
Ate pairing for y2 = x5 − αx
in Characteristic Five

Ryuichi Harasawa, Yutaka Sueyoshi, and Aichi Kudo

Department of Computer and Information Sciences, Faculty of Engineering,
Nagasaki University,

1-14 Bunkyomachi, Nagasaki-shi, Nagasaki, 852-8521, Japan
{harasawa, sueyoshi, kudo}@cis.nagasaki-u.ac.jp

Abstract

Recently, the authors proposed a method for computing the Tate pairing
using a distortion map for y2 = x5 − αx (α = ±2) over finite fields of
characteristic five. In this note, we show the Ate pairing, an invariant of
the Eta pairing, can be applied to this curve. This leads to about 50%
computational cost-saving over the Tate pairing.

Keywords: Ate pairing, Hyperelliptic curves

1 Introduction

As is well known, bilinear maps such as the Weil/Tate pairing give various
cryptographic applications. This makes the study on the pairings active,
for example the construction of curves suitable to the pairings and efficient
pairing computations.

In 2004, P. S. L. M. Barreto et al. [1] proposed a new bilinear map,
called the Eta pairing, for some types of curves, mainly supersingular
(hyper)elliptic curves in characteristic two and three and Duursma-Lee
type curves y2 = xp − x + d [2] in characteristic p with p ≡ 3 (mod 4).
More precisely, the pairing gives the value obtained by raising that of the
Tate pairing to the power of a certain constant. It turns out that the Eta
pairing makes the computational cost-saving over the Tate pairing. The
main reasion is that the computational procedure of the Eta pairing is
just a part of that of the Tate pairing with little extra task.

Two years later after the appearance of the Eta pairing, F. Hess et al.
[4] simplified the Eta pairing, called the Ate pairing, and extended it to
ordinary elliptic curves.

For y2 = x5 − αx (α = ±2) over finite fields of characteristic five,
the authors constructed a distortion map and described a computation



of the Tate pairing using that [3]. In this note, we show the Ate pairing
can be applied to this curve in the natural way. This leads to about 50%
computational cost-saving over the Tate pairing. We remark that our
distortion map for y2 = x5−αx does not satisfy the (sufficient) condition
for the Eta pairing as it is.

2 Ate pairing for y2 = x5 − αx

In this section, we describe the Ate pairing for y2 = x5−αx. We refer the
readers to [3] for more details on this curve, including the facts needed in
this note and the concrete computation of the pairing.

Let p = 5, q = pr with r odd, C/Fq the curve defined by y2 =
x5 − αx (α = ±2) and id the identity element of Jac(C). Then we have
#Jac�q (C) = q2 +1 and the embedding degree is equal to 4 for every odd
prime l dividing q2 + 1.

Let πq denote the q-th power Frobenius endomorphism and ζ8 (resp.
ζ5) the morphism of C defined by (x, y) �→ (αx, α

1
2 y) (resp. (x+ α

1
4 , y)).

We shall use the same symbols for the endomorphisms of Jac(C) induced
from these morphisms.

For a divisor D =
∑

P∈C nP (P ), we write D′ =
∑

P∈C\{(0,0),O} nP (P ),
the divisor obtained by eliminating (0, 0) and O from D.

By tl we denote the Tate pairing of order l, and by µl ⊂ Fq4 the set
of l-th roots of unity. Since gcd(q2 + 1, q) = 1, there exists an integer ρ
such that ρq ≡ 1 (mod q2 + 1).

Under the notation above, we obtain the following result.

Theorem 1 (Main Theorem: Ate pairing for y2 = x5 − αx).
We set η = (ζ5− ζ−1

5 )+ q ◦ (ζαr

5 − ζ−αr

5 ), and suppose l||q2 +1 �. Then
the pairing

t̂l : Jac�q (C)[l] × Jac�q (C)[l] −→ µl

defined by
t̂l(D, E) = tl(D, ζ8 ◦ η(E))ρ

is bilinear and has the property that t̂l(D,E) �= 1 for all D,E �= id.
Furthermore, assuming (0, 0) �∈ suppD or degE′ = 2, we have

t̂l(D, E) = f ◦ φ (E′)2(q2−1),

where f is a function such that qD = Dq + (f) with the reduced divisor
Dq and φ((a, b)) := (−a−5α

1
2 , −2a−15b5αα

3
4 ) for (a, b) ∈ C with a �= 0.

� This condition seems to hold for cryptographic applications because the value of l
should be chosen so that l ≥ 2160 in view of security.



Remark 1.
For the Tate pairing based on [3] (see Lemma 1 below), we need a

function fD such that q2D = Dq2 + (fD) with the reduced divisor Dq2 .
This shows that the cost of the Ate pairing is about a half of that of the
Tate pairing based on [3].

Remark 2.
If (0, 0) ∈ suppD and degE′ = 1, then t̂l(D, E) = ±{f ◦φ (E′)2(q2−1)}

holds, where the signature is determined so that t̂l(D, E) ∈ µl [3, Theorem
7].

The proof of Theorem 1 is similar to that for the supersingular elliptic
curves [4, Section 3.2]. We describe the outline.

We first have the following result [3, Remark 3]:

Lemma 1.
With the notation above, we have

tl(D, ζ8 ◦ η(E)) = {fD ◦ φ (E′)}q2−1.

Next, we set π̂q = πq ◦ ζ2r
8 . Then we have π̂q ◦ πq = πq ◦ π̂q = q from

[3], namely π̂q is the dual of πq.
For the proof of Theorem 1, we need two more lemmas.

Lemma 2.
With the notation above, we have

π̂q ◦ φ (E′) = φ(E′).

Proof.
The equality follows from the direct computation. We note that the

form of E′ is of either E′ =
∑

1≤i≤w(Pi) (w = 1 or 2) with Pi ∈ Fq(C) or
E′ = (P )+ (πq(P )) with P ∈ Fq2(C)\Fq(C) because our curve has genus
2. �

Lemma 3.
With the notation above, we have

(h ◦ π̂q) = q(f),

where h is a function such that qDq = Dq2 + (h).



Proof.
By definition, π̂q is a bijection of degree q. Hence, by [5, Proposition

2.6. (Chapter II)], the equality π̂∗
q (

∑
P∈C nP (P )) = q(

∑
P∈C nP (π̂−1

q (P )))
holds for every divisor

∑
P∈C nP (P ). (For the definition of π̂∗

q , see [5, p.
24 and p. 33].)

Therefore we have

(h ◦ π̂q) = π̂∗
q (h) (by [5, Proposition 3.6. (Chapter II)] )

= π̂∗
q (qDq − Dq2)

= π̂∗
q (q(π̂q ◦ πq(D)) − (π̂q ◦ πq(Dq))) (by π̂q ◦ πq = q)

= q(q(πq(D)) − πq(Dq))
= q(qD − Dq) (by D, Dq ∈ Jac�q (C))
= q(f) (by qD = Dq + (f)). �

Proof of Theorem 1.
The bilinearity of t̂l and the property that t̂l(D, E) �= 1 follow from [3,

Theorem 4] and gcd(l, ρ) = 1. For the latter assertion, from the definition
of the functions f, h, fD and Lemma 1, we have

t̂l(D, E) = {(f qh) ◦ φ (E′)}(q2−1)ρ

= {f q ◦ φ (E′) · (h ◦ π̂q ◦ φ)(E′)}(q2−1)ρ (by Lemma 2)

= {f2q ◦ φ (E′)}(q2−1)ρ (by Lemma 3)

= f ◦ φ (E′)2(q2−1)

(by ρq ≡ 1 (mod q2 + 1) and f ◦ φ (E′) ∈ F
∗
q4). �
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