
Self-Generated-Certificate Public Key
Cryptosystem

Joseph K. Liu1 and Man Ho Au2

Department of Computer Science
University of Bristol

Bristol, BS8 1UB, UK
liu@cs.bris.ac.uk

Centre for Information Security Research
School of Information Technology and Computer Science

University of Wollongong
Wollongong 2522, Australia

mhaa456@uow.edu.au

Abstract. Certificateless Public Key Cryptography (CL-PKC) enjoys a num-
ber of features of Identity-Based Cryptography (IBC) while without having the
problem of key escrow. However, it does suffer to an attack where the adver-
sary, Carol, replaces Alice’s public key by someone’s public key so that Bob,
who wants to send an encrypted message to Alice, uses Alice’s identity and
other’s public key as the inputs to the encryption function. As a result, Alice
cannot decrypt the message while Bob is unaware of this. We call it Denial-of-
Decryption (DoD) Attack as its nature is similar to the well known Denial-of-
Service (DoS) Attack. Based on CL-PKC, we propose a new paradigm called
Self-Generated-Certificate Public Key Cryptography (SGC-PKC) that captures
the DoD Attack. We also provide a generic construction of a self-generated-
certificate public key encryption scheme in the standard model. In addition,
we further propose a certificateless signature and a certificateless encryption
scheme with concrete implementation. They are all provably secure in the stan-
dard model, which are the first in the literature regardless of the generic con-
structions by Yum and Lee which may contain security weaknesses as pointed
out by others. We believe these concrete implementations are of independent
interest.

Keywords: Certificateless Signature, Certificateless Encryption

1 Introduction

In traditional public key cryptography (PKC), a user, Alice, selects a private key and
computes the corresponding public key. The public key is published. Bob who wants
to send an encrypted message to Alice needs to know her public key. However, an
adversary Carol may replace Alice’s public key by her own one so that Bob in fact
encrypts the message using Carol’s public key and he is unaware of this replacement
attack, which lets Carol, the adversary, to decrypt the message designated for Alice.
This attack may be defended if Alice’s public key is authentic by a trusted party.
We usually refer it as the “Certification Authority (CA)” which signs Alice’s public
key and issues a digital certificate containing Alice’s public key and her information
(such as name, organization etc.) In order to send an encrypted message to Alice, her

2 Joseph K. Liu and Man Ho Au

public key should be checked against the certificate. However, the realization of this
authentication mechanism is not practical. Problems such as revocation, storage and
distribution are yet to be solved.

Identity-Based Cryptography (IBC). Identity-based cryptography (IBC), in-
vented by Shamair [22] in 1984, solves this problem by using Alice’s identity (or
email address) which is an arbitrary string as her public key while the correspond-
ing private key is a result of some mathematical operation that takes as input the
user’s identity and the master secret key of a trusted authority, referred as “Private
Key Generator (PKG)”. In this way, the certificate is implicitly provided and it is
no longer necessary to explicitly authenticate public keys. The only disadvantage of
identity-based cryptography is an unconditional trust to the PKG. Since the secret
key of every user is generated by the PKG, it can impersonate any user, or decrypt
any ciphertext.

Certificateless Public Key Cryptography (CL-PKC). In order to solve for
this problem, certificateless public key cryptography (CL-PKC) was proposed. It first
invented by Al-Riyami and Paterson [1] in 2003. It is a new paradigm which lies
between identity-based cryptography and traditional public key cryptography. The
concept was to eliminate the inherent key-escrow problem of identity-based cryptog-
raphy. At the same time, it preserves the attractive advantage of IBC which is the
absence of digital certificates (issued by Certificate Authority) and their important
management overhead. Different from IBC, the user’s public key is no longer an ar-
bitrary string. Instead it is similar to PKC where the public key is generated by the
user. A significant difference between them is that the public key in CL-PKC does
not need to be explicitly certified by a trusted party (which is the CA in the case of
PKC) as it has been generated by some “partial secret key” obtained from a trusted
authority called “Key Generation Center (KGC)”. More importantly, the KGC does
not know the user’s secrete key since it contains some secret information which is
only known by the user himself. Thus it solves the problem of key-escrow inherent in
IBC.

Similar idea was introduced earlier by Girault [11] in 1991 and further developed in
[19,20], as self-certified public keys. These schemes are structurally similar to CL-PKC.
In a self-certified scheme, a user chooses his secret key and corresponding public key.
He delivers his public key to a trusted party. The trusted party combines his public
key with his identity to produce a witness. This witness may just be the trusted
party’s signature on the combination of the user’s public key and identity [11], part
of a signature [19] or the result of inverting a trapdoor one-way function based on the
user’s public key and identity [20]. Given this witness together with the public key of
the trusted party and identity from the user, everyone can compute his public key.
Certificate is provided implicitly inside the witness and the identity. They claim to be
able to use the public key cryptography without traditional certificates. However, it
can be regarded the witness as a shorten certificate. Moreover, Saeednia [21] pointed
out that the scheme in [11] allows a cheating trusted party to extract users’ private
keys which suffers the same problem as IBC. Detailed comparison can be referred to
[2].

Certificate Based Encryption(CBE). Independently of [1], Gentry [10] intro-
duced a different but related concept, called Certificate Based Encryption (CBE).
This approach is closer to the context of a traditional PKC model as it also involves
a certification authority providing an efficient implicit certification service for users’
public keys. However, in this model certificate is a part of secret key, so that certifi-

Self-Generated-Certificate Public Key Cryptosystem 3

cation is implicit. Furthermore, there is no key escrow since certificate itself is only a
part of the secret key while the other part is only known to the user himself.

It seems that both CL-PKC and CBE can solve the problem of explicit certifica-
tion. Nevertheless they both suffer the following attack. Suppose Alice wants to send
an encrypted message to Bob. She takes Bob’s public key and his identity (or personal
information) as input to the encryption function. However, Carol, the adversary, has
replaced Bob’s public key by someone’s public key (this maybe her own public key or
a public key from other people). Alice is unaware of this replacement and continues to
execute the encryption algorithm using Bob’s identity and a public key not belonged
to Bob. Although Carol cannot decrypt the ciphertext, nor Bob can do it. This is a
kind of destructive behaviour. Carol cannot gain advantage by herself but she has also
prevented Bob from getting the deserved information. We call it Denial-of-Decryption
(DoD) Attack. (This is similar to Denial of Service (DoS) Attack in the way that the
attacker cannot gain any secret information but precluding others from getting the
normal service.) Under either CL-PKC or CBE model, Carol can succeed to launch
the attack since there is no checking whether the public key is associated with the
corresponding person or not. They cannot yet supersede the traditional PKC com-
pletely which is able to defend this kind of attack by the explicit certificate. Note
that signature schemes are immune to this attack since the verification requires both
the identity and public key of the signer. If either one of them is replaced by the
adversary, the verification outputs invalid.

Self-Generated-Certificate Public Key Cryptography (SGC-PKC). In this
paper, we propose a new paradigm to defend the above attack while preserving all
advantages of certificateless public key cryptography. Similar to CL-PKC, every user
is given a partial secret key by the KGC and generates his own secret key and cor-
responding public key. In addition, he also needs to generate a certificate using his
own secret key. The purpose of this self-generated certificate is similar to the one
in traditional PKC. That is, to bind the identity (or personal information) and the
pubic key together. The main difference is that, it can be verified by using the user’s
identity and public key only and does not require any trusted party. It is implicitly
included in the user’s public key. If Carol uses her public key to replace Alice’s public
key (or certificate), Bob can be aware of this and he may ask Alice to send him again
her public key for the encryption.

Table 1 summarizes the comparison of the above cryptosystems.

Implicit Escrow DoD Attack
Certificates Free Free

Traditional PKC X
√ √

Identity-based Cryptography
√

X
√

Certificateless PKC
√ √

X
Certificate-based PKC

√ √
X

Self-Generated-Certificate PKC
√ √ √

Table 1. Properties of related paradigms

4 Joseph K. Liu and Man Ho Au

Related Work. Since the introduction of Certificateless PKC [1] in 2003, in which
the authors proposed a CL-encryption scheme and a CL-signature scheme and proved
the security in the random oracle model, there are different variants or improvements
proposed in the literature later on. Yum and Lee gave a generic construction on CL-
encryption scheme [26], from any ID-based encryption scheme and any traditional
public key encryption scheme. Libert and Quisquater [16] pointed out some security
weakness of the generic construction in [26] and proposed a fix in the random oracle
model. Independently, Bentahar et al. [4] proposed another generic construction of
CL-encryption scheme which is also provable secure in the random oracle model. In
addition, some concrete efficient implementations were proposed in [7,23,3,16]. The
security of all these implementations relies on the random oracle model.

On the other hand, CL-signature was first proposed in the same paper as CL-
encryption in [1]. The security weakness of this signature scheme was pointed out by
Huang et al. [14]. They proposed a fix and proved its security in the random oracle
model. A generic construction was proposed by Yum and Lee [27]. Hu et al. [13]
showed that the Yum-Lee construction is insecure and proposed a fix in the standard
model. A concrete implementation was proposed in [12] which is also provable secure
in the random oracle model.

Some other certificateless cryptographic primitives are also proposed recently.
Huang et al. [15] proposed a certificateless signature scheme with designated veri-
fier. Chow et al. [8] proposed a Security-Mediated Certificateless Cryptography with
revokation feature using a mediator. All these schemes rely on the random oracle
model for proving security.

Contribution. In this paper, we propose a new paradigm called Self-Generated-
Certificate Public Key Cryptography (SGC-PKC) which is the enhanced version of
Certificateless Public Key Cryptography (CL-PKC). It captures the DoD attack men-
tioned above. We present a generic construction of an encryption scheme that is se-
cure in the SGC-PKC model. Its security is proven in the standard model without
relying on random oracles. In addition, we propose the first certificateless signature
scheme with concrete implementation in the standard mode as a primitive to our
self-certified-certificate public key encryption scheme. Our security model is stronger
than the generic construction given in [13]. We also propose a certificateless encryp-
tion scheme in the standard model which is the first in the literature regardless the
generic construction from Yum and Lee [26].1 They are of independent interest.

Organization. The rest of the paper is organized as follow. We give some definitions
in Section 2. We propose a CL-signature and CL-encryption scheme in Section 3 and 4
respectively. The proposed Self-Generated-Certificate encryption scheme is presented
in Section 5. Finally a concluding remark is given in Section 6.

2 Definition

A number of complexity assumptions are given in Appendix A. Below we focus on
security definition.

1 The generic construction from Libert and Quisquater [16] and Bentahar et al. [4] relies on
the random oracle model.

Self-Generated-Certificate Public Key Cryptosystem 5

2.1 Security of Certificateless Signature

We enhance the model of Hu et al. [13], which is the strongest among those in the
literature (Al-Riyami and Paterson did not really develop a full security model for
certificateless signature in [1]. It was later in [27,14] that more formalized and complete
models were specified.)

Definition 1 (Definition of Certificateless Signature). A certificateless encryp-
tion scheme is a 5-tuple algorithms which are defined as follow:

– Setup: is a probabilistic polynomial time (PPT) algorithm run by a Key Gener-
ation Centre (KGC), given a security parameter k as input, outputs a randomly
chosen master secret key mk and a list of public parameters param.

– Partial-Secret-Key-Extract: is PPT algorithm, run by the KGC, given a user’s
identity ID and the master secret key mk as inputs, outputs a partial-secret-key
psk.

– User-Key-Generation: is PPT algorithm, run by the user, given a list of public
parameters param as inputs, outputs a secret key sk and a public key pk.

– Sign: is a PPT algorithm, given list of parameters param, a user secret key sk,
user partial secret key psk, a message m as inputs, outputs a signature σ.

– Verify: is a deterministic algorithm, given list of parameters param, a user identity
ID, user public key pk, a message m and a signature σ as inputs, outputs either
accept or reject.

For correctness, as usual we require that Verify(param,m, σ, ID, pk) = accept
whenever for all k ∈ N, m ∈ {0, 1}∗, ID ∈ {0, 1}∗, (param,mk) ← Setup(k), psk ←
Partial-Secret-Key-Extract(param,mk, ID), (sk, pk)← User-Key-Generation(param),
σ = Sign(param, sk, psk,m).

Security Model. According to the original scheme in [1], there are two types of
adversaries. Type I adversary does not have the KGC’s master secret key but it can
replace public keys of arbitrary identities with other public keys of its own choices. It
can also obtain partial and full secret keys of arbitrary identities.

Type II adversary knows the master secret key (hence it can compute partial secret
key by itself). It is still allowed to obtain full secret key for arbitrary identities but is
not allowed to replace public keys at any time. Same as [13], we also assume that the
KGC generates the master secret key according to the scheme specification.

Definition 2 (Existential Unforgeability). A certificateless signature scheme is
existential unforgeable against chosen message attack if no PPT adversary A of Type
I or Type II has a non-negligible advantage in the following game played against the
challenger:

1. The challenger takes a security parameter k and runs the Setup algorithm. It
gives A the resulting system paraters param. If A is of Type I, the challenger
keeps the master secret key mk to itself, otherwise, it gives mk to A.

2. A is given access to the following oracles:
– Public-Key-Broadcast-Oracle: on input an identity, it outputs the matching

public key.
– Partial-Secret-Key-Extract-Oracle: on input an identity, it outputs partial secret

key associated with the user’s identity. (Note that it is only useful to Type I
adversary.)

6 Joseph K. Liu and Man Ho Au

– Secret-Key-Extract-Oracle: on input an identity, it outputs secret key associ-
ated with the user’s identity. It outputs ⊥ if the user’s public key has been
replaced (in the case of Type I adversary).

– Public-Key-Replace-Oracle: (For Type I adversary only) on input an identity
and a valid public key, it replaces the associated user’s public key with the
new one.

– Signing-Oracle: on input an identity and a message, it outputs a valid signature
σ no matter whether the public key of the identity has not been replaced or
not if it is Type I adversary. 2

3. A outputs (ID∗,m∗, σ∗). It wins if Verify(param, ID∗, pkID∗ ,m∗, σ∗) =valid and
fulfills the following conditions:

– (ID∗,m∗) has not been submitted to Signing-Oracle.
– If it is Type I Adversary, ID∗ has not been submitted to Partial-Secret-Key-

Extract-Oracle.
– If it is Type II Adversary, ID∗ has not been submitted to Secret-Key-Extract-

Oracle.

Define the advantage of A as

AdvEF
CLS(A) = Pr[A wins]

Note that Type I adversary is allowed to make Secret-Key-Extract-Oracle queries
and gets the user secret key skID∗ or queries Public-Key-Replace-Oracle to replace the
public key of ID∗ before generating a fogery in Step (3). This is to capture the attack
where the signature should still be secure even if skID∗ is compromised provided that
pskID∗ is not. For details please refer to [13].

We remark that, in [13], they allow the signing oracle to output invalid signature if
the public key of the corresponding identity has been replaced. We require that even
the public key has been replaced, the signing oracle should output a valid signature.

2.2 Security of Certificateless Encryption

Definition 3 (Definition of Certificateless Encryption). A certificateless en-
cryption scheme is a 5-tuple algorithms which are defined as follow: 3

– Setup: is a probabilistic polynomial time (PPT) algorithm run by a Key Gener-
ation Centre (KGC), given a security parameter k as input, outputs a randomly
chosen master secret key mk and a list of public parameters param.

– Partial-Secret-Key-Extract: is PPT algorithm, run by the KGC, given a user’s
identity ID and the master secret key mk as inputs, outputs a partial-secret-key
psk.

– User-Key-Generation: is PPT algorithm, run by the user, given a list of public
parameters param as inputs, outputs a secret key sk and a public key pk.

2 Note that it is even stronger than the model of Hu et al. [13] in which they allow the
signing oracle to output some invalid signatures if the public key of the corresponding
identity has been replaced.

3 We use the simplification as used in [13] in CL-signature to simplify the definition of
CL-encryption.

Self-Generated-Certificate Public Key Cryptosystem 7

– Encrypt: is a PPT algorithm, given a plaintext m, list of parameters param, a
receiver’s identity ID and his public key pk as inputs, outputs either a ciphertext
C = Encrypt(param, m, ID, pk) or ⊥ meaning encryption failure. This will occur
if in the event that pk does not have the correct form.

– Decrypt: is a deterministic algorithm, given a ciphertext C, a list of public
parameters param, a user secret key sk and a user partial secret key psk as inputs,
outputs either a plaintext m or ⊥ meaning decryption failure.

For correctness, as usual we require that Decrypt(param, C, sk, psk) = m whenever
C = Encrypt(param,m, ID, pk).

Security Model. Same as above in the case of signature, there are two types of
adversary. Type I adversary does not have the KGC’s master secret key but it can
replace public keys of arbitrary identities with other public keys of its own choices. It
can also obtain partial and full secret keys of arbitrary identities.

Type II adversary knows the master secret key (hence it can compute partial secret
key by itself). It is still allowed to obtain full secret key for arbitrary identities but is
not allowed to replace public keys at any time.

In considering the IND-CCA secure scenario, the strongest model in [1] does expect
the challenger to be able to correctly respond to decryption queries made on identities
for which the Type I adversary has replaced the public keys. That is, the decryption
oracle should be able to output consistent answers even for identities whose public
keys have been replaced and for which they do not know the corresponding private
keys. This is a very strong notion of security. Several schemes [4,7,26] have weaken
this definition to that the challenger is not forced to attempt to decrypt ciphertexts
for which the public key has been replaced. It is known as Type I− adversary.

In our scheme, we adopt the security against Type I− and Type II adversary.

Definition 4 (IND-CCA− Security). A certificateless encryption scheme is IND-CCA−

secure if no PPT adversary A of Type I− or Type II has a non-negligible advantage
in the following game played against the challenger:

1. The challenger takes a security parameter k and runs the Setup algorithm. It
gives A the resulting system parameters param. If A is of Type I−, the challenger
keeps the master secret key mk to itself, otherwise, it gives mk to A.

2. A is given access to the following oracles:
– Public-Key-Broadcast-Oracle: on input identity, it outputs the matching public

key.
– Partial-Secret-Key-Extract-Oracle: on input identity, it outputs partial secret

key associated with the user’s identity. (Note that it is only useful to Type I−

adversary.)
– Secret-Key-Extract-Oracle: on input identity, it outputs secret key associated

with the user’s identity. It outputs ⊥ if the user’s public key has been replaced
(in the case of Type I− adversary).

– Decryption-Oracle: on input a ciphertext and an identity, returns the decrypted
plaintext using the private key corresponding to the current value of the public
key associated with the identity of the user. It outputs ⊥ if the user’s public
key has been replaced (in the case of Type I− adversary).

– Public-Key-Replace-Oracle: (For Type I− adversary only) on input identity and
a valid public key, it replaces the associated user’s public key with the new
one.

8 Joseph K. Liu and Man Ho Au

3. After making oracle queries a polynomial times, A outputs and submits two mes-
sages m0,m1, together with an identity ID∗ of uncorrupted secret key to the
challenger. The challenger picks a random bit b ∈ {0, 1} and computes C∗, the
encryption of mb under the current public key pk∗ for ID∗. If the output of the
encryption is ⊥, then A immediately looses the game. Otherwise C∗ is delivered
to A.

4. A makes a new sequence of queries.
5. A outputs a bit b′. It wins if b′ = b and fulfills the following conditions:

– At any time, ID∗ has not been submitted to Secret-Key-Extract-Oracle.
– In Step (4), C∗ has not been submitted to Decryption-Oracle for the combina-

tion (ID∗, pk∗) under which mb was encrypted.
– If it is Type I−, ID∗ has not been submitted to both Public-Key-Replace-Oracle

before Step (3) and Partial-Secret-Key-Extract-Oracle at some step.

Define the advantage of A as

AdvIND−CCA−

CLE (A) = 2 Pr[A wins]− 1

2.3 Security of Self-Generated-Certificate (SGC) Encryption

The definition of SGC Encryption is the same as the definition of CL Encryption
given in Definition 3, except for User-Key-Generation which also needs the partial
secret key of the user as the input.

For security, in addition to IND-CCA (or IND-CCA−), we require the scheme to be
DoD-Free, which is formally defined as follow as a game played between the challenger
and a PPT adversary (DoD Adversary), which has the same power of a Type I−

adversary defined in CL Encryption.

Definition 5 (DoD-Free Security). A SGC encryption scheme is DoD-Free secure
if no PPT adversary A has a non-negligible advantage in the following game played
against the challenger:

1. The challenger takes a security parameter k and runs the Setup algorithm. It
gives A the resulting system parameters param. The challenger keeps the master
secret key mk to itself.

2. A is given access to the following oracles:
– Public-Key-Broadcast-Oracle: on input identity, it outputs the matching public

key.
– Partial-Secret-Key-Extract-Oracle: on input identity, it outputs partial secret

key associated with the user’s identity.
– Secret-Key-Extract-Oracle: on input identity, it outputs secret key associated

with the user’s identity. It outputs ⊥ if the user’s public key has been replaced.
– Public-Key-Replace-Oracle: on input identity and a valid public key, it replaces

the associated user’s public key with the new one.
3. After making oracle queries a polynomial times, A outputs a message m∗, together

with an identity ID∗ to the challenger. The challenger computes C∗, the encryption
of m∗ under the current public key pk∗ for ID∗.
If the output of the encryption is ⊥, then A immediately looses the game. Oth-
erwise it outputs C∗.

4. A wins if the following conditions are fulfilled:

Self-Generated-Certificate Public Key Cryptosystem 9

– The output of the encryption in Step (3) is not ⊥.
– Decrypt(C∗, sk∗, psk∗) 6= m∗.
– At any time, ID∗ has not been submitted to Partial-Secret-Key-Extract-Oracle.

Define the advantage of A as

AdvDoD−Free
SGCE (A) = Pr[A wins]

3 A Certificateless Signature Scheme in the Standard Model

Our scheme is motivated from the identity-based signature scheme from Paterson and
Schuldt [18].

3.1 Construction

Let Hu : {0, 1}∗ → {0, 1}nu and Hm : {0, 1}∗ → {0, 1}nm be two collision-resistant
hash functions for some nu, nm ∈ Z. They are used to create identities and messages
of the desired length respectively.
Setup. Select a pairing e : G1 × G1 → G2 where the order of G1 is p. Let g be a
generator of G1. Randomly select α ∈R Zp, g2 ∈R G1 and compute g1 = gα. Also
select randomly the following elements:

– u′,m′ ∈R G1

– ûi ∈R G1 for i = 1, . . . , nu. Let Û = {ûi}.
– m̂i ∈R G1 for i = 1, . . . , nm. Let M̂ = {m̂i}.

The public parameters param are (e, G1, G2, g, g1, g2, u
′, Û ,m′, M̂) and the master

secret key is gα
2 .

Partial-Secret-Key (PSK)-Extract. Let u = Hu(ID) for user with identity ID.
Let u[i] be the i-th bit of u. Define U ⊂ {1, . . . , nu} to be the set of indicies such that
u[i] = 1.

To construct the PSK of identity ID, the master randomly selects ru ∈R Zp and
compute (

gα
2

(
U
)ru

, gru

)
= (psk(1), psk(2))

where U = u′
∏

i∈U ûi.
User-Key-Generation. User selects a secret value x ∈ Zp as his secret key sk, and
computes his public key as

(gx, gx
1) = (pk(1), pk(2))

Sign. To sign a message m ∈ {0, 1}∗, the signer with identity ID, partial secret key
(psk(1), psk(2)) and secret key sk and compute m = Hm(m). Let m[i] be the i-th bit of
m and M ⊂ {1, . . . , nm} be the set of indicies i such that m[i] = 1. Randomly select
rπ, rm ∈R Zp, compute U = u′

∏
i∈U ûi and

σ =

((
psk(1)

)sk(
U
)rπ
(
m′

∏
i∈M

m̂i

)rm

,
(
psk(2)

)sk
grπ , grm

)
= (V,Rπ, Rm)

10 Joseph K. Liu and Man Ho Au

Verify. Given a signature σ = (V,Rπ, Rm) for an identity ID and public key (pk(1), pk(2))
on a message m, a verifier first computes m = Hm(m), U = u′

∏
i∈U ûi and checks

whether

e(pk(1), g1)
?= e(pk(2), g)

e(V, g) ?= e(g2, pk(2)) e(U,Rπ) e(m′
∏

i∈M
m̂i, Rm)

Output valid if both equalities hold. Otherwise output invalid.

Security Analysis is in Appendix B.

4 A Certificateless Encryption Scheme in the Standard
Model

4.1 Building Blocks

The following two building blocks are needed to construct the certificateless encryption
scheme in the standard model. (One-time signature with strong unforgeability can also
be used, but it is less efficient).
Message Authentication. One of the building blocks of our system is Message
Authentication scheme. Following the notions in [5], a message authentication code
is a pair of PPT algorithms (Mac, Vrfy) such that Mac takes as input a key sk and
a message m to produce a tag tag. The algorithm Vrfy takes as input a key sk, a
message m and tag and outputs either accept or reject. It is required that for all
sk and m, Vrfy(sk,m, Mac(sk,m)) = accept. Loosely speaking, (Mac , Vrfy) is secure
against one-time chosen-message attack if no adversary can produce tag′, m′ such
that the following holds:

– The adversary chooses a message m, and is given tag such that Vrfy(sk,m, tag) =
accept for a randomly selected key sk unknown to adversary.

– Vrfy(sk,m′, tag′) = accept.
– m 6= m′ or tag 6= tag′.

Encapsulation. Another building block of our system is an Encapsulation scheme,
introduced in [5]. Roughly speaking, it is a weak variant of commitment and is defined
by a triple of PPT algorithms (Init,S,R) as follow. On input security parameter 1k, Init
outputs pub. On input a 1k and pub, S outputs com, dec and a string r ∈ {0, 1}k. On
input pub, com and dec, R outputs r. It is required that for all pub output by Init and
for all (r, com, dec) output by S(1k, pub), we have R(pub, com, dec) = r. In addition, an
encapsulation scheme must satisfy binding and hiding. Informally speaking, binding
means that an honestly generated com can be opened to a single value of r only while
hiding means that even given pub and com, the string r should be indistinguishable
from random. Very efficient construction (based only on hash function) is given in [5].

4.2 Construction

Our scheme modifies from Waters identity-based encryption scheme [25], although in
a non-trivial way, as follow. Let Hu : {0, 1}∗ → {0, 1}n be a collision-resistant hash
function for some n ∈ Z. It is used to create identities of the desired length.

Self-Generated-Certificate Public Key Cryptosystem 11

Setup. Select a pairing e : G1 × G1 → G2 where the order of G1 is p. Let g be a
generator of G1. Randomly select α ∈R Zp, g2 ∈R G1 and compute g1 = gα. Compute
pub = Init(1k). Also select randomly the following elements:

– u′, g′1, h1 ∈R G1

– ûi ∈R G1 for i = 1, . . . , n. Let Û = {ûi}.

The public parameters param are (e, G1, G2, g, g1, g2, u
′, g′1, h1, Û , pub) and the master

secret key is gα
2 .

Remarks: We assume com of the encapsulation scheme used is in Zp. Otherwise,
an additional hash function is needed to map com to Zp.
Partial-Secret-Key (PSK) Extract. Let u = Hu(ID) for user with identity ID.
Let u[i] be the i-th bit of u. Define U ⊂ {1, . . . , n} to be the set of indices such that
u[i] = 1.

To construct the PSK of identity ID, the master randomly selects ru ∈R Zp and
compute (

gα
2

(
U
)ru

, gru

)
= (psk(1), psk(2))

where U = u′
∏

i∈U ûi.
User-Key-Generation. User selects a secret value x ∈ Zp as his secret key sk and
computes his public key as

(gx, gx
1) = (pk(1), pk(2))

Encrypt. To encrypt a message m ∈ G2 for an identity ID and public key (pk(1), pk(2)),
first check whether pk(1), pk(2) ∈ G1 and e(pk(1), g1) = e(pk(2), g). If not, output
reject and abort encryption. Otherwise, run S(pub) to obtain (r, com, dec) and set
M = m||dec. Assume there exists a representation of M in G2.4 Randomly select
t ∈R Zp, compute U = u′

∏
i∈U ûi and

C1 = e(pk(2), g2)tM C2 = gt C3 = U t C4 = (g′1
com

h1)t

Let Ĉ = (C1, C2, C3, C4). Compute tag = Mac(r, Ĉ). The ciphertext CTXT = (Ĉ, com,
tag).

Decrypt. On receiving CTXT, compute M = C1

(
e(psk(2)

,C3)e(g,C4)

e(psk(1)
g′1

comh1,C2)

)sk
and obtain m

and dec. Compute r = R(pub, com, dec). If Vrfy(r, Ĉ, tag) = accept, then the plaintext
is m, else output invalid ciphertext.

Security Analysis is in Appendix C.

5 A Self-Generated-Certificate Encryption Scheme

We give a generic construction of Self-Generated-Certificate (SGC) encryption scheme,
building from a certificateless (CL) encryption scheme and a certificateless (CL) signa-
ture scheme that are using the same set of public parameters and user key generation
algorithm. (It maybe possible to use a CL-encryption and a CL-signature scheme that

4 If M > |G2|, we can split m into several pieces and encrypt each piece individually.

12 Joseph K. Liu and Man Ho Au

use different sets of public parameters and user key generation algorithms, although
space and time complexity may be increased. For simplicity, we exclude this case in
our paper (including the definition and construction of the scheme).)

In order to distinguish the algorithm of CL-encryption and CL-signature, we
will add the prefix “CL.” to the corresponding algorithms. For example, we use
“CL.Encrypt” to denote the encryption algorithm of the underlying CL-encryption
scheme. The proposed SGC-encryption scheme is described as follow:
Setup. Same as CL.Setup, outputs parameters param and master secret key msk.
Partial-Secret-Key-Extract. Same as CL.Partial-Secret-Key-Extract, outputs
partial secret key psk for a user with identity ID.
User-Key-Generation. To generate a user key with identity ID and partial secret
key psk, it is defined as follow:

(sk, pk)← User-Key-Generation(param, psk, ID)
BEGIN

(CL.sk,CL.pk) ← CL.User-Key-Generation(param);
m′ := 〈 ID || CL.pk 〉
σ ← CL.Sign(param,CL.sk, psk,m′)

pk′ := 〈 CL.pk || σ 〉
Output (sk, pk) := (CL.sk, pk′)

END

Encryption. To encrypt a message m for a user with identity ID and public key pk,
it is defined as follow:

C ← Encrypt(param,m, ID, pk)
BEGIN

〈 CL.pk || σ 〉 := pk

m′ := 〈 ID || CL.pk 〉
IF CL.Verify(param,m′, σ, ID,CL.pk) = ⊥

Output ⊥
ELSE

Output C ← CL.Encrypt(param,m, ID,CL.pk)

END

Decrypt. Same as CL.Decrypt, outputs a plaintext m for a valid ciphertext C, or
⊥ otherwise.

Using our proposed CL-signature scheme in Section 3 and our proposed CL-
encryption scheme in Section 4, we can build up a SGC-encryption scheme in the
standard model.

Security Analysis is given in Appendix D.

6 Concluding Remark

In this paper, we proposed a new paradigm, called “Self-Generated-Certificate (SGC)
Public Key Cryptosystem”. It is the enhanced version of Certificateless Public Key

Self-Generated-Certificate Public Key Cryptosystem 13

Cryptography (CL-PKC). It can defend against the DoD attack. We provided a
generic construction of a SGC-encryption scheme. Besides, we also proposed a certifi-
cateless signature scheme and a certificateless encryption scheme. Both of them are
proven secure in the standard model which are the first in the literature for concrete
implementation. The security model of our CL-signature scheme is the strongest when
compared with others in the literature.

However, we face the same problem mentioned in [9]. We can only achieve Type I−

security in the standard model although we can obtain Type I security in the generic
group model [24], as stated in the proof. It is still an open problem to achieve Type
I security in the standard model.

References

1. S. S. Al-Riyami and K. Paterson. Certificateless public key cryptography. In Proc.
ASIACRYPT 2003, pages 452–473. Springer-Verlag, 2003. Lecture Notes in Computer
Science No. 2894.

2. S. S. Al-Riyami and K. Paterson. Certificateless public key cryptography. Cryptology
ePrint Archive, Report 2003/126, 2003. http://eprint.iacr.org/2003/126/.

3. J. Baek, R. Safavi-Naini, and W. Susilo. Certificateless public key encryption without
pairing. In ISC 05, pages 134–148. Springer-Verlag, 2005. Lecture Notes in Computer
Science Vol. 3650.

4. K. Bentahar, P. Farshim, and J. Malone-Lee. Generic constructions of identity-based
and certificateless KEMs. Cryptology ePrint Archive, Report 2005/058, 2005. http:

//eprint.iacr.org/2005/058/.

5. D. Boneh and J. Katz. Improved efficiency for cca-secure cryptosystems built using
identity-based encryption. In CT-RSA, pages 87–103, 2005.

6. H. Chabanne, D. H. Phan, and D. Pointcheval. Public traceability in traitor tracing
schemes. In Proc. EUROCRYPT 2005, volume 3494 of LNCS, pages 542–558. Springer,
2005.

7. Z. Cheng and R. Comley. Efficient certificateless public key encryption. Cryptology
ePrint Archive, Report 2005/012, 2005. http://eprint.iacr.org/2005/012/.

8. S. Chow, C. Boyd, and J. Gonzalez. Security-mediated certificateless cryptography. In
PKC 2006, volume 3958 of Lecture Notes in Computer Science, pages 508–524. Springer-
Verlag, 2006.

9. A. Dent and C. Kudla. On proofs of security for certificateless cryptosystems. Cryptology
ePrint Archive, Report 2005/348, 2005. http://eprint.iacr.org/2005/348/.

10. C. Gentry. Certificate-based encryption and the certificate revocation problem. In Proc.
EUROCRYPT 2003, pages 272–293. Springer-Verlag, 2003. Lecture Notes in Computer
Science No. 2656.

11. M. Girault. Self-certified public keys. In Proc. EUROCRYPT 91, pages 490–497.
Springer-Verlag, 1992. Lecture Notes in Computer Science No. 547.

12. M. Gorantla, R. Gangishetti, M. Das, and A. Saxena. An effective certificateless signa-
ture scheme based on bilinear pairings. In WOSIS 2005, pages 31–39. INSTICC Press,
2005.

13. B. Hu, D. Wong, Z. Zhang, and X. Deng. Key replacement attack against a generic
construction of certificateless signature. In ACISP ’06, pages ???–??? Springer-Verlag,
2006. To Appear. Lecture Notes in Computer Science.

14. X. Huang, W. Susilo, Y. Mu, and F. Zhang. On the security of certificateless signa-
ture schemes from Asiacrypt 2003. In CANS 2005, pages 13–25. Springer-Verlag, 2005.
Lecture Notes in Computer Science No. 3810.

15. X. Huang, W. Susilo, Y. Mu, and F. Zhang. Certificateless designated verifier signature
schemes. In AINA 2006, pages 15–19. IEEE Computer Society, 2006.

http://eprint.iacr.org/2003/126/
http://eprint.iacr.org/2005/058/
http://eprint.iacr.org/2005/058/
http://eprint.iacr.org/2005/012/
http://eprint.iacr.org/2005/348/

14 Joseph K. Liu and Man Ho Au

16. B. Libert and J. Quisquater. On constructing certificateless cryptosystems from identity
based encryption. In PKC 2006, pages 474–490. Springer-Verlag, 2006. Lecture Notes
in Computer Science No. 3958.

17. A. Lysyanskaya. Unique signatures and verifiable random functions from the DH-DDH
separation. In Proc. CRYPTO 2004, volume 2442 of Lecture Notes in Computer Science,
pages 597–612. Springer, 2002.

18. K. Paterson and J. Schuldt. Efficient identity-based signatures secure in the standard
model. Cryptology ePrint Archive, Report 2006/080, 2006. http://eprint.iacr.org/

2006/080/, To Appear in ACISP 2006.
19. H. Petersen and P. Horster. Self-certified keys - concepts and applications. In 3rd Int.

Conference on Communications and Multimedia Security, pages 102–116. Chapnam and
Hall, 1997.

20. S. Saeednia. Identity-based and self-certified key-exchange protocols. In ACISP 1997,
pages 303–313. Springer-Verlag, 1997. Lecture Notes in Computer Science No. 1270.

21. S. Saeednia. A note on girault’s self-certified mode. Information Processing Letters,
86(6):323–327, 2003.

22. A. Shamir. Identity-based cryptosystems and signature schemes. In Proc. CRYPTO 84,
pages 47–53. Springer-Verlag, 1984. Lecture Notes in Computer Science No. 196.

23. Y. Shi and J. Li. Provable efficient certificateless public key encryption. Cryptology
ePrint Archive, Report 2005/287, 2005. http://eprint.iacr.org/2005/287/.

24. V. Shoup. Lower bounds for discrete logarithms and related problems. In Proc. EURO-
CRYPT 97, volume 1233 of Lecture Notes in Computer Science, pages 250–266. Springer,
1997.

25. B. Waters. Efficient identity-based encryption without random oracles. In Proc. EURO-
CRYPT 2005, volume 3494 of LNCS, pages 114–127. Springer-Verlag, 2005.

26. D. H. Yum and P. J. Lee. Generic construction of certificateless encryption. In ICCSA
’04, pages 802–811. Springer-Verlag, 2004. Lecture Notes in Computer Science No. 3040.

27. D. H. Yum and P. J. Lee. Generic construction of certificateless signature. In ACISP
’04, pages 200–211. Springer-Verlag, 2004. Lecture Notes in Computer Science No. 3108.

A Complexity Assumptions

Definition 6 (Non pairing-based Generalized Bilinear DH (NGBDH) As-
sumption). Given a group G of prime order p with generator g and elements ga, gb ∈
G where a, b are selected uniformly at random from Z∗

p, the NGBDH problem in G is
to output (gabc, gc).

An adversary B has at least an ε advantage if

Pr[B(g, ga, gb) = (gabc, gc)] ≥ ε

We say that the (ε, t)-NGBDH assumption holds in a group G if no algorithm running
in time at most t can solve the NGBDH problem in G with advantage at least ε.

It can be seen as the non pairing-based version of the Generalized Bilinear Diffie-
Hellman (GBDH) Problem [1].

Definition 7 (Many-DH Assumption [17] (Simplified Version)). Given a group
G of prime order p with generator g and elements ga, gb, gc, gab, gac, gbc ∈ G where
a, b, c are selected uniformly at random from Z∗

p, the Many-DH problem in G is to
output gabc.

An adversary B has at least an ε advantage if

Pr[B(g, ga, gb, gc, gab, gac, gbc) = gabc] ≥ ε

http://eprint.iacr.org/2006/080/
http://eprint.iacr.org/2006/080/
http://eprint.iacr.org/2005/287/

Self-Generated-Certificate Public Key Cryptosystem 15

We say that the (ε, t)-Many-DH assumption holds in a group G if no algorithm running
in time at most t can solve the Many-DH problem in G with advantage at least ε.

In the original version presented in [17], the number of input tuples can be as
much as O(log k) for some security parameter k. Here we simplify it for just enough
to our scheme.

Definition 8 (Decisional Bilinear DH-1 (DBDH-1) Assumption). 5 Given
a group G of prime order p with generator g and elements ga, gb, gc, gz ∈ G where
a, b, c, z are selected uniformly at random from Z∗

p. A fair binary coin β ∈ {0, 1} is
flipped. If β = 1, it outputs the tuple (g,A = ga, B = gb, C = gc, Z = gabc). If β = 0,
it outputs the tuple (g,A = ga, B = gb, C = gc, Z = gz). The problem is to guess the
value of β.

An adversary B has at least an ε advantage in solving the DBDH-1 problem if∣∣∣∣ Pr[B(g, ga, gb, gc, gabc) = 1]− Pr[B(g, ga, gb, gc, gz) = 1]
∣∣∣∣ ≥ 2ε

where the probability is oven the randomly chosen a, b, c, z and the random bits con-
sumed by B.

We say that the (ε, t)-DBDH-1 assumption holds in a group G if no algorithm
running in time at most t can solve the DBDH-1 problem in G with advantage at
least ε.

Definition 9 (Decisional Bilinear DH-2 (DBDH-2) Assumption). Given a
group G of prime order p with generator g, a bilinear pairing e : G × G → G1

and elements ga, gb, gc ∈ G, e(g, g)z ∈ G1 where a, b, c, z are selected uniformly at
random from Z∗

p. A fair binary coin β ∈ {0, 1} is flipped. If β = 1, it outputs the
tuple (g,A = ga, B = gb, C = gc, Z = e(g, g)abc). If β = 0, it outputs the tuple
(g,A = ga, B = gb, C = gc, Z = e(g, g)z). The problem is to guess the value of β.

An adversary B has at least an ε advantage in solving the DBDH-2 problem if∣∣∣∣ Pr[B(g, ga, gb, gc, e(g, g)abc) = 1]− Pr[B(g, ga, gb, gc, e(g, g)z) = 1]
∣∣∣∣ ≥ 2ε

where the probability is oven the randomly chosen a, b, c, z and the random bits con-
sumed by B.

We say that the (ε, t)-DBDH-2 assumption holds in a group G if no algorithm
running in time at most t can solve the DBDH-2 problem in G with advantage at
least ε.

B Security Analysis of CL-Signature Scheme in Section 3

B.1 Correctness

It is easy to see that the signature scheme is correct, as shown in following:

e(V, g) = e

(
gαx
2 Urux Urπ

(
m′

∏
i∈M

m̂i

)rm

, g

)
5 We use the same notation as used in [6] to denote the classical non pairing-based version.

We use DBDH-2 to denote the pairing-based version which is presented in Definition 9.
Although it is not used in our schemes, we state here for completion.

16 Joseph K. Liu and Man Ho Au

= e(gx
2 , gα) e(Urux+rπ , g) e

((
m′

∏
i∈M

m̂i

)rm
, g
)

= e(g2, g
x
1) e(U, grux+rπ) e(m′

∏
i∈M

m̂i, g
rm)

= e(g2, pk(2)) e(U,Rπ) e(m′
∏

i∈M
m̂i, Rm)

B.2 Unforgeability

Theorem 1 (Type I Existential Unforgeability). The CL-signature scheme pro-
posed in Section 3 is (ε, t)-existential unforgeable against Type I adversary (defined in
Section 2) with advantage at most ε and runs in time at most t, assuming that the
(ε′, t′)-NGBDH assumption holds in G1, where

ε′ ≥ ε

16(qe + qs)(nu + 1)qs(nm + 1)

t′ = t + O
((

qenu + qs(nu + nm)
)
ρ + (qk + qe + qs)τ

)
where qe is the number of queries made to the Partial-Secret-Key-Extract-Oracle, qs is
the number of queries made to the Signing-Oracle, qk is the number of queries made to
the Public-Key-Broadcast-Oracle and Secret-Key-Extract-Oracle altogether, and ρ and
τ are the time for a multiplication and an exponentiation in G1 respectively.

Proof. Assume there is a Type I adversary A exists. We are going to construct another
PPT B that makes use of A to solve the NGBDH problem with probability at least
ε′ and in time at most t′. We use a similar approach as in [18].
B is given a problem instance as follow: Given a group G1, a generator g ∈ G1,

two elements ga, gb ∈ G1. It is asked to output two elements gabc, gc ∈ G1. In order
to use A to solve for the problem, B needs to simulates a challenger and all oracles
for A. B does it in the following way.

Setup. Let lu = 2(qe + qs) and lm = 2qs. B randomly selects two integers ku and km

such that 0 ≤ ku ≤ nu and 0 ≤ km ≤ nm. Also assume that lu(nu + 1) < p and
lm(nm + 1) < p for the given values of qe, qs, qk, nu and nm. It randomly selects the
following integers:

– x′ ∈R Zlu ; z′ ∈R Zlm ; y′, w′ ∈R Zp

– x̂i ∈R Zlu , for i = 1, . . . , nu. Let X̂ = {x̂i}.
– ẑi ∈R Zlm , for i = 1, . . . , nm. Let Ẑ = {ẑi}.
– ŷi ∈R Zp, for i = 1, . . . , nu. Let Ŷ = {ŷi}.
– ŵi ∈R Zp, for i = 1, . . . , nm. Let Ŵ = {ŵi}.

We further define the following functions for binary strings u and m where u = Hu(ID)
for an identity ID and m = Hm(m) for a message m, as follow:

F (u) = x′ +
∑

i∈U j

x̂i − luku and J(u) = y′ +
∑

i∈U j

ŷi

K(m) = z′ +
∑

i∈M
ẑi − lmkm and L(m) = w′ +

∑
i∈M

ŵi

Self-Generated-Certificate Public Key Cryptosystem 17

B constructs a set of public parameters as follow:

g1 = ga, g2 = gb

u′ = g−luku+x′

2 gy′ , ûi = gx̂i
2 gŷi for 1 ≤ i ≤ nu

m′ = g−lmkm+z′

2 gw′
, m̂i = gẑi

2 gŵi for 1 ≤ i ≤ nm

Note that the master secret will be gα
2 = ga

2 = gab and we have the following equations:

U = u′
∏
i∈U

ûi = g
F (u)
2 gJ(u) and m′

∏
i∈M

m̂i = g
K(m)
2 gL(m)

All public parameters are passed to A.

Oracles Simulation. B simulates all oracles as follow:

(Public-Key-Broadcast-Oracle.) B keeps the database DB of user secret-public key.
Upon receiving a query for a public key of an identity ID, B looks up its database
DB to find out the corresponding entry. If it does not exits, B runs User-Key-
Generation to generate a secret and public key pair. It stores the key pair in its
database and returns the public key as the query output.

(Secret-Key-Extract-Oracle.) Upon receiving a query for a public key of an identity ID,
B looks up its database DB to find out the corresponding entry. If it does not exits, B
runs User-Key-Generation to generate a secret and public key pair. It stores the
key pair in its database and returns the secret key as the query output.

(Partial-Secret-Key-Extract-Oracle.) Upon receiving a query for a partial secret key of
an identity ID, B compute u = Hu(ID) 6. Although B does not know the master
secret, it still can construct the private key by assuming F (u) 6= 0 mod p. It randomly
chooses ru ∈R Zp and computes the private key as

(psk(1), psk(2)) =
(

g
− J(u)

F (u)
1

(
U
)ru

, g
− 1

F (u)
1 gru

)
By letting r̃u = ru − a

F (u) , it can be verifier that psk is a valid partial secret key,
shown as follow:

psk(1) = g
− J(u)

F (u)
1

(
U
)ru

= g
− J(u)

F (u)
1 (gF (u)

2 gJ(u))ru

= g−
aJ(u)
F (u) (gF (u)

2 gJ(u))ru

= g−
aJ(u)
F (u) (gF (u)

2 gJ(u))
a

F (u) (gF (u)
2 gJ(u))−

a
F (u) (gF (u)

2 gJ(u))ru

= g−
aJ(u)
F (u) gabg

aJ(u)
F (u) (gF (u)

2 gJ(u))r̃u

= gab(gF (u)
2 gJ(u))r̃u

= ga
2 (gF (u)

2 gJ(u))r̃u

= ga
2

(
U
)r̃u

6 This is the normal hash function operation instead of the random oracle operation.

18 Joseph K. Liu and Man Ho Au

and
psk(2) = g

− 1
F (u)

1 gru = gru− a
F (u) = gr̃u

To the adversary, all partial secret keys given by B are indistinguishable from the keys
generated by the true challenger.

If F (u) = 0 mod p, since the above computation cannot be performed (division by
0), the simulator aborts. To make it simple, the simulator will abort if F (u) = 0 mod
lu. The equivalency can be observed as follow. From the assumption lu(nu + 1) < p,
it implies 0 ≤ luku < p and 0 ≤ x′ +

∑
i∈U j

x̂i < p (∵ x′ < lu, x̂i < lu, |U| ≤ nu).
We have −p < F (u) < p which implies if F (u) = 0 mod p then F (u) mod lu. Hence,
F (u) 6= 0 mod lu implies F (u) 6= 0 mod p. Thus the former condition will be sufficient
to ensure that a private key can be computed without abort.

(Public-Key-Replace-Oracle.) Upon receiving a query for a public key replace oracle
request of an identity ID, B looks up its database DB to replace the corresponding
entry. If it does not exits, B creats a new entry for this identity.

(Signing-Oracle.) For a given query of a signature on an identity ID and a message
m, B first checks from DB that whether the public key of ID has been replaced or
not. If it has been replaced with public key (pk(1), pk(2)), it computes the signature in
the following way. Assume K(m) 6= 0 mod lm. Using the argument mentioned above,
it implies K(m) 6= 0 mod p provided that lm(nm + 1) < p. The signature can be
constructed by first randomly selecting rπ, rm ∈R Zp, and computing

σ =

((
U
)rπ
(
pk(2)

)− L(m)
K(m)

(
m′

∏
i∈M

m̂i

)rm

, grπ ,
(
pk(2)

)− 1
K(m) grm

)

=

(
gax
2

(
U
)rπ

(
m′

∏
i∈M

m̂i

)r̃m

, grπ , gr̃m

)
=
(
V,Rπ, Rm

)
where r̃m = rm − ax

K(m) . If K(m) = 0 mod lm, the simulator aborts.
The correctness can be shown as follow:

V =
(
U
)rπ
(
pk(2)

)− L(m)
K(m)

(
m′

∏
i∈M

m̂i

)rm

=
(
U
)rπ

g
−L(m)x

K(m)
1 (gK(m)

2 gL(m))rm

=
(
U
)rπ

g−
axL(m)
K(m) (gK(m)

2 gL(m))rm

=
(
U
)rπ

g−
axL(m)
K(m) (gK(m)

2 gL(m))
ax

K(m) (gK(m)
2 gL(m))−

ax
K(m) (gK(m)

2 gL(m))rm

=
(
U
)rπ

g−
axL(m)
K(m) gabxg

axL(m)
K(m) (gK(m)

2 gL(m))r̃m

=
(
U
)rπ

gabx(gK(m)
2 gL(m))r̃m

=
(
U
)rπ

gax
2 (gK(m)

2 gL(m))r̃m

=
(
U
)rπ
(
ga
2

)x(
m′

∏
i∈M

m̂i

)r̃m

Self-Generated-Certificate Public Key Cryptosystem 19

and
Rm =

(
pk(2)

)− 1
K(m) grm = grm− ax

K(m) = gr̃m

The signature generated in this way is indistinguishable to the real one.
If the public key has not been replaced, it computes u = Hu(ID) and m = Hm(m)

7.
If F (u) 6= 0 mod lu, B just construct a partial-secret key as in the Partial-Secret-

Key-Extract-Oracle, then it checks from DB whether the secret key of ID has been
created or not. If it has not been created, run the User-Key-Generation algorithm
and stores the secret / public key pair in DB. If it has been created, it just use the
Sign algorithm to create a signature on ID and m.

If F (u) = 0 mod lu, B tries to construct the signature in a similar way as above
(the case that the public key has been replaced). Assume K(m) 6= 0 mod lm. Using the
argument mentioned above, it implies K(m) 6= 0 mod p provided that lm(nm +1) < p.
The signature can be constructed by first randomly selecting rπ, rm ∈R Zp, getting
the secret key x from DB (if it has not been created, run User-Key-Generation
algorithm first) and computing

σ =

((
U
)rπ

g
− L(m)

K(m) x

1

(
m′

∏
i∈M

m̂i

)rmx

, grπ , g
− x

K(m)
1 grmx

)

=

(
gax
2

(
U
)rπ

(
m′

∏
i∈M

m̂i

)r̃m

, grπ , gr̃m

)

where r̃m = rmx− a
K(m)x. If K(m) = 0 mod lm, the simulator aborts.

Output Calculation. If B does not abort, A will return an identity ID∗ and a message
m∗ with a forged signature σ∗ = (V,Rπ, Rm) on ID∗, the current public key pkID∗

and m∗ with probability at least ε. B checks whether the following conditions are
fulfilled:

1. F (u∗) = 0 mod p, where u∗ = Hu(ID∗).
2. K(m∗) = 0 mod p , where m∗ = Hm(m∗).

If not all the above conditions are fulfilled, B aborts. Otherwise B computes and
outputs

V

R
J(u∗)
π R

L(m∗)
m

=
gax
2

(
U
)rπ
(
m′∏

i∈M m̂i

)rm

gJ(u∗)rπgL(m∗)rm

=
gax
2

(
g

F (u∗)
2 gJ(u∗)

)rπ
(
g

K(m∗)
2 gL(m∗)

)rm

gJ(u∗)rπgL(m∗)rm

= gax
2

= gabx

B outputs (gabx, pk
(1)

ID∗) = (gabx, gx) as the solution to the NGBDH problem instance.

Probability Analysis. For the simulation to complete without aborting, we require the
following conditions fulfilled:
7 Same as the signing oracle, here Hu and Hm are some standard hash function operations

instead of random oracle queries.

20 Joseph K. Liu and Man Ho Au

1. Partial-Secret-Key-Extract-Oracle queries on an identity ID have F (u) 6= 0 mod lu,
where u = Hu(ID).

2. Signing-Oracle queries (ID,m) will either have F (u) 6= 0 mod lu, or K(m) 6=
0 mod lm where m = Hm(m), if the public key of ID has not been replaced.
Otherwise, it requires K(m) 6= 0 mod lm.

3. F (u∗) = 0 mod lu and K(m∗) = 0 mod lm.

In order to make the analysis more simple, we will bound the probability of a subcase
of this event.

Let u1, . . . , uqI
be the output of the hash function Hu appearing in either Partial-

Secret-Key-Extract-Oracle queries or in Signing-Oracle queries not involving any of the
challenge identity ID∗, and let m1, . . . ,mqM

be the output of the hash function Hm

in the sign queries involving the challenge list. We have qI ≤ qe + qs and qM ≤ qs.
We also define the events Ai, A

∗, B`, B
∗ as follow:

Ai : F (ui) 6= 0 mod lu where i = 1, . . . , qI

A∗ : F (u∗) = 0 mod p

B` : K(m`) 6= 0 mod lm where ` = 1, . . . , qM

B∗ : K(m∗) = 0 mod p

The probability of B not aborting is

Pr[not abort] ≥ Pr
[(qI∧

i=1

Ai ∧A∗
)
∧
(qM∧

`=1

B` ∧B∗
)]

Note that the events
(∧qI

i=1 Ai ∧A∗
)

and
(∧qM

`=1 B` ∧B∗
)

are independent.

The assumption lu(nu + 1) < p implies if F (u) = 0 mod p then F (u) = 0 mod lu.
In addition, it also implies that if F (u) = 0 mod lu, there will be a unique choice of
ku with 0 ≤ ku ≤ nu such that F (u) = 0 mod p. Since ku, x′ and X̂ are randomly
chosen,

Pr[A∗] = Pr[F (u∗) = 0 mod p ∧ F (u∗) = 0 mod lu]
= Pr[F (u∗) = 0 mod lu] Pr[F (u∗) = 0 mod p | F (u∗) = 0 mod lu]

=
1
lu

1
nu + 1

On the other hand, we have

Pr
[qI∧

i=1

Ai|A∗
]

= 1− Pr
[qI∨

i=1

Ai | A∗
]

≥ 1−
qI∑

i=1

Pr[Ai | A∗]

where Ai denote the event F (ui) = 0 mod lu.
Also note that the events F (ui1) = 0 mod lu and F (ui2) = 0 mod lu are indepen-

dent, where i1 6= i2, since the outputs of F (ui1) and F (ui2) will differ in at least one
randomly chosen value. Also since the events Ai and A∗ are independent for any i,

Self-Generated-Certificate Public Key Cryptosystem 21

we have Pr[Ai|A∗] = 1/lu and

Pr
[qI∧

i=1

Ai ∧A∗
]

= Pr[A∗] Pr
[qI∧

i=1

Ai|A∗
]

=
1

lu(nu + 1)

(
1− qI

lu

)
≥ 1

lu(nu + 1)

(
1− qe + qs

lu

)
=

1
2(qe + qs)(nu + 1)

(
1− 1

2

)
(by setting lu = 2(qe + qs))

=
1

4(qe + qS)(nu + 1)

Using similar analysis technique for signing queries we can have

Pr
[qM∧

`=1

B` ∧B∗
]
≥ 1

4qs(nm + 1)

By combining the above result, we have

Pr[not abort] ≥ Pr
[(qI∧

i=1

Ai ∧A∗
)
∧
(qM∧

`=1

B` ∧B∗
)]

≥ 1
16(qe + qs)(nu + 1)qs(nm + 1)

If the simulation does not abort, A will produce a forged signature with probability
at least ε. Thus B can solve for the NGBDH problem instance with probability

ε′ ≥ ε

16(qe + qs)(nu + 1)qs(nm + 1)

Note that the Public-Key-Broadcast-Oracle query, Secret-Key-Extract-Oracle query
and Public-Key-Replace-Oracle query will not cause the simulation abort. Thus they
are excluded in the probability analysis.

Time Complexity Analysis. The time complexity of B is dominated by the exponen-
tiation and multiplication operations for large values of nu and nm performed in the
partial secret key extraction and signing queries.

There are O(nu) and O(nu + nm) multiplications and O(1) and O(1) exponentia-
tions in the partial secret key extraction and singing stage respectively. There is O(1)
exponentiation in the public and secret key queries. The time complexity of B is

t + O
((

qenu + qs(nu + nm)
)
ρ + (qk + qe + qs)τ

)
ut

Theorem 2 (Type II Existential Unforgeability). The CL-signature scheme
proposed in Section 3 is (ε, t)-existential unforgeable against Type II adversary (defined

22 Joseph K. Liu and Man Ho Au

in Section 2) with advantage at most ε and runs in time at most t, assuming that the
(ε′, t′)-Many-DH assumption holds in G1, where

ε′ ≥ ε

16(qe + qs)(nu + 1)qs(nm + 1)qk

t′ = t + O
((

qs(nu + nm)
)
ρ + (qk + qs)τ

)
where qs is the number of queries made to the Signing-Oracle, qk is the number of
queries made to the Public-Key-Broadcast-Oracle and Secret-Key-Extract-Oracle alto-
gether, and ρ and τ are the time for a multiplication and an exponentiation in G1

respectively.

Proof. Assume there is a Type II adversary A exists. We are going to construct
another PPT B that makes use of A to solve the Many-DH problem with probability
at least ε′ and in time at most t′.
B is given a problem instance as follow: Given a group G1, a generator g ∈ G1,

6 elements ga, gb, gx, gab, gax, gbx ∈ G1. It is asked to output an element gabx ∈ G1.
In order to use A to solve for the problem, B needs to simulates a challenger and all
oracles for A. B does it in the following way.

Setup. Let lu = 2(qe + qs) and lm = 2qs. B randomly selects two integers ku and
km such that 0 ≤ ku ≤ nu and 0 ≤ km ≤ nm. Also assume that lu(nu + 1) < p
and lm(nm + 1) < p for the given values of qs, qk, nu and nm. It randomly selects the
following integers:

– x′ ∈R Zlu ; z′ ∈R Zlm ; y′, w′ ∈R Zp

– x̂i ∈R Zlu , for i = 1, . . . , nu. Let X̂ = {x̂i}.
– ẑi ∈R Zlm , for i = 1, . . . , nm. Let Ẑ = {ẑi}.
– ŷi ∈R Zp, for i = 1, . . . , nu. Let Ŷ = {ŷi}.
– ŵi ∈R Zp, for i = 1, . . . , nm. Let Ŵ = {ŵi}.

We further define the following functions for binary strings u and m where u = Hu(ID)
for an identity ID and m = Hm(m) for a message m, as follow:

F (u) = x′ +
∑

i∈U j

x̂i − luku and J(u) = y′ +
∑

i∈U j

ŷi

K(m) = z′ +
∑

i∈M
ẑi − lmkm and L(m) = w′ +

∑
i∈M

ŵi

B constructs a set of public parameters as follow:

g1 = ga, g2 = gb, (g2)α = gab, pk
(1)

ID∗ = gx, pk
(2)

ID∗ = gax

u′ = g−luku+x′

2 gy′ , ûi = gx̂i
2 gŷi for 1 ≤ i ≤ nu

m′ = g−lmkm+z′

2 gw′
, m̂i = gẑi

2 gŵi for 1 ≤ i ≤ nm

for a randomly chosen identity ID∗, and we have the following equations:

U = u′
∏
i∈U

ûi = g
F (u)
2 gJ(u) and m′

∏
i∈M

m̂i = g
K(m)
2 gL(m)

Self-Generated-Certificate Public Key Cryptosystem 23

All public parameters and master secret gα
2 = gab are passed to A.

Oracles Simulation. B simulates all oracles as follow:

(Public-Key-Broadcast-Oracle.) B keeps the database DB of user secret-public key. It
first put the public key of the identity ID∗ into DB. Upon receiving a query for a public
key of an identity ID, B looks up its database DB to find out the corresponding entry.
If it does not exits, B runs User-Key-Generation to generate a secret and public
key pair. It stores the key pair in its database and returns the public key as the query
output.

(Secret-Key-Extract-Oracle.) Upon receiving a query for a public key of an identity ID,
B looks up its database DB to find out the corresponding entry. If it does not exits, B
runs User-Key-Generation to generate a secret and public key pair. It stores the
key pair in its database and returns the secret key as the query output. If the secret
key of identity ID∗ is queries, it just aborts.

(Signing-Oracle.) For a given query of a signature on an identity ID and a message
m, B first checks if the identity is equal to ID∗. If yes, it computes the signature in
the following way. Assume K(m) 6= 0 mod lm. Using the argument mentioned above,
it implies K(m) 6= 0 mod p provided that lm(nm + 1) < p. The signature can be
constructed by first randomly selecting rπ, rm ∈R Zp, and computing

σ =

((
U
)rπ
(
pk

(2)

ID∗

)− L(m)
K(m)

(
m′

∏
i∈M

m̂i

)rm

, grπ ,
(
pk

(2)

ID∗

)− 1
K(m) grm

)

=

(
gax
2

(
U
)rπ

(
m′

∏
i∈M

m̂i

)r̃m

, grπ , gr̃m

)
=
(
V,Rπ, Rm

)
where r̃m = rm − ax

K(m) . If K(m) = 0 mod lm, the simulator aborts.
The correctness can be shown as follow:

V =
(
U
)rπ
(
pk(2)

)− L(m)
K(m)

(
m′

∏
i∈M

m̂i

)rm

=
(
U
)rπ

g
−L(m)x

K(m)
1 (gK(m)

2 gL(m))rm

=
(
U
)rπ

g−
axL(m)
K(m) (gK(m)

2 gL(m))rm

=
(
U
)rπ

g−
axL(m)
K(m) (gK(m)

2 gL(m))
ax

K(m) (gK(m)
2 gL(m))−

ax
K(m) (gK(m)

2 gL(m))rm

=
(
U
)rπ

g−
axL(m)
K(m) gabxg

axL(m)
K(m) (gK(m)

2 gL(m))r̃m

=
(
U
)rπ

gabx(gK(m)
2 gL(m))r̃m

=
(
U
)rπ

gax
2 (gK(m)

2 gL(m))r̃m

=
(
U
)rπ
(
ga
2

)x(
m′

∏
i∈M

m̂i

)r̃m

and
Rm =

(
pk

(2)

ID∗

)− 1
K(m) grm = grm− ax

K(m) = gr̃m

24 Joseph K. Liu and Man Ho Au

The signature generated in this way is indistinguishable to the real one.
If it is not equal to ID∗, it computes u = Hu(ID) and m = Hm(m) 8.
If F (u) 6= 0 mod lu, B just construct a partial-secret key as in the Partial-Secret-

Key-Extract-Oracle in the proof of Type I Adversary, then it checks from DB whether
the secret key of ID has been created or not. If it has not been created, run the
User-Key-Generation algorithm and stores the secret / public key pair in DB. If it
has been created, it just use the Sign algorithm to create a signature on ID and m.

If F (u) = 0 mod lu, B tries to construct the signature in a similar way as above
(the case that the public key has been replaced). Assume K(m) 6= 0 mod lm. Using the
argument mentioned above, it implies K(m) 6= 0 mod p provided that lm(nm +1) < p.
The signature can be constructed by first randomly selecting rπ, rm ∈R Zp, getting
the secret key x from DB (if it has not been created, run User-Key-Generation
algorithm first) and computing

σ =

((
U
)rπ

g
− L(m)

K(m) x

1

(
m′

∏
i∈M

m̂i

)rmx

, grπ , g
− x

K(m)
1 grmx

)

=

(
gax
2

(
U
)rπ

(
m′

∏
i∈M

m̂i

)r̃m

, grπ , gr̃m

)

where r̃m = rmx− a
K(m)x. If K(m) = 0 mod lm, the simulator aborts.

Output Calculation. If B does not abort, A will return an identity ID∗ and a message
m∗ with a forged signature σ∗ = (V,Rπ, Rm) on ID∗, the current public key pkID∗

and m∗ with probability at least ε. B checks whether the following conditions are
fulfilled:

1. F (u∗) = 0 mod p, where u∗ = Hu(ID∗).
2. K(m∗) = 0 mod p , where m∗ = Hm(m∗).

If not all the above conditions are fulfilled, B aborts. Otherwise B computes and
outputs

V

R
J(u∗)
π R

L(m∗)
m

=
gax
2

(
U
)rπ
(
m′∏

i∈M m̂i

)rm

gJ(u∗)rπgL(m∗)rm

=
gax
2

(
g

F (u∗)
2 gJ(u∗)

)rπ
(
g

K(m∗)
2 gL(m∗)

)rm

gJ(u∗)rπgL(m∗)rm

= gax
2

= gabx

B outputs gabx as the solution to the Many-DH problem instance.

Probability Analysis. For the simulation to complete without aborting, we require the
following conditions fulfilled:

8 Same as the signing oracle, here Hu and Hm are some standard hash function operations
instead of random oracle queries.

Self-Generated-Certificate Public Key Cryptosystem 25

1. Signing-Oracle queries (ID,m) will either have F (u) 6= 0 mod lu, or K(m) 6=
0 mod lm where m = Hm(m), if ID 6= ID∗. Otherwise, it requires K(m) 6=
0 mod lm.

2. F (u∗) = 0 mod lu and K(m∗) = 0 mod lm.

In addition, in order to get the desired result, it is required that A has chosen ID∗

for the signature forgery.
To make the analysis more simple, we will bound the probability of a subcase of

this event.
Let u1, . . . , uqI

be the output of the hash function Hu appearing in Signing-Oracle
queries not involving any of the challenge identity ID∗, and let m1, . . . ,mqM

be the
output of the hash function Hm in the sign queries involving the challenge list. We
have qI ≤ qs ≤ qe +qs and qM ≤ qs. We also define the events Ai, A

∗, B`, B
∗ as follow:

Ai : F (ui) 6= 0 mod lu where i = 1, . . . , qI

A∗ : F (u∗) = 0 mod p

B` : K(m`) 6= 0 mod lm where ` = 1, . . . , qM

B∗ : K(m∗) = 0 mod p

The probability of B not aborting is

Pr[not abort] ≥ Pr
[(qI∧

i=1

Ai ∧A∗
)
∧
(qM∧

`=1

B` ∧B∗
)]

Note that the events
(∧qI

i=1 Ai ∧A∗
)

and
(∧qM

`=1 B` ∧B∗
)

are independent.
The assumption lu(nu + 1) < p implies if F (u = 0 mod p then F (u) = 0 mod lu.

In addition, it also implies that if F (u) = 0 mod lu, there will be a unique choice of
ku with 0 ≤ ku ≤ nu such that F (u) = 0 mod p. Since ku, x′ and X̂ are randomly
chosen,

Pr[A∗] = Pr[F (u∗) = 0 mod p ∧ F (u∗) = 0 mod lu]
= Pr[F (u∗) = 0 mod lu] Pr[F (u∗) = 0 mod p | F (u∗) = 0 mod lu]

=
1
lu

1
nu + 1

On the other hand, we have

Pr
[qI∧

i=1

Ai|A∗
]

= 1− Pr
[qI∨

i=1

Ai | A∗
]

≥ 1−
qI∑

i=1

Pr[Ai | A∗]

where Ai denote the event F (ui) = 0 mod lu.
Also note that the events F (ui1) = 0 mod lu and F (ui2) = 0 mod lu are indepen-

dent, where i1 6= i2, since the outputs of F (ui1) and F (ui2) will differ in at least one
randomly chosen value. Also since the events Ai and A∗ are independent for any i,
we have Pr[Ai|A∗] = 1/lu and

Pr
[qI∧

i=1

Ai ∧A∗
]

= Pr[A∗] Pr
[qI∧

i=1

Ai|A∗
]

26 Joseph K. Liu and Man Ho Au

=
1

lu(nu + 1)

(
1− qI

lu

)
≥ 1

lu(nu + 1)

(
1− qe + qs

lu

)
=

1
2(qe + qs)(nu + 1)

(
1− 1

2

)
(by setting lu = 2(qe + qs))

=
1

4(qe + qS)(nu + 1)

Using similar analysis technique for signing queries we can have

Pr
[qM∧

`=1

B` ∧B∗
]
≥ 1

4qs(nm + 1)

By combining the above result, we have

Pr[not abort] ≥ Pr
[(qI∧

i=1

Ai ∧A∗
)
∧
(qM∧

`=1

B` ∧B∗
)]

≥ 1
16(qe + qs)(nu + 1)qs(nm + 1)

If the simulation does not abort, A will produce a forged signature with probability
at least ε. In addition, B needs to guess which identity A is going to forge the signa-
ture, and assign the problem instance element as the public key of this identity. The
probability of guessing correctly is 1/qk. Thus B can solve for the Many-DH problem
instance with probability

ε′ ≥ ε

16(qe + qs)(nu + 1)qs(nm + 1)qk

Time Complexity Analysis. It is similar to the proof of Type I Adversary except the
removal of the partial secret key extract query in Type II Adversary. We skill here.

ut

C Security Analysis of CL-Encryption Scheme in Section 4

C.1 Correctness

C1

(
e(psk(2), C3)e(g, C4)

e(psk(1)g′1
comh1, C2)

)sk
= e(gx

1 , g2)tM

(
e(gru , U t)xe(g, (g′1

com
h1)tx)

e(gα
2 Urug′1

comh1, gt)x

)
= e(gx

1 , g2)tM

(
e(g, U trux)e(g, (g′1

com
h1)tx)

e(g, gα
2 Urug′1

comh1)tx

)
= e(gx

1 , g2)tM

(
e(g, U trux(g′1

com
h1)tx)

e(g, gα
2)txe(g, Urug′1

comh1)tx

)
= e(gx

1 , g2)tM
1

e(gαx, g2)t

= e(gx
1 , g2)tM

1
e(gx

1 , g2)t

= M

Self-Generated-Certificate Public Key Cryptosystem 27

C.2 Type I− Adversary

Theorem 3 (Type I− IND-CCA− Secure). The CL-encryption scheme proposed
in Section 4 is (t̃, q, ε) secure against Type I− adversary (defined in Section 2) with
advantage at most ε, runs in time at most t̃ and making at most q Partial-Secret-Key-
Extract-Oracle queries, assuming that the (ε′, t̃′)-DBDH-1 assumption holds in G1,
where

ε′ ≥ ε

16(n + 1)q

t̃
′ = t̃ + O

((
qn + qdn

)
ρ + (qk + q + qd)τ

)
where qd is the number of queries made to the Decryption-Oracle, qk is the number
of queries made to the Public-Key-Broadcast-Oracle and Secret-Key-Extract-Oracle al-
together, and ρ and τ are the time for a multiplication and an exponentiation in G1

respectively.

Proof. Assume there exists a (t̃, q, ε) type I− adversary A against our scheme. We
construct a PPT simulator B that makes use of A to solve the DBDH-1 problem with
probability at least ε′ and in time at most t̃

′. B is given a DBDH-1 problem instance
(g,A = ga, B = gb, C = gc, Z) and is to decide if Z = gabc. In order to use A to solve
for the problem, B needs to simulates a challenger and the oracles for A. B does it in
the following way.

Setup. On input a security parameter k′, B computes pub = Init(1k′). B sets an integer
m′ = 4q and chooses an integer k ∈R {0, · · · , n}. It also chooses a random n-length
vector, x = (xi), and a value x′ such that each xi and x′ are random integers between
0 and m′ − 1. Let X∗ denote (x′,x). It also chooses an n-length vector, y = (yi),
together with a value y′ such that each yi and y′ are random elements in Zp. B runs
S(pub) and obtain r∗, com∗, dec∗. B constructs a set of public parameters as follow:

g1 = ga, g2 = gb

u′ = gp−m′k+x′

2 gy′ , ui = gxi
2 gyi for 1 ≤ i ≤ n

g′1 = gα2
1 , h1 = g′1

−com∗

gα1 for randomly generated α1, α2 ∈R Zp

Note that the master secret will be gα
2 = ga

2 = gab which is unknown to B. All public
parameters are passed to A.

For the ease of presentation, for identity u, define U ⊂ {1, . . . , n} to be the set
of indicies such that u[i] = 1. Also define F (u) = (p − m′k) + x′ +

∑
i∈U xi and

J(u) = y′ +
∑

i∈U yi. Next we define K(u) = x′ +
∑

i∈U xi mod m′. Also, define

G(t) = g′1
t−com∗

gα1 .

Phase 1. A can issue partial secret key extract, secret key extract and decryption
queries.

(Public-Key-Broadcast-Oracle.) B keeps the database of user secret-public key. Upon
receiving a query for a public key of an identity ID, B looks up its database to find
out the corresponding entry. If it does not exits, B runs User-Key-Generation to

28 Joseph K. Liu and Man Ho Au

generate a secret and public key pair. It stores the key pair in its database and returns
the public key as the query output.

(Partial-Secret-Key-Extract-Oracle.) Upon receiving a query for a private secret of an
identity IDu, B compute u = Hu(IDu) 9. Although B does not know the master
secret, it still can construct the private key by assuming K(u) 6= 0. If K(u) = 0, B
aborts. If B does not abort, it randomly chooses ru ∈R Zp and computes the private
key as

du = (psk(1), psk(2)) =
(

g
− J(u)

F (u)
1

(
U
)ru

, g
− 1

F (u)
1 gru

)
By letting r̃u = ru− a

F (u) , it can be verifier that du is a valid partial secret, shown
as follow:

psk(1) = g
− J(u)

F (u)
1

(
U
)ru

= g
− J(u)

F (u)
1 (gF (u)

2 gJ(u))ru

= g−
aJ(u)
F (u) (gF (u)

2 gJ(u))ru

= g−
aJ(u)
F (u) (gF (u)

2 gJ(u))
a

F (u) (gF (u)
2 gJ(u))−

a
F (u) (gF (u)

2 gJ(u))ru

= g−
aJ(u)
F (u) gabg

aJ(u)
F (u) (gF (u)

2 gJ(u))r̃u

= gab(gF (u)
2 gJ(u))r̃u

= ga
2 (gF (u)

2 gJ(u))r̃u

= ga
2

(
U
)r̃u

and
psk(2) = g

− 1
F (u)

1 gru = gru− a
F (u) = gr̃u

(Secret-Key-Extract-Oracle.) For any given identity, the public key is generated by B
and thus it can return to secret key to A. If ID∗ is to be corrupted, B aborts. If the
corresponding public key has been replaced, B outputs ⊥.

(Decryption-Oracle.) Since A is a type I− adversary, it can only issue decryption
query to identities where it has not replaced the public key. We can assume that
B knows the discrete logarithm of pk(1), pk(2) in the decryption query since it is
generated by B. Suppose the query is (ID, gx, gx

1) with CTXT = {Ĉ, com, tag} such
that Ĉ = {C1, C2, C3, C4}. If com = com∗, B output invalid ciphertext. Other-
wise, denote t̂ = com − com∗ and assume u = Hu(ID). B then computes d0 =

g
−α1/(t̂α2)
2

(
g′1

t̂
gα1
)r1
(
U
)r0 , d1 = gr0 , d2 = g

−1/(t̂α2)
2 gr1 . Similar to above, let r̃1 =

r1 − b/t̂α2. We have

d0 = g
− α1

t̂α2
2 (g′1

t̂
gα1)r1(U)r0

9 This is the normal hash function operation instead of the random oracle operation.

Self-Generated-Certificate Public Key Cryptosystem 29

= g
− bα1

t̂α2 (g′1
com−com∗

gα1)r1(U)r0

= gα1(r̃1−r1)(g′1
com−com∗

gα1)
r̃1+

b

t̂α2 (U)r0

= gα1(r̃1−r1)G(com)r̃1(g
aα2t̂b

t̂α2 g

α1b

t̂α2)(U)r0

= gα1(r̃1−r1)(gabg

α1b

t̂α2)G(com)r̃1(U)r0

= g
α1r̃1−α1r1+ab+

α1b

t̂α2 G(com)r̃1(U)r0

= g
α1r̃1−α1(r1− b

t̂α2

)+ab

G(com)r̃1(U)r0

= gα1r̃1−α1r̃1gabG(com)r̃1(U)r0

= ga
2

(
U
)r0

G(com)r̃1

and

d2 = g
− 1

t̂α2
2 gr1

= g
− b

t̂α2

+r1

= gr̃1

That is, (d0, d1, d2) is of the form (ga
2

(
U
)r0

G(com)r̃1 , gr0 , gr̃1).
B computes

C1

(e(d1, C3)e(d2, C4)
e(d0, C2)

)x
= e(gx

1 , g2)tM

(
e(gr0 , U t)e(gr̃1 , (g′1

com
h1)t)

e
(
ga
2 (U)r0G(com)r̃1 , gt

))x

= e(g, g)abxtM

(
e(g, U)r0txe(g, g′1

com
h1)r̃1tx

e(g, g)abxte(U, g)r0txe(g, g′1
com−com∗

gα1)r̃1tx

)
= M

(
e(g, g′1

com
h1)r̃1tx

e(g, g′1
comh1)r̃1tx

)
= M

and obtain m, dec. It then computes r = R(pub, com, dec). If Vrfy(r, Ĉ, tag) = accept,
then output m, else output invalid ciphertext.

(Public-Key-Replace-Oracle.) Upon receiving a query for a public key replace oracle
request of an identity ID, B looks up its database to replace the corresponding entry.
If it does not exits, B creats a new entry for this identity.

Challenge. A then outputs two messages m0,m1, a challenge identity ID∗ with public
key pk(1)∗, pk(2)∗ which may have been replaced. Let Hu(ID∗) = u∗. If x′+

∑
i∈U∗ xi 6=

m′k, the B aborts. Otherwise it flips a fair coin, γ ∈ {0, 1}, and constructs the
ciphertext as follows. Mγ = mγ ||dec∗, Ĉ

∗
= {e(Z, pk(1)∗)Mγ , gc, (gc)J(u∗), (gc)α1}.

30 Joseph K. Liu and Man Ho Au

Compute tag∗ = Mac(r∗, Ĉ
∗
) and return CTXT∗ = {Ĉ

∗
, com∗, tag∗}. CTXT∗ is a valid

encryption of mγ if Z is a BDH tuple. Otherwise, CTXT∗ will give no information
about B’s choice of γ.

Phase 2. B repeats the same method it used in Phase 1.

Guess. Finally, A output a guess γ′ of γ. If γ′ = γ, then B output 1 and else it outputs
0.

Probability Analysis. For the simulation to be perfect, we require the following con-
ditions fulfilled:

1. All partial secret extraction queries on an identity ID have K(u) 6= 0, where
u = Hu(ID).

2. B does not reject valid ciphertext during decryption oracle queries.
3. x′ +

∑
i∈U∗ xi = m′k for the challenge identity ID∗ such that u∗ = Hu(ID∗).

In order to make the analysis more simple, we will bound the probability of a sub-
case of this event. Event 2 happens with negligible probability assume the underly-
ing commitment and message authentication scheme are secure. Thus, for any set
of q queries on ui and challenge u∗ such that ui = Hu(IDi) and u∗ = Hu(ID∗),
Pr[abort] = Pr[(

∧
K(ui) 6= 0) ∧K(u∗) = 0]. The lower bound of this probability is

λ = 1
8(n+1)q , as follows.

Pr[abort] = Pr
[∧

K(ui) 6= 0 ∧ x′ +
∑

i∈U∗

xi = m′k

]

=
(

1− Pr
[∨

K(u)i) = 0
])

Pr
[
x′ +

∑
i∈U∗

xi = m′k|
∧

K(ui) 6= 0
]

≥
(

1−
∑

Pr
[
K(u)i) = 0

])
Pr
[
x′ +

∑
i∈U∗

xi = m′k|
∧

K(ui) 6= 0
]

= (1− q

m′) Pr
[
x′ +

∑
i∈U∗

xi = m′k|
∧

K(ui) 6= 0
]

=
1

n + 1
(1− q

m′) Pr
[
K(u∗) = 0|

∧
K(ui) 6= 0

]
=

1
n + 1

(1− q

m′)
Pr[K(u∗) = 0]

Pr[
∧

K(ui) 6= 0]
Pr
[∧

K(ui) 6= 0|K(u∗) = 0
]

≥ 1
(n + 1)m′ (1−

q

m′) Pr
[∧

K(ui) 6= 0|K(u∗) = 0
]

=
1

(n + 1)m′ (1−
q

m′)(1− Pr
[∧

K(ui) = 0|K(u∗) = 0
]
)

≥ 1
(n + 1)m′ (1−

q

m′)(1−
∑

Pr
[
K(ui) = 0|K(u∗) = 0

]
)

=
1

(n + 1)m′ (1−
q

m′)
2

Self-Generated-Certificate Public Key Cryptosystem 31

≥ 1
(n + 1)m′ (1− 2

q

m′)

=
1

8q(n + 1)

If the simulation does not abort, success probability of A is analyzed as follows.
Suppose (A,B,C, Z) is not a valid DBDH tuple, then the challenge ciphertext contains
no valid information about the message and thus probability of the adversary winning
will be 1

2 . Suppose (A,B,C, Z) is a valid DBDH tuple, then by our assumption,
adversary makes the correct guess with probability 1

2 + ε. Thus, advantage of B is at
least ε

16(n+1)q .

Time Complexity Analysis. The time complexity of B is dominated by the exponen-
tiation and multiplication operations for large values of n performed in the partial
secret key extraction and decryption queries.

There are O(n) and O(n) multiplications and O(1) and O(1) exponentiations in
the partial secret key extraction and decryption stage respectively. There is O(1)
exponentiation in the public and secret key queries. The time complexity of B is

t̃ + O
((

qn + qdn
)
ρ + (qk + q + qd)τ

)
ut

We remark that if our proof is carried out in the Generic Group Model [24], it can
be proven secure against Type I adversary by the following changes:

– In the Public-Key-Replace-Oracle, B verifies the validity of the public key, by check-
ing whether pk(1), pk(2) ∈ G1 and e(pk(1), g1) = e(pk(2), g) which ensures A to
carry out a group operation.

– B can extract the corresponding secret key from the group operation and decrypt
the ciphertext for those identities whose public keys have been replaced.

C.3 Type II Adversary

Theorem 4 (Type II IND-CCA Secure). The CL-encryption scheme proposed in
Section 4 is (t̃, q, ε) secure against Type II adversary (defined in Section 2) with ad-
vantage at most ε, runs in time at most t̃ and making at most q Public-Key-Broadcast-
Oracle queries, assuming that the (ε′, t̃′)-DBDH-1 assumption holds in G1, where

ε′ ≥ ε

2q

t̃
′ = t̃ + O

((
qdn
)
ρ + (q + qc + qd)τ

)
where qd is the number of queries made to the Decryption-Oracle, qc is the number
of queries made to the Secret-Key-Extract-Oracle, and ρ and τ are the time for a
multiplication and an exponentiation in G1 respectively.

Proof. Assume there exists a (t̃, q, ε) type II adversary A against our scheme. We
construct a PPT simulator B that makes use of A to solve the DBDH-1 problem with
probability at least ε′ and in time at most t̃

′. B is given a DBDH-1 problem instance
(g,A = ga, B = gb, C = gc, Z) and is to decide if Z = gabc. In order to use A to solve

32 Joseph K. Liu and Man Ho Au

for the problem, B needs to simulates a challenger and the oracles for A. B does it in
the following way.

Setup. On input a security parameter k′, B computes pub = Init(1k′). B sets an integer
m′ = 4q and chooses an integer k ∈R {0, · · · , n}. It also chooses a random n-length
vector, x = (xi), and a value x′ such that each xi and x′ are random integers between
0 and m′ − 1. Let X∗ denote (x′,x). It also chooses an n-length vector, y = (yi),
together with a value y′ such that each yi and y′ are random elements in Zp. B runs
S(pub) and obtain r∗, com∗, dec∗. Randomly chooses α as the master key. Randomly
chooses an identity ID∗ and relate it to the public key (ga, (ga)α). B constructs a set
of public parameters as follow:

g1 = gα, g2 = gb

u′ = gp−m′k+x′

2 gy′ , ui = gxi
2 gyi for 1 ≤ i ≤ n

g′1 = gaα2 , h1 = g′1
−com∗

gα1 for randomly generated α1, α2 ∈R Zp

All public parameters, together with master key α are passed to A.
For the ease of presentation, for identity u, define U ⊂ {1, . . . , n} to be the set

of indicies such that u[i] = 1. Also define F (u) = (p − m′k) + x′ +
∑

i∈U xi and
J(u) = y′ +

∑
i∈U yi. Next we define K(u) = x′ +

∑
i∈U xi mod m′. Also, define

G(t) = g′1
t−com∗

gα1 .

Phase 1. A can issue partial secret extract queries by itself and the following oracle
queries.

(Public-Key-Broadcast-Oracle.) B keeps the database of user secret-public key. Upon
receiving a query for a public key of an identity ID, B looks up its database to find
out the corresponding entry. If it does not exits, B runs User-Key-Generation to
generate a secret and public key pair. It stores the key pair in its database and returns
the public key as the query output.

(Secret-Key-Extract-Oracle.) For any given identity, the public key is generated by B
and thus it can return to secret key to A. If ID∗ is to be corrupted, B aborts.

(Decryption-Oracle.) For all decryption queries not involving ID∗, B is in possession
of the user secret and can thus decrypt perfectly. If decryption query involves ID∗,
B answers as follows. Suppose the query is (ID∗, ga, ga

1) with CTXT = {Ĉ, com, tag}
such that Ĉ = {C1, C2, C3, C4}. If com = com∗, B output invalid ciphertext. Oth-
erwise, denote t̂ = com − com∗ and assume u = Hu(ID). B then computes d0 =

g
−αα1/(t̂α2)
2

(
g′1

t̂
gα1
)r1
(
U
)r0 , d1 = gr0 , d2 = g

−1/(t̂α2)
2 gr1 . Similar to above, let r̃1 =

r1 − b/tα2.
Using the same argument of Type I− proof, it can be easily shown that (d0, d1, d2)

is of the form (gaα
2

(
U
)r0

G(com)r̃1 , gr0 , gr̃1). B computes

C1

(e(d1, C3)e(d2, C4)
e(d0, C2)

)
= e(gαa, gb)tM

(
e(gr0 , U t)e(gr̃1 , (g′1

com
h1)t)

e
(
gaα
2 (U)r0G(com)r̃1 , gt

))

Self-Generated-Certificate Public Key Cryptosystem 33

= e(g, g)abαtM

(
e(g, U)r0te(g, g′1

com
h1)r̃1t

e(g, g)abαte(g, U)r0te(g, g′1
comh1)r̃1t

)
= M

and obtain m, dec. It then computes r = R(pub, com, dec). If Vrfy(r, Ĉ, tag) = accept,
then output m, else output invalid ciphertext.

Challenge. A then output two messages m0,m1, a challenge identity ˆID with public
key pk(1), pk(2). If ˆID 6= ID∗, B aborts. If it does not abort, assume Hu(ID∗) = u∗.
If x′+

∑
i∈U∗ xi 6= m′k, the B aborts. Otherwise it flips a fair coin, γ ∈ {0, 1}, and con-

structs the ciphertext as follows. Mγ = mγ ||dec∗, Ĉ
∗

= {e(Z, pk(1)∗)Mγ , gc, (gc)J(u∗), (gc)α1}.
Compute tag∗ = Mac(r∗, Ĉ

∗
) and return CTXT∗ = {Ĉ

∗
, com∗, tag∗}. CTXT∗ is a valid

encryption of mγ if Z is a BDH tuple. Otherwise, CTXT∗ will give no information
about B’s choice of γ.

Phase 2. B repeats the same method it used in Phase 1.

Guess. Finally, A output a guess γ′ of γ. If γ′ = γ, then B output 1 and else it outputs
0.

Probability Analysis. For the simulation not to abort, ˆID = ID∗. This happens with
probability 1

q . If the simulation does not abort, success probability of A is analyzed as
follows. Suppose (A,B,C, Z) is not a valid BDH tuple, then the challenge ciphertext
contains no valid information about the message and thus probability of the adversary
winning will be 1

2 . Suppose (A,B,C, Z) is a valid BDH tuple, then by our assumption,
adversary makes the correct guess with probability 1

2 + ε. Thus, advantage of B is at
least ε

2q .

Time Complexity Analysis. The time complexity of B is dominated by the exponen-
tiation and multiplication operations for large values of n performed in the secret key
extraction and decryption queries.

There are O(0) and O(n) multiplications and O(1) and O(1) exponentiations in the
secret key extraction and decryption stage respectively (since the decryption oracle
may need to construct the partial secret key in order to carry out the decryption,
which may require up to O(n) multiplications). There is O(1) exponentiation in the
public and secret key queries. The time complexity of B is

t̃ + O
((

qdn
)
ρ + (q + qc + qd)τ

)
ut

D Security Analysis of SGC-Encryption Scheme in Section 5

The semantic security depends on the underlying CL-encryption scheme. Here we
analyze the DoD-Free Security.

34 Joseph K. Liu and Man Ho Au

Theorem 5 (DoD-Free Secure). The SGC-encryption scheme proposed in this sec-
tion is secure against DoD adversary (defined in Section 2) with advantage at least
ε and runs in time at most t, assuming that the underlying CL-signature scheme is
Type I (ε, t)-existential unforgeable.

Proof. Assume there is a DoD adversary A exists. We are going to construct an-
other PPT B that makes use of A to break the underlying CL-signature scheme with
probability at least ε and in time at most t.

Setup. B is now the CL-signature adversary. It interacts with the master M which
gives the public parameter and all necessary oracle access for B (according to the
definition of CL-signature, specified in Def. 2). B is asked to produce a identity-
message-siganture pair (ID∗,m∗, σ∗) (without the knowledge of the partial secret key
of ID∗).

Oracle Simulation. In order to use A to solve for the problem, B needs to answer
all oracle queries for A. B just simply forwards the corresponding queries to M and
forwards the replies from M to A. In addition, B stores all queries and answers in a
database.

Output Calculation. After a polynomial number of oracle queries, A outputs a mes-
sage m∗ and an identity ID∗. A wins if the following conditions fulfill:

1. The public key pk∗ of ID∗ is valid. That is, σ∗ is a valid signature where 〈CL.pk∗, σ∗〉
:= pk∗.

2. Decrypt(C∗, sk∗, psk∗) 6= m∗ where C∗ = Encrypt(m∗, ID∗,pk∗).
3. A does not know the partial secret key psk∗ (it does not query the Partial-Secret-

Key-Extract-Oracle for ID∗).

If the public key of ID∗ has not been replaced, due to correctness we always have
Decrypt(C∗, sk∗, psk∗) = m∗. Condition (2) implies CL.pk∗, the public key of ID∗, has
been replaced. Together with condition (1) and (3), it implies that σ∗ is a successful
forgery.
B knows σ∗ from the replaced public key pk∗ by looking into the database. B

outputs σ∗ toM.

Probability and Time Analysis. It is easy to see that the successful probability and
time complexity of B to forge the signature is the same as A to break the DoD security.

ut

	Self-Generated-Certificate Public Key Cryptosystem
	Joseph K. Liu and Man Ho Au
	Introduction
	Definition
	Security of Certificateless Signature
	Security of Certificateless Encryption
	Security of Self-Generated-Certificate (SGC) Encryption

	A Certificateless Signature Scheme in the Standard Model
	Construction

	A Certificateless Encryption Scheme in the Standard Model
	Building Blocks
	Construction

	A Self-Generated-Certificate Encryption Scheme
	Concluding Remark
	Complexity Assumptions
	Security Analysis of CL-Signature Scheme in Section 3
	Correctness
	Unforgeability

	Security Analysis of CL-Encryption Scheme in Section 4
	Correctness
	Type I- Adversary
	Type II Adversary

	Security Analysis of SGC-Encryption Scheme in Section 5

