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Abstract. In recent years, a large number of identity-based key agreement protocols from pairings
have been proposed. Some of them are elegant and practical. However, the security of this type
of protocols has been surprisingly hard to prove. The main issue is that a simulator is not able to
deal with reveal queries, because it requires solving either a computational problem or a decisional
problem, both of which are generally believed to be hard (i.e., computationally infeasible). The best
solution of security proof published so far uses the gap assumption, which means assuming that the
existence of a decisional oracle does not change the hardness of the corresponding computational
problem. The disadvantage of using this solution to prove the security for this type of protocols
is that such decisional oracles, on which the security proof relies, cannot be performed by any
polynomial time algorithm in the real world, because of the hardness of the decisional problem. In
this paper we present a method incorporating a built-in decisional function in this type of protocols.
The function transfers a hard decisional problem in the proof to an easy decisional problem. We
then discuss the resulting efficiency of the schemes and the relevant security reductions in the
context of different pairings one can use. We pay particular attention, unlike most other papers in
the area, to the issues which arise when using asymmetric pairings.

1 Introduction

Key agreement is a cryptographic protocol, where two or more participants, who each have a long-term
key, exchange ephemeral messages (alternatively called key tokens) over an open network with each other.
Using the long-term keys and key tokens, these participants generate a session secret shared between
them. This secret is used to establish a session key and to perform various security functions, for example,
key confirmation, entity and data authentication and confidentiality. The open network is controlled by
an adversary, who aims to infiltrate the protocol. A secure key agreement protocol guarantees that the
adversary does not succeed.
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In this paper we focus on a special type of key agreement protocols, which are two-party identity-
based protocols and make use of pairings to compute session secrets. The concept of identity-based
cryptography, in which a public key is the identity (an arbitrary string) of a user, and the corresponding
private key is created by binding the identity string with a master secret of a trusted authority (called
Key Generation Centre), was formulated by Shamir in 1984 [31]. In the same paper, Shamir provided
the first identity-based key construction based on the RSA problem, and presented an identity-based
signature scheme. By using varieties of the Shamir key construction, a number of identity-based key
agreement schemes were proposed (e.g., [16, 25, 36]).

Pioneered by the work of Joux (the first key agreement scheme from pairings [17]), Sakai et al.
(the first identity-based key construction from pairings [28]), and Boneh and Franklin (the first formally
proved identity-based encryption scheme from pairings [4]), many identity-based key agreement protocols
from pairings have recently been published, for example [7, 23, 32, 34, 37]. In the latter part of this paper,
we will review all of the existing protocols, which are available to the authors. As shown in the review,
some of these protocols are elegant and practical. However, the formal security analysis of this type of
protocols has been extremely difficult.

The first formal security analysis of a protocol in this type was given by Chen and Kudla [7]. Their
protocol (the CK scheme for short) is based on the first identity-based key agreement protocol from
pairings by Smart [34]. In the first version of their proof, Chen and Kudla claimed that the CK scheme
is secure in the Bellare and Rogaway model [2, 3]. Later on Cheng [8] pointed out a flaw in their proof
in dealing with reveal queries. They then corrected this error by modifying the proof under a weaker
variant of the Bellare and Rogaway model, where the adversary is not allowed to make reveal queries.
A number of other protocols in this type were analysed in this weaker model as well, for example, the
McCullagh and Barreto (MB) scheme [23].

Choo, Boyd, and Hitchcock in [12] revisited the CK scheme and MB scheme and demonstrated that
after adding the participant identifiers and protocol transcripts into the computation of a session key,
these two protocols can be proved secure with a looser restriction, where the adversary is not allowed to
make reveal queries to a number of selected sessions, but allowed to other sessions. Their contribution
improved the CK and MB scheme and their security analysis, and can also benefit other schemes.
However, since a reveal query captures the known-key security property, neither the full nor partial
restriction of disallowing reveal queries is really acceptable.

The reason that a simulator cannot answer reveal queries to certain sessions is that, without solving
a hard computational problem, the simulator cannot compute the session secrets in these sessions. This
property is required on purpose in this type of protocols, otherwise these protocols cannot hold the
security property of key-compromise impersonation resilience. We will discuss the relationship between
this property and reveal queries in Section 6. If the security proof is based on the random oracle model,
the simulator can provide a random number as the session key. In that case, the computational problem
is replaced by the corresponding decisional problem, which is believed to be hard (i.e., computationally
infeasible) as well. The simulator has to solve this decisional problem in order to maintain the consistency
of all random queries.

Some researchers have tried a number of various ways to solve the reveal query issue. For example,
Cheng et al. in [10] introduced a coin query which can be used to force the adversary to reveal its
ephemeral secret. Their approach can deal with some attacks, which have not been covered in the Bellare-
Rogaway model without the reveal query. But, the problem of this approach is that the coin query cannot
cover a special case that an adversary might break a protocol without knowing the ephemeral secret.

Kudla and Paterson in [19] proposed a modular proof approach, which makes use of a decisional
oracle to help the simulator to maintain consistence of random oracle queries. This approach is the
best solution published so far and it is a general solution suitable for different types of key agreement
protocols. However, if using this approach in the type of protocols, which this paper is focused on, the
disadvantage is that such decisional oracles, on which the security proof relies, cannot be performed by
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any polynomial time algorithm in the real world, because of the hardness of the decisional problem. For
example this approach is used in [18] to show that Smart’s ID-based key agreement protocol is secure
assuming the Gap bilinear Diffie–Hellman (GBDH) problem is hard. In this paper we show how Chen and
Kudla’s modification of Smart’s protocol allows one to prove security without the need for a decisional
oracle. Hence, the security is reduced to the hardness of the standard bilinear Diffie–Hellman (BDH)
problem.

Wang in [37] proposed another approach, which is opposite to the Kudla and Paterson one. By making
use of a computational oracle, Wang analysed the security of his scheme under the decisional bilinear
Diffie–Hellman (DBDH) problem. This proof relies on not only a computational oracle, which nobody
knows how to perform using any polynomial algorithm in the real world, but also the requirement that
the computational oracle cannot be abused by any entity.

In this paper, we propose a new approach to solve the reveal query issue; we incorporate a built-
in decisional function in the key agreement protocol. This function makes an adversary release some
necessary information, but still keeps the preciseness of a protocol. With the adversary’s “help”, the
simulator can either compute a session secret or recognise the session secret when it is given by the
adversary to a random oracle query. The built-in decisional function is designed to distinguish a Diffie–
Hellman (DH) triple from a random input in the group where the decisional Diffie–Hellman (DDH)
problem is not hard. Therefore, our security proof does not rely on any oracle which we do not known
how to perform by using any polynomial algorithm in the real world.

We select four examples of the protocols in this type, and demonstrate that these protocols, with the
built-in decisional function, can be proved secure in the Bellare-Rogaway (BR) model under either the
computational bilinear Diffie–Hellman (BDH) assumption or the computational `-bilinear Diffie–Hellman
inverse (`-BDHI) assumption.

As an extra fruit of this new approach, this built-in decisional function can make these protocols
achieve the security property of master key forward secrecy.

The paper is constructed as follows. In Section 2 we briefly review pairings and related assumptions.
We then present the formal key agreement model in Section 3. In Section 4, we briefly review the existing
identity-based key agreement protocols, which make use of pairings. Then in Section 5 we discuss various
efficiency issues, focusing particularly on the case of asymmetric pairings. We then explain how our proof
approach works in Section 6. In Sections 7 and 8, we take four examples of the protocols and demonstrate
how to incorporating a built-in decisional function in the protocols and prove the security of them under
the computational assumptions. Finally we conclude the paper.
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2 Preliminaries

2.1 Types of Pairings

Here we briefly recall some basic facts of pairings.

Definition 1 A pairing is a bilinear map ê : G1 × G2 → GT between three groups G1, G2 and GT of
exponent q, which has the following properties:

1. Bilinear: ∀(P1, P2) ∈ G1 ×G2 and ∀(a, b) ∈ Zq × Zq, we have ê(aP1, bP2) = ê(P1, P2)ab.
2. Non-degenerate: There exist non-trivial points P1 ∈ G1 and P2 ∈ G2 both of order q such that

ê(P1, P2) 6= 1.



4

3. Computable: ∀(P1, P2) ∈ G1 ×G2, ê(P1, P2) is efficiently computable.

It will be convenient to define four different types of pairing system, three of which are taken from [13]
whilst the fourth is from [30]. However, before defining our four types of pairing it is convenient to explain
how these pairings arise, since then the properties of our four pairing types become easier to explain. It
turns out that the properties of the four different types of pairings provide subtle differences to our key
agreement protocols and their proofs.

We let G = E[q], the points of order q on an elliptic curve. We assume the curve is defined over a
finite field Fp and that the group E[q] is contained in E(Fpk), where for simplicity (and efficiency) we
assume that k is even. The group G is a product of two cyclic groups G1, G2 of order q. We can take a
point P1 ∈ E(Fp) as a generator of G1 and a point P2 ∈ E(Fpk) as a generator of G2. We select P2 so
that it is in the image of the quadratic twist of E over Fpk/2 .

We can then define a pairing ê from G × G to the subgroup GT of order q of the finite field Fpk . This
pairing is trivial if and only if the two input values are linearly dependent in the vector space E[q]. The
trace map

Tr :

{
E(Fpk) −→ E(Fp),
P 7−→

∑
σ∈Gal(F

pk
/Fp) P

σ,

defines a group homomorphism on E[q] which has kernel G2.
An important point to note is that Tr and the pairing do not necessarily commute, indeed we have

ê(Tr(A), B) = ê(Tr(B), A)

if and only if A and B lie in the same order q subgroup of G. In addition it is easy to produce a hash
function which hashes onto G1, G2 or G, but it is not easy to produce a function which hashes onto any
other subgroup of order q of G, bar G1 and G2.

Using the whole group G for both coordinate in a cryptographic system based on pairings is very
inefficient. Thus in the literature one finds a number of specialisations of the above situation. We shall
focus on the following four as they are of the most importance. In all cases we let GT = GT .

Definition 2 (Type 1) In this situation, which corresponds to pairings over supersingular elliptic curves,
we can define a pairing using so-called distortion maps, by taking G1 = G2 = G1. We let P1 = P2 = P1.
There is an efficient algorithm to cryptographically hash arbitrary bit strings into G1 and G2 and (a
trivial) group isomorphism ψ : G2 → G1 mapping P2 to P1.

The following three types correspond to pairings over ordinary elliptic curves.

Definition 3 (Type 2) In this situation, we take G1 = G1 and G2 to be a subgroup of G which is not
equal to either G1 or G2. We set P1 = P1 and for convenience we set P2 = 1

kP1+P2. There is an efficient
algorithm to cryptographically hash arbitrary bit strings into G1, but there is no way to hash bit strings
into G2 (nor to generate random elements of G2 bar multiplying P2 by an integer). However, there is an
efficiently computable group isomorphism ψ : G2 → G1 mapping P2 to P1, which is simply the trace map
restricted to G2.

Definition 4 (Type 3) In this situation, we take G1 = G1 and G2 = G2, with generators P1 = P1

and P2 = P2. There is an efficient algorithm to cryptographically hash arbitrary bit strings into G1,
and a slightly less efficient algorithm to hash bit strings into G2. However, there is no known efficiently
computable group isomorphism ψ : G2 → G1 mapping P2 to P1.

Definition 5 (Type 4) In this situation we take G1 = G1, but we select G2 to be the whole group G
which is a group of order q2. As in the Type 2 situation we set P1 = P1 and P2 = 1

kP1 +P2. There is an
efficiently computable homomorphism ψ from G2 to G1 such that ψ(P2) = P1. Hashing into G1 or G2
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can be performed, although maybe not very efficiently into G2. However, one cannot hash efficiently into
the subgroup of G2 generated by P2. Note, that the pairing of a non-zero element in G1 and a non-zero
element in G2 may be trivial in this situation.

Hence, in all situations we have that P1 is the generator of G1 and P2 is a fixed element of G2 of prime
order q, such that where there is a computable homomorphism ψ from G2 to G1 we have ψ(P2) = P1.
In Type 3 curves, such an isomorphism exists one is just unable to compute it, we will still refer to ψ in
this situation but it should be born in mind that one is unable to compute it.

We shall see that a number of efficient key agreement protocols can be implemented in the Type 3
setting, or less efficiently in the Type 2 setting. The rest are implementable only in the Type 1 and Type
4 setting. In the Type 1 setting we have problems due to efficiency as the security parameter increases
as we are restricted to supersingular curves. In the Type 4 setting the security proofs become more
cumbersome as the image of the hash function into G2 is not going to be into the group generated by
P2.

We shall refer to the groups G1, G2 and GT , the elements P1 and P2, the pairing ê, and possibly the
homomorphism ψ, as a set of pairing parameters. We assume that given a security parameter one can
generate a set of pairing parameters meeting the required security level.

2.2 Subgroup Membership Testing

In almost all key agreement schemes an assumption is made that all values passed from one party to
another lie in the correct groups. Such assumptions are often implicit within security proofs. However,
one needs to actually check that either given message flows lie within the correct group, or force the
messages to lie in the group via additional computation, or by choosing parameters carefully so as the
problem does not arise. Indeed some attacks on key agreement schemes, such as the small subgroup
attack [20], are possible because implementors do not test for subgroup membership.

For pairing based systems one needs to be careful whether and how one implements these subgroup
membership tests as it is not as clear as for standard discrete logarithm based protocols.

Subgroup membership testing in G1 = G1, GT , G, and G2 is done in the standard way via multiplica-
tion and by inspection of the representation. If the cofactor is smaller than q one can test membership
via cofactor multiplication, however in many pairing based situations the cofactor is larger than q in
which case membership of the group of exponent q is tested by multiplication by q. Note, that depending
on the security parameter this membership test may be quite expensive, as one may need to perform
quite a large multiplication.

In the Type 2 and 4 situations there are other subgroup tests may need to be performed, which
cannot be performed as above, namely testing whether a given point Q is a multiple of P2 = 1

kP1 + P2.
In other words we wish to test whether Q ∈ 〈P2〉. We first test whether Q has order q by testing, via
multiplication as above, whether it is in G. Then we write Q = aP1 + bP2, for unknown a and b; one can
compute aP1 and bP2 from Q via

aP1 =
1
k

Tr(Q) and bP2 = Q− aP1,

which requires one multiplication in G1. We need to test whether a = b/k, which can be done by
performing the following test

ê(Tr(Q),P2) = ê(kaP1,P2) = ê(P1, bP2) = ê(P1, Q−
1
k

Tr(Q)).

In the Type 4 situation another situation occurs when we wish to test whether a point Q = aP1 +bP2

is a multiple of a point P = cP1 + dP2 without knowing a, b, c or d. We first test whether P,Q ∈ G as
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above. Then we test whether a = tc and b = td for some unknown t by testing whether

ê(Tr(Q), P − 1
k

Tr(P )) = ê(Tr(P ), Q− 1
k

Tr(Q)).

In what follows we will implicitly assume within our security proofs that certain subgroup membership
testing is performed. This is a common simplifying assumption in the literature but one which is often
ignored.

2.3 Hard Problems Based on Pairings

The following bilinear Diffie–Hellman assumption has been used to construct many exciting cryptography
schemes including many key agreement protocols. Each problem is assumed to be defined for a given set
of pairing parameters.

Assumption 1 (Bilinear Diffie–Hellman (BDH)) For a, b, c ∈R Z∗
q , given (aPi, bPj , cPk), for some

values of i, j, k ∈ {1, 2}, computing ê(P1, P2)abc is hard.

If we wish to make the values of i, j, k explicit we shall refer to this as the BDHi,j,k problem. In the case
of Type 1 pairings, i.e., when G1 = G2, this issue of needing to quantify the BDH problem does not
arise. It is trivial to show that the BDHi,j,k assumption implies the following Diffie–Hellman assumption
DHi,j,k′ when k 6= k′.

Assumption 2 (Diffie–Hellman (DH)) For a, b ∈R Z∗
q and some values of i, j, k ∈ {1, 2}, given

(aPi, bPj), computing abPk is hard.

In some schemes, the following variants of the BDH assumption are used, again we can make them
depend explicitly on i, j, k if required.

Assumption 3 (Decisional BDH (DBDH)) For a, b, c, r ∈R Z∗
q , differentiating

(aPi, bPj , cPk, ê(P1, P2)abc) and (aPi, bPj , cPk, ê(P1, P2)r),

for some values of i, j, k ∈ {1, 2}, is hard.

Assumption 4 (Bilinear DH Inversion (`-BDHI)) For an integer `, and α ∈R Z∗
q , given (αPi, α2Pi,

. . . , α`Pi) for i ∈ {1, 2}, computing ê(P1, P2)1/α is hard.

Certainly, the DBDH and `-BDHI assumptions are stronger than the BDH assumption. The existing
security proofs of some protocols make use of some gap assumptions, which mean assuming the existence
of an algorithm to resolve a decisional problem, the corresponding computational problem is still hard. In
this paper, GBDH, `-GBDHI and `-GBCAA1 respectively stand for the gap BDH assumption, the gap
`-BDHI assumption and the gap `-BCAA1 assumption. The `-BCAA1 problem is a variant of `-BDHI,
as discussed in [6].

Assumption 5 (Bilinear Collision Attack Assumption (`-BCAA1)) For an integer `, and α ∈R
Z∗
q , given (αPi, h0, (h1,

1
h1+α

Pj), . . . , (h`, 1
h`+α

Pj)) for some values of i, j ∈ {1, 2} where hi ∈R Z∗
q and

different from each other for 0 ≤ i ≤ `, computing ê(P1, P2)1/(α+h0) is hard.

In the case where one has a computable homomorphism ψ : G2 → G1, the existence of the pairing ê :
G1×G2 → GT , implies that the DH assumption in G2 is in fact a gap assumption. We can use the pairing
to construct an efficient decisional algorithm which given (aP2, bP2, cP2) returns 1 if ê(ψ(aP2), bP2) =
ê(P1, cP2), or 0 otherwise.
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Whilst a particular scheme may not require the computable homomorphism to implement it, the
computable homomorphism may be required in the security proof. Thus for Type 3 curves, where no
such isomorphism exists, we are creating a relativised security proof, namely relative to an oracle which
can compute ψ. We denote the corresponding relativised hard problem by a superscript-ψ, as in DHψ

2,2,1,
BDHψ

2,1,2, `-BDHIψ2 , `-BCAA1ψ2,1 etc.

3 Security Model of Key Agreement

In this work we shall use a modified Bellare-Rogaway key exchange model [2] to analyse the protocol
security. In the model, each party involved in a session is treated as an oracle, and an adversary can access
the oracle by issuing some specified queries (defined below). An oracle Πs

i,j denotes the s-th instance of
party i involved with a partner party j in a session

The security of a protocol is defined by a game with two phases. In the first phase, an adversary E
is allowed to issue the following queries in any order.

1. Send(Πs
i,j , x). Upon receiving the message x, oracle Πs

i,j executes the protocol and responds with an
outgoing message m or a decision to indicate accepting or rejecting the session. If the oracle Πs

i,j

does not exist, it will be created as initiator if x = λ, or as a responder otherwise. In this work,
we require i 6= j, i.e., a party will not run a session with itself. Such restriction is not unusual in
practice.

2. Reveal(Πs
i,j). If the oracle has not accepted, it returns ⊥; otherwise, it reveals the session key.

3. Corrupt(i). The party i responds with its private key.

Once the adversary decides that the first phase is over, it starts the second phase by choosing a fresh
oracle Πs

i,j and issuing a Test(Πs
i,j) query, where the fresh oracle Πs

i,j and Test(Πs
i,j) query are defined

as follows.

Definition 6 (fresh oracle) An oracle Πs
i,j is fresh if (1) Πs

i,j has accepted; (2) Πs
i,j is unopened (not

being issued the Reveal query); (3) party j 6= i is not corrupted (not being issued the Corrupt query);
(4) there is no opened oracle Πt

j,i , which has had a matching conversation to Πs
i,j .

The above fresh oracle definition is particularly defined to cover the key-compromise impersonation
resilience property since it implies that the user i could have been issued a Corrupt query.

4. Test(Πs
i,j). Oracle Πs

i,j which is fresh, as a challenger, randomly chooses b ∈ {0, 1} and responds
with the session key, if b = 0, or a random sample from the distribution of the session key otherwise.

After this point the adversary can continue querying the oracles except that it cannot reveal the test
oracle Πs

i,j or its partner Πt
j,i (if it exists), and it cannot corrupt party j. Finally the adversary outputs

a guess b′ for b. If b′ = b, we say that the adversary wins. The adversary’s advantage is defined as

AdvE(k) = max{0,Pr[E wins]− 1
2
}.

We use the session ID, which can be the concatenation of the messages in a session (see [1]), to define
matching conversations, i.e., two oracles Πs

i,j and Πt
j,i have matching conversations to each other if they

derive the same session ID.
A secure authenticated key (AK) agreement protocol is defined as follows.

Definition 7 Protocol Π is a secure AK if:

1. In the presence of a benign adversary, which faithfully conveys messages, on Πs
i,j and Πt

j,i , both
oracles always accept holding the same session key, and this key is distributed uniformly on {0,1}k;
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2. AdvE(k) is negligible.

It is straightforward to see that when a party will not run a session with itself, if a protocol is secure
regarding Definition 6, 7, then it is secure in a weaker security model in which the fresh oracle Πt

i,j

requires that both party i and j are uncorrupted (such a fresh oracle is used in [2, 3]). If a protocol is
secure regarding the above formulation, it achieves implicit mutual key authentication and the following
general security properties: known session key security, key-compromise impersonation resilience and
unknown key-share resilience [3, 10].

We define another security property: forward secrecy as follow.

Definition 8 An AK protocol is said to be forward secure if the adversary wins the game with negligible
advantage when it chooses as the challenger (i.e., in place of the fresh oracle) an unopened oracle
Πs
i,j which has a matching conversation to an unopened oracle Πt

j,i and both oracles accepted. If both i
and j can be corrupted then the protocol achieves perfect forward secrecy. If in the game the master key
can be disclosed, then the protocol achieves master key forward secrecy.

4 Review on the Existing Schemes

In this section, we briefly review the existing identity-based key agreement protocols, which make use of
pairings. We separate them into four categories, dependent on the various message flows needed between
two parties A and B for them to establish a shared secret. Each category has one protocol, which indicates
the message flows, and one or more schemes, which indicate what kind of secret A and B share at the end
of the protocol. We pay particular attention to the difference between the asymmetric and the symmetric
pairing setting, and the different types of asymmetric pairings. This is because the resulting efficiency
and security reductions of each protocol depend heavily on which type of pairing one is using. When
translating schemes into the asymmetric pairing setting we try to ensure that the key agreement scheme
is roll-symmetric, i.e. that the algorithm (resp. message flows) performed (resp. sent and received) by the
initiator and the responder are the same. However, for Type 4 schemes this is often impossible since the
trace map and the pairing do not commute. In such situation we present a non-roll-symmetric version.
In Section 5 we will compare all schemes in the various settings in more detail.

In the reviewed schemes, the shared secret is used by A and B to compute their shared session key as
well as in a key confirmation process. To do this, A and B make use of a couple of extra hash-functions.
This part is standard and well-known, so we omit it for simplicity. Recent researches have shown that
by including the party identifier and the protocol transcript in the computation of the shared session
key, a matching conversation, which is used in the Bellare-Rogaway model, can be guaranteed. In the
remaining part of this section, we assume that each reviewed scheme makes use of a hash-function, which
takes as input a data string including the party identities, the protocol transcript and the shared secret
and outputs a session key. Although some of these schemes might not have been originally defined in
such a way, it can be modified straightforwardly. Therefore, we only list the shared secret, and do not
address how a shared session key is computed in an individual scheme.

The schemes, their security properties and their computational performance in each category are
listed in Table 1, 2, 3, and 4 respectively. In these tables, we use the symbols, X, × and -, to indicate
respectively that the property holds in the scheme, that the property does not hold and that there is no
an acceptable proof to support the judgement. In addition, the security properties are listed with their
short names as follows:

– ksk: known session key security, i.e., that the compromise of one session key should not compromise
other session keys.

– fs: forward secrecy, i.e., that if long-term private keys of one or more of the entities are compromised,
the secrecy of previously established session keys should not be affected. We list the following three
cases for different levels of this property:
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• s: the property holds if an adversary gets either A’s or B’s long-term private key.
• d: the property holds if an adversary gets both A’s and B’s long-term private keys.
• m: the property holds if an adversary gets the KGC master private key.

– kci: key-compromise impersonation resilience, i.e., that compromising an entity A′s long-term private
key will allow an adversary to impersonate A, but it should not enable the adversary to impersonate
other entities to A.

– uks: unknown key-share resilience, i.e., that an entity A should not be able to be coerced into sharing
a key with any entity C when in fact A thinks that she is sharing the key with another entity B.

We do not list the property of key control, i.e., that neither entity should be able to force the session
key to be a preselected value, in the tables, because all the schemes discussed in this paper hold this
property at the same level, as discussed in [24].

We also use the following symbols to explain the computational performance of each scheme (for
simplicity, we only count these expensive operations):

– P : pairing.
– S1: multiplication in G1.
– S2: multiplication in G2.
– E: exponentiation in GT .

In the shared secret column of each table, the top line details the shared secret in terms of all secrets,
and the second line refers to how the shared secret is computed by party A, in the case when the protocol
is roll-symmetric. In this situation, since parties A and B compute the shared secret in a symmetric way,
readers can work out how B does this. In the case where the protocol is not roll-symmetric we present
the two ways that the key is obtained, first for party A and then for party B.

4.1 Setup and Extract Algorithms

Setup. All the schemes in these four categories use the same setup algorithm to create a KGC master
key pair. Given the security parameter k, the algorithm first selects a set of pairing parameters of the
correct form.

Two types of pairing-based key extract algorithms have been used in identity-based key agreement
schemes. We call them Extract 1 and Extract 2 respectively. The schemes in the first three categories
make use of Extract 1, and the schemes in the last category make use of Extract 2.

Extract 1. This algorithm was first proposed by Sakai et al. in [28]. It comes in two variants, which are
identical in the symmetric pairing setting. We shall refer to the two variants as Extract 1 and Extract
1’. In Extract 1 given the pairing parameters, an identity string IDA for a user A, a hash-function
H1 : {0, 1}∗ → G1, the master private key s ∈ Z∗

q , and the master public key, either R = sP1 ∈ G1 or
R′ = sP2 ∈ G2 or both, the algorithm computes QA = H1(IDA) ∈ G1 and dA = sQA ∈ G1. Extract 1’
is the same, except that H1 is now a hash function with codomain G2, and hence QA and dA lie in G2.
In both cases, the values QA and dA will be used as the public and private key pair corresponding to
A’s identity IDA.

Extract 2. This algorithm was first proposed by Sakai and Kasahara in [27]. Given the pairing param-
eters, an identity string IDA for a user A, a hash-function H1 : {0, 1}∗ → Z∗

q , the master private key
s ∈ Z∗

q , and the master public key R = sP1 ∈ G1, the algorithm computes α = H1(IDA) ∈ Z∗
q and

dA = 1
s+αP2 ∈ G2. The values TA = αP1 + R = (s + α)P1 ∈ G1 and dA will be used as the public and

private key pair corresponding to A’s identity IDA. There is also a variant of this algorithm referred
to Extract 2’ in which R = sP2 ∈ G2 and TA = αP2 + R = (s + α)P2 ∈ G2 and dA = 1

s+αP1 ∈ G1.
Algorithm Extract 2’ is only used in a scheme presented in Section 8.
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In all cases the value s is kept secret by the KGC, and the master public key R, or R′ or (R,R′) is
made available to every user. Note, that Extract 1, Extract 2 and Extract 2’ can be applied in all pairing
types, however Extract 1’ is unable to be run in the Type 2 situation, and that when run in the Type 4
situation it is not guaranteed that the output of the function H1 is a multiple of the point P2. This latter
point can cause complications in security proofs in the Type 4 situation where the homomorphism ψ is
used to derive the session key. In particular it means that one no longer has roll-symmetric protocols
mainly due to the fact that the homomorphism and the pairing do not commute.

In the protocol specifications which follow, X → Y : Z stands for that party X sends party Y a
message Z.

4.2 Schemes in Category 1

This protocol family was first introduced by Smart in [34]. With their public and private key pairs,
(QA, dA) and (QB , dB) computed by the algorithm Extract 1 or Extract 1’ in Section 4.1, A and B
randomly choose x and y from Z∗

q respectively and perform the protocol as follows:

A→ B : EA = xP,
B → A : EB = yP,

where P is either P1 or P2 depending on the specific protocols, the exact value of P is listed in Table 1.
On completion of the protocol, A and B use one of these schemes listed in Table 1 to compute a shared
secret.

4.3 A Scheme in Category 2

This protocol was proposed by Scott in [29]. With their public and private key pairs, (QA, dA) and
(QB , dB) computed by the algorithm Extract 1’ in Section 4.1, entities A and B randomly choose x and
y from Z∗

q respectively and perform the protocol as follows:

A→ B : EA = ê(ψ(dA), QB)x,
B → A : EB = ê(ψ(QA), dB)y.

On completion of the protocol, A and B use the scheme listed in Table 2 to compute a shared secret.
Note, this protocol family is not roll-symmetric for Type 4 pairings, as in this situation we have that, in
general,

ê(ψ(dA), QB) 6= ê(ψ(dB), QA).

4.4 Schemes in Category 3

This protocol family was first purposed by Chen and Kudla in [7]. With their public and private key
pairs, (QA, dA) and (QB , dB) computed by the algorithm Extract 1’ in Section 4.1, A and B randomly
choose x and y from Z∗

q respectively and perform the protocol as follows.

A→ B : EA = xψ(QA),
B → A : EB = yQB .

Note that the function ψ in EA provides smaller bandwidth and better performance than the original
protocol. In this paper, we call it the optimised version of the original protocol. On completion of the
protocol, A and B use one of these schemes listed in Table 3 to compute a shared secret. Again for Type
4 pairings the protocols are not roll-symmetric, but they are for Type 1 pairings.
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Pairing Extract, Security Properties
Schemes Type Value P Shared Secret ksk fs kci uks Reduction Performance

s d m

Smart-1 [34] 1,2,3,4 1, P2 ê(xQB + yQA, P2)
s X X × × X X GBDH 2P + S1 + S2

ê(xQB , R
′) · ê(dA, EB)

Smart-2 [34] 1,3,4 1’, P1 ê(P1, xQB + yQA)s X X × × X X GBDH 2P + S1 + S2

ê(R, xQB) · ê(EB , dA)

SCK-1 [7]∗1 1,2,3,4 1, P2 xyP2, ê(yQA + xQB , P2)
s X X X X X X BDH∗2 2P + S1 + 2S2

xEB , ê(xQB , R
′) · ê(dA, EB)

SCK-2 [7]∗1 1,3,4 1’, P1 xyP1, ê(P1, yQA + xQB)s X X X X X X BDH∗2 2P + 2S1 + S2

xEB , ê(R, xQB) · ê(EB , dA)

CJL-1 [11] 1,2,3,4 1, P2 ê(h′yQA + h′xQB , P2)
s ∗3 X X X X X X - 2P + 2S1 + 2S2

ê(h′xQB , R
′) · ê(dA, h′EB)

CJL-2 [11] 1,3,4 1’, P1 ê(P1, h
′yQA + h′xQB)s ∗3 X X X X X X - 2P + 3S1 + S2

ê(R, h′xQB) · ê(h′EB , dA)

Shim [32]∗4 ∗8 1, 4 1’, P2 ê(yP1 + ψ(QB), xP2 +QA)s b r o k e n -
ê(ψ(EB +QB), xR′ + dA) P + 2S2

ê(yψ(R′) + ψ(dB), EA +QA) P + S1 + S2

SYL [39]∗5 ∗8 1,4 1’, P2 xyP2, ê(yP1 + ψ(QB), xP2 +QA)s X X X X X X BDH∗6

xEB , ê(ψ(EB +QB), xR′ + dA) P + 3S2

yEA, ê(yψ(R′) + ψ(dB), EA +QA) P + S1 + 2S2

RYY [26] ∗8 1, 4 1’, P1 xyP1, ê(ψ(QA), QB)s X X X X × X -
xEB , ê(ψ(dA), QB) P + 2S1

yEA, ê(ψ(QA), dB) P + 2S1

BMP [5] ∗8 1, 4 1’, P1 xyP1, ê(ψ(QA), QB)s ∗7 X X X X × X BDH
xEB , ê(ψ(dA), QB) P + 2S1

yEA, ê(ψ(QA), dB) P + 2S1

∗1 This scheme is a modification of the Smart scheme [34] by Chen and Kudla [7]. We call it the Smart-Chen-
Kudla (SCK) scheme in this paper.

∗2 The SCK-1 scheme and the SCK-2 scheme are proved in Section 7 of this paper.
∗3 Where h′ = h(xψ(EB)) = h(yψ(EA)) and h is a hash-function.
∗4 This scheme was broken by Sun and Hsieh in [35].
∗5 This scheme is a modification of the Shim scheme [32] by Yuan and Li [39]. We call it the Shim-Yuan-Li

(SYL) scheme in this paper.
∗6 This scheme is proved in Section 7 of this paper.
∗7 As is different from RYY [26], in this scheme the value xyP1 is used in the shared session key and the value

ê(ψ(QA), QB)s is used in the key confirmation. The key confirmation process in this scheme is necessary.
∗8 For Type 4 pairings these protocols are not roll-symmetric, but they are for Type 1 pairings.

Table 1. The Existing Schemes in Category 1.

Pairing Extract Security Properties
Schemes Type Method Shared Secret ksk fs kci uks Reduction Performance

s d m

Scott [29] 1,4 1’ ê(ψ(QA), QB)sxy - X X X × - -
ExB P + 2E
EyA P + 2E

Table 2. The Existing Schemes in Category 2.
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Pairing Extract Security Properties
Schemes Type Method Shared Secret ksk fs kci uks Reduction Performance

s d m

CK [7] 1,4 1’ ê(ψ(QA), QB)s(x+y) X X × × X X GBDH
ê(ψ(dA), xQB + EB) P + S1 + S2

ê(EA + yψ(QA), dB) P + S1 + S2

Wang [37] 1,4 1’ ê(ψ(QA), QB)s(x+sA)(y+sB) ∗ X X X × X X DBDH
ê((x+ sA)ψ(dA), sBQB + EB) P + 2S1 + S2

ê(sAψ(QA) + EA, (y + sB)dB) P + S1 + 2S2

∗ Where sA = h(xψ(QA), yQB) and sB = h(yQB , xψ(QA)) and h is a one-way function.

Table 3. The Existing Schemes in Category 3.

4.5 Schemes in Category 4

This protocol family was first proposed by McCullagh and Barreto in [23]. With their public and private
key pairs, (TA, dA) and (TB , dB) computed by the algorithm Extract 2 in Section 4.1, A and B randomly
choose x and y from Z∗

q respectively and perform the protocol as follows.

A→ B : EA = xTB ,

B → A : EB = yTA.

On completion of the protocol, A and B use one of these schemes listed in Table 4 to compute a shared
secret. Note, we have assumed in the performance column that ê(P1, P2) is precomputed.

Pairing Extract Security Properties
Schemes Type Method Shared Secret ksk fs kci uks Reduction Performance

s d m

MB-1 [23] 1,2,3,4 2 ê(P1, P2)
xy - X X × × - - P + 3S1

ê(xEB , dA)

MB-2 [23]∗1 1,2,3,4 2 ê(P1, P2)
x+y X X × × X X `-GBCAA1 P + E + 2S1

ê(P1, P2)
x · ê(EB , dA)

Xie [38]∗2 1,2,3,4 2 ê(P1, P2)
xy+x+y b r o k e n - P + E + 3S1

ê(P1, P2)
x · ê((x+ 1)EB , dA)

LYL-1 [22] 1,2,3,4 2 ê(P1, P2)
xyh(ê(P1,P2)x)h(ê(P1,P2)y) ∗3 - - - × - - - P + 2E + 2S1

ê(EB , dA)xh(ê(P1,P2)x)h(ê(EB ,dA))

LYL-2 [22] 1,2,3,4 2 ê(P1, P2)
xy + ê(P1, P2)

x+y - - - × - - - P + 2E + 2S1

ê(EB , dA)x + ê(P1, P2)
x · ê(EB , dA)

MB-1+2 1,2,3,4 2 ê(P1, P2)
x+y, ê(P1, P2)

xy X X X × X X `-GBCAA1∗4 P + 2E + 2S1

ê(P1, P2)
x · ê(EB , dA), ê(EB , dA)x

∗1 The proof is given by Cheng and Chen in [9].
∗2 The scheme was broken by Shim in [33] and by Li, Yuan and Li in [22].
∗3 Where function h maps an element in GT to an integer in a specified range.
∗4 The security of this scheme can be proved by following the same method used in [9]. But the perfect forward

secrecy property relies on an unusual assumption, i.e., given (sP1, (h1,
1

h1+s
P2), . . . , (h`,

1
h`+s

P2), aP1, bP1)

for hi, a, b ∈ Z∗
q , computing ê(P1, P2)

ab
(hi+s)(hj+s) is hard.

Table 4. The Existing Schemes in Category 4.
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5 Efficiency Considerations

In this section we do a more thorough comparison of the schemes above in terms of computational and
bandwidth efficiency. The case of Type 1 pairings are suitable for 80 bit security levels, but for higher
security levels their performance degrades quite considerably. On the positive side for Type 1 pairings
we do not need to worry about the homomorphism ψ, nor the problem of hashing into G2, and one can
obtain very efficient systems at the 80 bit security level.

We will not consider Type 1 systems further in this section, but will turn to the more complicated
issue of comparing the efficiency of the key agreement protocols when using Type 2, 3 or 4 systems.
We shall compare our systems at the 128-bit level of security, in which case the most efficient systems
will have embedding degree k = 12. We assume that in Type 3 systems we use a sextic twist [15] which
enables one to obtain greater efficiency for operations in G2. We also assume that in all cases one uses
pairing friendly fields [14], which makes our estimates slightly better than those presented in [13].

We shall compare the protocols in terms of computational efficiency by reference to the cost of a
multiplication in G1. Thus we need to know the relative efficiency of multiplication in G2 and exponen-
tiation in GT , and the relative cost of pairings to this base measure. The relative cost of multiplication
in G2 and exponentiation in GT is relatively easy to measure [13], but the relative cost of pairings is
harder. We shall assume, following [14], that a pairing in the Type 3 case at the 128-bit security level
requires around 20 times the cost of a multiplication in G1. Using the map ψ and a projecting onto the
q-division points of the underlying elliptic curve which are orthogonal to the group G1, one can perform
a pairing in the Type 2 and 4 situations at the same cost as that in the Type 3 situation, bar an extra
multiplication in G1. Thus we are assuming that a Tate pairing is used, as opposed to an Ate-pairing
[15].

The fact that Type 2 and Type 4 have similar performance is because the only real difference is in
what we consider to be the group G2. In the Type 2 case it is a general subgroup of the group used in
the Type 4 case. In Table 5 we summarise the estimates we will use in what follows.

Type 2 Type 3 Type 4

Size of Elements

∈ G1 256 bits 256 bits 256 bits
∈ G2 3072 bits 512 bits 3072 bits
∈ GT 3072 bits 3072 bits 3072 bits

Relative Cost of Basic Operations

Multiplication in G1 1 1 1
Multiplication in G2 45 3 45

Exponentiation in GT 3 3 3
Pairing 21 20 21

Hash into G1 free free free
Hash into G2 n/a 3 540

Relative Cost of Subgroup Membership Test

G1 1 1 1
G2 88 3 45
〈P2〉 88 3 88

〈Q〉 < G 89 3 89
GT 4 4 4

Table 5. Relative cost of operations and bandwidth at the 128-bit security level, with k = 12. These are
theoretical relative costs based on multiplication counts only, an actual implementation will have different relative
costs.
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We now turn to each protocol above in turn and give the computational cost, bandwidth of the
message flows and the known security reduction for each in both the Type 2, 3 and 4 settings, at the
128-bit security level. This is summarised in Table 6. An absence in the cost/bandwidth setting of Table 6
implies that that the scheme cannot be implemented in this case. Where a security reduction is unproved
in the asymmetric pairing setting, but one is proved in the symmetric setting we signal this by a ⊥. The
reason for marking these differently is that we have not checked these proofs in the asymmetric pairing
setting. If a security reduction is marked as relative to an oracle which computes ψ then this reduction
is not relative to such an oracle if, as in the Type 1, 2 and 4 situations, there is an efficient algorithm to
compute ψ.

The relative speed in Table 6 is the cost of a full execution by one party relative to the cost of a
multiplication in G1. Also in Table 6 we compare the cost of the enhanced CK and MB-2 schemes which
are considered later in Section 8. We label these e-CK and e-MB-2 respectively. Note, the security proofs
for these enhanced schemes no longer depend on a gap assumption.

We now summarise the table. In the Type 2 setting, if one requires a proof related to a standard hard
problem then the most efficient scheme is the SCK-1 scheme. In the Type 3 setting one always requires
a reduction to a relativised problem, either a gap assumption or an assumption related to an ψ-oracle. If
one prefers a gap assumption, albeit a non-standard one, and does not require having the perfect forward
secrecy and/or master key forward secrecy property, then one should use the MB-2 scheme. However, if
one prefers an assumption related to an ψ-oracle, then one should adopt the SCK-2 scheme. We note that
most security proofs in the literature in the asymmetric pairing setting for Type 3 curves are relative to
an ψ-oracle. However, this is often not explicitly stated. In the Type 4 setting the most efficient scheme
with a security proof relative to a standard problem is the SCK-2 scheme, if one is willing to accept
non-standard problems again no perfect and master key forward secrecy then the MB-2 scheme is the
most efficient one.

6 The Proposed Approach

In this section, we discuss the relationship between reveal queries and the security property of key-
compromise impersonation resilience. We come to the conclusion that a simulator of any of the key
agreement protocols listed in Section 4, which has a goal of solving the computational BDH (or `-BDHI)
problem or its computational or decisional variants, cannot deal with reveal queries to certain sessions;
otherwise the key-compromise impersonation resilience property does not hold in this protocol. One
example is the BMP scheme in [5], which does not hold the key-compromise impersonation resilience
property, but can be proved to hold a number of other security properties with reveal queries.

In general, three types of secrets are used in this type of key agreement protocols: the KGC master
private key, each party’s identity-based private key, which is computed using the master private key and
the party’s identifier, and each party’s ephemeral secret, which is used to compute the party key token.
In a protocol, after exchanging the key token with the other party, each party takes as input the master
public key, its own identity-based private key and ephemeral secret along with the other party’s identifier
and the key token, and computes a pairing (or a few pairings) as a session secret shared with the other
party.

In the security proof of this type of protocols, as defined in Section 3, a simulator of a real protocol
has a goal to solve a pairing related hard problem, as defined in Section 2. The security of such a protocol
is defined as a game between the simulator (say S) and an adversary (say E), who has a goal to break
the protocol.

For example, suppose S’s goal is to solve the BDH problem: given (xP , yP , zP ), compute ê(P, P )xyz.
Algorithm S arranges these three secrets as follows: the master private key is x; the identity-based public
key of the attacked party (say I) is related to y; the ephemeral secret of the challenge party (say J) is z.

To answer reveal queries from E, S has to deal with the following different sessions:
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Scheme Reduction Type 2 Type 3 Type 4
#m m ∈ Relative #m m ∈ Relative #m m ∈ Relative

Speed∗2 Speed∗2 Speed∗2

Smart-1 GBDH⊥ 3072 88 88 512 3 44 3072 88 88

Smart-2 GBDH⊥ - - - 256 1 44 256 1 88

SCK-1 BDHψ
2,1,2

∗1 3072 88 133 512 3 47 3072 88 133

SCK-2 BDHψ
2,2,1

∗1 - - - 256 1 45 256 1 89
CJL-1 - 3072 88 134 512 3 48 3072 88 134
CJL-2 - - - - 256 1 46 256 1 90

SYL BDH⊥∗1 - - - - - - 3072 89 156/112∗5

RYY - - - - - - - 256 1 23

BMP BDH⊥ - - - - - - 256 1 23
Scott - - - - - - - 1024∗3 4 27

CK∗6 GBDH⊥ - - - - - - 256/3072∗5 1/89 67

e-CK BDH⊥∗1 - - - - - - 3328 90 154/110∗5

Wang∗6 DBDH⊥ - - - - - - 256/3072∗5 1/89 68/112∗5

MB-1 - 256 1 24 256 1 23 256 1 24

MB-2 `-GBCAA1⊥ 256 1 26 256 1 25 256 1 26

MB-1+2 `-GBCAA1⊥ 256 1 29 256 1 28 256 1 29

e-MB-2 `-BCCA1ψ2,1
∗1 3328 90 158∗4 768 4 71∗4 3328 90 158∗4

LYL-1 - 256 1 29 256 1 28 256 1 29
LYL-2 - 256 1 29 256 1 28 256 1 29

∗1 Proved in this paper.
∗2 The schemes Smart-1, SCK-1 and CJL-1 use the Extract 1 method, whereas Smart-2, SCK-2 and CJL-2,

SYL, RYY, BMP, Scott, CK and Wang use the Extract 1’ method. However, the cofactor multiplication
needed to implement the hash function H1 in the Extract 1’ method can be simplified in all these schemes,
by combining the cofactor into the final powering step of the Tate pairing calculation.

∗3 One can apply a form of pairing compression to reduce the bandwidth requirements from 3072 down to about
1024.

∗4 The version with master key forward secrecy is counted.
∗5 Recall for Type 4 curves these protocols are not roll-symmetric either with respect to the message flows or

the computation of the shared secret.
∗6 Here we counted the optimised version of CK and Wang protocol.

Table 6. Comparison of schemes in the Type 2, 3 and 4 Settings: The #m column denotes the size of the
message flow in bits. The m ∈ column denotes the relative cost of testing whether the message received is in the
correct subgroup. Relative speed denotes the cost relative to a multiplication in G1 of the protocol, excluding
the subgroup check.

– Challenge session(Πs
I,J , Πt

J,I): E impersonates oracle Πs
I,J and challenges oracle Πt

J,I . S does not
need to answer any reveal query to this session, based on the definition of the security model in
Section 3.

– Session (Πs
I,J , Πt

J,I): E impersonates oracle Πt
J,I and asks a reveal query to oracle Πs

I,J . S is not
able to compute the session secret; otherwise the session secret can be computed by using the party
ephemeral secret and the partner long-term key, and therefore the key-compromise impersonation
resilience property is not held in this protocol.

– Session (Πs
I,C , Πt

C,I): E impersonates oracle Πt
C,I (C /∈ {I, J}) and asks a reveal query to oracle

Πs
I,C . Again, S is not able to compute the session secret for the same reason as the above session.

– Session (Πs
I,C , Πt

C,I): E impersonates oracle Πs
I,C and asks a reveal query to oracle Πt

C,I . S can
compute the session secret by following the protocol correctly.
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– Session (Πs
C,D, Πt

D,C): E impersonates either oracle Πs
C,D or Πt

D,C and asks a reveal query to the
other oracle, where C and D is not I. S can compute the session secret by following the protocol
correctly.

As mentioned before, computing the session secret guarantees that S can answer the reveal queries,
but is not necessary when the security proof is in the random oracle model. In this case, S controls the
random oracle, which takes as input the session secret and outputs a random number as the session key.
Although S cannot compute the session secret, S can choose a random number as the answer to a reveal
query. The problem is that for some sessions, as Sessions (Πs

I,J , Πt
J,I) and (Πs

I,C , Πt
C,I) discussed above,

S cannot compute a session secret, but E may be able to do so. Therefore, in order to check whether
or not S acts as a real protocol, E can query the random oracle with the correct session secret after
the reveal query. Since S cannot recognize this correct value, S cannot make the output of the random
oracle consistent with the responses to the reveal query.

This tells us that the computational problem can be replaced with the corresponding decisional
problem in the random oracle model. As long as S is able to make a right decision to E’s random oracle
query, the behave of S, from E’s point of view, is indistinguishable to the real world. As mentioned in
Section 1, researches have tried a number of various ways to solve this problem. Let us take a closer look
at them:

Cheng et al. in [10] used a coin query to force the adversary to register the ephemeral secret used to
generate the key token with the simulator. They heuristically demonstrated that the model with the coin
query can address certain attacks which are not covered in the model with the reveal query completely
disallowed. On the other hand, they also showed that for some attacks, the adversary may not know
the ephemeral value corresponding to the key token used in the attacks. Hence, their model requires a
protocol to be analysed in two separate reductions, one with the reveal query disallowed and the other
with both the coin query and the reveal query allowed. However, this approach does not guarantee the
security of a protocol even if both valid reductions in the model can be constructed.

Kudla and Paterson in [19] proposed a modular proof approach, which introduces a decisional oracle
in the security proof. By resorting to this decisional oracle, the simulator can choose a random number
to answer a reveal query and maintain all random answers consistent to each other. This approach has
been used to prove secure a number of protocols under a gap assumption. However, this approach has
to rely on the assumption that such a decisional oracle exists and the gap problem is sound. The former
may not be true in this type of protocols, as discussed before, and the later is not as strong as the
computational problem.

Wang in [37] proposed an approach, which is opposite to the Kudla and Paterson one. This approach
has to resort to a computational oracle and is used to analyse the Wang scheme [37] based on a decisional
assumption instead. As in the Kudla and Paterson approach, the problem of relying on an oracle, which
nobody knows how to construct using any polynomial algorithm in the real world, also happens in this
approach. In addition, while using this approach the simulator has to guarantee that the computational
oracle would not be bullied by the adversary to compute the underlying hard problem challenge.

To improve the above solutions, we propose a new approach, which incorporates a built-in decisional
function. With this function, the simulator can now take the advantage of the “help” of the adversary
either for computing the session secret or for maintaining the consistency of random oracle answers.
Such a built-in decisional function can be constructed by introducing the DH key computation in the
computation of the session secret or by introducing the DH exchange in the key tokens in certain ways
and verifying the consistence of key tokens via a decisional DH algorithm.

Based on the fact that the DDH problem is not hard because a pairing exists, the simulator in our
approach does not need to rely on an outside computational oracle in order to generate the session
key to be revealed (as required in the Wang approach), or an outside decisional oracle to keep the
consistency between the random oracle queries and the reveal queries (as required in the Kudla and
Paterson method), or the knowledge of the adversary ephemeral secret (as required in the Cheng et al.
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approach). As a result of incorporating the built-in decisional function, the security reduction can be
constructed on the assumptions that are weakest possible.

Implementation of such a built-in decisional function depends on the individual key agreement pro-
tocol. The following are two examples:

1. In some protocols of Category 1 specified in Section 4.2, a DH key exchange has already been
performed. Hence, a built-in decisional function is obtained by simply adding the DH key computation
into the session secret. For example, Smart’s scheme in [34] does not have such a decisional function,
so it can only be proved secure under the GBDH assumption. The Smart-Chen-Kudla (SCK) scheme
in [7] enhances the Smart scheme by including the DH key value in the session secret. Similarly, the
Shim scheme in [32] does not have such a decisional function. This scheme is even vulnerable to the
man-in-the-middle attack. As suggested by Yuan and Li in [39], the Shim scheme can be enhanced by
adding the DH key value in the session secret. The DH key value along with the key tokens provides
a decisional DH function to the simulator. In Section 7, we will give a formal proof of these two
schemes. The built-in decisional function in this case costs only one scalar multiplication.

2. In the protocols of Category 3, 4 specified in Section 4.4, 4.5 respectively, we do not have a straight-
forward method to create such a decisional function, because the key tokens provided by the two
players are computed with different bases. We suggest adding an extra DH key exchange in the key
tokens. The base of this DH key involves a unique session identifier. The session uniqueness allows
the simulator to choose the base individually in each session. This helps the simulator using the ad-
versary input to perform the decisional function. In Section 8, we will give an example of enhancing
the CK scheme (called e-CK for short) and another example of enhancing the MB scheme (called
e-MB-2 for short). We formally prove the former under the computational BDH assumption and
the later under the computational `-BDHI assumption. Note that this built-in decisional function is
more expensive than the previous one.

7 Security Proof of Two Schemes in Category 1

In this section we formally analyse the security of two schemes listed in Category 1 of Section 4.2 in the
model defined in Section 3. The first one is the Smart-Chen-Kudla (SCK-1) scheme in [7]. The second
one is the Shim-Yuan-Li (SYL) scheme in [39]. For completeness, we reprint these two schemes below.

The KGC executes the following Setup algorithm:

1. Generates a set of pairing parameters of the required size.
2. Pick a random s ∈ Z∗

q as the master key and compute R = sP2.
3. Pick two cryptographic hash functions as follows:

H1 : {0, 1}∗ → G1(resp. G2),
H2 : {0, 1}∗ × {0, 1}∗ ×G2 ×G2 ×G2 ×GT → {0, 1}n

for some integer n > 0. The codomain of H1 is G1 for the SCK-1 protocol and G2 for the SYL
protocol.

The KGC keeps the master key as a secret and publishes other parameters. For any user with an
identity ID ∈ {0, 1}∗, the KGC executes the Extract algorithm to compute QID = H1(ID), dID = sQID
and passes dID as the private key to this user via some secure channel.

In the protocols party A and B randomly choose x and y from Z∗
q respectively and perform the

protocol as follows:

A→ B : EA = xP2,

B → A : EB = yP2.
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On completion of the protocol, A and B use one of following schemes to compute a session secret shared
between them.

The SCK-1 scheme: A computes K = ê(xQB , R) · ê(dA, EB) and xEB = xyP2, and B computes
K = ê(yQA, R) · ê(dB , EA) and yEA = xyP2. The session key is computed by SK = H2(A, B, EA, EB ,
xyP2, K).

The SYL scheme: A computes K = ê(ψ(EB + QB), xR + dA) and xEB = xyP2, and B computes
K = ê(ψ(yR + dB), EA + QA) and yEA = xyP2. The session key is computed as SK = H2(A, B, EA,
EB , xyP2, K).

The security of the SCK-1 scheme can be summarised by Theorem 1, 2.

Theorem 1 The SCK-1 scheme is a secure AK, provided the BDHψ2,1,2 assumption holds and the hash
functions are modelled as random oracles. Specifically, suppose in the attack, an adversary B which
makes qi queries to Hi for i = 1, 2 and creates qo oracles, wins the game with advantage ε(k). Then there
exists an algorithm A to solve the BDHψ2,1,2 problem with advantage

Adv
BDHψ2,1,2
A (k) ≥ 1

q1 · qo · q2
ε(k).

Notice, that the proof is relative to an oracle which computes the isomorphism. In pairing parameter
instances where such an isomorphism exists this is equivalent to the BDH2,1,2 problem. However, one
can implement the SCK-1 scheme for pairing parameters which do not have an explicitly computable
isomorphism.

Proof: We define the session ID as the concatenation of xP2‖yP2. The first condition in Definition 7 is
trivial to prove. Now we prove that the protocol meets the second condition.

Given a BDHψ
2,1,2 problem instance (aP2, bP1, cP2), we construct an algorithm A using the adversary

B against the protocol to solve the BDHψ
2,1,2 problem.

A simulates the system setup to adversary B as follow. The system public parameters are defined to
be the pairing parameters of the input problem. The master public key is set to be R = aP2, hence A
does not know the master secret key. The functions H1 and H2 are instantiated as random oracles under
the control of A.

Algorithm A randomly chooses 1 ≤ I ≤ q1 and 1 ≤ J ≤ qo and starts simulating the real world
where the adversary B launches the attack. Algorithm A answers the following queries, which are asked
by adversary B in an arbitrary order. We shall slightly abuse the notation Πt

i,j to refer to the t-th party
instance among all the party instances created in the attack, instead of the t-th instance of party i. This
would not affect the soundness of the security model.

– H1(IDi): Algorithm A maintains an initially empty list H list
1 with entries of the form (IDi, Qi, `i).

The algorithm A responds to the query in the following way.
• If IDi already appears on H list

1 in a tuple (IDi, Qi, `i), then A responds with H1(IDi) = Qi.
• Otherwise, if IDi is the I-th unique identifier query, then A inserts (IDi, bP1,⊥) into the list and

returns bP1 (hence the private key of IDI should be abP1 which is not known by the algorithm
A).
• Otherwise, A randomly chooses `i ∈ Z∗

q , inserts (IDi, `iP1, `i) into the list and returns `iP1.
– H2(IDa

u, ID
b
u, Xu, Yu, Zu,Ku): Algorithm A maintains an initially empty list H list

2 with entries of
the form (IDa

u, ID
b
u, Xu, Yu, Zu,Ku, hu). The algorithm A responds to the query in the following way

(for easily following the reduction, we suggest one reading the Send and Reveal query first).
• If a tuple indexed by (IDa

u, ID
b
u, Xu, Yu, Zu,Ku) is on the list, then A responds with hu.
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• Otherwise, A goes through the list L (maintained in the Reveal query) to find a tuple with values
(IDa

u, ID
b
u, Xu, Yu,Π

t
i,j) and proceeds as follows (in the following, without loosing generality, we

assume Yu is the message generated by oracle Πt
i,j , so Xu is the incoming message to Πt

i,j . By
the behavior of Send query, Yu = f ti,jaP2).
∗ Test if ê(ψ(Yu), Xu) = ê(P1, Zu) holds and for Type 2 or 4 pairings test if ê(ψ(Xu), Yu) =
ê(ψ(Zu), P2) holds as well. If the equations hold, A then does the following:
· Find the values f ti,j and SKt

i,j corresponding to oracle Πt
i,j from the list Ω maintained

in the Send query.
· Find the value `j from H list

1 for party with IDj .
· Compute the shared secret via the following equation

Kt
i,j = ê(xiQj , R) · ê(di, Xu)

= ê(f ti,ja`jP1, aP2) · ê(abP1, Xu), since xi = f ti,ja,Qj = `jP1, di = abP1

= ê(f ti,j`jψ(aP2), aP2) · ê(bP1,
1
f ti,j

Zu), since f ti,jaXu = Zu.

Note that Πt
i,j is put on the list L in the Reveal query only when Πt

i,j has been revealed
and di = abP1, but H2(IDa

u, ID
b
u, Xu, Yu, Zu, Kt

i,j) had not been queried before the
reveal query. So, SKt

i,j has been randomly sampled.
· Set hu = SKt

i,j .
· Remove (IDa

u, ID
b
u, Xu, Yu,Π

t
i,j) from the list L. Put (IDa

u, ID
b
u, Xu, Yu, Zu,K

t
i,j , hu) in

the list H list
2 .

· Check if Kt
i,j = Ku. If it is not true, A randomly chooses new hu ∈ {0, 1}n, inserts

(IDa
u, ID

b
u, Xu, Yu, Zu, Ku, hu) into the list H list

2 .
· Return hu.

∗ Otherwise (no tuple on L meets the test), algorithm A randomly chooses hu ∈ {0, 1}n, inserts
(IDa

u, ID
b
u, Xu, Yu, Zu, Ku, hu) into the list and returns hu

• Otherwise (no relative tuple on L is found), A randomly chooses hu ∈ {0, 1}n, inserts (IDa
u, ID

b
u,

Xu, Yu, Zu, Ku, hu) into the list and returns hu.
– Corrupt(IDi): A looks through list H list

1 . If IDi is not on the list, A queries H1(IDi). A checks the
value of `i: if `i 6= ⊥, then A responds with `iψ(aP2) = `iaP1; otherwise, A aborts the game (Event
1).

– Send(Πt
i,j, M): A maintains a list Ω for each oracle of the form (Πt

i,j , tran
t
i,j , r

t
i,j , K

t
i,j , SK

t
i,j , f

t
i,j)

where tranti,j is the transcript of the oracle so far; rti,j is the random integer used by the oracle to
generate message, f ti,j is used for special purpose explained below, and Kt

i,j and SKt
i,j are set ⊥

initially. Note that the Ω list can be updated in other queries as well, such as the reveal query and
the H2 query. A proceeds in the following way:
• IfM is the second message on the transcript, do nothing but simply accept the session. Otherwise,
• Query H1(IDi) and H1(IDj).
• If t = J ,
∗ If `j 6= ⊥, then abort the game (Event 2).
∗ Otherwise, respond with cP2 and set rti,j = ⊥ (if M = λ, then party IDi is an initiator,

otherwise a responder as M is the first message of the session).
• Otherwise,
∗ If `i = ⊥, randomly choose f ti,j ∈ Z∗

q and respond with f ti,jaP2 and set rti,j = ⊥.
∗ Otherwise, randomly choose rti,j ∈ Z∗

q and respond with rti,jP2.
– Reveal(Πt

i,j): A maintains a list L with tuples of the form (IDi, IDj , Xi, Yj ,Πt
i,j), A proceeds in

the following way to respond:
• Get the tuple of oracle Πt

i,j from Ω.
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• If oracle Πt
i,j has not accepted, then respond with ⊥.

• If t = J or if the J-th oracle has been generated as ΠJ
a,b and IDa = IDj , IDb = IDi and ΠJ

a,b

and Πt
i,j have the same transcript, then abort the game (Event 3).

• If SKt
i,j 6= ⊥, return SKt

i,j .
• Otherwise,
∗ If rti,j 6= ⊥ (so `i 6= ⊥ and di = `iaP1 = `iψ(aP2)),
· Compute Kt

i,j = ê(rti,jQj , aP2)·ê(`iψ(aP2),M) where Qj is found from H list
1 for identifier

IDj and M is the received message on tranti,j . By making an H2 query, set SKt
i,j =

H2(IDi, IDj , r
t
i,jP2,M, rti,jM , Kt

i,j) if Πt
i,j is an initiator oracle, or SKt

i,j = H2(IDj ,
IDi, M , rti,jP2, rti,jM , Kt

i,j) otherwise, and update Ω by putting SKt
i,j then return

SKt
i,j as the response.

∗ Otherwise, i.e., it should have rti,j = f ti,ja and di = abP1. Algorithm A does not know both
values and should not be able to compute Kt

i,j = ê(f ti,jaQj , aP2) · ê(abP1,M) and f ti,jaM
(note that the model requires that i 6= j). Algorithm A proceeds as follows:
· Go through the list H list

2 to find a tuple (IDi, IDj , f
t
i,jaP2,M , Zu, Ku, hu) if IDi

is the initiator or a tuple (IDj , IDi, M , f ti,jaP2, Zu, Ku, hu) otherwise, meeting the
equation ê(ψ(f ti,jaP2),M) = ê(P1, Zu) and for Type 2 or 4 pairings ê(ψ(M), f ti,jaP2) =
ê(ψ(Zu), P2) as well.
· If such Zu is found, then compute

Kt
i,j = ê(f ti,jaQj , R) · ê(di,M)

= ê(f ti,ja`jP1, aP2) · ê(abP1,M), since di = abP1, Qj = `jP1

= ê(f ti,j`jψ(aP2), aP2) · ê(bP1,
1
f ti,j

Zu) since f ti,jaM = Zu.

and set SKt
i,j = H2(IDi, IDj , f ti,jaP2, M,Zu,K

t
i,j) if oracle Πt

i,j is the initiator or
SKt

i,j = H2(IDj , IDi,M, f ti,jaP2, Zu,K
t
i,j) otherwise.

· Otherwise, randomly sample SKt
i,j ∈ {0, 1}n, put (IDi, IDj , f ti,jaP2, M,Πt

i,j) if IDi is
the initiator or (IDj , IDi,M, f ti,jaP2,Π

t
i,j) into list L.

· A responds with SKt
i,j and updates Ω by putting SKt

i,j .
– Test(Πt

i,j): If t 6= J or there is an oracle Πw
j,i with the same transcript as Πt

i,j that has been revealed,
then A aborts the game (Event 4) (note that according to the rules of the game, Πt

i,j should have
accepted, i.e., there are two messages on the oracle’s transcript, so the check can be done properly).
Otherwise (`j = ⊥, Qj = bP1 and rti,j = ⊥), A randomly chooses ζ ∈ {0, 1}n and responds to B with
ζ.

Once B finishes queries and returns its guess, A proceeds with the following steps:

– Compute
D = ê(`iψ(aP2),M).

Note that because i 6= j according to Definition 6, it has di = `iaP1 = `iψ(aP2) where `i 6= ⊥ found
from H list

1 corresponding to identifier IDi and

Kt
i,j = ê(cbP1, aP2) · ê(`iψ(aP2),M)

= ê(P1, P2)abc ·D

– Algorithm A randomly chooses K` from H list
2 and returns K`/D as the response to the BDH chal-

lenge.
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Claim 1 If A did not abort the game, B could not find inconsistence between the simulation and the
real world.

Proof: The simulations of all the random oracles are valid and the messages of the oracles are uniformly
distributed in the message space. Particularly, the simulator makes use of the programmability of random
oracle H2 and the pairing as the decisional algorithm of DH on G2 to keep the consistence of responses
to the H2 queries and the Reveal queries. So the adversary should not notice any difference from the
real attack environment.

Claim 2 Let Event 5 be that K = ê(cbP1, aP2)·ê(`iψ(aP2),M) was not queried on H2. Then Pr[Event 5]
≥ ε(k).

Proof: Because H2 is a random oracle, if Event 5 happens (i.e., K for the challenge oracle is not queried
on H2), B could win the game only in two ways: (a) B random guesses whether ζ is SKJ

i,j or not, if SKJ
i,j

has not been decided yet. (b) B knows it has revealed an oracle Πw
a,b which has the same session key

as the challenge oracle ΠJ
i,j . We note here that Event 5 could happen in case (b) in general, because we

make use of the programmability of random oracle H2 and A may have responded to the Reveal query
without knowing the corresponding K in the simulation. Because the random oracle should respond
uniquely for each query in the simulation, the adversary can surely win the game if it knows the session
key SKJ

i,j , even if it is not generated by a query to the random oracle H2.
Because the identifiers and the transcript are used as the inputs of H2 to generate the session key,

Πw
a,b has the same session key with Πt

i,j with probability greater than 1/2n only if Πw
a,b is either the

chosen fresh oracle Πt
i,j or an oracle Πw

j,i which has the same transcript of Πt
i,j for some w. While by the

rules of the game, B is not allowed to reveal either of the two oracles (the fresh test oracle or its partner
with matching conversation should not be revealed). So in this protocol, because the identifiers and the
transcript are part of the input of H2, case (b) happens with probability at most 1/2n. Then we have

Pr[B wins | Event 5] ≤ 1/2.

Then
ε(k) + 1/2 = Pr[B wins] = Pr[B wins | Event 5] Pr[Event 5]

+ Pr[B wins | Event 5] Pr[Event 5]
≤ 1/2 + Pr[Event 5].

The claim follows.

Let Event 6 be that, in the attack, adversary B indeed chose to impersonate a party, whose identifier
was queried on H1 as the I-th distinct identifier query, to the J-th oracle. Then following the rules of
the game defined in Section 3, it’s clear that Event 1, 2, 3, 4 would not happen and the game won’t
abort. So,

Pr[(Event 1 ∨ Event 2 ∨ Event 3 ∨ Event 4)] = Pr[Event 6] ≥ 1
q1 · qo

.

Let Event 7 be that A found the correct K`. Overall, we have

Pr[A wins] = Pr[Event 6 ∧ Event 5 ∧ Event 7]
≥ 1

q1·qo·q2 Pr[Event 5]
≥ 1

q1·qo·q2 ε(k).

This concludes the proof. �
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Theorem 2 The SCK-1 scheme has master key forward secrecy, provided the DHψ2,2,2 assumption is
sound and H2 is modelled as random oracle. Specifically, suppose an adversary B wins the game with
advantage ε(k). Then there exists an algorithm A to solve the DHψ2,2,2 problem with advantage

Adv
DHψ2,2,2
A ≥ 1

2
ε(k).

Again our comment with respect to the computability of the function ψ holds.

Proof: Given a set of pairing parameters and a DHψ
2,2,2 problem instance (aP2, bP2), we construct an

algorithm A to make use of B to solve the DHψ
2,2,2 problem. Algorithm A simulates the system setup to

adversary B as follow, by randomly sampling s ∈ Z∗
q and setting the master public key to be R = sP2,

and the master secret key as s. The hash function H2 will be modelled as a random oracle under the
control of A, and H1 will be a cryptographic hash function. Moreover, the master secret key s is passed
to B as well, so A no longer simulates the corrupt query.

As in Theorem 1, we use Πt
i,j to represent the t-th one among all oracles created in the attack. Again

algorithm A answers the following queries, which are asked by adversary B in an arbitrary order.

– H2(IDa
u, ID

b
u, Xu, Yu, Zu,Ku): Algorithm A maintains an initially empty list H list

2 with entries of
the form (IDa

u, ID
b
u, Xu, Yu, Zu,Ku, hu). A responds to the query in the following way.

• If a tuple indexed by (IDa
u, ID

b
u, Xu, Yu, Zu,Ku) is on the list, then A responds with hu.

• Otherwise, A goes through the list L (maintained in the Reveal query) with tuples of the
form (IDi, IDj , Xi, Yj ,Kt

i,j ,Π
t
i,j) to find a tuple with values (IDa

u, ID
b
u, Xu, Yu,Ku,Π

t
i,j) and

proceeds as following (again, we assume Xu is the incoming message to Πt
i,j):

∗ Test if ê(ψ(Yu), Xu) = ê(P1, Zu) and for Type 2 or 4 pairing test ê(ψ(Xu), Yu) = ê(ψ(Zu), P2)
as well. If the equation hold then,
· Find the value SKt

i,j from the list Ω.
· Remove (IDa

u, ID
b
u, Xu, Yu,Ku,Π

t
i,j) from the list L. Put (IDa

u, ID
b
u, Xu, Yu, Zu, Ku,

SKt
i,j) in the list H list

2 and return SKt
i,j . Note that Πt

i,j is put on the list L only when
it has been revealed, so SKt

i,j has been sampled.
∗ Otherwise (no tuple on L meets the test), algorithm A randomly chooses hu ∈ {0, 1}n, inserts

(IDa
u, ID

b
u, Xu, Yu, Zu, Ku, hu) into the list and returns hu

• Otherwise, A randomly chooses hu ∈ {0, 1}n, inserts (IDa
u, ID

b
u, Xu, Yu, Zu, Ku, hu) into the

list and returns hu.
– Send(Πt

i,j, M): A maintains a list Ω for each oracle of the form (Πt
i,j , tran

t
i,j , f

t
i,j , K

t
i,j , SK

t
i,j , c

t
i,j)

where tranti,j is the transcript of the oracle so far; f ti,j , c
t
i,j are used for special purpose explained

below, and Kt
i,j , SK

t
i,j are set ⊥ initially. This list is updated in the send query as well as in the

reveal query and H2 query. A proceeds in the following way:
• If M is not the second message on the transcript,
∗ Randomly sample f ti,j ∈ Z∗

q .
∗ Randomly flip cti,j ∈ {0, 1}. If cti,j = 0, set V = f ti,jaP2, else V = f ti,jbP2. If V = P2, then

responds to the DH challenge with 1
fti,j

bP2 if cti,j = 0, or 1
fti,j

aP2 otherwise (Event 1).
∗ If M 6= λ, compute

Kt
i,j = ê(f ti,jH1(IDj), saP2) · ê(sH1(IDi),M),

if cti,j = 0, else set
Kt
i,j = ê(f ti,jH1(IDj), sbP2) · ê(sH1(IDi),M)

and accept the session.
∗ Return V .
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• Otherwise, compute Kt
i,j = ê(f ti,jH1(IDj), saP2) · ê(sH1(IDi),M) if cti,j = 0, else compute

Kt
i,j = ê(f ti,jH1(IDj), sbP2) · ê(sH1(IDi),M), and accept the session.

– Reveal(Πt
i,j): Algorithm A maintains a list L with tuples of the form (IDi, IDj , Xi, Yj , Kt

i,j , Π
t
i,j).

The algorithm A proceeds in the following way to respond:
• Get the tuple of oracle Πt

i,j from Ω.
• If Πt

i,j has not accepted, return ⊥.
• If the Test(Πw

a,b) query has been issued and if Πt
i,j = Πw

a,b, or IDa = IDj and IDb = IDj and
two oracles have the same transcripts, then disallow the query (this should not happen if the
adversary obey the rules of the game).
• If SKt

i,j 6= ⊥, return SKt
i,j .

• Otherwise,
∗ Go through the listH list

2 to find a tuple (IDi, IDj ,Mi,Mj , Zu,Kt
i,j , hu) if IDi is the initiator

or a tuple (IDj , IDi, Mj , Mi, Zu, Kt
i,j , hu) otherwise, meeting the equation ê(ψ(Mi),Mj) =

ê(P1, Zu) and for Type 2 or 4 pairing ê(ψ(Mj),Mi) = ê(ψ(Zu), P2) as well, where Mi and
Mj are the messages of party i and j in tranti,j .
∗ If such Zu is found, then return SKt

i,j = hu.
∗ Otherwise, randomly sample SKt

i,j ∈ {0, 1}n, put (IDi, IDj , Mi, Mj , Kt
i,j , Π

t
i,j) if IDi is

the initiator or (IDj , IDi, Mj , Mi, Kt
i,j , Π

t
i,j) into list L. A responds with SKt

i,j and puts
SKt

i,j into Ω.
– Test(Πt

i,j): By the rule of the game, there is a partner oracle Πw
j,i with the same transcript as Πt

i,j

and both should not be revealed. A proceeds as follows:
• Check if cti,j = cwj,i. If it is true, then abort the game (Event 2).
• Otherwise, without loosing generality, we assume cti,j = 0 and cwj,i = 1, i.e., Mi = f ti,jaP2 and
Mj = fwj,ibP2. A randomly chooses ζ ∈ {0, 1}n and responds to B with ζ.

Once B finishes queries and returns its guess, A proceeds with the following steps:

– For every pair (Xu, Yu, Zu) on H list
2 with Xu = Mi, Yu = Mj if Πt

i,j is an initiator oracle, oth-
erwise with Xu = Mj , Yu = Mi, check if ê(ψ(Xu), Yu) = ê(P1, Zu) and for Type 2 or 4 pairings,
ê(ψ(Xu), Yu) = ê(ψ(Zu), P2) as well hold. If no such Zu meets the equation, abort the game (Event
3).

– Otherwise, return 1
fti,j ·fwj,i

Zu as the response to the DH challenge.

Following similar arguments as in Theorem 1, we have following two claims:

Claim 3 If A did not abort the game, B could not find inconsistence between the simulation and the
real world.

Claim 4 Pr[Event 3] ≥ ε(k).

As Pr[Event 2] = 1/2, we have

Pr[A wins] = Pr[Event 1 ∨ (Event 2 ∧ Event 3)]
≥ ε(k)/2.

�
A few subtle points of the proofs are worthy of mentioning. First, the proofs need an extra operation,

which is not explicitly specified in the protocol. Namely the proofs assume that all values lie in the correct
subgroups. One could ask whether this is an artifact of either the proofs or the security model. We discuss
this issue further in Appendix B. Second, we assume that xEB (yEA resp.) has a unique representation.
This assumption has no significance in practice but is needed to keep the indistinguishability of the proofs
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from the real world. Third, for Type 4 pairings, there is negligible probability (1/q) that the pairing is
trivial. We ignored this issue in the reduction.

We note that the above proofs can be replicated for the SCK-2 with Type 1 or 3 pairings based on
assumption BDHψ

2,2,1 and DHψ
2,2,1 respectively with very little changes. The reduction for Type 4 pairing

is more involved notationally, but the essential proof technique remains the same. We do not give these
second proofs in this paper due to lack of space.

We now turn to considering security proofs for the SYL scheme. Note that the SYL scheme can only
be implemented when the isomorphism exists and hashing in G2 can be done efficiently. So the SYL
scheme works only with Type 1 and Type 4 pairings. Here we formally present the proof for Type 1
pairing and leave the details of proof for Type 4 pairings to the interested readers.

The security of the SYL scheme can be summarised by Theorem 3, 4.

Theorem 3 The SYL scheme is a secure AK, provided the BDH assumption is sound and the hash
functions are modelled as random oracles. Specifically, suppose in the attack, an adversary B which
makes qi queries to Hi for i = 1, 2 and creates qo oracles, wins the game with advantage ε(k). Then there
exists an algorithm A to solve the BDH problem with advantage

AdvBDHA (k) ≥ 1
q1 · qo · q2

ε(k).

Proof: Given a BDH problem instance (P, aP, bP, cP ), we construct an algorithm A using the adversary
B against the protocol to solve the BDH problem.

A simulates the system setup to adversary B as follow. The system public parameters are defined to
be the pairing parameters of the input problem. The master public key is set to be R = aP , hence A
does not know the master secret key. The functions H1 and H2 are instantiated as random oracles under
the control of A.

Algorithm A randomly chooses 1 ≤ I ≤ q1 and 1 ≤ J ≤ qo and starts simulating the real world
where the adversary B launches the attack. Algorithm A answers the following queries, which are asked
by adversary B in an arbitrary order.

– H1(IDi): Algorithm A maintains an initially empty list H list
1 with entries of the form (IDi, Qi, `i).

The algorithm A responds to the query in the following way.

• If IDi already appears on H list
1 in a tuple (IDi, Qi, `i), then A responds with H1(IDi) = Qi.

• Otherwise, if IDi is the I-th unique identifier query, then A inserts (IDi, bP,⊥) into the list and
returns bP .

• Otherwise, A randomly chooses `i ∈ Z∗
q , inserts (IDi, `iP, `i) into the list and returns `iP .

– H2(IDa
u, ID

b
u, Xu, Yu, Zu,Ku): Algorithm A maintains an initially empty list H list

2 with entries of
the form (IDa

u, ID
b
u, Xu, Yu, Zu,Ku, hu). The algorithm A responds to the query in the following

way.

• If a tuple indexed by (IDa
u, ID

b
u, Xu, Yu, Zu,Ku) is on the list, then A responds with hu.

• Otherwise, A goes through the list L (maintained in the Reveal query) with tuples of the form
(IDi, IDj , Xi, Yj ,Πt

i,j) to find a tuple with values (IDa
u, ID

b
u, Xu, Yu,Π

t
i,j) and proceeds as

following:

∗ Test if ê(Xu, Yu) = ê(P,Zu). If the equation holds then,
· Find the values f ti,j and SKt

i,j corresponding to oracle Πt
i,j from the list Ω.

· Find the value `j from H list
1 for party with IDj .
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· Compute the shared secret via the equation where M = Xu if Xu is the incoming message
to the oracle Πt

i,j , or M = Yu otherwise,

Kt
i,j = ê(M +Qj , xiR+ di),

= ê(M + `jP, (f ti,ja)aP + abP ), since xi = f ti,ja, di = abP

= ê(M,f ti,jaaP ) · ê(M,abP ) · ê(`jP, f ti,jaaP ) · ê(`jP, abP ),

= ê(Zu, aP ) · ê( 1
f ti,j

Zu, bP ) · ê(f ti,j`jaP, aP ) · ê(`jbP, aP ),

since f ti,jaM = Zu

= ê(Zu + f ti,j`jaP + `jbP, aP ) · ê( 1
f ti,j

Zu, bP )

Note that Πt
i,j is put on the list L only when Πt

i,j has been revealed and di = abP , but
H2(IDa

u, ID
b
u, Xu, Yu, Zu, Kt

i,j) had not been queried before the reveal query. So, SKt
i,j

has been randomly sampled.
· Set hu = SKt

i,j .
· Remove (IDa

u, ID
b
u, Xu, Yu,Π

t
i,j) from the list L. Put (IDa

u, ID
b
u, Xu, Yu, Zu,K

t
i,j , hu) in

the list H list
2 .

· Check if Kt
i,j = Ku. If it is not true, A randomly chooses new hu ∈ {0, 1}n, inserts

(IDa
u, ID

b
u, Xu, Yu, Zu, Ku, hu) into the list H list

2 .
· Return hu.

∗ Otherwise (no tuple on L meets the test), algorithm A randomly chooses hu ∈ {0, 1}n, inserts
(IDa

u, ID
b
u, Xu, Yu, Zu, Ku, hu) into the list and returns hu

• Otherwise, A randomly chooses hu ∈ {0, 1}n, inserts (IDa
u, ID

b
u, Xu, Yu, Zu, Ku, hu) into the

list and returns hu.
– Corrupt(IDi): A looks through list H list

1 . If IDi is not on the list, A queries H1(IDi). A checks
the value of `i: if `i 6= ⊥, then A responds with `iaP ; otherwise, A aborts the game (Event 1).

– Send(Πt
i,j, M): A maintains a list Ω for each oracle of the form (Πt

i,j , tran
t
i,j , r

t
i,j , K

t
i,j , SK

t
i,j , f

t
i,j)

where tranti,j is the transcript of the oracle so far; rti,j is the random integer used by the oracle to
generate message, f ti,j is used for special purpose explained below, and Kt

i,j and SKt
i,j are set ⊥

initially. Note that this list is updated in the reveal query and H2 query as well. A proceeds in the
following way:
• IfM is the second message on the transcript, do nothing but simply accept the session. Otherwise,
• Query H1(IDi) and H1(IDj).
• If t = J ,
∗ If `j 6= ⊥, then abort the game (Event 2).
∗ Otherwise, respond with cP and set rti,j = ⊥ (if M = λ, then party IDi is an initiator,

otherwise a responder as M is the first message of the session).
• Otherwise,
∗ If `i = ⊥, randomly choose f ti,j ∈ Z∗

q and respond with f ti,jaP and set rti,j = ⊥.
∗ Otherwise, randomly choose rti,j ∈ Z∗

q and respond with rti,jP .
– Reveal(Πt

i,j): A maintains a list L with tuples of the form (IDi, IDj , Xi, Yj ,Πt
i,j), A proceeds in

the following way to respond:
• Get the tuple corresponding to oracle Πt

i,j from Ω.
• If oracle Πt

i,j has not accepted, then respond with ⊥.
• If t = J or if the J-th oracle has been generated as ΠJ

a,b and IDa = IDj , IDb = IDi and ΠJ
a,b

and Πt
i,j have the same transcript, then abort the game (Event 3).



26

• If SKt
i,j 6= ⊥, return SKt

i,j .
∗ If rti,j 6= ⊥ (so `i 6= ⊥ and di = `iaP ),
· Compute Kt

i,j = ê(M +Qj , (rti,j + `i)aP ) where Qj is found from H list
1 for identifier IDj

andM is the received message on tranti,j . Set SKt
i,j = H2(IDi, IDj , r

t
i,jP,M, rti,jM ,Kt

i,j)
if Πt

i,j is an initiator oracle, or SKt
i,j = H2(IDj , IDi,M, rti,jP, r

t
i,jM,Kt

i,j) otherwise, and
return SKt

i,j as the response.
∗ Otherwise, i.e., it should have rti,j = f ti,ja and di = abP . Algorithm A does not know both

values and should compute Kt
i,j = ê(M + `jP, f

t
i,jaR+ di) and f ti,jaM (note that the model

requires that i 6= j). Algorithm A proceeds as follows:
· Go through the list H list

2 to find a tuple (IDi, IDj , f
t
i,jaP,M , Zu, Ku, hu) if IDi is the

initiator or a tuple (IDj , IDi, M , f ti,jaP , Zu, Ku, hu) otherwise, meeting the equation
ê(M,f ti,jaP ) = ê(P,Zu).
· If such Zu is found, then compute

Kt
i,j = ê(M + `jP, f

t
i,jaR+ di)

= ê(
1

f ti,ja
Zu + `jP, f

t
i,jaaP + abP ) since M =

1
f ti,ja

Zu,

= ê(Zu, aP ) · ê( 1
f ti,j

Zu, bP ) · ê(f ti,j`jaP, aP ) · ê(`jbP, aP ),

= ê(Zu + f ti,j`jaP + `jbP, aP ) · ê( 1
f ti,j

Zu, bP )

and return SKt
i,j = H2(IDi, IDj , f ti,jaP , M,Zu,K

t
i,j) if party i is the initiator or

SKt
i,j = H2(IDj , IDi,M, f ti,jaP,Zu,K

t
i,j) if i is the responder.

· Otherwise, randomly sample SKt
i,j ∈ {0, 1}n, put (IDi, IDj , f ti,jaP , M,Πt

i,j) if IDi is
the initiator or (IDj , IDi,M, f ti,jaP,Π

t
i,j) into list L. A responds with SKt

i,j .
– Test(Πt

i,j): If t 6= J or there is an oracle Πw
j,i with the same transcript as Πt

i,j

that has been revealed, then A aborts the game (Event 4). Otherwise (`j = ⊥, Qj = bP and
rti,j = ⊥), A randomly chooses ζ ∈ {0, 1}n and responds to B with ζ.

Once B finishes queries and returns its guess, A proceeds with the following steps:

– For every pair (Xu, Yu, Zu) on H list
2 with Xu = cP, Yu = M if Πt

i,j is an initiator oracle, otherwise
with Xu = M,Yu = cP where M is the received message on tranti,j , check if ê(Xu, Yu) = ê(P,Zu)
holds. If no such Zu meets the equation, abort the game (Event 5).

– Otherwise, compute
D = ê(`i(bP +M) + Zu, aP ).

Note that because i 6= j according to Definition 6, it has di = `iaP where `i 6= ⊥ found from H list
1

corresponding to identifier IDi and

Kt
i,j = ê(M +Qj , xiR+ di),

= ê(M + bP, caP + `iaP )
= ê(P, P )abc · ê(bP, `iaP ) · ê(M, caP + `iaP ),

= ê(P, P )abc · ê(`ibP, aP ) · ê(Zu, aP ) · ê(`iM,aP ) since M =
1
c
Zu,

= ê(P, P )abc ·D.

– Algorithm A randomly chooses K` from H list
2 and returns K`/D as the response to the BDH chal-

lenge.
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Following the similar argument as in Theorem 1, we have following two claims.

Claim 5 If A did not abort the game, B could not find inconsistence between the simulation and the
real world.

Claim 6 Let Event 6 be that K = ê(M + bP, (c + `i)aP ) was not queried on H2. Then Pr[Event 5 ∧
Event 6] ≥ ε(k).

Let Event 7 be that, in the attack, adversary B indeed chose to impersonate a party, whose identifier
was queried on H1 as the I-th distinct identifier query, to the J-th oracle. Then following the rules of
the game defined in Section 3, it’s clear that Event 1, 2, 3, 4 would not happen. So,

Pr[(Event 1 ∨ Event 2 ∨ Event 3 ∨ Event 4)] = Pr[Event 7] ≥ 1
q1 · qo

.

Let Event 8 be that A did not abort in the game. Let Event 9 be that A found the correct K`.
Overall, we have

Pr[A wins] = Pr[Event 8 ∧ Event 6 ∧ Event 9]
= Pr[Event 7 ∧ Event 5 ∧ Event 6 ∧ Event 9]
≥ 1

q1·qo·q2 Pr[Event 5 ∧ Event 6]
≥ 1

q1·qo·q2 ε(k).

This concludes the proof. �

Theorem 4 The SYL scheme has master key forward secrecy, provided the DH assumption on G =
G1 = G2 holds and H2 is modelled as random oracle. Specifically, suppose an adversary B wins the game
with advantage ε(k). Then there exists an algorithm A to solve the DH problem in G with advantage

AdvDHA ≥ 1
2
ε(k).

Proof: The proof is very similar to Theorem 2. Here we only specify the difference from the proof in
Theorem 2 which is mainly how the agreed secret K is computed.

– Send(Πt
i,j, M):

• If M is not the second message on the transcript,
∗ If M 6= λ, compute Kt

i,j = ê(M +H1(IDj), V +H1(IDi))s and accept the session.
• Otherwise, compute Kt

i,j = ê(M +H1(IDj), f ti,jaP +H1(IDi))s if cti,j = 0, else compute Kt
i,j =

ê(M +H1(IDj), f ti,jbP +H1(IDi))s, and accept the session.

�

Following the observation of the security model in Section 3, we can confirm that the SCK scheme
and the SYL scheme achieve very strong security properties including implicit mutual authentication,
known session key security, key compromise impersonation resilience, unknown key share resilience and
master key forward secrecy.

As analysed in Section 6, the simulator should deal with one of the following problems: either to
compute the session key to be revealed or to determine if the established secret has been queried to the
random oracle. Now let us take a closer look at how the built-in decisional function magically help the
simulator solve the problem without resorting to any other oracles (but only the random oracles). In
the above two protocols, to introduce an efficient built-in decisional function into the protocols, the DH
key xyP2 and the pairing-computed key K are used together in the session key computation through a
random oracle H2. The decisional function then is construed as ê(ψ(X), Y ) ?= ê(P1, Z) where X,Y are
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the exchanged key tokens and Z is the DH key value input of H2. Now the simulator surely can make
use of the decisional function to find out that the session secret including xyP2 and K has not been
queried, if xyP2 has not been queried on H2. When the DH value has indeed been queried on H2, the
simulator has to compute K, otherwise, it will have to resort to a BDH decisional oracle. By noticing
that the difficulty of computing K in some sessions is to compute ê(ψ(abP2), Y ) for some Y = yP2

generated by the adversary, the simulator makes use of its freedom of choosing some x for X = xP2 to
set X = raP2 (or X = rbP2) in those sessions. Now with the value Z = raY (or Z = rbY ) found by the
decisional function and value r, K can be computed as ê(ψ(abP2), Y ) = ê(ψ(bP2), 1

rZ) = ê(bP1,
1
rZ) (or

ê(ψ(aP2), 1
rZ)). So, with the decisional function the simulator now can either find out the session secret

has not been queried with the random oracle or compute the agreed secret value.

8 Enhancing the CK Scheme and MB scheme

In the last section, we have shown that by including the DH value in the computation of session key so
to construct a built-in decisional function, both the SCK scheme and the SYL scheme can be proved in
the model defined in Section 3 based on the BDH assumption. Here we show how to construct a built-in
decisional function in protocols which use different bases to generate key tokens to enable a security
reduction based on the weakest assumption. We use the CK protocol and MB protocol as the case study.

We enhance the CK protocol as follow which requires parties to use a unique salt in each session.

Enhanced Chen-Kudla Protocol:

A→ B : (EA, SA) = (xQA, xH2(S)),
B → A : (EB , SB) = (yQB , yH2(S)),

where S ∈ {0, 1}l is the unique salt for the session and H2 is cryptographic function H2 : {0, 1}l → G1

for some integer l. Such unique salt can be constructed as A‖B‖t where t is some mutually agreed nonce,
such as an agreed current system time value.

Upon receiving the key token, A verifies if the equation ê(H2(S), EB) = ê(SB , QB) holds. If the
equation holds, A accepts the session, otherwise rejects it. The user B proceeds in the similar fash-
ion by checking ê(H2(S), EA) = ê(SA, QA). If the session is accepted, A and B compute a session
secret shared between them as follow: A computes K = ê(ψ(dA), xQB + EB) and B computes K =
ê(yψ(QA) + ψ(EA), dB). The session key is computed by SK = H3(A, B, EA, EB , SA, SB , K).

Like the SYL scheme, this protocol works only with Type 1 and Type 4 pairings. Again, we only
present the formal proof for the protocol used on Type 1 pairing. The security of the enhanced CK
protocol is summarised in Theorem 5.

Theorem 5 The enhanced Chen-Kudla protocol is a secure AK, provided the BDH assumption is sound
and the hash functions are modelled as random oracles. Specifically, suppose in the attack, an adversary
B which makes qi queries to Hi for i = 1, 2, 3 and creates qo oracles, wins the game with advantage ε(k).
Then there exists an algorithm A to solve the BDH problem with advantage

AdvBDHA (k) ≥ 1
q1 · q2 · q3 · qo

ε(k).

Proof: Given a BDH problem instance (P, aP, bP, cP ), A simulates the system setup to adversary B as
follow. The master public key is set to be R = aP , i.e. the master key is a which A does not known. The
hash functions H1,H2,H3 are modelled as random oracles controlled by A.

Algorithm A randomly chooses 1 ≤ I ≤ q1 and 1 ≤ J ≤ qo and 1 ≤ L ≤ q2, then starts simulating
the real world where the adversary B launches the attack. Adversary B can issue following queries in an
arbitrary order.
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– H1(IDi): Algorithm A maintains an initially empty list H list
1 with entries of the form (IDi, Qi, `i).

A responds to the query in the following way.
• If IDi already appears on H list

1 in a tuple (IDi, Qi, `i), then A responds with H1(IDi) = Qi.
• Otherwise, if IDi is the I-th unique identifier query, then A inserts (IDi, bP,⊥) into the list and

returns bP .
• Otherwise, A randomly chooses `i ∈ Z∗

q , inserts (IDi, `iP, `i) into the list and returns `iP .
– H2(Si): Algorithm A maintains an initially empty list H list

2 with entries of the form (Su,mu, Ru, wu).
Algorithm A responds to the query in the following way.
• If a tuple (Si,mi, Ri, wi) has already appeared on H list

2 , then A responds with Ri.
• Otherwise,
∗ If Si is the L-th unique query, then randomly sample wi ∈ Z∗

q and insert (Si,⊥, wiP,wi) into
H list

2 and return wiP .
∗ Otherwise, randomly sample mi ∈ Z∗

q and insert (Si,mi,miaP,⊥) into H list
2 and return

miaP .
– H3(IDa

u, ID
b
u, Xu, Yu, Lu, Nu,Ku): Algorithm A maintains an initially empty list H list

3 with entries
of the form (IDa

u, ID
b
u, Xu, Yu, Lu, Nu, Ku, hu). A responds to the query in the following way.

• If a tuple indexed by (IDa
u, ID

b
u, Xu, Yu, Lu, Nu,Ku) is on the list, then A responds with hu.

• Otherwise, A randomly chooses hu ∈ {0, 1}n, inserts (IDa
u, ID

b
u, Xu, Yu, Lu, Nu, Ku, hu) into

the list and returns hu.
– Corrupt(IDi): Algorithm A looks through list H list

1 . If IDi is not on the list, A queries H1(IDi).
Algorithm A then checks the value of `i: if `i 6= ⊥, then A responds with `iaP ; otherwise, A aborts
the game (Event 1).

– Send(Πt
i,j, (M, N)): Algorithm A maintains a list Ω for each oracle of the form (Πt

i,j , tran
t
i,j , r

t
i,j ,

Kt
i,j , SK

t
i,j) where tranti,j is the transcript of the oracle so far; rti,j is the random integer used by

the oracle to generate message, and Kt
i,j and SKt

i,j are set ⊥ initially. Note that the values in this
list are accessed by A in other queries and also updated in other queries as well. A proceeds in the
following way:
• Query Qi = H1(IDi) and Qj = H1(IDj) and Rt = H2(St) where St is the unique salt for this

session.
• If t = J ,
∗ If `j 6= ⊥ (Event 2), or wt = ⊥ (i.e., mt 6= ⊥, Event 3) where `j is found from H list

1

corresponding to IDj and wt is found from H list
2 corresponding to St, then abort the game.

∗ Otherwise,
· Set ri,j = ⊥.
· If (M,N) = λ, respond with (`icP , wtcP ).
· Otherwise, if (M,N) is the first message of the session, then check if ê(Rt,M) = ê(N,Qj).

If the equation holds, respond with (`icP , wtcP ), and accept the session, otherwise reject
the session and abort the game (Event 4).
· Otherwise, check if ê(Rt,M) = ê(N,Qj). If the equation holds, do nothing but accept

the session, otherwise reject the session and abort the game (Event 5).
• Otherwise,
∗ If (M,N) = λ, randomly sample rti,j ∈ Z∗

q and respond with (rti,jQi, r
t
i,jRt).

∗ Otherwise, check if ê(Rt,M) = ê(N,Qj). If the equation does not hold, reject the session.
Otherwise,
· If (M,N) is the first message of the session, randomly sample rti,j ∈ Z∗

q and respond with
(rti,jQi, r

t
j,iRt), and

· Compute SKt
i,j as below and accept the session.

· If `i 6= ⊥, compute Kt
i,j = ê(`iaP,M + rti,jQj)
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· Otherwise, the agreed secret should be

Kt
i,j = ê(abP,M + rti,jQj)

= ê(bP, aM) · ê(bP, rti,j`jaP ).

If mt = ⊥ (i.e., wt 6= ⊥), abort the game (Event 6). Otherwise, because (M,N) meets
the equation ê(Rt,M) = ê(N, `jP ), i.e., ê(mtaP,M) = ê(N, `jP ), we can compute

Kt
i,j = ê(bP,

`j
mt

N) · ê(bP, rti,j`jaP ).

· Set SKt
i,j = H2(IDi, IDj , rti,jQi, M , rti,jRt, N , Kt

i,j) if party i is the initiator, or
SKt

i,j = H2(IDj , IDi, M , rti,jQi, N , rti,jRt, K
t
i,j) otherwise.

– Reveal(Πt
i,j): Algorithm A proceeds in the following way to respond:

• If oracle Πt
i,j has not accepted, then respond with ⊥.

• If t = J or if the J-th oracle has been generated as ΠJ
a,b and IDa = IDj , IDb = IDi and ΠJ

a,b

and Πt
i,j have the same transcript, then abort the game (Event 7).

• Otherwise, return SKt
i,j .

– Test(Πt
i,j): If t 6= J or there is an oracle Πw

j,i with the same transcript as Πt
i,j that has been revealed,

then A aborts the game (Event 8). Otherwise (`j = ⊥, Qj = bP and rti,j = ⊥), and so A randomly
chooses ζ ∈ {0, 1}n and responds to B with ζ.

Once B finishes queries and returns its guess, A proceeds with the following steps:

– Compute D = ê(`iaP,M). Note that because i 6= j according to Definition 6, it has di = `iaP
where `i 6= ⊥ found from H list

1 corresponding to identifier IDi and KJ
i,j = ê(`iaP, cbP + M) =

ê(P, P )`iabc ·D.
– Then A randomly chooses K` from H list

2 and returns (K`/D)1/`i as the response to the BDH chal-
lenge.

Following the similar argument as in Theorem 1, we have following two claims.

Claim 7 If A did not abort the game, B could not find inconsistence between the simulation and the
real world.

Claim 8 Let Event 9 be that K = ê(`iaP,M + cbP ) was not queried on H3. Then Pr[Event 9] ≥ ε(k).

Let Event 10 be that, in the attack, adversary B indeed chose to impersonate a party, whose identifier
was queried on H1 as the I-th distinct identifier query, to the J-th oracle. Then following the rules of
the game defined in Section 3, it’s clear that Event 1, 2, 4, 5, 7, 8 would not happen. So,

Pr[(Event 1 ∨ Event 2 ∨ Event 4 ∨ Event 5 ∨ Event 7 ∨ Event 8)] = Pr[Event 10] ≥ 1
q1 · qo

.

Let Event 11 be that A did not abort in the game.

Pr[Event 11] = Pr[Event 10 ∧ Event 3 ∧ Event 6]
= Pr[Event 10 ∧ Event 3], since Event 3 implies Event 6
≥ 1

q1·qo·q2 .

Let Event 12 be that A found the correct K`. Overall, we have

Pr[A wins] = Pr[Event 11 ∧ Event 9 ∧ Event 12]
≥ 1

q1·qo·q2
1
q3
ε(k).

This concludes the proof. �
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Using a similar approach, the MB-2 protocol can be enhanced as follow:

Enhanced McCullagh-Barreto Protocol:

A→ B : (EA, SA) = xTB , xH2(S),
B → A : (EB , SB) = yTA, yH2(S),

where S is the unique salt for the session. H2 has codomain G1. However, the enhanced protocol uses
the Extract 2’ algorithm, i.e, R, TA ∈ G2 and dA ∈ G1.

Like the enhanced CK protocol, A and B should proceed the check on the key token by verifying
ê(H2(S), EB) = ê(SB , TA) and ê(H2(S), EA) = ê(SA, TB) respectively before accepting the session. If
the session is accepted, A and B compute a session secret shared between them as follow: A computes
K = ê(dA, EB) · ê(P1, P2)x and B computes K = ê(dB , EA) · ê(P1, P2)y. The session key is computed by
SK = H3(A, B, EA, EB , SA, SB , K).

To ease the reduction, we use the `-BCAA1 assumption which is a related assumption with `-BDHI.
It has been shown that an `-BDHI problem can be converted to the corresponding `-BCAA1 problem [6].

Theorem 6 The enhanced McCullagh-Barreto protocol is a secure AK, provided the `-BCAA1ψ2,1 as-
sumption is sound and the hash functions are modelled as random oracles. Specifically, suppose in the
attack, an adversary B which makes qi queries to Hi for i = 1, 2, 3 and creates qo oracles, wins the
game with advantage ε(k). Then there exists an algorithm A to solve the (q1−1)-BCAA1ψ2,1 problem with
advantage

Adv
(q1−1)−BCAA1ψ2,1
A (k) ≥ 1

q1 · q2 · q3 · qo
ε(k).

Proof: Given an instance of the (q1 − 1)-BCAA1ψ2,1 problem

(sP2, h0, (h1,
1

h1 + s
P1), . . . , (hq1−1,

1
hq1−1 + s

P1))

where hi ∈R Z∗
q for 0 ≤ i ≤ q1 − 1, algorithm A simulates the Setup algorithm to generate the master

public key as R = sP2, i.e., using s as the master key which it does not know. The hash functions H1,
H2 and H3 are random oracles controlled by A.

Again A randomly chooses 1 ≤ I ≤ q1 and 1 ≤ J ≤ qo and 1 ≤ L ≤ q2, then starts simulating the
real world. Adversary B can issue following queries in an arbitrary order.

– H1(IDi): Algorithm A maintains a list of tuples (IDi, hi, di) as explained below. We refer to this list
as H list

1 . The list is initially empty. When B queries the oracle H1 at a point on IDi, A responds as
follows:
• If IDi already appears on the H list

1 in a tuple (IDi, hi, di), then A responds with H1(IDi) = hi.
• Otherwise, if the query is on the I-th distinct ID, then A inserts (IDI , h0,⊥) into the tuple list

and responds with H1(IDI) = h0.
• Otherwise, A selects a random integer hi(i > 0) from the (q1−1)-BCAA1 instance which has not

been chosen by A and inserts (IDi, hi,
1

hi+s
P1) into the tuple list. Algorithm A responds with

H1(IDi) = hi.
– H2(Si): Algorithm A maintains an initially empty list H list

2 with entries of the form (Su,mu, Ru, wu).
Algorithm A responds to the query in the following way.
• If a tuple (Si,mi, Ri, wi) has already appeared on H list

2 , then A responds with Ri.
• Otherwise,
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∗ If Si is the L-th unique query, then randomly sample wi ∈ Z∗
q and insert (Si,⊥, wi(h0P1 +

ψ(sP2)), wi) into H list
2 and return wi(h0P1 + ψ(sP2)).

∗ Otherwise, randomly sample mi ∈ Z∗
q and insert (Si,mi,miP1,⊥) into H list

2 and return
miP1.

– H3(IDa
u, ID

b
u, Xu, Yu, Lu, Nu,Ku): Algorithm A maintains an initially empty list H list

3 with entries
of the form (IDa

u, ID
b
u, Xu, Yu, Lu, Nu, Ku, hu). A responds to the query in the following way.

• If a tuple indexed by (IDa
u, ID

b
u, Xu, Yu, Lu, Nu,Ku) is on the list, then A responds with hu.

• Otherwise, A randomly chooses hu ∈ {0, 1}n, inserts (IDa
u, ID

b
u, Xu, Yu, Lu, Nu, Ku, hu) into

the list and returns hu.
– Corrupt(IDi): Algorithm A looks through list H list

1 . If IDi is not on the list, A queries H1(IDi).
Algorithm A checks the value of di: if di 6= ⊥, then A responds with di; otherwise, A aborts the
game (Event 1).

– Send(Πt
i,j, (M, N)): Algorithm A maintains a list Ω for each oracle of the form (Πt

i,j , tran
t
i,j , r

t
i,j ,

Kt
i,j , SK

t
i,j) where tranti,j is the transcript of the oracle so far; rti,j is the random integer used by the

oracle to generate message, and Kt
i,j and SKt

i,j are set ⊥ initially. Note that the values in this list
are accessed by A in other queries and also updated in other queries as well. Algorithm A proceeds
in the following way:
• Query Ti = H1(IDi)P2 + sP2 and Tj = H1(IDj)P2 + sP2 and Rt = H2(St) where St is the

unique salt for this session.
• If t = J ,
∗ If dj 6= ⊥ (Event 2), or wt = ⊥ (i.e., mt 6= ⊥, Event 3) where dj is found from H list

1

corresponding to IDj and wt is found from H list
2 corresponding to St, then abort the game.

∗ Otherwise,
· Set ri,j = ⊥ and randomly sample α ∈R Z∗

q

· If (M,N) = λ, respond with (αP2, wtαP1).
· Otherwise, if (M,N) is the first message of the session, then check if ê(Rt,M) = ê(N,Ti).

If the equation holds, respond with (αP2, wtαP1), and accept the session, otherwise reject
the session and abort the game (Event 4).
· Otherwise, check if ê(Rt,M) = ê(N,Ti). If the equation holds, do nothing but accept the

session, otherwise reject the session and abort the game (Event 5)
• Otherwise,
∗ If (M,N) = λ, randomly sample rti,j ∈ Z∗

q and respond with (rti,jTj , r
t
i,jRt).

∗ Otherwise, check if ê(Rt,M) = ê(N,Ti). If the equation does not hold, reject the session.
Otherwise,
· If (M,N) is the first message of the session, randomly sample rti,j ∈ Z∗

q and respond with
(rti,jTj , r

t
j,iRt), and

· Compute SKt
i,j as below and accept the session.

· If di 6= ⊥, compute
Kt
i,j = ê(di,M) · ê(P1, P2)r

t
i,j .

· Otherwise, the agreed secret should be

Kt
i,j = ê(

1
h0 + s

P1,M) · (P1, P2)r
t
i,j .

If mt = ⊥ (i.e., wt 6= ⊥), abort the game (Event 6). Otherwise, because (M,N) satisfies
the equation ê(Rt,M) = ê(N,Ti), i.e., ê(mtP1,M) = ê(N, (h0 + s)P2), we can compute

Kt
i,j = ê(

1
mt

N,P2) · ê(P1, r
t
i,jP2).
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· Set SKt
i,j = H2(IDi, IDj , rti,jTi, M , rti,jRt, N , Kt

i,j) if party i is the initiator, or
SKt

i,j = H2(IDj , IDi, M , rti,jTi, N , rti,jRt, K
t
i,j) otherwise.

– Reveal(Πt
i,j): Algorithm A proceeds in the following way to respond:

• If oracle Πt
i,j has not accepted, then respond with ⊥.

• If t = J or if the J-th oracle has been generated as ΠJ
a,b and IDa = IDj , IDb = IDi and ΠJ

a,b

and Πt
i,j have the same transcript, then abort the game (Event 7).

• Otherwise, return SKt
i,j .

– Test(Πt
i,j): If t 6= J or there is an oracle Πw

j,i with the same transcript as Πt
i,j that has been revealed,

then A aborts the game (Event 8). Otherwise (dj = ⊥, Tj = h0P2 + sP2 and rti,j = ⊥), algorithm
A randomly chooses ζ ∈ {0, 1}n and responds to B with ζ.

Once B finishes queries and returns its guess, A proceeds with the following steps:

– Compute D = ê(di,M). Note that

KJ
i,j = ê(di,M) · ê(P1, P2)

α
h0+s .

– Algorithm A randomly chooses K` from H list
2 and returns (K`/D)1/α as the response to the (q1−1)-

BCAA1 challenge.

Following the similar argument as in Theorem 5, the theorem is proved. �

The above two simulators use an approach different from the one used in Section 7 to construct the
decisional function. Instead of ascertaining whether a session secret has been queried with the random
oracle, the decisional function can help the simulator to compute the established secret directly. In the
CK protocol, the difficult of computing K of some sessions is to compute ê(abP,M) where M = yQB
for some y and M is generated by the adversary. To compute this value, the protocol is enhanced by
introducing a new component N = yH2(S) in the key tokens and S is a unique salt of each session. The
built-in decisional function is by ê(H2(S),M) ?= ê(N,QB). As the simulator controls the random oracle
H2, it can map S to raP (or rbP )). If the decisional function finds the equation holds and QB = jP for
some j known to the simulator, ê(abP,M) can then be computed as ê( 1

rN, jbP ) (or ê( 1
rN, jaP )). The

same approach works for the enhanced McCullagh-Barreto protocol.
Note that the above two schemes do not hold the master key forward secrecy property. It can be

achieved by adding xyH2(S) into the shared secret. In that case, the established session key becomes
SK = H3(A,B,EA, EB , SA, SB , xyH2(S),K). The security analysis of this property is similar to the
proofs of Theorem 2 and 4 (see Appendix A for a proof).

9 Conclusions

We have presented a new approach of incorporating a built-in decisional function in two-party identity-
based key agreement protocols from pairings. This decisional function is designed to transfer a hard
decisional problem in the security analysis of this type of protocols to the DDH problem, which is not
hard, based on the fact that these protocols are implemented in the group where a pairing exists. We have
thus demonstrated how to reduce the security of a number of this type of protocols to computational
rather than gap assumptions.
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Appendices

A Proof of Master Key Forward Secrecy of The Enhanced MB Protocol

Theorem 7 The enhanced MB scheme has master key forward secrecy, provided the DHψ2,2,1 assumption
on G2 is sound and H2 and H3 are modelled as random oracles. Specifically, suppose an adversary B
wins the game with advantage ε(k). Then there exists an algorithm A to solve the DHψ2,2,1 problem with
advantage

Adv
DHψ2,2,1
A ≥ 1

2
ε(k).

Proof: Given a set of pairing parameters and a DHψ
2,2,1 problem instance (aP2, bP2), we construct an

algorithm A to make use of B to solve the DHψ
2,2,1 problem. Algorithm A simulates the system setup to

adversary B as follow, by randomly sampling s ∈ Z∗
q and setting the master public key to be R = sP2,

and the master secret key as s. The hash function H2 and H3 will be modelled as a random oracles
under the control of A, and H1 will be a cryptographic hash function. Moreover, the master secret key
s is passed to B as well, so A no longer simulates the corrupt query.

Algorithm A answers the following queries, which are asked by adversary B in an arbitrary order.

– H2(Si): Algorithm A maintains an initially empty list H list
2 with entries of the form (Su,mu, Ru).

Algorithm A responds to the query in the following way.
• If a tuple (Si,mi, Ri) has already appeared on H list

2 , then A responds with Ri.
• Otherwise, randomly sample mi ∈ Z∗

q and insert (Si,mi,miP1) into H list
2 and return miP1.

– H3(IDa
u, ID

b
u, Xu, Yu, Lu, Nu, Zu,Ku): Algorithm A maintains an initially empty list H list

3 with en-
tries of the form (IDa

u, ID
b
u, Xu, Yu, Lu, Nu, Zu,Ku, hu). A responds to the query in the following

way.
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• If a tuple indexed by (IDa
u, ID

b
u, Xu, Yu, Lu, Nu, Zu,Ku) is on the list, then A responds with hu.

• Otherwise, A goes through the list L (maintained in the Reveal query) with tuples of the form
(IDi, IDj , Mi, Mj , Ni, Nj , Kt

i,j ,Π
t
i,j) to find a tuple with values (IDa

u, ID
b
u, Xu, Yu, Lu, Nu,

Ku,Π
t
i,j) and proceeds as following (in the following, without loosing generality, we assume Nu

is the second component in the message generated by oracle Πt
i,j , hence by the behavior of the

Send query, Nu = f ti,jψ(aP2) if cti,j = 0, or Nu = f ti,jψ(bP2) otherwise, where cti,j and f ti,j are
found from tuple corresponding to oracle Πt

i,j in the list Ω maintained in the Send query):
∗ Test if ê(Lu, f ti,jaP2) = ê(Zu, P2) if cti,j = 0 or ê(Lu, f ti,jbP2) = ê(Zu, P2) otherwise. If the

equation holds then,
· Remove (IDa

u, ID
b
u, Xu, Yu, Lu, Nu, Ku,Π

t
i,j) from the list L. Put (IDa

u, ID
b
u, Xu, Yu,

Lu, Nu, Zu, Ku, SKt
i,j) in the list H list

3 and return SKt
i,j . Note that Πt

i,j is put on the
list L only when it has been revealed, so SKt

i,j has been sampled.
∗ Otherwise (no tuple on L meets the test), algorithm A randomly chooses hu ∈ {0, 1}n, inserts

(IDa
u, ID

b
u, Xu, Yu, Lu, Nu, Zu, Ku, hu) into the list and returns hu

• Otherwise, A randomly chooses hu ∈ {0, 1}n, inserts (IDa
u, ID

b
u, Xu, Yu, Lu, Nu, Zu, Ku, hu)

into the list and returns hu.
– Send(Πt

i,j, (M, N)): A maintains a list Ω for each oracle of the form (Πt
i,j , tran

t
i,j , f

t
i,j , K

t
i,j , SK

t
i,j ,

cti,j) where tranti,j is the transcript of the oracle so far; f ti,j , c
t
i,j are used for special purpose explained

below, and Kt
i,j , SK

t
i,j are set ⊥ initially. Note that the values in this list are accessed by A in other

queries and also updated in other queries as well. A proceeds in the following way:
• Query Ti = H1(IDi) and Tj = H1(IDj) and Rt = H2(St) = mtP1 where St is the unique salt

for this session and mt is found from the tuple corresponding to St in H list
2 .

• If (M,N) 6= λ, check if ê(Rt,M) = ê(N,Ti). If the equation does not hold, reject the session.
• If (M,N) is not the second message on the transcript,
∗ Randomly sample f ti,j ∈ Z∗

q .

∗ Randomly flip cti,j ∈ {0, 1}. If cti,j = 0, set V = f ti,jψ(aP2), U = fti,j
mt

(H1(IDj) + s)(aP2), else

V = f ti,jψ(bP2), U = fti,j
mt

(H1(IDj) + s)(bP2). If V = P1, then responds to the DH challenge
with 1

fti,j
ψ(bP2) if cti,j = 0, or 1

fti,j
ψ(aP2) otherwise (Event 1).

∗ If (M,N) 6= λ, compute

Kt
i,j = ê(di,M) · ê(P1,

f ti,j
mt

aP2),

if cti,j = 0, else set

Kt
i,j = ê(di,M) · ê(P1,

f ti,j
mt

bP2),

where di = 1
H1(IDi)+s

P1 and accept the session.

∗ Return (U, V ). It is easy to verify that the random integer to generate the message is fti,j
mt
a

if cti,j = 0 or fti,j
mt
b otherwise. Message (U, V ) meets the test on ê(H2(St), U) = (V, Tj), hence

is valid. And Kt
i,j is computed correctly with the above formulas.

• Otherwise, if cti,j = 0 compute

Kt
i,j = ê(

1
H1(IDi) + s

P1,M) · ê(P1,
f ti,j
mt

aP2)

else compute

Kt
i,j = ê(

1
H1(IDi) + s

P1,M) · ê(P1,
f ti,j
mt

bP2),

and accept the session.
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– Reveal(Πt
i,j): Algorithm A maintains a list L with tuples of the form (IDi, IDj , Mi, Mj , Ni, Nj ,

Kt
i,j , Π

t
i,j). The algorithm A proceeds in the following way to respond:

• If Πt
i,j has not accepted, return ⊥.

• If the Test(Πw
a,b) query has been issued and if Πt

i,j = Πw
a,b, or IDa = IDj and IDb = IDj and

two oracles have the same transcripts, then disallow the query (this should not happen if the
adversary obey the rules of the game).
• If SKt

i,j 6= ⊥, return SKt
i,j .

• Otherwise,
∗ Go through the list H list

3 to find a tuple (IDi, IDj ,Mi,Mj , Ni, Nj , Zu, Kt
i,j , hu) if IDi is the

initiator or a tuple (IDj , IDi, Mj , Mi, Nj , Ni, Zu, Kt
i,j , hu) otherwise, meeting the equation

ê(Nj , f ti,jaP2) = ê(Zu, P2) if Ni = f ti,jψ(aP2) or ê(Nj , f ti,jbP2) = ê(Zu, P2) if Ni = f ti,jψ(bP2),
where (Mi, Ni) and (Mj , Nj) are the messages of party i and j in tranti,j . Note that by the
behavior of Send query, Ni can only be either f ti,jψ(aP2) if cti,j = 0 or f ti,jψ(bP2) if cti,j = 1.

∗ If such Zu is found, then return SKt
i,j = hu.

∗ Otherwise, randomly sample SKt
i,j ∈ {0, 1}n, put (IDi, IDj , Mi, Mj , Ni, Nj , Kt

i,j , Π
t
i,j) if

IDi is the initiator or (IDj , IDi, Mj , Mi, Nj , Ni, Kt
i,j , Π

t
i,j) into list L. A responds with

SKt
i,j .

– Test(Πt
i,j): By the rule of the game, there is a partner oracle Πw

j,i with the same transcript as Πt
i,j

and both should not be revealed. A proceeds as follows:
• Check if cti,j = cwj,i. If it is true, then abort the game (Event 2).
• Otherwise, without loosing generality, we assume cti,j = 0 and cwj,i = 1, i.e., Ni = f ti,jψ(aP2) and
Nj = fwj,iψ(bP2). A randomly chooses ζ ∈ {0, 1}n and responds to B with ζ.

Once B finishes queries and returns its guess, A proceeds with the following steps:

– For every Zu on H list
3 , check if ê(f ti,jψ(aP2), fwj,ibP2) = ê(Zu, P2) holds. If no such Zu meets the

equation, abort the game (Event 3).
– Otherwise, return 1

fti,j ·fwj,i
Zu as the response to the DH challenge.

Following similar arguments as in Theorem 2, we have following two claims:

Claim 9 If A did not abort the game, B could not find inconsistence between the simulation and the
real world.

Claim 10 Pr[Event 3] ≥ ε(k).

As Pr[Event 2] = 1/2, we have

Pr[A wins] = Pr[Event 1 ∨ (Event 2 ∧ Event 3)]
≥ ε(k)/2.

�

B Subgroup Membership Testing

Here we show, with two examples, that subgroup membership testing is crucial to our protocols.

Consider the SCK-1 scheme in the Type 2 setting. According to our security model the following is
a legitimate attack on the protocol. The adversary wishes to obtain the session key for a session with
message flow

A→ B : EA = xP2,

B → A : EB = yP2.
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The shared session key is computed by the legitimate party B as

yEA, ê(yQA, R′) · ê(dB , EA).

Let N denote a point of low order l (say) in the group G. The adversary E engages in the following
“man-in-the-middle” attack.

A E B
EA=xP2→

EA+N→
EB=yP2←

EB=yP2←
There is no matching conversation between party A and B hence the adversary is allowed to make a
Reveal query on B even if A corresponds to the Test query. However on making the Reveal query on B
the adversary learns, with probability 1/l, the value of the key which A thinks it shares with B. This is
because the addition of an element of the small subgroup passes is ignored by the pairing, and will be
killed off by the computation of y(EA +N) if y is divisible by l. In the above one can always take l = 2.

One could argue that the above attack is in some sense a symptom of the rather strong security model
we have taken. However, the following example shows that in practice one can mount impersonation
attacks if the subgroup membership tests are not carried out fully.

Suppose one optimized the SYL protocol with Type 4 pairings in the following way.

A→ B : EA = xP2,

B → A : EB = yP1,

Upon completion of the message exchange, A computes xEB = xyP1 and K = ê(EB +ψ(QB), xR′ +dA)
and B computes yψ(EA) = xyP1 and K = ê(yψ(R′) + ψ(dB), EA + QA). Recall that R′ = sP2 =
s 1
kP1 + sP2 is the master public key and s is the master private key. This optimised version has smaller

bandwidth cost and better performance than the original SYL specification. Suppose to save time that
party B does not check whether EA lies in the subgroup generated by P2, but only whether it lies in G2,
i.e. it computes some of the subgroup membership test but not all of it. We show in this situation that
an adversary C can impersonate party A to B

Without loosing generality, we assume

QA = aP1 + bP2 ∈ G2 and QB = cP1 + dP2 ∈ G2.

Adversary C chooses random integers x and z from Z∗
q , and generates the message EA in the following

attack.

CA → B : EA = x
1
k
P1 − bP2 + zP2,

B → CA : EB = yP1 = yP1,

Now B computes yψ(EA) = yxP1 = xEB and

K = ê(yψ(R′) + ψ(dB), EA +QA)

= ê(ysP1 + ψ(sQB), x
1
k
P1 − bP2 + zP2 + aP1 + bP2)

= ê(ysP1 + sψ(QB), zP2)
= ê(EB + ψ(QB), sP2)z

= ê(EB + ψ(QB), R′)z
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Both xEB and K = ê(EB +ψ(QB), R′)z can be computed by C. To prevent this attack, party B should
also check that for EA = x1

1
kP1 + x2P2, x1 = x2, i.e., EA is in the cyclic group generated by P2. The

test method can be found in Section 2.2.
A careful analysis of the proof of the SYL protocol reveals that for the above optimization one is

unable to obtain a proof if full subgroup membership testing is not performed. Yet if full subgroup
membership testing is performed then the protocol is secure. This example shows that the implication
of a reduction should be carefully investigated, and when optimising a protocol one should be careful.


