
On the Provable Security of an Efficient RSA-Based Pseudorandom

Generator

Ron Steinfeld and Josef Pieprzyk and Huaxiong Wang
Dept. of Computing, Macquarie University, Australia

{rons, josef, hwang}@ics.mq.edu.au

August 25, 2006

Abstract

Pseudorandom Generators (PRGs) based on the RSA inversion (one-wayness) problem have
been extensively studied in the literature over the last 25 years. These generators have the attrac-
tive feature of provable pseudorandomness security assuming the hardness of the RSA inversion
problem. However, despite extensive study, the most efficient provably secure RSA-based gener-
ators output asymptotically only at most O(log n) bits per multiply modulo an RSA modulus of
bitlength n, and hence are too slow to be used in many practical applications.

To bring theory closer to practice, we present a simple modification to the proof of security by
Fischlin and Schnorr of an RSA-based PRG, which shows that one can obtain an RSA-based PRG
which outputs Ω(n) bits per multiply and has provable pseudorandomness security assuming the
hardness of a well-studied variant of the RSA inversion problem, where a constant fraction of the
plaintext bits are given. Our result gives a positive answer to an open question posed by Gennaro
(J. of Cryptology, 2005) regarding finding a PRG beating the rate O(log n) bits per multiply at
the cost of a reasonable assumption on RSA inversion.

Key Words: Pseudorandom generator, RSA, provable security, lattice attack.

1 Introduction

Background. The RSA Pseudorandom bit generator (RSA PRG) consists of iterating the RSA en-
cryption mapping x → xe mod N (with public RSA modulus N of length n bits and public exponent
e coprime to φ(N)) on a secret random initial seed value x0 ∈ ZZN to compute the intermediate
state values xi+1 = xe

i mod N (for i = 0, 1, 2, . . .) and outputting r least-significant bits of the state
value xi per iteration. The pseudorandomness of the RSA PRG (especially the case r = 1) was
studied extensively by several researchers [26, 3, 40, 1, 20]. However, even the best security proof so
far [20, 39] only applies to the case when only a very small number of bits r = O(log n) is output
per iteration. Consequently, even with small public exponent e, these proven RSA PRG variants
only output O(log n) bits per multiply modulo N and hence are too slow for most practical applica-
tions. As far as we are aware, these are currently the most efficient RSA-based PRGs with proven
pseudorandomness security.

Our Approach. Our approach to studying the provable security of efficient variants of the RSA PRG
is based on two observations.

First, we observe that existing security proofs of the RSA PRG have always attempted to prove the
security assuming the hardness of the classical RSA one-wayness problem (given RSA modulus N
and y = xe mod N for random x ∈ ZZN , find x). If we instead make a stronger hardness assumption,
we can hope to prove the security of much more efficient and practical variants of the RSA PRG,

1

with r = Ω(n). But we must be careful in choosing this stronger hardness assumption to ensure that
it is based on substantial evidence – it must be a hard problem which has been undoubtedly studied
extensively by experts. This leads to our second observation.

Our second observation is that over the last decade, beginning with the work of Coppersmith [15],
the following variant of the RSA one-wayness problem has been studied explicitly:

(δ, e)-Small Solution RSA ((δ, e)-SSRSA) Problem. Given a random n-bit RSA modulus N ,
the coefficients of a univariate polynomial f(z) = aez

e +ae−1z
e−1 + · · ·+a0 ∈ ZZN [z] of degree e (with

ae ∈ ZZ∗N) and y = f(z̄) mod N for a random integer z̄ < N δ (with 0 < δ < 1), find z̄ (note that we
will only be interested in instances where f is such that z̄ is uniquely determined by (N, f, y)).

The celebrated lattice-based attack of Coppersmith [15] shows that for small e, the (δ, e)-SSRSA
problem can be solved in polynomial time (in n) whenever δ < 1/e. But when δ > 1/e + ε for some
constant ε > 0, the lattice attack fails, and the only known attack (beyond factoring N) is to run
the lattice attack O(N ε) times for each guess of the ε · n most-significant bits of z̄. Hence, when
ε is made sufficiently large to make the above lattice attack slower than factoring N (namely even
ε = O((log n/n)2/3) suffices), the best known attack against (1/e + ε, e)-SSRSA problem is to factor
N . Importantly, this hardness assumption is supported by explicit evidence in the literature that
the (1/e + ε, e)-SSRSA problem has been studied by experts [16, 36, 14], yet these studies have not
yielded an efficient algorithm for the (1/e + ε, e)-SSRSA problem. We remark that Coppersmith
describes in [16] a ‘divided difference attack’ which may allow certain special (1/(e − 1), e)-SSRSA
instances to be solved efficiently when the congruence f(z) ≡ y mod N has two small solutions less
than N1/(e−1). This special situation never occurs in the SSRSA instances considered in this paper,
for which there is always a unique solution.

Our Result. We present a simple modification to the proof of security of the RSA PRG by Fischlin
and Schnorr [20] which shows that assuming the hardness of a certain specific (1/e + ε, e)-SSRSA
one-wayness problem suffices to prove the pseudorandomness of the RSA PRG outputting r = (1/2−
1/e − ε − o(1)) · n LS bits per iteration. Our specific (1/e + ε, e)-SSRSA one-wayness problem can
be posed as RSA inversion with some known plaintext bits, namely: Given N , y = [xe]N , r LS bits
of x and w ≈ n/2 MS bits of x, for x ∈R ZZN , find x. For small (constant) e ≥ 3 we therefore obtain
a throughput of Ω(n) output pseudorandom bits per multiply modulo the RSA modulus N , which
is a significant improvement over the O(log n) bits per multiply throughput obtained using previous
proof of security relative to the RSA assumption. We believe this answers in the positive an open
question raised by Gennaro [21], who asked whether one can obtain a PRG which beats the rate
O(log n) bits per multiply at the cost of a stronger but reasonable assumption on RSA inversion.

Organization. In Section 1.1 we discuss some additional related works. Section 2 contains definitions
and notations. In Section 3, we review the RSA PRG construction and its proof of security by
Fischlin and Schnorr [20]. Section 4 presents our modified security proof for the RSA PRG assuming
the hardness of a (1/e + ε, e)-SSRSA problem. In Section 5, we estimate concrete parameters and
associated PRG performance for given proven security level and security assumptions. In Section 6
we investigate the potential for performance improvements using a stronger hardness assumption.
Section 7 discusses some applications of our result. Finally, Section 8 concludes the paper with some
open problems.

1.1 Additional Related Work

We summarize some other related works besides the ones mentioned in the introduction. Related
PRG constructions can be divided in two classes.

The first class contains PRGs based on related hardness assumptions. The well known Blum-Blum-
Shub (BBS) generator [9] has the same structure as the RSA PRG, but uses the Rabin squaring

2

iteration function instead. Similar security results as for the RSA PRG are known for this gener-
ator [20], but we need a less known assumption to prove the security of efficient variants of this
generator (see Section 6). The construction by Goldreich and Rosen [24] (improving on earlier work
by H̊astad et al [27]) uses an exponentiation iteration function and its security is proven assuming the
hardness of factoring an RSA modulus, but its throughput is only O(1) bits per multiply modulo the
n bit modulus, compared to Ω(n) bits per multiply for our construction. The Micali-Schnorr RSA-
based constructions [34] have a throughput of Ω(n) bits per multiply, but their pseudorandomness
security is only proven assuming the pseudorandomness of the RSA function with small inputs (using
our notation, it is actually a decisional version of the (2/e, e)-SSRSA problem), whereas for our con-
struction we can prove pseudorandomness assuming only a much weaker assumption of one-wayness
of RSA with small inputs (i.e. hardness of (1/e+ε, e)-SSRSA inversion problem). The PRG of Boneh
et al [13] also achieves a throughput of Ω(n) bits per multiply (and in fact may use a smaller prime
modulus), but its provable pseudorandomness security also relies on a pseudorandomness assumption
rather than a one-wayness assumption. However, similar to our SSRSA assumption, the conjectured
hardness of the associated ‘Modular Inverse Hidden Number Problem’ is also based on the failure of
lattice attacks against a system of non-linear equations with sufficiently large solutions.

The second class of PRGs achieve provable pseudorandomness based on different one-wayness as-
sumptions. The construction by Impagliazzo and Naor [29] is based on the hardness of the Subset
Sum problem. Although this construction is potentially very efficient, its concrete security against
lattice-based subset sum attacks is difficult to estimate and requires carefully chosen large parameters
with a small number of bits output per function evaluation. Very recently, a more practical ‘QUAD’
construction by Berbain et al [4] was proposed, using similar ideas to [29] in its security proof, but
based on the hardness of solving a random system of multivariate quadratic equations over a finite
field (‘MQ’ problem). We compare the practical performance of our construction with QUAD in Sec-
tion 5. Finally, we remark that the best PRG based on the hardness of Discrete-Log (DL) problem
is due to Gennaro [21] (improving on earlier work by Patel and Sundaram [37]). Its throughput is
up to about 2n/c bits per multiply for a safe prime modulus p of length n bit, assuming that the
discrete-log problem modulo p is hard with c bit exponents. Since factoring an n bit RSA modulus
and DL modulo an n bit prime both can be solved in subexponential time 2O(n1/3 log(n)2/3) [32], to
achieve security against ‘square-root’ DL attacks comparable to the difficulty of factoring n-bit RSA
moduli, we must have c = Ω(n1/3 log(n)2/3), so the throughput of Gennaro’s construction is asymp-
totically only O(n2/3/ log(n)2/3) = o(n) bits per multiply, compared to Ω(n) bits per multiply for
our construction with same modulus length n.

Finally, we also wish to mention the lattice-based attacks of Blackburn et al [6, 5] on a class of PRGs
having the same iterative structure as our RSA PRG. These attacks show that the RSA PRG is
insecure when the number of bits output per iteration r is larger than about 2

3n [6] for e = 2, and
about (1 − 1

e(e+1)/2+2)n [5] in the general case (these results are obtained for r MS bits output per
iteration and prime moduli, but we believe that with appropriate modifications they hold also for r
LS bits and RSA moduli). We remark that the general case attacks in [5] use low-dimension lattices
and are rigorously proven. A heuristic extension of these attacks to high dimension lattices using the
Coppersmith method [15] suggests that the RSA PRG is insecure asymptotically with r ≥ (1− 1

e+1)n
(we omit details of these calculations here). These lower bounds for insecure values of r are greater
by a factor of about 2 than the upper bounds on r for which our security proof applies. Closing this
remaining gap between best attack and best proof is an interesting open problem.

2 Preliminaries

Notation. For integers x and N , we use [x]N to denote the remainder x mod N . We use Lr(x) = [x]2r

to denote the r least significant bits of the binary representation of x. Similarly, we use Mr(x) =
(x−Ln−r(x))/2n−r (where n is the bit length of x) to denote the r most significant bits of the binary

3

representation of x. For x ∈ ZZN , we use M̂N,r(x) to denote any approximation to x with additive
error |x− M̂N,r(x)| ≤ N/2r.

Probability Distributions and Distinguishers. Let D denote a probability distribution over
{0, 1}`. We denote by s ← D the assignment to s of a random element sampled from the distribution
D. If S denotes a set then we let s ∈R S denote the assignment to s of a uniformly random element
sampled from S. Let D1 and D2 denote two probability distributions on some finite set. We say
that an algorithm D is a (T, δ) distinguisher between D1 and D2 if D runs in time at most T and
has distinguishing advantage at least δ between D1 and D2, i.e. |Prs←D1 [D(s) = 1]−Prs←D2 [D(s) =
1]| ≥ δ. The statistical distance between two distributions D1 and D2 is 1

2

∑
s |D1(s)−D2(s)|. It gives

an upper bound on the distinguishing advantage of any distinguisher between D1 and D2, regardless
of run-time.

Pseudorandom Bit Generators (PRGs). We use the following definition of pseudorandom
generators and their concrete pseudorandomness.

Definition 2.1 ((T, δ) PRG). A (T, δ) Pseudorandom Generator (family) PRG is a collection of
functions GN : SN → {0, 1}` indexed by N ∈ In. Here In (PRG function index space) and SN (PRG
seed domain) are both efficiently samplable subsets of {0, 1}n, where n is the security parameter.
We require that any (probabilistic) distinguisher algorithm D running in time T has distinguishing
advantage at most δ between the pseudorandom distribution DP,` and the random distribution DR,`

on `-bit strings, which are defined as follows:

DP,` = {s : N ∈R In;x0 ∈R SN ; s = GN (x0)}

while
DR,` = {s : s ∈R {0, 1}`}.

If algorithm D runs in time T and has distinguishing advantage at least δ between DP,` and DR,`, we
say that D is a (T, δ) distinguisher for PRG.

The RSA Inversion Problem. The classical RSA inversion problem is defined as follows.

Definition 2.2. [(n, e)-RSA problem] Let e be a fixed integer. Let In denote the set of all n-bit RSA
moduli N = pq (for p,q primes of n/2 bits each) such that gcd(e, (p− 1)(q− 1)) = 1. The (n, e)-RSA
inversion problem is the following: given N ∈R In and y = [xe]N for x ∈R ZZN , find x. We say
that algorithm A is a (T, ε) inversion algorithm for (n, e)-RSA if A runs in time T and succeeds with
probability ε over the choice of N ∈R In, x ∈R ZZN and the random coins of A.

Lattices. Let {b1, . . . ,bn} be a set of n linearly independent vectors in IRn. The set

L = {z : z = c1b1 + . . . + cnbn, c1, . . . , cn ∈ ZZ}

is called an n-dimensional (full-rank) lattice with basis {b1, . . . ,bn}. Given a basis B = (b1, . . . ,bn) ∈
IRn for a lattice L, we define the associated basis matrix ML,B to be the (full-rank) n × n matrix
whose ith row is the ith basis vector bi for i = 1, . . . , n. The quantity |det(ML,B)| is independent of
B. It is called the determinant of the lattice L and denoted by det(L). Given any basis of a lattice
L, the well-known LLL algorithm [31] outputs in polynomial time a reduced basis for L consisting of
short vectors. We use the following lemma [12] bounding the length of those vectors.

Lemma 2.1. Let L be a lattice of dimension d with basis matrix BL in lower diagonal form whose
diagonal elements are greater or equal to 1. Then the Euclidean norm of the first two vectors in the
LLL reduced basis for L is at most 2d/2(det(L))

1
d−1 .

4

3 High Level Overview of the Fischlin-Schnorr Security Proof

The RSA PRG. We begin by recalling the RSA PRG construction.

Definition 3.1 ((n, e, r, `)-RSAPRG Pseudorandom Generator). The psuedorandom generator
family (n, e, r, `)-RSAPRG is defined as follows. The PRG function index space In is the set of all
n-bit RSA moduli N = pq (for p,q primes of n/2 bits each) such that gcd(e, (p − 1)(q − 1)) = 1.
Given index N ∈ In the PRG seed domain is ZZN . Assume that ` is a multiple of r. Given a seed
x0 ∈R ZZN , the PRG function GN : ZZN → {0, 1}` is defined by

GN (x0) = (s0, . . . , s`/r−1) : si = Lr(xi), xi+1 = [xe
i]N for i = 0, . . . , `/r − 1.

As will become clear below, our result builds on the Fischlin-Schnorr result in essentially a ‘black
box’ way, so our result can be understood without knowing most of the internal details of the
reduction in [20]. Hence, in this section we provide only a very high-level overview of the basic
security reduction [20] of the RSA PRG (in the case of r LS bits output per iteration) from the RSA
assumption. For the sake of completeness, we provide in the appendices the main ideas of the proofs
of the main Lemmas.

Using our notation, the Fischlin-Schnorr security result can be stated concretely as follows.

Theorem 3.1 (Fischlin-Schnorr [20]). For all n ≥ 29, any (T, δ) distinguisher D for (n, e, r, `)-
RSAPRG can be converted into a (TINV , δ/9) inversion algorithm A for the (n, e)-RSA problem with
run-time at most

TINV = 22r+14(`/δ)6n log(n) · (T + O(`/r log(e)n2)). (1)

Proof. We are given a distinguisher D with run-time T and distinguishing advantage Adv(D) ≥ δ
between the pseudorandom distribution DP,` (obtained by iterating m = `/r times and outputting r
LS bits per iteration) and the random distribution DR,` on ` bit strings, namely:

DP,` = {GN (x0) : N ∈R In;x0 ∈R ZZN}

while
DR,` = {s : s ∈R {0, 1}`}.

We use D to construct the (n, e)-RSA inversion algorithm A as follows.

As a first step, we note that the pseudorandom distribution DP,` is taken over the random choice
of modulus N ∈R In as well as random seed x0 ∈R ZZN . For the remainder of the proof, we wish
to fix N and find a lower bound on the distinguishing advantage AdvN (D) between DR,` and the
pseudorandom distribution DP,`,N taken over just the random choice of x0 ∈R ZZN for this fixed N ,
that is:

DP,`,N = {GN (x0) : x0 ∈R ZZN}.
To do so, we use an averaging argument over N (refer to Appendix A for a proof).

Lemma 3.1. There exists a subset Gn ⊆ In of size at least |Gn| ≥ δ/2|In| such that D has distin-
guishing advantage at least δ/2 between the distributions DP,`,N and DR,` for all N ∈ Gn.

From now on we assume that N ∈ Gn (which happens with probability at least δ/2 over N ∈R In)
so that D has distinguishing advantage at least δ/2 between DP,`,N and DR,` (We remark that this
first step is actually omitted in [20] who always assume a fixed N ; however we add this step since
we believe it is essential for a meaningful security proof: to demonstrate an efficient algorithm for
RSA inversion contradicting the RSA assumption, one must evaluate its success probability over the

5

random choice of modulus N , since for any fixed N an efficient algorithm always exists; it has built
into it the prime factors of N).

We now convert `/r-iteration distinguisher D into a 1-iteration distinguisher D′. This is a ‘hybrid’
argument using the fact that the mapping x → [xe]N is a permutation on ZZN . Note that the ‘hybrid’
argument underlying this reduction has been known since the work of [25, 11] and it is not explicitly
included in [20]. Refer to Appendix B for a proof.

Lemma 3.2 (m = `/r iterations to 1 iteration.). Any (T, δ) distinguisher D between the m-
iteration pseudorandom distribution DP,`,N and the random distribution DR,` can be converted into
a (T + O(m log(e)n2), δ/m) 1-iteration distinguisher D′ between the distributions

D′P,r,N = {(y = [xe]N , s = Lr(x)) : x ∈R ZZN}

and
D′R,r,N = {(y = [xe]N , s) : x ∈R ZZN ; s ∈R {0, 1}r}.

The main part of the Fischlin-Schnorr reduction [20] is the conversion of the distinguisher D′ into
an inversion algorithm that recovers the RSA preimage x from y = [xe]N with the help of some
additional information on x, namely r least-significant bits of [ax]N and [bx]N for some randomly
chosen known a, b ∈ ZZN , as well as rough approximations to [ax]N and [bx]N . This is stated more
precisely as follows (although it is not needed for understanding our result, we refer the reader to
Appendix C for a sketch of the proof of this result).

Lemma 3.3 (Distinguisher to Inverter). For all n ≥ 29, any (T, δ) distinguisher D′ between the
distributions D′P,r,N and D′R,r,N (see Lemma 3.2) can be converted into an inversion algorithm A′ that,
given N and (y = [xe]N , a ∈R ZZN , s1 = Lr([ax]N), u1 = M̂N,k([ax]N), b ∈R ZZN , s2 = Lr([bx]N), u2 =
M̂N,l([bx]N)), for any x ∈ ZZN with k = 3 log(r/δ)+4 and l = log(r/δ)+4, outputs x with probability
ε′INV ≥ 2/9 (over the choice of a ∈R ZZN , b ∈R ZZN and the random coins of A′) and runs in time
T ′INV = 4n log(n)(r/δ)2 · (T + O(n2)). Here M̂N,k(x) denotes any approximation to x with additive
error |M̂N,k(x)− x| ≤ 2n−k.

Putting it Together. On input (N, y = [xe]N), the RSA inversion algorithm A runs as follows. It
applies Lemmas 3.1 and 3.2 to convert the (T, δ) distinguisher D into a (T + O(m log(e)n2), δ/(2m))
distinguisher D′ between distributions D′P,r,N and D′R,r,N which works for at least a fraction δ/2
of N ∈ In. Then A applies Lemma 3.3 to convert D′ into the inversion algorithm A′. A now
chooses random a and b in ZZN . Since A does not know the ‘extra information’ s1 = Lr([ax]N),
u1 = M̂N,k([ax]N), s2 = Lr([bx]N) and u2 = M̂N,l([bx]N)) required by A′, A just exhaustively searches
through all NG possible values of (s1, u1, s2, u2) and runs A′ on input (N, y = [xe],ŝ1, û1, ŝ2, û2)
for every guessed possibility (ŝ1, û1, ŝ2, û2) until A′ succeeds to recover x. Note that to find an
approximation M̂N,k([ax]N) correct within additive error N/2k it is enough to search through 2k−1

uniformly spaced possibilities (N/2k−1)i for i = 0, . . . , 2k−1 − 1. Since k = 3 log(2mr/δ) + 4 =
3 log(2`/δ) + 4 and l = log(2`/δ) + 4, there are at most

NG = 64(2`/δ)422r (2)

guessing possibilities for Lr([ax]N), M̂N,k([ax]N), Lr([bx]N), M̂N,l([bx]N) to search through. So the
run-time bound of A is

TINV = NG · (4n log(n)(2`/δ)2) · (T + O(m log(e)n2)) = 22r+14(2`/δ)6n log(n) · (T + O(m log(e)n2)).
(3)

For at least a fraction δ/2 of N ∈ In, with the correct guessed value of the ‘extra information’, A′

succeeds with probability at least 2/9 over the choice of a, b. Hence we conclude that the success

6

probability of A is at least εINV ≥ δ/9, as claimed. ut

We can interpret Theorem 3.1 as follows. Suppose we assume that the expected run-time TINV /εINV

of any (TINV , εINV) RSA inversion algorithm is at least TL. Then Theorem 3.1 can be used to
convert a (T, δ) distinguisher for (n, e, r, `)-RSAPRG to an RSA inverter contradicting our hardness
assumption only if we output at most r bits per iteration, where

r <
1
2

log
(

1
9 · 214 · n log n`6δ−7

· TL

T

)
. (4)

Hence asymptotically, if we take TL = poly(n) (i.e. assume no poly-time RSA algorithm) then we get
r = O(log(n)) bits per iteration. If we assume that TL = O(2cn1/3(log n)2/3

) for constant c (run-time
of the Number Field Sieve factoring algorithm [32]) then we can have r = O(n1/3 log2/3 n). But in
any case, r = o(n).

4 Our Modified Security Proof from an SSRSA Problem

We now explain how we modify the above reduction to solve a well-studied SSRSA problem and the
resulting improved PRG efficiency/security tradeoff.

Our goal is to remove the search factor NG = 64 · 22r(`/δ)4 from the run-time bound (3) of the
reduction in the proof of Theorem 3.1. The simplest way to do so is to provide the inversion
algorithm A with the correct values for the ‘extra information’ required by the inversion algorithm
A′ of Lemma 3.3. This leads us to consider the following (not well-known) inversion problem that
we call (n, e, r, k, l)-FSRSA :

(n, e, r, k, l)-FSRSA Problem. Given RSA modulus N , and (y = [xe]N , a ∈R ZZN , s1 =
Lr([ax]N), u1 = M̂k([ax]N), b ∈R ZZN , s2 = Lr([bx]N), u2 = M̂l([bx]N)), for x ∈R ZZN , find x (here
M̂N,k(x) denotes any approximation to x with additive error |M̂N,k(x) − x| ≤ N/2k). We say that
algorithm A is a (T, η) inversion algorithm for (n, e, r, k, l)-FSRSA if A runs in time at most T and
has success probability at least η (over the random choice of N ∈R In, x, a, b ∈R ZZN and the random
coins of A, where In is the same as in Definition 2.2).

With the search factor NG removed from the Fischlin-Schnorr reduction we therefore have that the
hardness of the inversion problem (n, e, r, k, l)-FSRSA (with k = 3 log(2`/δ)+4 and l = log(2`/δ)+4)
suffices for the ‘simultaneous security’ of the r least-significant RSA message bits (i.e. indistin-
guishability of distributions D′P,r,N and D′R,r,N in Lemma 3.2) and hence the pseudorandomness of
(n, e, r, `)-RSAPRG, with a much tighter reduction than the one of Theorem 3.1 relative to the RSA
problem.

Theorem 4.1. For all n ≥ 29, any (T, δ) distinguisher D for (n, e, r, `)-RSAPRG can be converted
into a (TINV , δ/9) inversion algorithm A for the (n, e, r, k, l)-FSRSA problem (with k = 3 log(2`/δ)+4
and l = log(2`/δ) + 4) with run-time at most

TINV = 16 · (`/δ)2n log(n) · (T + O(`/r log(e)n2)). (5)

Proof. We use the same inversion algorithm A as in the proof of Theorem 3.1, except that when
applying Lemma 3.3, A runs inversion algorithm A′ just once using the correct values of (a, b, s1 =
Lr([ax]N), u1 = M̂N,k([ax]N), s2 = Lr([bx]N), u2 = M̂N,l([bx]N)) given as input to A, eliminating the
search through NG = 64(2`/δ)422r possible values for (s1, u1, s2, u2). ut

We defer to Section 6.1 our cryptanalysis of the (n, e, r, k, l)-FSRSA problem using the lattice-based
method introduced by Coppersmith [15], which leads us to conjecture that the problem is hard

7

whenever r/n ≤ 1/2 − 1/(2e) − (k + l)/2n − ε for constant ε > 0. This assumption together with
the above reduction already implies the security of the efficient variants of (n, e, r, `)-RSAPRG with
r = Ω(n). Unfortunately, the (n, e, r, k, l)-FSRSA problem is a new problem and consequently our
conjecture on its hardness is not currently supported by extensive research. However, we will now
show that in fact for r/n = 1/2−max(k, l)/n−1/e− ε (note that this is smaller by (max(k, l)− (k +
l)/2)/n + 1/(2e) than the largest secure value of r/n conjectured above), the problem (n, e, r, k, l)-
FSRSA is at least as hard as a specific (1/e + ε, e)-SSRSA problem (i.e. with a specific univariate
polynomial f of degree e) which we call (n, e, r, w)-CopRSA and define as follows:

(n, e, r, w)-CopRSA Problem. Given RSA modulus N , and (y = [xe]N , sL = Lr(x), sH =
Mn/2+w(x)), for x ∈R ZZN , find x (here Mk(x) denotes the k most-significant bits of the binary
representation of x). We say that algorithm A is a (T, η) inversion algorithm for (n, e, r, w)-CopRSA
if A runs in time at most T and has success probability at least η (over the random choice of N ∈R In,
x ∈R ZZN and the random coins of A, where In is the same as in Definition 2.2).

To see that (n, e, r, w)-CopRSA problem is a specific type of SSRSA problem, note that it is equivalent
to finding a small solution z̄ < 2n/2−(r+w) (consisting of bits r + 1, . . . , (n/2 − w) of the randomly
chosen integer x) to the equation f(z̄) ≡ y mod N , where the degree e polynomial f(z) = (2rz + s)e,
where s = sH · 2n/2−w + sL is known. Hence (n, e, r, w)-CopRSA is a (1/e + ε, e)-SSRSA problem
when 1/2− (r + w)/n = 1/e + ε, i.e. r/n = 1/2− 1/e− ε− w/n.

Theorem 4.2. Let A′ be a (T ′, η′) attacker against (n, e, r, w− 1, w− 1)-FSRSA. Then we construct
a (T, η) attacker A against (n, e, r, w)-CopRSA with

T = 4T ′ + O(n2) and η = η′ − 4/2n/2.

Proof. On input (N, y = [xe]N , sL = Lr(x), sH = Mn/2+w(x)), for N ∈R In and x ∈R ZZN , the
attacker A runs as follows:

• Choose a uniformly random b ∈R ZZN .

• Compute an integer c coprime to N with |c| < N1/2 such that |b ·c|N < N1/2 (here |z|N denotes
mink∈ZZ |z−kN | – the smallest absolute value over the integers congruent to z modulo N). It is
well known that such a c exists and can be computed efficiently (in time O(n2)) using continued
fractions (see, e.g. Lemma 16 in [35]).

• Observe that [cx]N = cx − ωcN , where ωc = b cx
N c. Let x̂ = sH · 2n/2−w. Notice that x̂

approximates x within additive error ∆x ≤ 2n/2−w and consequently the rational number cx̂
N

approximates cx
N within additive error c∆x

N ≤ ∆x/N1/2 ≤ 2n/2−w/2(n−1)/2 < 1, where we have
used the fact that |c| < N1/2 and w ≥ 1. It follows that ωc ∈ {b cx̂

N c, b cx̂
N c ± 1} (where the +

sign applies if c ≥ 0 and the − sign applies otherwise). So A obtains 2 candidates for ωc.

• Using Lr([cx]N) = Lr(cx− ωcN) = Lr(Lr(c) ·Lr(x)−Lr(ωcN)), A computes (with the known
sL = Lr(x), c and N) 2 candidates for Lr([cx]N) from the 2 candidates for ωc.

• Similarly, writing [bcx]N = |bc|N · x− ωbcN , with ωbc = b |bc|Nx
N c, because |bc|N < N1/2 we have

ωbc ∈ {b |bc|N x̂
N c, b |bc|N x̂

N c ± 1}, so A also computes 2 candidates for ωbc and two corresponding
candidates for Lr([bcx]N) = Lr(|bc|Nx− ωbcN) = Lr(Lr(|bc|N)Lr(x)− Lr(ωbcN)).

• Using x̂ and the 2 candidates for ωc computed above, A computes two candidate approximations
cx̂ − ωcN for [cx]N . Since x̂ approximates x within additive error ∆x ≤ 2n/2−w we have that
cx̂ − ωcN approximates [cx]N within additive error |c|∆x ≤ N1/22(n−1)/2/2w−1/2 ≤ N/2w−1

using N ≥ 2n−1.

8

• Similarly, using x̂ and the 2 candidates for ωbc computed above, A computes two candidate
approximations |bc|N x̂− ωbcN for [bcx]N , one of which has additive error |bc|N∆x ≤ N/2w−1.

• Choose a uniformly random a ∈ ZZ∗N and compute y′ = [(a−1c)ey]N = [(a−1cx)e]N .

• Collecting all of the above information, A obtains 4 candidates for (N, y′ = [(a−1cx)e]N , a, s1 =
Lr([cx]N), u1 = M̂N,w−1([cx]N), b′ = [ab]N , s2 = Lr([bcx]N), u2 = M̂N,w−1([bcx]N)). Note that
this is a valid instance of (n, e, r, w − 1, w − 1)-FSRSA. Furthermore, it has almost exactly
the correct distribution, since the triple (x′ = [a−1cx]N , a, b′ = [ab]N) is uniformly random in
ZZN × ZZ∗N × ZZN thanks to the uniformly random choice of (x, a, b) ∈ ZZN × ZZ∗N × ZZN . The
FSRSA instance distribution is not exactly correct because here a is uniform on ZZ∗N while
it should be uniform on ZZN . However, simple calculation shows that the statistical distance
between the uniform distribution on ZZ∗N and the uniform distribution on ZZN is negligible,
namely 1− φ(N)/N = (p + q − 1)/N ≤ 4/2n/2.

• A runs A′ on the above 4 candidate (n, e, r, w − 1, w − 1)-FSRSA instances. On one of those
runs, A′ outputs x′ = [a−1cx]N with probability at least η − 4/2n/2, from which x is easily
recovered as x = [ac−1x′]N .

Note that the run-time of A is bounded as T ≤ 4T ′+ O(n2) and A succeeds with probability at least
η − 4/2n/2, as required. This completes the proof. ut

So, combining Theorems 4.1 and 4.2, we conclude:

Corollary 4.1. For all n ≥ 29, any (T, δ) distinguisher D for (n, e, r, `)-RSAPRG can be con-
verted into a (TINV , εINV) inversion algorithm A for the (n, e, r, w)-CopRSA problem (with w =
3 log(2`/δ) + 5) with

TINV = 64 · (`/δ)2n log(n) · (T + O(`/r log(e)n2)) and εINV = δ/9− 4/2n/2. (6)

Remark. As explained above, an essential feature of our modification of the Fischlin-Schnorr security
reduction for the (n, e, r, `)-RSAPRG with ‘large’ r = Ω(n), is that we are able to eliminate the
exponential factor 22r from the reduction run-time at the cost of a stronger assumption on RSA
inversion. Fischlin and Schnorr [20] also outline an alternative security reduction for the (n, e, r, `)-
RSAPRG with r > 1 based on a general ‘Computational XOR Lemma’ [40, 22]. This alternative
reduction from RSA inversion, which is worked out in detail and optimized for the Rabin iteration
function by Sidorenko and Schoenmakers [39], also has a cost factor 22r in expected run-time, and
one may wonder whether our stronger inversion assumption could also be adapted to eliminate the
22r run-time factor in this alternative reduction. However, it seems that this is not possible; in the
alternative reduction the 22r factor arises from the inherent distinguishing advantage loss factor of
the ‘XOR Lemma’ (rather than from the time to search through all possible values of some unknown
information).

5 Concrete Parameters and Estimated Performance

Using (6) we obtain an upper bound on the pseudorandom string length ` for a given security level
(T, δ) and assumed expected run-time lower bound TL for breaking the (n, e, r, 3 log(2`/δ) + 5)-
CopRSA problem. Recall that the latter is a (1/e + ε, e)-SSRSA problem when

r/n = 1/2− 1/e− ε− (3 log(2`/δ) + 5)/n, (7)

9

and that (1/e + ε, e)-SSRSA problem is conjectured to take time TL = min(TF (n), TC(n, ε)), where
TF (n) is a lower bound for factoring N and TC(n, ε) = poly(n) · 2εn is the time for the Coppersmith
attack on (1/e + ε, e)-SSRSA.

Asymptotically, we therefore have for any constant ε > 0 that TL = TF (n) since TF (n) is subex-
ponential in n, so for any `/δ = poly(n) and e ≥ 3 we can use r/n = 1/2 − 1/e − ε − o(1), i.e.
r = Ω(n).

The exact bound on r for a given modulus length n depends on the value of ε such that TF (n) =
TC(n, ε). To estimate concrete values, we use the Number Field Sieve (NFS) factoring run-time model
from [33]; namely we use Pentium II processor instructions as our time unit, and we assume that NFS
run-time is TF (n) = cF exp(1.9229(ln(n) ln(2))1/3(ln(ln(n) ln(2))2/3), where constant c ≈ 17 · 10−3

is determined from the estimated run-time T (512) ≈ 3 · 1017 instructions taken to factor the 512-
bit number RSA155. We also assume (conservatively) that the Coppersmith attack run-time on
(1/e + ε, e)-SSRSA is TC(n, ε) = cF · 2εn. In table 1, we computed for each modulus length n using
(7) and (6) (neglecting the O(`/r log(e)n2) overhead time) the largest values of r and ` for which a
distinguisher with run time T = 270 instructions and distinguishing advantage δ = 1

100 contradicts the
assumed lower bound TL = TF (n) = TC(n, ε) on the expected run-time TINV /εINV of any (1/e+ε, e)-
SSRSA attacker. We assumed e = 9 (for this value of e the throughput r/4 in bits per multiplication
modulo N is approximately maximised). The results are summarised in Table 1. Also shown in the
rightmost 2 columns is the improved provable performance achievable using e = 2 together with the
stronger FS-RSA assumption (see Section 6).

n (bit) log(`) Rate,e = 9 (bits/mult) Thrpt, e = 9 (Mbit/s) Rate,e = 2 (bits/mult) Thrpt, e = 2 (Mbit/s)

3072 9.3 267 1.31 660 3.2
4096 20.2 360 1.00 899 2.5
5120 27.5 454 0.80 1140 2.0
6144 34.0 549 0.67 1383 1.7

Table 1: Estimate of achievable performance for provable T = 270 instructions distinguishing time to achieve
advantage δ = 1

100 , using e = 9 (assuming hardness of the CopRSA SSRSA problem) and e = 2 (assuming
hardness of FSRSA problem - see Section 6). Throughput (’Thrpt’) columns are estimated throughput based
on Wei Dai’s Crypto++ benchmarks page [17] (for Pentium 4 2.1GHz processor) and extrapolation assuming
classical arithmetic.

The above estimates suggest that we can (with n = 6144 bit) achieve a rate around 25000 cycles/byte
(0.67 Mbit/s with 2.1 GHz clock) on a Pentium 4 Processor, outputting more than 230 bits with
provable 270 instructions distinguishing run-time (under the (1/e + ε, e)-SSRSA assumption). This
seems to be close to practical requirements of some stream cipher applications (it is several hundred
times faster than the basic Blum-Blum Shub generator outputting one bit per iteration with the same
modulus length). Compared to the recent provably secure QUAD PRG construction [4] (based on
the ‘MQ’ problem), our PRG seems to have a lower throughput, although it is difficult to make a fair
comparison since unlike our figures above, the performance figures reported in [4] (between 3000 and
4500 cycles/byte on Pentium 4) are for a ‘practical’ choice of parameters, smaller than those for which
the security proof can be applied. A possible advantage of our construction is its significantly smaller
static parameters (i.e. non-secret parameters defining the pseudorandom generator) of length n < 10
kbit, while in [4] the static parameters are longer than 1 Mbit (this might allow our construction
to be implemented with less code memory requirements). On the other hand, the security of our
construction is proven relative to a problem which is at most as hard as factoring and hence does not
apply against potential future quantum attacks, while the MQ problem used in [4] may be secure
even against such attacks.

10

6 Potential Improvements

6.1 Cryptanalysis of the FS-RSA Problem

As observed in Section 4, the (n, e, r, k, l)-FSRSA problem, although not well-known, gives a more
direct proof of security for the RSA PRG than the SSRSA problem. Hence it is interesting to
cryptanalyze this problem using the Coppersmith lattice-based attack methods [15] and see whether
the problem may be hard for larger values of r than the corresponding SSRSA problem, possibly
leading to improved efficiency of the RSA PRG. Indeed, in this section we describe a ‘Coppersmith-
type’ lattice attack on (n, e, r, k, l)-FSRSA (which we believe is essentially optimal) and show that
it is likely to succeed only when r/n ≥ 1/2 − (k + l)/(2n) − 1/(2e). This value of r/n is larger by
about 1/(2e) + (max(k, l)/n− (k + l)/(2n)) than that the largest value for which the corresponding
SSRSA problem in Section 4 is secure, leading to improved throughput for the RSA PRG by using
this stronger assumption.

The attack on (n, e, r, k, l)-FSRSA problem works as follows. First we reduce the problem to solving
two modular equations in two small unknowns z1 and z2. Namely, given (y = [xe]N , a ∈R ZZN , s1 =
Lr([ax]N), u1 = M̂N,k([ax]N), b ∈R ZZN , s2 = Lr([bx]N), u2 = M̂N,l([bx]N)), we have

xe ≡ y (mod N), (8)

[ax]N = s1 + z̄′1 · 2r; |[ax]N − u1| ≤ N/2k (9)

and
[bx]N = s2 + z̄′2 · 2r; |[bx]N − u2| ≤ N/2l (10)

where z̄′1 < N/2r and z̄′2 < N/2r consist of the n − r MS bits of [ax]N and [bx]N , respectively. Let
ẑ1 = bu1−s1

2r c. From (9) we conclude that |z̄′1 − ẑ1| ≤ |([ax]N−s1

2r) − (u1−s1
2r)| + 1 ≤ N/2r+k + 1 ≤

N/2r+k−1 (for 2r+k < N) and hence letting z̄1 = z̄′1 − ẑ1 we obtain [ax]N = (s1 + 2rẑ1) + 2rz̄1 where
integer |z̄1| < N/2r+k−1. Similarly, from (10) we obtain [bx]N = (s2 + 2rẑ2) + 2rz̄2 where integer
|z̄2| < N/2r+l−1 (for 2r+l ≤ N) and ẑ2 = b(u2 − s2)/2rc. Treating the last two equations for [ax]N
and [bx]N as congruences modulo N , we eliminate the unknown variable x (by multiplying the second
congruence by [ab−1]N and subtracting from the first) to obtain a single linear polynomial f(z1, z2) in
two variables z1, z2, having the desired small unknowns z̄1, z̄2 as a zero modulo N (i.e. f(z̄1, z̄2) ≡ 0
(mod N)), namely:

f(z1, z2) = α · z1 + z2 + β, (11)

where α = [−ab−1]N and β = [−a−1b2−r(s1 +2rẑ1)+2−r(s2 +2rẑ2)]N are known. Also, substituting
x ≡ a−1(s1 + 2rẑ1) + 2ra−1ẑ1 (mod N) into (8) we obtain a degree e univariate polynomial in z1

having the small unknown z̄1 as a zero modulo N (i.e. g(z̄1) ≡ 0 (mod N)):

g(z1) = (z1 + α̂)e − β̂, (12)

where α̂ = [2−rs1 + ẑ1]N and β̂ = [−(a2−r)ey]N are known. To find the small zero (z̄1, z̄2) of (11)
and (12) we use the bivariate modular polynomial lattice method of Coppersmith [15] as simplified
by Howgrave-Graham [28] and used in many subsequent works. Namely, for an integer m we use the
polynomials f(z1, z2) and g(z1) to construct the following family of polynomials hi,k(z1, z2) indexed
by a pair of integers i = 0, 1, . . . , me (which we refer to as the ‘block index’) and k = 0, . . . , i for each
block i (which we call the ‘inner index’):

hi,k(z1, z2) = Nme−(i−k+b k
e
c)z[k]e

1 g(z1)b
k
e
cf(z1, z2)i−k. (13)

Observe that each of the polynomials hi,k(z1, z2) has (z̄1, z̄2) as a zero modulo Nme, because
f(z̄1, z̄2)i−k ≡ 0 (mod N i−k) and g(z̄1)b

k
e
c ≡ 0 (mod N b k

e
c).

11

It follows that any integer linear combination of the polynomials hi,k(z1, z2) also has (z̄1, z̄2) as a zero
modulo Nme. Let B1 = N/2r+k−1 and B2 = N/2r+l−1 denote the upper bounds derived above on
|z̄1| and |z̄2|, respectively. We set up a lattice L to search for linear combinations of the polynomials
hi,k(z1, z2), which have sufficiently small coefficients such that they have (z̄1, z̄2) as a zero over the
integers, not just modulo Nme. Given two such linearly independent polynomials we can take their
resultant to obtain a single univariate polynomial equation in z1 over the integers which is easy to
solve. More precisely, we use the following Lemma due originally to Howgrave-Graham [28] (see
also [12]). For a bivariate polynomial h(z1, z2) =

∑
i,j ci,jz

i
1z

j
2 ∈ ZZ[z1, z2], define the norm of h(z1, z2)

as ‖h(z1, z2)‖ = (
∑

i,j |ci,j |2)1/2.

Lemma 6.1. Let h(z1, z2) be a polynomial in ZZ[z1, z2] having at most d monomials. If (1) h(z̄1, z̄2) ≡
0 (mod Nme) with |z̄1| < B1 and |z̄2| < B2, and (2) ‖h(B1z1, B2z2)‖ < Nme/

√
d, then h(z̄1, z̄2) = 0

holds over ZZ.

The square basis matrix BL for the lattice L has its rows and columns indexed by pairs of integers
(i, k) with i increasing in the range 0, . . . , me (block index) and k = 0, . . . , i (inner index) for each
block index i (i.e. the first block i = 0, k = 0 appears first, then the second block i = 1,k = 0, 1
and so on). On the (i, k)th row we place the coefficients of the polynomial hi,k(B1z1, B2z2). We
order the monomials of hi,k(B1z1, B2z2) such that the (i′, k′)th column of the (i, k)th row of BL
contains the coefficient of the monomial zk′

1 zi′−k′
2 of hi,k(B1z1, B2z2). Notice that with this ordering,

the polynomial hi,k(B1z1, B2z2) is the first one to have a non-zero coefficient for the monomial zk
1zi−k

2

so that the basis matrix BL is in lower diagonal form, and has the following entry BL[(i, k), (i, k)] in
the (i, k)th position along the diagonal:

BL[(i, k), (i, k)] = Nme−(i−k+b k
e
c)Bk

1Bi−k
2 . (14)

It follows that the determinant of lattice L is the product of these diagonal elements of BL. A
straightforward calculation using (14) gives:

det(L) = Nme·d(me)−W (m,e)(B1B2)D(me)/2, (15)

where the function D(me) is given by

D(me) def=
me∑

i=0

i(i + 1) =
1
3
me(me +

1
2
)(me + 1) +

1
2
me(me + 1), (16)

the function W (m, e) is given by

W (m, e) def=
me∑

i=0

i∑

k=0

(i− k) + bk
e
c =

1
2
D(me) +

e2

6
m(m− 1

2
)(m− 1) +

(e + 2)e
4

m(m− 1) + m, (17)

and d(me) = 1
2(me+1)(me+2) denotes the dimension of L. We run the LLL algorithm on the basis BL

for lattice L and hope that it returns two sufficiently short linearly independent polynomials having
(z̄1, z̄2) as a zero over ZZ. Let h1(z1, z2) and h2(z1, z2) denote the polynomials corresponding to the
first two vectors in the reduced basis of L returned by LLL. By Lemma 2.1 (see Section 2; the lemma
applies since all diagonal elements (15) of the lower-diagonal basis matrix BL are greater than 1), we
know that the norms ‖h1(B1z1, B2z2)‖ and ‖h2(B1z1, B2z2)‖ will be at most 2d(me)/2 det(L)

1
d(me)−1 .

Therefore, (recalling that (z̄1, z̄2) is a zero of h1 and h2 modulo Nme), in order to apply Lemma 6.1
to conclude that h1(z̄1, z̄2) = h2(z̄1, z̄2) = 0 over ZZ, we must have the following condition:

2d(me)/2 det(L)
1

d(me)−1 <
Nme

√
d(me)

. (18)

12

Plugging (15) into this condition, we obtain (B1B2)1/2 < N
W (m,e)−me

D(me) /γ(me), where the factor

γ(me) def= (
√

d(me)2d(me)/2)
d(me)−1
D(me) is independent of n and so is of order O(No(1)) as n increases.

Furthermore, from (16) and (17) we see that D(me) = e3

3 m3 + O(m2) and W (m, e) = 1
2D(me) +

e2

6 m3 + O(m2). For increasing parameter m, the leading m3 terms dominate, and hence the ratio
W (m,e)−me

D(me) approaches asymptotically the value 1
2 + e2/6

e3/3
= 1

2 + 1
2e . So the attack success condition

becomes (B1B2)1/2 < N1/2+1/(2e)−o(1) for large n and m. Using B1 = N
2r+k−1 and B2 = N

2r+l−1 and
N < 2n we obtain the asymptotic attack success bound

r

n
> 1/2− 1/(2e)− (k + l)

2n
+ o(1). (19)

Remark 1. The above analysis proves that (when the asymptotic condition (19) is satisfied) the two
polynomials h1(z1, z2) and h2(z1, z2) returned by the LLL algorithm will have (z̄1, z̄2) as a zero over
ZZ, and hence z̄1 is a zero of the univariate polynomial h(z1) = Resz2(h1(z1, z2), h2(z1, z2)) (resultant
of h1 and h2 with respect to variable z2). If h(z1) is non-zero, then it has at most deg(h) zeros over
ZZ which can be easily computed to recover z̄1 (and then z̄2). But it is possible that h(z1) is the
zero polynomial, in which case the attack fails. Hence, in common with several other applications
of Coppersmith’s method to multivariate modular polynomials [12, 18, 7, 8, 19], this last step of the
attack is a heuristic. We have performed several numerical experiments using NTL [38] which have
confirmed the validity of this heuristic in practice – in all our experiments, the resultant of h1 and h2

was non-zero whenever the bound (18) was satisfied. The following table gives smallest values of r/n
for which our experimental attack succeeded in all 3 successive runs (using independent randomly
chosen N , a,b in each run). Note how we approach the asymptotic bound of (19) as n and m increase.

e n m d rexp/n rbnd/n rasymp/n Time(s)

2 32 3 28 0.31 0.44 0.20 3
2 64 4 45 0.28 0.34 0.20 230
2 96 5 66 0.26 0.30 0.20 8228

Table 2: Attack experimental results (on Pentium 4 1.6GHz processor). In all cases, we set k = n/16 and
l = n/32. Column rexp/n is the smallest value of r/n for which attack succeeded (in all 3 independent runs),
rbnd/n is the smallest value of r/n for which the proven success bound (18) is satisfied, and rasymp/n is the
asymptotic success lower bound (19) for large n and m.

Remark 2. We conjecture that the bound (19) of our attack is essentially optimal for ‘Coppersmith-
type’ lattice attacks on (n, e, r, k, l)-FSRSA. To give some intuition for this conjecture, we note that
the ‘linear information’ components (s1, s2, u1, u2) contain at most 2r+k+l bits of information about
x (using the known a, b). To obtain more information on x one must use the degree e polynomial
xe − y ≡ 0 (mod N). So the problem is analogous to an SSRSA problem with n − (2r + k + l)
unknown bits. Since Coppersmith’s original SSRSA algorithm for degree e polynomials succeeds
only when the number of unknown bits s < n/e, we expect that the problem can be solved only
when n − (2r + k + l) < n/e, that is r/n > 1/2 − 1/(2e) − (k + l)/(2n), which is the same as the
success condition (19) for our attack.

6.2 Using Rabin Exponents (e = 2)

If we assume that the attack of the previous section is optimal so the (n, e, r, k, l)-FSRSA problem
is hard when the bound (19) is violated, then we can allow r/n to approach 1/4 even for e = 2,
with only one modular squaring required per iteration. It is shown in [20] that with appropriate
modifications to the proof, Lemma 3.3 holds also for e = 2 if we replace the iteration function
x → [xe]N by the ‘absolute Rabin function’ fa : x → |[x2]N | def= min([x2]N , [N−x2]N), choose N = pq

13

to be a Blum RSA modulus with p ≡ q ≡ 3 (mod 4), and choose the PRG seed x0 ∈R MN , where
MN

def= ZZ∗N (+1)∩ (0, N/2), and ZZ∗N (+1) denotes the subset of elements of ZZ∗N having Jacobi symbol
+1. Since fa permutes the set MN , the proof of Lemma 3.2 holds as well. Refer to Table 1 for
performance of this PRG variant, where it is assumed that the best attack on (n, e, r, k, l)-FSRSA
with r/n = 1/2 − 1/(2e) − (k+l)

2n + ε takes time min(TF (n), 2εn), where TF (n) is the time needed to
factor N . We stress however that this assumption is new and needs further study.

7 Applications

We point out applications of our result on the security of efficient variants of the (n, e, r, `)-RSAPRG.

Stream Cipher. The most direct application is construction of an efficient stream cipher, using the
well-known construction in which the ciphertext is obtained by XORing the PRG output with the
message bit stream (where the secret key is the seed x0 and prime factors of N). It is easy to show
that the indistinguishability security of this stream cipher is equivalent to the pseudorandomness
security of the PRG, and the computational efficiency of the cipher is also essentially the same as
that of the PRG.

Efficient RSA-Based IND-CPA Public Key Encryption Without Random Oracles. An-
other application is the construction of efficient semantically secure (IND-CPA) RSA based public-key
encryption schemes without random oracles, an idea which was first proposed (using the less efficient
RSA PRG variants with r = 1) by Blum and Goldwasser [10]. In this setting, the public encryption
key is (N, e) and the secret key is d = e−1 mod φ(N), as in standard RSA. To encrypt an `-bit mes-
sage M under public key (N, e), one picks a random seed x0 ∈R ZZN , expands it to a pseudorandom
bit string K = GN (x0) ∈ {0, 1}` using the (n, e, r, `)-RSAPRG, and computes C = M ⊕ K (as in
the stream cipher construction above). The ciphertext for M is (C, xm), where m = `/r (here xi is
the PRG state value after the ith iteration). Since xm = [xem

0]N , the decryptor knowing the RSA
trapdoor key d can easily recover x0 = [xdm

m]N , thus obtaining K = GN (x0) and then M = C ⊕K.

The IND-CPA security of the above scheme for r/n = 1/2−1/e−ε−o(1) follows from the hardness of
the same (1/e+ ε, e)-SSRSA inversion problem which suffices for the pseudorandomness of (n, e, r, `)-
RSAPRG. This is due to the fact (first exploited by Blum and Goldwasser [10] for the case r = 1) that
the pseudorandomness security reduction for the (n, e, r, `)-RSAPRG, and in particular Lemma 3.2,
easily extends to the case where the state xm is also known to the distinguisher (referring to the
proof of Lemma 3.2 in Appendix B, this is simply because the distinguisher D′ knows (N, e) and
y = [xe]N = xi∗+1 for some i∗ ∈ {0, . . . ,m − 1} and hence can easily compute the additional input
xm = [yem−1−i∗

]N to be given to distinguisher D in the reduction).

For short messages of length r = (1/2− 1/e− ε− o(1))n (m = 1), the computational efficiency of the
above scheme is about the same as other RSA based IND-CPA schemes using random oracles (e.g.
OAEP [2]), with the advantage is that it achieves provable IND-CPA security based on a well-studied
inversion problem without random oracles. Furthermore, the scheme can encrypt long `-bit messages
with the same efficiency as the (n, e, r, `)-RSAPRG without using additional security assumptions.
However, the scheme is not secure against chosen-ciphertext attacks, and it is an open problem to
efficiently strengthen it for this security level without using random oracles.

We also remark that Goldreich describes a ‘Randomized RSA’ scheme (Construction 5.3.16 on page
416 in [23]) which is identical with the above scheme using parameters m = `/r = 1 and r/n =
1/2, and proves its security assuming the ‘Large Hard Core Conjecture for RSA’ (informally, this
conjecture states that distinguishing the r = n/2 LS bits of x ∈R ZZN from n/2 independent random
bits given (N, e, y = [xe]N) is as hard as inverting the RSA function). Goldreich states([23], page
481) that ‘Randomized RSA’ is commonly believed to be secure, but leaves as an important open
problem to find additional support for this belief. Our result makes progress in this direction, by

14

showing that the variant of ‘Randomized RSA’ with r = (1/2− 1/e− ε− o(1))n is secure assuming
the hardness of a well-studied (1/e + ε, e)-SSRSA inversion problem.

8 Conclusion

We have shown that an efficient variant of the RSA PRG is provably secure assuming the hardness of
a well-studied variant of the RSA inversion problem in which some of the plaintext bits are known.
We see two avenues for further improvement. Even using the FSRSA assumption in Section 6, the
PRG rate which we can prove secure is r = (1/2− 1/(2e)− ε− o(1))n for ‘small’ ε. Can this rate be
improved using a different proof (but a similar inversion assumption) up to r = (1−1/e− ε−o(1))n?
The other question is whether the factor `2 in the reduction run-time factor O((`/δ)2n log(n)) can
be significantly reduced, to allow more bits ` to be generated for a given security level and modulus
length n (a result in [20] shows that that the factor O((1/δ)2n) is unlikely to be improved, since
it is optimal for any inversion algorithm that does not use the non-linear information y = [xe]N in
processing the distinguisher answers for recovering x).

Acknowledgements. The authors would like to thank Scott Contini and Igor Shparlinski for en-
lightening discussions and encouragement. This work was supported by Australian Research Council
Discovery Grants DP0345366 and DP0451484.

References

[1] W. Alexi, B. Chor, O. Goldreich, and C.P. Schnorr. RSA and Rabin Functions: Certain Parts Are as
Hard as the Whole. SIAM Journal on Computing, 17(2):194–209, 1988.

[2] M. Bellare and P. Rogaway. Optimal Asymmetric Encryption – How to Encrypt with RSA. In EURO-
CRYPT ’94, volume 950 of LNCS, pages 92–111, Berlin, 1995. Springer-Verlag.

[3] M. Ben-Or, B. Chor, and A. Shamir. On the Cryptographic Security of Single RSA Bits. In Proc. 15-th
STOC, pages 421–430, New York, 1983. ACM Press.

[4] C. Berbain, H. Gilbert, and J. Patarin. QUAD: a Practical Stream Cipher with Provable Security. In
EUROCRYPT 2006, volume 4004 of LNCS, pages 109–128, Berlin, 2006. Springer-Verlag.

[5] S.R. Blackburn, D. Gomez-Perez, J. Gutierrez, and I.E. Shparlinski. Reconstructing Noisy Polynomial
Evaluation in Residue Rings. Journal of Algorithms. (To Appear).

[6] S.R. Blackburn, D. Gomez-Perez, J. Gutierrez, and I.E. Shparlinski. Predicting Nonlinear Pseudorandom
Number Generators. Mathematics of Computation, 74:1471–1494, 2004.

[7] J. Blömer and A. May. Low Secret Exponent RSA Revisited. In CaLC 2001, volume 2146 of LNCS, pages
110–125, Berlin, 2001. Springer-Verlag.

[8] J. Blömer and A. May. New Partial Key Exposure Attacks on RSA. In CRYPTO 2003, volume 2729 of
LNCS, pages 27–43, Berlin, 2003. Springer-Verlag.

[9] L. Blum, M. Blum, and M. Shub. A Simple Unpredictable Pseudo-Random Number Generator. SIAM
Journal on Computing, 15:364–383, 1986.

[10] M. Blum and S. Goldwasser. An Efficient Probabilistic Public-Key Encryption Scheme Which Hides All
Partial Information. In CRYPTO ’84, volume 196 of LNCS, pages 289–302, Berlin, 1985. Springer-Verlag.

[11] M. Blum and S. Micali. How to Generate Cryptographically Strong Sequences of Pseudo-Random Bits.
SIAM Journal on Computing, 13:850–864, 1984.

[12] D. Boneh and G. Durfee. Cryptanalysis of RSA with private key d less than N0.292. IEEE Trans. on
Info. Theory, 46(4):1339–1349, 2000.

[13] D. Boneh, S. Halevi, and N.A. Howgrave-Graham. The Modular Inversion Hidden Number Problem. In
ASIACRYPT 2001, volume 2248 of LNCS, pages 36–51, Berlin, 2001. Springer-Verlag.

15

[14] D. Catalano, R. Gennaro, N. Howgrave-Graham, and P. Nguyen. Paillier’s Cryptosystem Revisited. In
Proc. CCS ’01, New York, November 2001. ACM.

[15] D. Coppersmith. Small Solutions to Polynomial Equations, and Low Exponent RSA Vulnerabilities. J.
of Cryptology, 10:233–260, 1997.

[16] D. Coppersmith. Finding Small Solutions to Low Degree Polynomials. In CALC ’01, volume 2146 of
LNCS, pages 20–31, Berlin, 2001. Springer-Verlag.

[17] W. Dai. Crypto++ 5.2.1 Benchmarks, 2006. http://www.eskimo.com/∼weidai/benchmarks.html.
[18] G. Durfee and P.Q. Nguyen. Cryptanalysis of the RSA Schemes with Short Secret Exponent from Asi-

acrypt ’99. In ASIACRYPT 2000, volume 1976 of LNCS, pages 14–29, Berlin, 2000. Springer-Verlag.

[19] M. Ernst, E. Jochemsz, A. May, and B. de Weger. Partial Key Exposure Attacks on RSA Up to Full Size
Exponents. In CRYPTO 2005, volume 3494 of LNCS, pages 371–386, Berlin, 2005. Springer-Verlag.

[20] R. Fischlin and C.P. Schnorr. Stronger Security Proofs for RSA and Rabin Bits. Journal of Cryptology,
13:221–244, 2000.

[21] R. Gennaro. An Improved Pseudo-Random Generator Based on the Discrete-Logarithm Problem. Journal
of Cryptology, 18:91–110, 2005.

[22] O. Goldreich. Foundations of Cryptography, Volume I. Cambridge University Press, Cambridge, 2003.

[23] O. Goldreich. Foundations of Cryptography, Volume II. Cambridge University Press, Cambridge, 2004.

[24] O. Goldreich and V. Rosen. On the Security of Modular Exponentiation with Application to the Con-
struction of Pseudorandom Generators. J. of Cryptology, 16:71–93, 2003.

[25] S. Goldwasser and S. Micali. Probabilistic Encryption. J. of Computer and System Sciences, 28(2):270–
299, 1984.

[26] S. Goldwasser, S. Micali, and P. Tong. Why and How to Establish a Private Code on a Public Network.
In Proc. FOCS ’82, pages 134–144. IEEE Computer Society Press, 1982.

[27] J. H̊astad, A. Schrift, and A. Shamir. The Discrete Logarithm Modulo a Composite Hides O(n) Bits. J.
Comp. and Syst. Sci., 47:376–404, 1993.

[28] N. Howgrave-Graham. Finding Small Roots of Univariate Polynomials Revisited. In Cryptography and
Coding, volume 1355 of LNCS, pages 131–142, Berlin, 1997. Springer-Verlag.

[29] R. Impagliazzo and M. Naor. Efficient Cryptographic Schemes Provably as Secure as Subset Sum. Journal
of Cryptology, 9:199–216, 1996.

[30] D. Knuth. Seminumerical Algorithms. Addison-Wesley, Reading, MA, 1997.

[31] A. K. Lenstra, H. W. Lenstra, and L. Lovász. Factoring Polynomials with Rational Coefficients. Mathe-
matische Annalen, 261:515–534, 1982.

[32] A.K. Lenstra. Unbelievable Security: Matching AES Security Using Public Key Systems. In Asiacrypt
2001, volume 2248 of LNCS, pages 67–86, Berlin, 2001. Springer-Verlag.

[33] A.K. Lenstra and E.R. Verheul. Selecting Cryptographic Key Sizes. J. of Cryptology, 14:255–293, 2001.

[34] S. Micali and C.P. Schnorr. Efficient, Perfect Polynomial Random Number Generators. J. of Cryptology,
3:157–172, 1991.

[35] P. Q. Nguyen and I. E. Shparlinski. The insecurity of the digital signature algorithm with partially known
nonces. J. Cryptology, 15:151–176, 2002.

[36] P. Q. Nguyen and J. Stern. The Two Faces of Lattices in Cryptology. In Cryptography and Lattices,
volume 2146 of LNCS, pages 146–180, Berlin, 2001. Springer-Verlag.

[37] S. Patel and G. Sundaram. An Efficient Discrete Log Pseudo Random Generator. In CRYPTO ’98,
volume 1462 of LNCS, pages 304–317, Berlin, 1998. Springer-Verlag.

[38] V. Shoup. NTL: A library for doing number theory (version 5.3), 2003. Available from
http://shoup.net/ntl/.

[39] A. Sidorenko and B. Schoenmakers. Concrete Security of the Blum-Blum-Shub Pseudorandom Generator.
In Cryptography and Coding 2005, volume 3796 of LNCS, pages 355–375, Berlin, 2005. Springer-Verlag.

[40] U.V. Vazirani and V.V. Vazirani. Efficient and Secure Pseudo-Random Number Generation. In Proc.
FOCS ’84, pages 458–463. IEEE Computer Society Press, 1982.

16

A Proof of Lemma 3.1

Let p0 = Pr[D(s) = 1 : s ∈R {0, 1}`] and for each N ∈ In, let pN = Pr[D(GN (x0)) = 1 : x0 ∈R ZZN].
Then since N is uniform in In we have:

δ ≤ Adv(D) =

∣∣∣∣∣
∑

N∈In

1
|In|(pN − p0)

∣∣∣∣∣ ≤
1
|In|

∑

N∈In

|pN − p0| = 1
|In|

∑

N∈In

AdvN (D). (20)

Suppose towards a contradiction, that the set Gn of of all ‘good’ N ∈ In for which AdvN (D) ≥ δ/2
was of size less than δ/2|In|. Then (because |Gn| < δ/2|In|) the N ’s in Gn contribute less than δ/2
to the average on the right hand side of (20), while (because AdvN (D) < δ/2 for N ∈ In \ Gn) the
N ’s in In \ Gn also contribute less than δ/2, so the right hand side of (20) would be less than δ,
contradicting Adv(D) ≥ δ, as required.

B Proof of Lemma 3.2

We use the following ‘hybrid’ argument. Consider the m+1 ‘hybrid’ distributions DH,0,N , . . . ,DH,m,N

where DH,i,N has its first i r-bit blocks random while the remaining m− i pseudorandom. That is:

DH,i,N = {s = (s0, . . . , sm−1) : x0 ∈R ZZN ; xj+1 = [xe
j]N , j = 0, . . . , m− 2;

sj ∈R {0, 1}r, j = 0, . . . , i− 1, sj = Lr(xj), j = i, . . . ,m− 1}.

Note that DH,0,N = DP,`,N while DH,m,N = DR,`. For i ∈ {0, . . . , m− 1}, let pi = Prs←DH,i,N
[D(s) =

1]. Note that the advantage of D can be written |p` − p0| = |∑m−1
i=0 (pi+1 − pi)| ≥ δ, so we have∑m−1

i=0 |(pi+1− pi)| ≥ |∑m−1
i=0 (pi+1− pi)| ≥ δ. Hence there must exist i∗ ∈ {0, . . . , m− 1} such that D

has distinguishing advantage at least δ/m between the neighbouring hybrid distributions DH,i∗,N and
DH,i∗+1,N . So on input (y, s), the distinguisher D′ runs D on input (s0, . . . , si∗−1, s, si∗+1, . . . , sm−1),
where (s0, . . . , si∗−1) are chosen independently at random from {0, 1}r while sj = Lr(xj) for j ≥ i∗+1,
where xi∗+1 = y and xj = [xe

j−1]N for j > i∗ + 1. Thus it is easy to see that if (y, s) comes from
distribution D′P,r,N then D sees the distribution DH,i∗,N while if (y, s) comes from D′R,r,N then D sees
the distribution DH,i∗+1,N (we use here the fact that the mapping x → [xe]N permutes ZZN so xi∗

is uniform in ZZN in the distributions DH,i,N). Note that D′ performs at most m evaluations of the
mapping x → [xe]N , and each of those takes time O(log(e)n2). Hence D′ is a (T +O(m log(e)n2), δ/m)
distinguisher between D′P,r,N and D′R,r,N , as required.

C Proof of Lemma 3.3

For completeness we sketch the main ideas in the proof of Lemma 3.3 from [20]. For more details we
refer the reader to [20] (the proof of simultaneous security of r bits we give here is outlined on page
229 of [20] as an extension of the proof for r = 1).

The lemma is proved in two steps.

The first step is to convert the given (T, δ) distinguisher D′ between distributions D′P,r,N = {(y =
[xe]N , s = Lr(x)) : x ∈R ZZN} and D′R,r,N = {(y = [xe]N , s) : x ∈R ZZN ; s ∈R {0, 1}r} to a jth
bit predictor Oj for some j ∈ {1, . . . , r}. That is, letting `j(x) denote the jth LS bit of x we have
Oj([xe]N , Lj−1(x)) = `j(x) with probability at least 1/2+δ/` over x ∈R ZZN and the random coins of
Oj (notice that Oj requires as input [xe]N as well as the j − 1 LS bits of x). This general conversion
from distinguisher to predictor is originally due to Yao (see Lemma P1 in [30]). The idea is to first
consider the r ‘hybrid’ distributions D′H,0, . . . ,D′H,r where D′H,j is defined like D′P,r,N except that the

17

string s has its first j LS bits equal to Lj(x) while the remaining r− j bits random and independent
of x. Since D′H,0 = D′R,r,N while D′H,r = D′P,r,N , it then follows (similar to the proof of Lemma 3.2)
that D′ has distinguishing advantage least δ/` between two neighbouring hybrid distributions D′H,j−1

and D′H,j differing only in the jth bit for some j ∈ {1, . . . , r}. The jth bit predictor Oj , on input
(y = [xe]N , Lj−1(x)), chooses a random bit b and r− j other random bits sj+1, . . . , sr and runs D′ on
input (y, s = (Lj−1(x), b, sj+1, . . . , sr)). If D′ returns 1, then Oj returns b, else Oj returns b̄ (the NOT
of b). It is not difficult to show that the output bit of Oj (or its NOT) equals `j(x) with probability
at least 1/2 + δ/`.

The second step is to convert the jth bit predictor Oj to an inversion algorithm to recover x from
y = [xe]N together with the ‘extra information’ (a ∈R ZZN , s1 = Lr([ax]N), u1 = M̂N,k([ax]N), b ∈R

ZZN , s2 = Lr([bx]N), u2 = M̂N,l([bx]N)).

The basic idea used in [20] is the ‘binary division’ process: Given an estimate u for [ax]N with
additive error ε (i.e. x is in interval [u− ε, u+ ε]), and the least significant bit b = `1([ax]N) of [ax]N ,
we can obtain an estimate u′ for x′ = [2−1ax]N within additive error ε/2 (i.e. half the error) using
u′ = 1/2(u + bN). This is because if b = 0 ([ax]N is even), then [2−1ax]N = 2−1[ax]N , while if b = 1
([ax]N + N is even) then [2−1ax]N = 2−1([ax]N + N). Thus, starting from a rough approximation
u1 of [ax]N with additive error of order N ≈ 2n, if we are given the least significant bits of [2−tax]N
for t = 0, 1, 2, 3..., n we apply the binary division process n times to obtain an approximation un

to [2−nax]N with error less than 1/2; hence rounding un to the nearest integer recovers [2−nax]N
exactly and then x can be easily recovered since a is known.

We now explain how to recover the LS bits of [2−tax]N for t = 0, . . . , n using the jth bit predictor
Oj .

Suppose first that Oj was a perfect bit predictor with success probability 1. For the case j = 1, to
obtain the LS bit of [2−tax]N we use the known y = [xe]N and the homomorphic property of RSA to
compute yt = [([2−tax]N)e]N = [(2−ta)e[xe]N]N = [(2−ta)ey]N and query yt to O1, which returns the
desired bit. For the case j > 1, notice that since j ≤ r, the ‘extra information’ s1 = Lr([ax]N) gives
us Lj([ax]N). Now we use the relation Lj−1([2−1ax]N) = 2−1Lj(Lj([ax]N)+`1([ax]N)N) to compute
Lj−1([2−1ax]N), which we provide as input to Oj along with y1 = [([2−1ax]N)e]N to obtain jth bit
`j([2−1ax]N). Combining this with Lj−1([2−1ax]N) we obtain Lj([2−1ax]N). Now we continue this
process to obtain Lj([2−tax]N) for t = 0, . . . , n and hence recover x as before.

To handle the case of imperfect predictors Oj with success probability at least 1/2 + δ/r, we query
the predictor Oj in stage t (when attempting to recover bit `j([2−tax]N)) many times on pairwise
independent inputs and use a majority vote over the estimates of the bit `j([2−tax]N) obtained from
the outputs of Oj on those inputs. Thanks to the pairwise independence of the queries to Oj , it is
possible to prove using the Chebychev inequality that the error probability of the majority vote bit is
reduced to O(1/n) using O(n(δ/r)−2) queries. Further details follow. To make the queries pairwise
independence, we use queries of the form ([(ct,ix)e]N , Lj−1([ct,ix]N)) where ct,i = (2i + 1)[2−ta]N + b,
over values of i in set {i : |2i + 1| ≤ mt}, where mt = O(n(δ/r)−2). The pairwise independence of
the ct,i’s follows from the pairwise independence of a, b in ZZN . To compute an estimate for the j − 1
LS bits Lj−1([ct,ix]N) needed as input to Oj (and also to convert the output bit of Oj for the query
([ct,ix]N , Lj−1([ct,ix]N)), which estimates the bit `j([ct,ix]N) to a prediction for bit `j([2−tax]N)), we
use the fact that

[ct,ix]N = (1 + 2i)[2−tax]N + [bx]N − ωt,iN, (21)

for some integer ωt,i. Since Lj−1([2−tax]N) is known from the previous stage (or initially, for t = 0,
from the given Lj([ax]N)) and Lj([bx]N) is known from the given input, to compute Lj−1([ct,ix]N) it
is enough to know ωt,i. From (21), ωt,i = b (1+2i)[2−tax]N+[bx]N

N c, and hence an estimate for ωt,i which
is correct with high probability can be obtained by replacing in the last equation [2−tax]N and [bx]N
by their approximations (which are also given for t = 0 via u1 and u2 as input; the approximation

18

of [2−tax]N for t > 0 is even better due to the binary division process). Hence the answer to our ith
query to Oj gives an estimate for `j([ct,ix]N) which is correct if our estimate for ωt,i is correct (so our
query was really ([(ct,ix)e]N , Lj−1([ct,ix]N))) and Oj was successful (we refer the reader to [20] for
the details of the error probability analysis). To convert this estimate for `j([ct,ix]N) to an estimate
for the desired bit `j([2−tax]N) we reduce the equation (21) modulo 2j to obtain

Lj([ct,ix]N) ≡ Lj(1 + 2i)Lj([2−tax]N) + Lj([bx]N)− Lj(ωt,iN) (mod 2j).

Substituting Lj([2−tax]N) = Lj−1([2−tax]N) + 2j−1`j([2−tax]N) and Lj([ct,ix]N) = Lj−1([ct,ix]N) +
2j−1`j([ct,ix]N), dividing by 2j−1 and observing that Lj(1+2i) ≡ 1 (mod 2), we obtain a relation for
`j([2−tax]N) in terms of `j([ct,ix]N) and other known quantities, namely `j([2−tax]N) ≡ `j([ct,ix]N)+

1
2j−1 (Lj−1([ct,ix]N)− Lj(1 + 2i)Lj−1([2−tax]N)− Lj([bx]N) + Lj(ωt,iN)) (mod 2).

Below we summarize the full inversion algorithm from [20]:

1. Using the ‘extra information’ u1, u2, compute estimates ū0 = u1/N and v̄ = u2/N for [ax]N/N
and [bx]N/N with additive errors (δ/r)3/16 and (δ/r)/16 respectively. Let Σ0 = Lj(s1) =
Lj([ax]N), and Θ = Lj(s2) = Lj([bx]N).

2. Binary Division. For each t = 1, . . . , n (n = log N):

• Compute an improved estimate ūt = 1/2(ūt−1 + σt−1) (with half error magnitude) for
ratio [2−tax]N/N ,where σt−1 = L1(Σt−1).

• If t ≤ log(n) + 3, set mt = m′
t = 2t(r/δ)2 and define integer set A = {i : |2i + 1| ≤ mt}.

Else if t ≥ log(n) + 4, set mt = 16n(r/δ)2, m′
t = 2 log(n)(r/δ)2, and define multiset A by

choosing m′
t independent uniformly random elements i from set {i : |2i + 1| ≤ mt}.

• Compute estimate St = 1
2 ·Lj(Σt−1 +L1(Σt−1)N) for Lj−1([2−tax]N) (using estimate Σt−1

for Lj([2−(t−1)ax]N)).

• Obtain m′
t pairwise independent estimates {σt,i}i∈A for bit `j([2−tax]N) by querying Oj

predictor m′
t times. Namely, for each i ∈ A do following:

– Compute multiplier ct,i = (1 + 2i)[2−ta]N + b, [(ct,ix)e]N = [ce
t,iy]N , and an estimate

ω̂t,i = but(1 + 2i) + vc for ωt,i = b (2i+1)[2−tax]N+[bx]N
N c.

– Compute estimate Ct,i = Lj−1((2i + 1)St + Lj−1(Θ)−Lj−1(ω̂t,iN)) for Lj−1([ct,ix]N)
(based on the relation Lj−1([ct,ix]N) = Lj−1((2i + 1)[2−tax]N + [bx]N − ωt,iN)).

– Run Oj on input (N, [(ct,ix)e]N , Ct,i) to obtain output bit σ̂t,i (an estimate for `j([ct,ix]N)).
– Compute estimate σt,i = σ̂t,i+ 1

2j−1 (Ct,i−(2i+1)St−Θ+ω̂t,iN) mod 2 for `j([2−tax]N)
(based on the relation [ct,ix]N = (2i + 1)[2−tax]N + [bx]N − ωt,iN).

• Compute σt as the majority value over the estimates {σt,i}i∈A (estimate for bit `j([2−tax]N)).

• Compute estimate Σt = St + σt2j−1 for Lj([2−tax]N).

4 Now ūnN rounded to nearest integer is equal to [2−nax]N so x can be recovered efficiently as
follows: x = [2na−1būnN + 1

2c]N .

The Success Probability. It is shown in [20] (pages 227-228 and 231) that with the choice of
parameters above (the ‘SMAJ’ version on page 231), the algorithm succeeds with probability at least
2/9 for all n ≥ 29 (we remark that although the success probability analysis in [20] is carried out for
the j = 1 case, it extends without modification to the arbitrary j case (see [20], page 229), since the
errors still occur only due to incorrect Oj answers or ωt,i estimation errors, as explained above).

The Run-Time of the Reduction. The number of times that A runs the predictor Oj is∑n
t=1 m′

t = (
∑log(n)+3

t=1 2t +
∑n

t=log(n)+4 2 log(n)) · (r/δ)2 ≤ (2n log(n)+16n) · (r/δ)2 ≤ 3n log(n)(r/δ)2

19

for all n ≥ 216, and for each run of Oj , A performs a constant number of additions and multiplica-
tions/divisions on numbers of length O(n) bits, which take time O(n2). Hence the run-time of A is
at most 3n log(n)(r/δ)2(T + O(n2)), as claimed.

20

