A:

1. The simulator runs algorithm Setup. Let Lmax = {id1, · · · , idnmax} be the set of nmax

identities and the corresponding secret key generated by Der are skidi
for 1 ≤ i ≤ nmax.

The maximum level of hierarchy for each identity is `. A is given Lmax, a set of θ − 1
private keys ŝ ⊂ {skid1 , . . . , skidnmax

} and the public parameters.
2. A queries SO qS times and KEO qK times in arbitrary interleaf.
3. Finally A outputs a tuple (L∗,m∗, σ∗).

A wins if Verify(L∗,m∗, σ∗, θ) = 1, L∗ ⊆ Lmax containing the identities of ŝ, |L∗| = n, m∗ has
never been queried to SO and no identity in Lmax or its prefixes have been queried to KEO.
Denote AdvA be the probability that A wins in the above game, taken over the coin flips of
A and the simulator.
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threshold (n, θ)
ring signature

sk
1 ≤ i ≤ n

pk
1 ≤ i ≤ n, 0 ≤ j < θ

signature and
verification, 1 ≤ i ≤ n, 0 ≤ j < θ

SDH xi, yi hj , g, gxi , gyi ,Hi(·) (σi, Ri):
Q

i σ
ij(xi+Hi(m)+Riyi)
i = hj

PSDH xi, yi hj , g, gxi , gyi , gziyi ,H(·) (σi, m1):
Q

i σ
ij(xi+m1)(yi+m2)
i = hj

H(m) = m1 ⊕m2

HaCL04B-wh xi, yi, zi
hj , g, gxi , gyi , gzi ,

gxiyi , gyizi , gxiyizi ,Hi(·)

(Ri, ai, Ai, bi, Bi, ci): Ai = azi
i

∧ bi = ayi
i ∧ Bi = Ayi

i

∧ ci = (aib
Hi(m)
i BRi

i )xi for all i

∧ hj =
Qn

i=1(ai)
ij

.

SDH∗ xi hj , g, gxi ,Hi(·) (σi):
Q

i σ
ij(xi+Hi(m))
i = hj

BLS xi g, gxi ,Hj(·) (σi, hi):
Q

i hij

i = Hj(pk, m),
hxi

i = σi for all i

CL04A xi, yi hj , g, gxi , gyi , gxiyi (ai, bi, ci): hj =
Q

i aij

i ,

bi = ayi
i , ci = axi+mxiyi

i for all i

CL04B xi, yi, zi
hj , g, gxi , gyi , gzi ,
gxiyi , gyizi , gxiyizi

(ai, Ai, bi, Bi, ci): Ai = azi
i

∧ bi = ayi
i ∧ Bi = Ayi

i

∧ ci = (aib
m1
i Bm2

i )xi for all i

∧ hj =
Qn

i=1(ai)
ij

∧ m = (m1, m2).

Table 1. Threshold ring signatures without random oracles.

Definition 8. A hierarchical identity-based threshold ring signature scheme is ACP-UF if no
PPT adversary A has non-negligible AdvA.

We also define a weaker version of unforgeability, namely “Selective-ID, ACP-UF” (sID-
ACP-UF). The difference with ACP-UF is that the adversary A′ gives the identity that he
will forge at the beginning of the game. Then during the game, the adversary is not allowed
to query KEO and SO for this identity or its prefix. Denote AdvA′ be the probability that A′
wins in the above game, taken over the coin flips of A′ and the simulator.

Definition 9. A hierarchical identity-based threshold ring signature scheme is sID-ACP-UF
if no PPT adversary A′ has non-negligible Adv′A.

We say that a hierarchical identity-based threshold ring signature scheme is secure if it
satisfies Correctness, Anonymity and Existential Unforgeability.

4 Threshold ring signatures without random oracles

We introduce the first threshold ring signature schemes without random oracles. For threshold
ring signature schemes, a group of θ signers can form a ring of size n and sign on behalf of the
ring. Notice that θ = 1 specializes threshold ring signatures to ring signatures, and if further
n = 1 then ring signatures specialize to ordinary signatures.

In this section, we introduce threshold ring signature schemes which originate from the
standard signatures in [41, 10, 14, 17]. We first introduce three schemes TRSSDH, TRSPSDH

and TRSHaCL04B-wh, and then introduce four other schemes whose intractability assumptions
include external oracles. The intractability assumptions for all schemes can be found in table
2.
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scheme
intractability
assumption

intractability problem

SDH
(q, n, θ)
-DsjSDH

Given {hj : 0 ≤ j < θ}, g, {xi : 1 ≤ i ≤ θ − 1}, {gxk : θ ≤ k ≤ n}, collision
resistant hash function H1, . . ., Hn, {(mi,τ , σi,τ ) : 1 ≤ i ≤ n, 1 ≤ τ ≤ q} such that
Qn

i=1 σ
ij(xi+Hi(mi,τ ))

i,τ = hj for ∀τ, j, all mτ ’s are distinct. Then compute

{m∗, (σ∗i , γi): 1 ≤ i ≤ n}, such that hj =
Qn

i=1 σ∗i
ij(xi+Hi(m

∗)+γi)

∀j, 0 ≤ j < θ, and for all τ , Hi(m
∗) + γi 6= Hi(mτ ) with some i.

PSDH
(q, n, θ)

-DsjSDH’

Given {hj : 0 ≤ j < θ}, g, {xi : 1 ≤ i ≤ θ − 1}, {gxk : θ ≤ k ≤ n},
{(mi,τ , σi,τ ) : 1 ≤ i ≤ n, 1 ≤ τ ≤ q} such that

Qn
i=1 σ

ij(xi+mi,τ )

i,τ = hj for ∀τ, j,

all mτ ’s are distinct. Then compute {m∗, σ∗1 , . . . , σ∗n}, such that

hj =
Qn

i=1 σ∗i
ij(xi+m∗) ∀j, 0 ≤ j < θ, and for all τ , m∗ 6= mτ with some i.

(H, q)
-SSPI

Given H, distinct nonzero a1, . . . , aq,
output b and (i, j), 1 ≤ i < j ≤ q, satisfying H(b) = ai ⊕ aj .

HaCL04B-wh
(q, n, θ)

-whLRSW

Given g, {xi, yi : 1 ≤ i ≤ θ − 1}, {gxk , gyk , gxkyk : θ ≤ k ≤ n}, {hj : 0 ≤ j < θ},
collision resistant hash function H1, . . ., Hn, {(m̂τ , âi,τ , b̂i,τ , ĉi,τ ): 1 ≤ τ ≤ q,

1 ≤ i ≤ n} such that: b̂i,τ = âyi
i,τ , ĉi,τ = â

xi+xiyiHi(m̂τ )
i,τ , hj =

Qn
i=1(âi)

ij

for

all j, and all m̂τ ’s are distinct; to output {m∗, (a∗i , b∗i , c∗i , γi): 1 ≤ i ≤ n},
such that b∗i = a∗i

yi , c∗i = a∗i
xi+xiyiHi(m

∗)+xiγi , hj =
Qn

i=1(a
∗
i )

ij

for all j; and for all τ , Hi(m
∗) + γi 6= Hi(m̂τ ) with some i.

SDH∗ (q, n, θ)
-ODsjSDH∗

Given {hj : 0 ≤ j < θ}, g, xi for 1 ≤ i ≤ θ − 1, gxk for θ ≤ k ≤ n, collision
resistant hash function H1, . . ., Hn, and an oracle O(·) which upon input mτ

returns (σ1,τ , . . . , σn,τ ) such that hj =
Qn

i=1 σ
(xi+Hi(mτ ))ij

i,τ ∀j,
sequentially for 1 ≤ τ ≤ q; to output (m∗, σ∗1 , . . . , σ∗n) such that

hj =
Qn

i=1 σ∗i
(xi+Hi(m

∗))ij

∀j and m∗ 6= mτ ∀τ .

BLS
(q, n, θ)

-ODsjBLS

Given g, x1, . . . , xθ−1, gxi , θ ≤ i ≤ n, collision resistant hash function
H0, . . ., Hθ−1 and an oracle O(·) which upon input mτ returns (σ1,τ , h1,τ ,

. . . , σn,τ , hn,τ ) such that σi,τ = hxi
i,τ , Hj(mτ ) =

Qn
i=1(hi,τ )ij

∀j, sequentially

for 1 ≤ τ ≤ q; to output (σ∗1 , h∗1, . . . , σ
∗
n, h∗n) such that

σ∗i = h∗i
xi , Hj(m

∗) =
Qn

i=1(h
∗
i )

ij

∀j.

CL04A,
CL04B

(q, n, θ)
-ODsjLRSW

Given g,{xi, yi : 1 ≤ i ≤ θ − 1}, {gxk , gyk , gxkyk : θ ≤ k ≤ n}, {hj : 0 ≤ j < θ},
and an oracle O(·) which upon input mτ and returns (ai,τ , bi,τ , ci,τ )

for 1 ≤ i ≤ n such that bi = ayi
i , ci = axi+xiyim

i , hj =
Qn

i=1(ai,τ )ij

∀j,
sequentially for 1 ≤ τ ≤ q; to output {m∗, (a∗i , b∗i , c∗i , γi): 1 ≤ i ≤ n}, such that

b∗i = a∗i
yi , c∗i = a∗i

xi+xiyiHi(m
∗), hj =

Qn
i=1(a

∗
i )

ij

∀j and m∗ 6= mτ ∀τ .

Table 2. Threshold ring signatures’ intractability assumptions.

4.1 Threshold ring signature TRSSDH(n, θ)

We introduce the threshold ring signature scheme which originates from the second signature
scheme in [10]. The ring signature of this scheme is introduced in [22]. The threshold ring
signature scheme is as follows:

1. Setup: User i’s sk-pk pair is ((xi, yi), (gxi , gyi)), for 1 ≤ i ≤ n. The ring signature’s public
keys includes all user public keys plus hj , 0 ≤ j < θ and collision resistant hashing
functions Hi.

2. Sign: The users’ public keys are (gx1 , gy1 , . . . , gxn , gxn). WLOG, suppose the signers are
(gx1 , gy1), . . . , (gxθ , gyθ), having secret keys (x1, y1), . . . , (xθ, yθ) respectively.

(a) For i ∈ {θ+1, . . . , n}, the signers pick ri, Ri ∈R Z∗
p and set σi = gri ,Wi = gri(xi+Hi(m)+Riyi).
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(b) Then they solve for W1, . . .Wθ such that:

n∏
i=1

Wi
ij = hj for all j ∈ {0, . . . , θ − 1}.

(c) For each user j ∈ {1, . . . , θ}, he picksRi ∈R Z∗
p and computes σj = W

1/(xj+Hj(m)+Rjyj)
j

using his own secret key xj , yj .
(d) The threshold ring signature is:

σ = ((σ1, R1), · · · , (σn, Rn))

3. Verify: The verification is

ê(hj , g) =
n∏

i=1

ê(σi, g
(xi+Hi(m)+Riyi)i

j
), for every j, 0 ≤ j < θ (1)

Theorem 1. The threshold ring signature TRSSDH−(n, θ) is secure provided the (qS , n, θ)-
DsjSDH Assumption holds and Hi are collision-resistant hashing functions.

Corollary 1. The TRSSDH(n, 1) is secure provided the (qS , n, 1)-DsjSDH Assumption holds
and Hi are collision-resistant hashing functions.

Corollary 2. The TRSSDH(1, 1) is secure provided the (qS , 1, 1)-DsjSDH Assumption holds
and Hi are collision-resistant hashing functions.

Proof Sketch: The proof of correctness of the scheme is straightforward and hence is
omitted.

Then we prove the anonymity below. For i ∈ {θ+1, . . . , n}, σi’s are random since ri’s are
randomly picked. For j ∈ {1, . . . , θ}, σj ’s can be considered as in the form of grj as g is the
generator and hence such rj always exists. They are determined by σi’s by the equations, so
σj ’s is also uniformly distributed. Also the R1, . . . , Rn are also randomly picked. To conclude,
the distribution of the components of the signature generated by our scheme is independent of
what is the group of participating signers, for any message m and any set of signers associated
to the ring signature. Therefore the adversary A has no advantage in winning the anonymity
game.

We prove the unforgeabiltiy below. Setup: Simulator S receives a (qS , n, θ)-DsjSDH Prob-
lem instance: Given h0, . . . , hθ−1, H1, . . ., Hn, g, gz, distinct z1, . . ., zθ−1, {ai : θ ≤ i ≤ n},
{m̂τ : 1 ≤ τ ≤ qS}, {σ̂i,τ : 1 ≤ i ≤ n, 1 ≤ τ ≤ qS} such that:

θ−1∏
i=1

σ̂
(zi+Hi(m̂τ ))ij

i,τ

n∏
i=θ

σ̂
(zai+Hi(m̂τ ))ij

i,τ = hj for ∀j ∈ {0, . . . , θ − 1}, τ ∈ {1, . . . , qS}

For simplicity, denote zai = zi for θ ≤ i ≤ n. S randomly picks zn+1, . . . , znmax . S flips a
fair coin cmode and sets up as follows:

1. If cmode = 1, S randomly picks yi, sets pki = (gzi , gyi), 1 ≤ i ≤ nmax.
2. If cmode = 2, S randomly picks xi, sets pki = (gxi , gzi), 1 ≤ i ≤ nmax.

(Remark: For simplicity we do not shuffle the index of users here.)
Simulating SO: If cmode = 1, upon the τ -th SO query input (mτ , Lτ ), 1 ≤ τ ≤ qS :
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– If Lτ 6= (pk1, . . . , pkn), then S knows at least θ secret keys and hence can compute the
threshold ring signature.

– If Lτ = (pk1, . . . , pkn), then do the followings. If mτ = m̂τ , S aborts the simulation.
Otherwise, S sets mi,τ = Hi(mτ ) and computes Ri,τ satisfying Hi(m̂τ ) = mi,τ + Ri,τyi.

Output the ring signature (σi,τ , Ri,τ ), with σi,τ = σ̂i,τ . Note
∏n

i=1 σ
(xi+mi,τ+Ri,τ yi)i

j

i,τ = hj .

If cmode = 2, upon the τ -th SO query input (mτ , Lτ ), 1 ≤ τ ≤ qS :

– If Lτ 6= (pk1, . . . , pkn), then S knows at least θ secret keys and hence can compute the
threshold ring signature.

– If Lτ = (pk1, . . . , pkn), then do the followings. If mτ = m̂τ , S aborts the simulation.
Otherwise, S sets mi,τ = Hi(mτ ), compute Ri,τ = (xi + mi,τ )/Hi(m̂τ ). Output the ring

signature (σi,τ , Ri,τ ), with σi,τ = σ̂
1/Ri,τ

i,τ . Note
∏n

i=1 σ
(xi+mi,τ+Ri,τ yi)i

j

i,τ = h.

Simulation Deviation: It can be shown that any pairwise statistical distance among (1)
Real World, (2) Ideal World-1 where cmode = 1, and (3) Ideal-World-2 where cmode = 2, is
negligible. The proof is tedious but mechanical. We omit it.

Extractions: With probability ε, attackerA eventually delivers a forgery message-signature
pair (L∗, m∗, (σ∗i , R

∗
i )), m

∗ 6= mτ , ∀τ . If L∗ 6= (pk1, . . . , pkn), S declares failure and exits.
Otherwise L∗ = (pk1, . . . , pkn) and there are two cases:

With cmode = 1, and xi = zi: Conditioned on the above event, let ε1,1 denote the condi-
tional probability of A’s delivered ring signature satisfying Hi(m∗) + R∗

i yi 6= Hi(m̂τ ) ∃i for
every τ . S outputs (m∗, (σ∗i , R

∗
i yi) : 1 ≤ i ≤ n) and the (qS , n, θ)-DsjSDH Problem is solved.

With cmode = 2, and yi = zi: Conditioned on the above event, let ε2,2 denote the condi-
tional probability of A’s delivered ring signature satisfying Hi(m∗)+R∗

i yi = Hi(m̂τ ) for all i,
for some τ . NoteHi(m∗)+R∗

i yi = Hi(mτ )+Ri,τyi andm∗ 6= mτ . We obtain yi = (Ri,τ−R∗
i )
−1

(Hi(m∗) − Hi(mτ )). The DLP for yi = zai is solved, and consequently the (qS , n, θ)-DsjSDH
Problem at hand is solved.

ut

4.2 Threshold ring signature TRSPSDH(n, θ)

We introduce the threshold ring signature scheme which originates from the signature scheme
in [41]. The threshold ring signature scheme is as follows:

1. Setup: User i’s sk-pk pair is ((xi, yi), (gxi , gyi , gxiyi)) for 1 ≤ i ≤ n. The ring signature’s
public keys include all user public keys plus hj , 0 ≤ j < θ and collision resistant hashing
functions H.

2. Sign: The users’ public keys are (gx1 , gy1 , gx1y1 , . . . , gxn , gxn , gxnyn). WLOG, suppose the
signers have secret keys (x1, y1), . . . , (xθ, yθ).
(a) The signers randomly pick m1 and compute m2 = H(m)⊕m1.
(b) For i ∈ {θ+1, . . . , n}, the signers pick ri ∈R Z∗

p and sets σi = gri ,Wi = gri(xi+m1)(yi+m2).
(c) Then they solve for W1, . . .Wθ such that:

n∏
i=1

Wi
ij = hj for all j ∈ {0, . . . , θ − 1}.

(d) For each user j ∈ {1, . . . , θ}, he picks Ri ∈R Z∗
p and computes σj = W

1/(xj+m1)(yj+m2)
j

using his own secret key xj , yj .
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(e) The threshold ring signature is:

σ = (σ1, · · · , σn,m1)

3. Verify: The verification is

ê(hj , g) =
n∏

i=1

ê(σi, g
(xi+m1)(yi+m2)ij ), for every j, 0 ≤ j < θ (2)

where H(m) = m1 ⊕m2.

Theorem 2. The threshold ring signature TRSPSDH(n, θ) is secure provided the (qS , n, θ)-
DsjSDH’ Assumption holds and H is a collision-resistant, SSPIR(Sum Second Pre-Image
Resistant) hashing function.

Corollary 3. The TRSPSDH(n, 1) is secure provided the (qS , n, 1)-DsjSDH’ Assumption holds
and H is a collision-resistant, SSPIR hashing function.

Corollary 4. The TRSPSDH(1, 1) is secure provided the (qS , 1, 1)-DsjSDH Assumption holds
and H is a collision-resistant, SSPIR hashing function.

Proof Sketch: The proof of correctness and the anonymity of the scheme are straightforward
and hence are omitted. We prove the unforgeabiltiy below.

Setup: Simulator S receives a (qS , n, θ)-DsjSDH’ Problem instance: Given h0, . . . , hθ−1,
g, gz, distinct z1, . . ., zθ−1, {ai : θ ≤ i ≤ n}, {m̂τ : 1 ≤ τ ≤ qS}, {σ̂i,τ : 1 ≤ i ≤ n, 1 ≤ τ ≤ qS}
such that:

θ−1∏
i=1

σ̂
(zi+m̂τ )ij

i,τ

n∏
i=θ

σ̂
(zai+m̂τ )ij

i,τ = hj for ∀j ∈ {0, . . . , θ − 1}, τ ∈ {1, . . . , qS}

For simplicity, denote zai = zi for θ ≤ i ≤ n. S randomly picks zn+1, . . . , znmax . S flips a
fair coin cmode and sets up as follows:

1. If cmode = 1, S randomly picks yi, sets pki = (gzi , gyi), 1 ≤ i ≤ nmax.
2. If cmode = 2, S randomly picks xi, sets pki = (gxi , gzi), 1 ≤ i ≤ nmax.

(Remark: For simplicity we do not shuffle the index of users here.)
Simulating SO: If cmode = 1, upon the τ -th SO query input (mτ , Lτ ), 1 ≤ τ ≤ qS :

– If Lτ 6= (pk1, . . . , pkn), then S knows at least θ secret keys and hence can compute the
threshold ring signature.

– If Lτ = (pk1, . . . , pkn), then do the followings. If H(mτ ) = m̂τ , S declares failure and exits.
Otherwise, set m1,τ = m̂τ and compute m2,τ = H(mτ )⊕m1,τ . Output the ring signature

(σi,τ ,m1,τ ), with σi,τ = σ̂
1/(yi+m2,τ )
i,τ . Note

∏n
i=1 σ

(zai+m̂τ )(yi+m2,τ )ij

i,τ = hj .

If cmode = 2, upon the τ -th SO query input (mτ , Lτ ), 1 ≤ τ ≤ qS :

– If Lτ 6= (pk1, . . . , pkn), then S knows at least θ secret keys and hence can compute the
threshold ring signature.

– If Lτ = (pk1, . . . , pkn), then do the followings. If H(mτ ) = m̂τ , S declares failure and exits.
Otherwise, set m2,τ = m̂τ and compute m1,τ = H(mτ )⊕m2,τ . Output the ring signature

(σi,τ ,m2,τ ), with σi,τ = σ̂
1/(xi+m1,τ )
i,τ . Note

∏n
i=1 σ

(xi+m1,τ )(zai+m̂τ )ij

i,τ = hj .
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Simulation Deviation: It can be shown that any pairwise statistical distance among (1)
Real World, (2) Ideal World-1 where cmode = 1, and (3) Ideal-World-2 where cmode = 2, is
negligible. The proof is tedious but mechanical. We omit it.

Extractions: With probability ε, attackerA eventually delivers a forgery message-signature
pair (L∗, m∗, m∗

1, σ
∗
i ), m

∗ 6= mτ , ∀τ . If L∗ 6= (pk1, . . . , pkn), S declares failure and exits. Oth-
erwise L∗ = (pk1, . . . , pkn) and then S computes m∗

2 = H(m∗)⊕m∗
1. When the pair is valid,

one of the following events must happen:

– Event A1: m∗
1 6= m1,τ , for any τ . If also cmode = 1, then the DsjSDH’ problem instance is

solved by the tuple (m∗
1, σ

∗
i
(yi+m∗

2)).
– Event A2: m∗

2 6= m2,τ , for any τ . If also cmode = 2, then the DsjSDH’ Problem instance is
solved by the tuple (m∗

2, σ
∗
i
(xi+m∗

1)).
– Event B: m∗

1 = m1,τ and m∗
2 = m2,τ ′ for some τ 6= τ ′. The (H, qS)-SSPI Problem is solved

by (m∗, τ, τ ′) where H(m∗) = m1,τ ⊕m2,τ ′ .
– Event C: m∗

1 = m1,τ and m∗
2 = m2,τ . Then we have m∗ 6= mτ and H(m∗) = H(mτ ). Then

H is not collision-resistant.

Remarks: For the threshold ring signature using the product SDH type assumptions, we
can also have a variant that m1,i ⊕ m2,i = Hi(m), where each m1,i,m2,i are distinct for
different i. The scheme and proofs are similar and hence are omitted.

4.3 Threshold ring signature TRSHaCL04B-wh(n, θ)

In [41], they introduce a signature scheme without random oracles which originates from the
signature scheme B in [17]. We introduce the threshold ring signature scheme version for it.
The scheme is as follows:

1. Setup: User i’s sk-pk pair is ((xi, yi, zi), (gxi , gyi , gzi , gxiyi , gyizi , gxiyizi)) for 1 ≤ i ≤ n.
The ring signature’s public keys include all user public keys, h0, . . . , hθ−1, and collision
resistant hashing functions H1, . . ., Hn.

2. Sign: WLOG, suppose the signers have secret keys xj , yj for 1 ≤ j ≤ θ.
(a) For i ∈ {θ + 1, . . . , n}, the signers pick ri, Ri ∈R Z∗

p and set ai = gri , Ai = gziri ,
bi = gyiri , Bi = gyiziri , ci = gxirigxiyirim1gxiyizirim2 .

(b) The signers compute a1, . . ., aθ such that hj =
∏n

i=1(ai)ij for 0 ≤ j < θ.

(c) Each signer t computes At = azt
t , bt = ayt

t , Bt = aytzt
t , ct = (atb

Hi(m)
t BRt

t )xt using his
secret keys (xt, yt, zt).

(d) The threshold ring signature is

σ = ((R1, a1, A1, b1, B1, c1), · · · , (Rn, an, An, bn, Bn, cn))

3. Verify: The verification is

ê(Ai, g) = ê(ai, g
zi) ∧ ê(bi, g) = ê(ai, g

yi) ∧ ê(Bi, g) = ê(Ai, g
yi)

∧ ê(Bi, g) = ê(bi, gzi) ∧ ê(ci, g) = ê(aib
Hi(m)
i BRi

i , gxi) for all i

∧ hj =
n∏

i=1

(ai)ij for all j (3)
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Theorem 3. The threshold ring signature TRSHaCL04B-wh(n, θ) is secure provided the (qS,
n,θ)-whLRSW Assumption holds and H1, . . ., Hn are collision-resistant hashing functions.

Corollary 5. The TRSHaCL04B-wh(n, 1) is secure provided the (q, n, 1)-whLRSW Assumption
holds and H1, . . ., Hn are collision-resistant hashing functions.

Corollary 6. The TRSHaCL04B-wh(1, 1) is secure provided the (q, 1, 1)-whLRSW Assumption
holds and H1, . . ., Hn are collision-resistant hashing functions.

Proof Sketch: The proof of correctness and the anonymity of the scheme are straightforward
and hence are omitted. We prove the unforgeabiltiy below.

Setup: Simulator S receives, simultaneously, the following problem instances:

1. a (q, n, θ)-whLRSW problem instance: g, {(uj , vj) : 1 ≤ j ≤ θ−1}, {(guk , gvk) : θ ≤ k ≤ n},
H1, . . ., Hn, (m̂τ , âi,τ , b̂i,τ , ĉi,τ ), for 1 ≤ τ ≤ qS , 1 ≤ i ≤ n such that:

ê(b̂i,τ , g) = ê(âi,τ , g
vi) ∧ ê(ĉi,τ , g) = ê(âi,τ b̂

Hi(m̂τ )

i,τ , gui) ∧ hj =
n∏

i=1

(âi)ij for all j

2. a DL (discrete logarithm) problem instance: g, gw.

S flips a fair coin cmode and sets up as follows:

1. If cmode = 1, S randomly picks zi for 1 ≤ i ≤ nmax, uj , vj for n + 1 ≤ j ≤ nmax, sets
pk = (gui , gvi , gzi).

2. If cmode = 2, S randomly picks xi, yi, zi for 1 ≤ i ≤ nmax, except for random index
t ∈ {1, . . . , nmax}, S sets zt = w. S then sets pk = (gxi , gyi , gzi).

(Remark: For simplicity we do not shuffle the index of users here.)
Simulating SO: If cmode = 1, upon the τ -th SO query input (mτ , Lτ ), 1 ≤ τ ≤ qS :

– If Lτ 6= (pk1, . . . , pkn), then S knows at least θ secret keys and hence can compute the
threshold ring signature.

– If Lτ = (pk1, . . . , pkn), then do the followings. If m̂τ = mτ , S declares failure and exits.
Otherwise, solve for Ri,τ such that Hi(m̂τ ) = Hi(mτ ) + Ri,τzi for 1 ≤ i ≤ n. Output the
signature (Ri,τ , ai,τ = âi,τ , Ai,τ = azi

i,τ , bi,τ = b̂i,τ , Bi,τ = bzi
i,τ , ci,τ = ĉτ ).

If cmode = 2, for the τ -th SO query input (mτ , Lτ ), 1 ≤ τ ≤ qS , then S knows at least θ
secret keys and hence can compute the threshold ring signature.

Simulation deviation: It can be shown that the pairwise simulation deviation between
any two of the following worlds are negligible: (1) Real World, (2) Ideal World-1 where cmode =
1, and (3) Ideal-World-2 where cmode = 2. The proof is tedious but mechanical. We omit it.

Extraction: With probability ε, attacker A eventually delivers a valid message-signature
pair (L∗,m∗, (R∗

i , a
∗
i , A

∗
i , b

∗
i , B

∗
i , c

∗
i )), for 1 ≤ i ≤ n, m∗ 6= mτ for all τ . If L∗ 6= (pk1, . . . , pkn),

S declares failure and exits. Otherwise L∗ = (pk1, . . . , pkn) and then there are two events:

– Event A: For each τ , Hi(m∗) +R∗
i zi 6= Hi(m̂τ ) for some 1 ≤ i ≤ n.

– Event B: For some τ , Hi(m∗) +R∗
i zi = Hi(m̂τ ) for all 1 ≤ i ≤ n.
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For i = 1, 2, let εi,A (resp. εcmode,B) denotes the probability that cmode = i and Event A
(resp. Event B). The negligibility of simulation deviations implies that ε1,A = ε2,A = εA and
ε1,B = ε2,B = εB. Note ε = εA + εB. In Event A, the tuple (m∗, γi = R∗

i zi, a
∗
i , b

∗
i , c

∗
i ) solves

the (qS , n, θ)-ODsjLRSW Problem instance at hand. In Event B, we have Hi(m∗) + R∗
i zi =

Hi(m̂τ ) = Hi(mτ ) + Ri,τzi, for all i, m∗ 6= mτ . Therefore we can solve w = zt = (Ht(m∗) −
Ht(mτ ))(Rt,τ−R∗

t )−1
. Combining the result of both simulation forks, we obtain:

1. The probability of Event A and cmode = 1 is εA/2. With this probability, we solve the
(qS , n, θ)-whLRSW Problem instance at hand.

2. The probability of Event B and cmode = 1 is εB/2. With this probability, we solve the DL
Problem instance.

4.4 Threshold ring signature TRSSDH∗(n, θ)

We introduce the threshold ring signature scheme which originates from the first signature
scheme in [10]. The scheme is as follows:

1. Setup: User i’s sk-pk pair is (xi, g
xi) for 1 ≤ i ≤ n. The ring signature’s public keys include

all user public keys plus hj , 0 ≤ j < θ and collision resistant hashing functions Hi.
2. Sign: The users’ public keys are (gx1 , . . . , gxn). WLOG, suppose the signers are gx1 , . . . , gxθ ,

having secret keys x1, . . . , xθ respectively.
(a) For i ∈ {θ + 1, . . . , n}, the signers pick ri ∈R Z∗

p and set σi = gri , Wi = gri(xi+Hi(m)).
(b) Then they solve for W1, . . .Wθ such that:

n∏
i=1

Wi
ij = hj for all j ∈ {0, . . . , θ − 1}.

(c) For each user j ∈ {1, . . . , θ}, he computes σj = W
1/(xj+Hj(m))
j using his own secret

key xj .
(d) The threshold ring signature is:

σ = (σ1, · · · , σn)

3. Verify: The verification is

ê(hj , g) =
n∏

i=1

ê(σi, g
(xi+Hi(m))ij ), for every j, 0 ≤ j < θ (4)

Theorem 4. The threshold ring signature TRSSDH∗(n, θ) is secure provided the (qS , n, θ)-
ODsjSDH∗ Assumption holds and Hi are collision-resistant hashing functions.

Corollary 7. The TRSSDH∗(n, 1) is secure provided the (qS , n, 1)-ODsjSDH∗ Assumption
holds and Hi are collision-resistant hashing functions.

Corollary 8. The TRSSDH∗(1, 1) is secure provided the (qS , 1, 1)-ODsjSDH∗ Assumption holds
and Hi are collision-resistant hashing functions.
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Proof Sketch: The proof of correctness and the anonymity of the scheme are straightforward
and hence are omitted. We prove the unforgeabiltiy below.

Setup: Simulator S receives a (qS , n, θ)-ODsjSDH∗ Problem instance: g, Hi, xi for 1 ≤
i ≤ θ−1, gxk for θ ≤ k ≤ n. S also gets an oracle O(·) from the problem instance. S randomly
picks xk for n+ 1 ≤ k ≤ nmax. He gives the public parameters and also gxi for 1 ≤ i ≤ nmax

to A.
Simulating SO: For query with (Lτ ,mτ ),

– If Lτ 6= (pk1, . . . , pkn), then S knows at least θ secret keys and hence can compute the
threshold ring signature.

– If Lτ = (pk1, . . . , pkn), then S queries O(mτ ) and forwards the answer to A.

Simulation Deviation: It can be shown that the statistical distance among the Real
World and the Ideal World is negligible.

Extraction: A outputs (σ∗1, . . . , σ
∗
n) for L∗, message m∗ 6= mτ for all 1 ≤ τ ≤ n. If

L∗ 6= (pk1, . . . , pkn), S declares failure and exits. Otherwise L∗ = (pk1, . . . , pkn) and then S
uses the signature to answer the problem instance.

4.5 Threshold Ring signature TRSBLS(n, θ)

We introduce the threshold ring signature scheme which originates from the signature scheme
in [14]. The scheme is as follows:

1. Setup:User i’s sk-pk pair is (xi, g
xi) for 1 ≤ i ≤ n. The ring signature’s public keys include

all user public keys plus collision resistant hashing functions H0, . . ., Hθ−1.
2. Sign: The users’ public keys are (gx1 , . . . , gxn). WLOG, suppose the signers have secret

keys x1, . . ., xθ.
(a) For i ∈ {θ + 1, . . . , n}, the signers pick ri ∈R Z∗

p and set hi = gri , σi = gxiri .
(b) They compute h1, . . . , hθ such that Hj(m) =

∏n
i=1(hi)ij where 0 ≤ j < θ.

(c) Each signer t computes σt = hxt
t using his own secret key xt.

(d) The threshold ring signature is

σ = ((σ1, h1), · · · , (σn, hn))

3. Verify: The verification is

Hj(m) =
n∏

i=1

(hi)ij for all j ∧ ê(σi, g) = ê(hi, g
xi) for all i

Theorem 5. The threshold ring signature TRSBLS(n, θ) is secure provided the (qS , n, θ)-
ODsjBLS Assumption holds and H0, . . . ,Hθ−1 are collision-resistant hashing functions.

Corollary 9. The TRSBLS(n, 1) is secure provided the (qS , n, 1)-ODsjBLS Assumption holds
and H0, . . . ,Hθ−1 are collision-resistant hashing functions

Corollary 10. The TRSBLS(1, 1) is secure provided the (qS , 1, 1)-ODsjBLS Assumption holds
and H0, . . . ,Hθ−1 are collision-resistant hashing functions
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Proof Sketch: The proof of correctness and the anonymity of the scheme are straightforward
and hence are omitted. We prove the unforgeabiltiy below.

Setup: Simulator S receives a (qS , n, θ)-ODsjBLS Problem instance: g, x1, . . ., xθ−1, gxi

for θ ≤ i ≤ n, collision resistant hashing functions Hj for 0 ≤ j < θ and uses these as
the public parameters given to A. S also gets an oracle O(·) from the problem instance. S
randomly picks xk for n+ 1 ≤ k ≤ nmax and gives gxk to A.

Simulating SO: For query with (Lτ ,mτ ),

– If Lτ 6= (pk1, . . . , pkn), then S knows at least θ secret keys and hence can compute the
threshold ring signature.

– If Lτ = (pk1, . . . , pkn), then S queries O(mτ ) and forwards the answer to A.

Simulation Deviation: It can be shown that the statistical distance among the Real
World and the Ideal World is negligible.

Extraction: A outputs σ∗i , h
∗
i for 1 ≤ i ≤ n for L∗, message m∗ 6= mτ for all 1 ≤ τ ≤ n.

If L∗ 6= (pk1, . . . , pkn), S declares failure and exits. Otherwise L∗ = (pk1, . . . , pkn) and then
S uses the signature to answer the problem instance.

4.6 Threshold Ring signature TRSCL04A(n, θ)

We introduce the threshold ring signature scheme which originates from the signature scheme
A in [17]. The scheme is as follows:

1. Setup: User i’s sk-pk pair is ((xi, yi), (gxi , gyi , gxiyi)) for 1 ≤ i ≤ n. The ring signature’s
public keys include all user public keys, h0, . . . , hθ−1.

2. Sign: The users’ public keys are (gxi , gyi , gxiyi) for 1 ≤ i ≤ n. WLOG, suppose the signers
have secret keys xj , yj for 1 ≤ j ≤ θ.
(a) For i ∈ {θ + 1, . . . , n}, the signers pick ri ∈R Z∗

p and set ai = gri , bi = gyiri , ci =
gxirigxiyirim.

(b) The signers compute a1, . . ., aθ such that hj =
∏n

i=1(ai)ij for 0 ≤ j < θ.
(c) Each signer t computes bt = ayt

t , ct = (atb
m
t )xt using his secret keys (xt, yt).

(d) The threshold ring signature is

σ = ((a1, b1, c1), · · · , (an, bn, cn))

3. Verify: The verification is

ê(bi, g) = ê(ai, g
yi) ∧ ê(ci, g) = ê(aib

m
i , g

xi) for all i

∧ hj =
n∏

i=1

(ai)ij for all j (5)

Theorem 6. The threshold ring signature TRSCL04A(n, θ) is secure provided the (qS , n, θ)-
ODsjLRSW Assumption holds.

Corollary 11. The TRSCL04A(n, 1) is secure provided the (qS , n, 1)-ODsjLRSW Assumption
holds.

Corollary 12. The TRSCL04A(1, 1) is secure provided the (qS , 1, 1)-ODsjLRSW Assumption
holds.
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Proof Sketch: The proof of correctness and the anonymity of the scheme are straightforward
and hence are omitted. We prove the unforgeabiltiy below.

Setup: Simulator S receives a (qS , n, θ)-ODsjLRSW Problem instance: g, h0, . . . , hθ−1,
(x1, y1), . . ., (xθ−1, yθ−1), (gxi , gyi , gxiyi) for θ ≤ i ≤ n and uses these as the public parameters
given to A. S also gets an oracle O(·) from the problem instance. S randomly picks xk, yk for
n+ 1 ≤ k ≤ nmax and gives (gxk , gyk , gxkyk) to A.

Simulating SO: For query with (Lτ ,mτ ),

– If Lτ 6= (pk1, . . . , pkn), then S knows at least θ secret keys and hence can compute the
threshold ring signature.

– If Lτ = (pk1, . . . , pkn), then S queries O(mτ ) and forwards the answer to A.

Simulation Deviation: It can be shown that the statistical distance among the Real
World and the Ideal World is negligible.

Extraction: A outputs a∗i , b
∗
i , c

∗
i for 1 ≤ i ≤ n for L∗, message m∗ 6= mτ for all 1 ≤ τ ≤ n.

If L∗ 6= (pk1, . . . , pkn), S declares failure and exits. Otherwise L∗ = (pk1, . . . , pkn) and then
S uses the signature to answer the problem instance.

4.7 Threshold Ring signature TRSCL04B(n, θ)

We introduce the threshold ring signature scheme which originates from the signature scheme
B in [17]. The scheme is as follows:

1. Setup: User i’s sk-pk pair is ((xi, yi, zi), (gxi , gyi , gzi , gxiyi , gyizi , gxiyizi)) for 1 ≤ i ≤ n. The
ring signature’s public keys includes all user public keys, and h0, . . . , hθ−1.

2. Sign: WLOG, suppose the signers have secret keys xj , yj for 1 ≤ j ≤ θ and the message is
m = (m1,m2).
(a) For i ∈ {θ + 1, . . . , n}, the signers pick ri, Ri ∈R Z∗

p and set ai = gri , Ai = gziri ,
bi = gyiri , Bi = gyiziri , ci = gxirigxiyirim1gxiyizirim2 .

(b) The signers compute a1, . . ., aθ such that hj =
∏n

i=1(ai)ij for 0 ≤ j < θ.
(c) Each signer t computes At = azt

t , bt = ayt
t , Bt = aytzt

t , ct = (atb
m1
t Bm2

t )xt using his
secret keys (xt, yt, zt).

(d) The threshold ring signature is

σ = ((a1, A1, b1, B1, c1), · · · , (an, An, bn, Bn, cn))

3. Verify: The verification is

ê(Ai, g) = ê(ai, g
zi) ∧ ê(bi, g) = ê(ai, g

yi) ∧ ê(Bi, g) = ê(Ai, g
yi)

∧ ê(Bi, g) = ê(bi, gzi) ∧ ê(ci, g) = ê(aib
m1
i Bm2

i , gxi) for all i

∧ hj =
n∏

i=1

(ai)ij for all j (6)

Theorem 7. The threshold ring signature TRSCL04B(n, θ) is secure provided the (qS , n, θ)-
ODsjLRSW Assumption holds.

Corollary 13. The TRSCL04B(n, 1) is secure provided the (qS , n, 1)-ODsjLRSW Assumption
holds.
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Corollary 14. The TRSCL04B(1, 1) is secure provided the (qS , 1, 1)-ODsjLRSW Assumption
holds.

Proof Sketch: The proof of correctness and the anonymity of the scheme are straightforward
and hence are omitted. We prove the unforgeabiltiy below.

Setup: Simulator S receives, simultaneously, the following problem instances:

1. a (qS , n, θ)-ODsjLRSW problem instance: g, {(uj , vj) : 1 ≤ j ≤ θ − 1}, {(guk , gvk) : θ ≤
k ≤ n}, h0, . . ., hθ−1 and an oracle O(·).

2. a DL problem instance: g, gw.

S flips a fair coin cmode and sets up as follows:

1. If cmode = 1, S randomly picks zi for 1 ≤ i ≤ nmax, uj , vj for n + 1 ≤ j ≤ nmax, sets
pk = (gui , gvi , gzi).

2. If cmode = 2, S randomly picks xi, yi, zi for 1 ≤ i ≤ nmax, except for random index
t ∈ {1, . . . , nmax}, S sets zt = w. S then sets pk = (gxi , gyi , gzi).

(Remark: For simplicity we do not shuffle the index of users here.)
Simulating SO: If cmode = 1, upon the τ -th SO query input (mτ , Lτ ), 1 ≤ τ ≤ qS :

– If Lτ 6= (pk1, . . . , pkn), then S knows at least θ secret keys and hence can compute the
threshold ring signature.

– If Lτ = (pk1, . . . , pkn), then do the followings. With message mτ = (m1,τ ,m2,τ ), S com-
putes m′

τ = m1,τ + m2,τz and queries O(m′
τ ). S gets (ai,τ , bi,τ , ci,τ ) for 1 ≤ i ≤ n. S

forwards the answer (ai,τ , Ai,τ = azi
i,τ , bi,τ , Bi,τ = bzi

i,τ , ci,τ ) to A.

If cmode = 2, for the τ -th SO query input (mτ , Lτ ), 1 ≤ τ ≤ qS , then S knows at least θ
secret keys and hence can compute the threshold ring signature.

Simulation deviation: It can be shown that the pairwise simulation deviation between
any two of the following worlds are negligible: (1) Real World, (2) Ideal World-1 where cmode =
1, and (3) Ideal-World-2 where cmode = 2. The proof is tedious but mechanical. We omit it.

Extraction: With probability ε, attacker A eventually delivers a valid message-signature
pair (L∗,m∗, (R∗

i , a
∗
i , A

∗
i , b

∗
i , B

∗
i , c

∗
i )), for 1 ≤ i ≤ n, m∗ 6= mτ for all τ . If L∗ 6= (pk1, . . . , pkn),

S declares failure and exits. Otherwise L∗ = (pk1, . . . , pkn), denote m∗ = (m∗
1,m

∗
2) and then

there are two events:

– Event A: For each τ , m∗
1 +m∗

2zi 6= m1,τ +m2,τzi, for some 1 ≤ i ≤ n.
– Event B: For some τ , m∗

1 +m∗
2zi = m1,τ +m2,τzi, for all 1 ≤ i ≤ n.

For i = 1, 2, let εi,A (resp. εcmode,B) denotes the probability that cmode = i and Event A
(resp. Event B). The negligibility of simulation deviations implies that ε1,A = ε2,A = εA
and ε1,B = ε2,B = εB. Note ε = εA + εB. In Event A, the tuple (m∗

1, γi = m∗
2zi, a

∗
i , b

∗
i , c

∗
i )

solves the (qS , n, θ)-ODsjLRSW Problem instance at hand. In Event B, we have m∗
1 +m∗

2zi =
m1,τ +m2,τzi, for all i, m∗ 6= mτ . Therefore we can solve w = zt = (m∗

1 −m1,τ )(m2,τ−m∗
2)−1

.
Combining the result of both simulation forks, we obtain:

1. The probability of Event A and cmode = 1 is εA/2. With this probability, we solve the
(qS , n, θ)-ODsjLRSW Problem instance at hand.

2. The probability of Event B and cmode = 1 is εB/2. With this probability, we solve the DL
Problem instance.
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hierarchical identity-
based threshold (n, θ, `)

ring signature

sk
1 ≤ i ≤ n

pk
1 ≤ i ≤ n
1 ≤ k ≤ `

signature, 1 ≤ i ≤ n, 0 ≤ j < θ,
and verification

HVZK↓ 2 d1,i, d2,i
g, gα, g2, g3, g4,
g5, hk, Qi,H(·)

(D1,i, D2,i, ci, Z1,i, Z2,i) : ê(D1,i, Qi) = ê(g, D2,i)
∧ ê(Z1,i, g)ê(g5, D2,i) = ê(g2, g

α)ci ê(Z2,i, Qi)ê(g4, D1,i)
∧ H(D1,1, D2,1, · · · , D1,n, D2,n, m, param) =

Pn
i=1(ci)i

j

Table 3. Hierarchical identity-based threshold ring signatures without random oracles.

5 Hierarchical Identity-Based Threshold Ring Signature (HIBTRS)

For this scheme, we have a slightly different security model. In the Sign protocol, we assume
each user announces two of the above HIBS signatures, which satisfy the relation:

SI = {(D1, D2, c, Z1, Z2) : I = {id1, . . . , id`} ∧ ê(D1, Q) = ê(g,D2)

∧ ê(g, Z1)ê(g5, D2) = ê(g1, g2)cê(Z2, Q)ê(D1, g4) ∧ Q = g3
∏̀
i=1

hidi
i }

For the ACP-UF, we also include a Key Extraction Oracle for the adversary to query the
secret keys of some identities which are not the prefix of the ring members given by simulator
S. The scheme is as follows:

HIBTRSHVZK↓2(n, θ)
1. Setup: To generate system parameters, the algorithm selects a random generator g, g2,
g3, g4, g5, h1, . . ., h` ∈ G, picks a random α ∈ Zp, and sets g1 = gα. It chooses an collision-
resistant hash function H. The system parameters param = (g, g1, g2, g3, g4, g5, h1, . . . , h`)
and the master key is gα

2 .
2. Der: To generate a private key for ID = (id1, . . . , idk). where k ≤ `, the algorithm picks a

random r ∈ Zp and computes:

SKID =
(
gα
2 · (h

id1
1 · · ·h

idk
k · g3)

r, gr, hr
k+1, . . . , h

r
`

)
= (a0, a1, bk+1, . . . , b`)

The private key for ID can also be generated by its parent ID|k−1 = (id1, . . . , idk−1). Details
refer to [11].

3. Sign: Given {I1, . . . , In} and WLOG suppose the signers have (skI1 , . . . , skIθ
).

(a) For each i ∈ {θ + 1, · · · , n}, assume two distinct tuples from SIi are available, which
denote as (D′

1,i, D
′
2,i, c

′
i, Z

′
1,i, Z

′
2,i) and (D′′

1,i, D
′′
2,i, c

′′
i , Z

′′
1,i, Z

′′
2,i).

Denote g1 = gα and D′
1,i = gt′ . From the relation SIi , we can see that Z ′

1,i =
(gα

2Q
r′)c′gt′

4 and Z ′
2,i = gr′c′gt′

5 for some random t′, r′. Similarly, we suppose that
Z ′′

1,i = (gα
2Q

r′′)c′′gt′′
4 and Z ′′

2,i = gr′′c′′gt′′
5 . We require that r′ = r′′.

(b) The signers pick random a′i and a′′i to compute (D1,i, D2,i, ci, Z1,i, Z2,i) ∈ SIi as follows:

D1,i = (D′
1,i)

a′i(D′′
1,i)

a′′i , D2,i = (D′
2,i)

a′i(D′′
2,i)

a′′i , ci = c′ia
′
i + c′′i a

′′
i ,

Z1,i = (Z ′
1,i)

a′i(Z ′′
1,i)

a′′i , Z2,i = (Z ′
2,i)

a′i(Z ′′
2,i)

a′′i ,

(c) For each j ∈ {1, · · · , θ}, each signer picks random tj and computes D1,j = gtj , D2,j =
Q

tj
j . Then the signers compute c1, . . . , cθ satisfying

H(k, n, θ,D1,1, D2,1, · · · , D1,n, D2,n,m, param, I1, . . . In) =
n∑

i=1

(ci)ik for all 0 ≤ k < θ
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(d) For each signer j with secret key (d1,j , d2,j), he picks random ∆, computes d̂1,j =
d1,jQ

∆
j = gα

2Q
r+∆
j and d̂2 = d2,jg

∆ = gr+∆. Then he computes the signature Z1,j =

d̂
cj

1,jg
tj
4 and Z2,j = d̂

cj

2 g
tj
5 .

(e) Output the signature

σ = (D1,1, D2,1, c1, Z1,1, Z2,1, · · · , D1,n, D2,n, cn, Z1,n, Z2,n)

4. Verify: Upon receiving a signature σ for message m, verify all below before outputting 1:

H(k, n, θ,D1,1, D2,1, · · · , D1,n, D2,n,m, param, I1, . . . In) =
∑n

i=1(ci)i
k for all 0 ≤ k < θ

(D1,i, D2,i, ci, Z1,i, Z2,i) ∈ SIi , for all 1 ≤ i ≤ n

Intractability Assumption We propose a new intractability assumption as follows.

Definition 10. The OrcYW(n, θ, H) Problem is that given

1. ` ≥ 1, {gxi
: 0 ≤ i ≤ `}, γ, δ, g4, g5, γ1, · · · , γ`, nmax identity chains I1, · · · , Inmax, a

special identity chain I∗ among them, full-domain collision-resistant hash function H,
2. an oracle On,θ,H which upon input a message m, a list of n identities (identity-chains)

Ik1, · · · , Ikn, threshold θ, outputs a tuple (D1,1, D2,1, c1, Z1,1, Z2,1, · · · , D1,n, D2,n, cn,
Z1,n, Z2,n) satisfying:
For each i, 1 ≤ i ≤ n, for some random ti, ri which differ for each query to On,θ,H,

D1,i = gti , D2,i = Qti
i , Z1,i = aci

0,ig
ti
4 , Z2,i = aci

1,ig
ti
5

where

Qi = g3
∏`

j=1 h
Ikj

j , hj = gγjg−x`−j+1
, for 1 ≤ j ≤ `

g2 = gx`+γ , g3 = gδ+
P`

j=1 x`−j+1I∗j , a0,i = gx
2Q

ri
i , a1,i = gri ,∑n

i=1 c
ij
′

i = H(j′, n, θ,D1,1, D2,1, · · · , D1,n, D2,n,m, param, Ik1 , · · · , Ikn), 0 ≤ j′ < θ
param = (g, gx, g2, g3, g4, g5, h1, · · · , h`)

to output (m̃, L̃ = {Ĩ1, · · · , Ĩn}, D̃1,1, D̃2,1, c̃1, Z̃1,1, Z̃2,1, · · · , D̃1,n, D̃2,n, c̃n, Z̃1,n, Z̃2,n)
satisfying for each i, 1 ≤ i ≤ n,

ê(g, Z̃1,i) · ê(g5, D̃2,i)=ê(g1, g2)c̃i · ê(D̃1,i, g4) · ê(Z̃2,i, Q)
∧ ê(D̃1,i, Q) = ê(g, D̃2,i) ∧ (m̃, L̃, θ) was not queried to On,θ,H

where
∑n

i=1 c̃
ij
′

i = H(j′, n, θ, D̃1,1, D̃2,1, · · · , D̃1,n, D̃2,n, m̃, param, L̃), 0 ≤ j′ < θ. The
OrcYW(n, θ, H) Assumption is that no PPT algorithm can solve a random instance of the
OrcYW(n, θ, H) Problem with non-negligible probability.
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Reductionist security proof

Theorem 8. The scheme HIBTRSHVZK↓2(n, θ) is secure provided the OrcYW (n, θ, H) As-
sumption holds.

Corollary 15. The HIBTRSHVZK↓2(n, 1) is secure provided the OrcYW (n, 1, H) Assumption
Assumptions holds.

Corollary 16. The HIBTRSHVZK↓2(1, 1) is secure provided the OrcYW (1, 1, H) Assumption
Assumptions holds.

Proof Sketch: The correctness and the anonymity of the scheme are straightforward and
hence are omitted. The proof of unforgeability is as follows.

Setup: Simulator S received a OrcYW(n, θ,H) Problem instance: {gxi
: 0 ≤ i ≤ `},γ, δ,

g4, g5, γ1, · · · , γ`, nmax identity chains I1, · · · , Inmax , a special identity chain I∗ among them,
a full-domain collision-resistant hash function H and an oracle On,θ,H.

S computes g1 = gx, g2 = gx`+γ , g3 = gδ+
P`

j=1 x`−j+1I∗j and hj = gγjg−x`−j+1
, for 1 ≤

j ≤ `. S randomly selects θ − 1 identities from Ii and computes their secret keys using the
method in the paragraph Simulating KEO below. S gives the public parameters param =
(g, g1, g2, g3, g4, g5, h1, . . . , h`), nmax identity chains, and θ − 1 private keys to A.

Simulating SO: For query with (Lτ ,mτ ), S queries On,θ,H(Lτ ,mτ ) and forwards the
answer to A.

Simulating KEO: Simulate as in [11]. For input identity ID = (id1, . . . , idu), if ID is I∗

or a prefix of it, the simulator declares failure and exits. Otherwise there exists a k ≤ u
such that idk 6= I∗k . We set k be the smallest such index. To answer the query, the simulator
derives a secret key for the identity (id1, . . . , idk) from which it then constructs a private key
for ID = (id1, . . . , idk, . . . , idu).

To generate the secret key for the identity (id1, . . . , idk), the simulator chooses a random
r̃ ∈ Zp. Denote r = xk

(idk−I∗k ) + r̃ and compute:

a0 = yγ
1 · Z · g

x`−k+1r̃(I∗k−idk) where Z =

(
gδ+
Pk

i=1 idiγi ·
∏̀

i=k+1

gx`−i+1I∗i

)r

a1 = gr = gxk/(idk−I∗k )gr̃

Refer to [11] for the well-formedness of the secret key. The remaining hr
k+1, . . . , h

r
` can be

computed by the simulator since they do not involve a gx`+1
term.

Simulation Deviation: It can be shown that the statistical distance among the Real
World and the Ideal World is negligible.

Extraction: A outputs (D∗
1,i, D

∗
2,i, ci, Z

∗
1,i, Z

∗
2,i) for 1 ≤ i ≤ n for L∗, message m∗ 6= mτ

for all 1 ≤ τ ≤ qS . Then S uses the signature to answer the problem instance.

6 Discussions and Conclusions

The combination of Schnorr [37]’s ROS (Randomized Oversampled System) and Wagner [39]’s
generalized birthday attack may apply to our (threshold) ring signatures, resulting in sub-
exponential-time forgery algorithms. However, that does not violate the security models.

In this paper, we propose seven new threshold ring signature schemes without random
oracles. We also introduce the notion of hierarchical identity-based threshold ring signature,
propose an efficient instantiation and prove its security without random oracles.
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