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Abstract. We present a computational analysis of core Kerberos with
public-key authentication (PKINIT) in which we consider authentica-
tion and key secrecy properties. These proofs rely on the Dolev-Yao
style model of Backes, Pfitzmann and Waidner, which allows for map-
ping results obtained symbolically within this model to cryptographically
sound proofs, if certain assumptions are met. Our work constitutes the
first formal verification of a significant subset of an industrial protocol
at the computational level. By considering a recently fixed version of
PKINIT, we extend symbolic correctness results we previously attained
in the Dolev-Yao model to cryptographically sound results in the com-
putational model.

1 Introduction

Cryptographic protocols have traditionally been verified in one of two ways: the
first, known as the Dolev-Yao or symbolic approach, abstracts cryptographic
concepts into an algebra of symbolic messages [DY83]; the second, known as the
computational or cryptographic approach, retains the concrete view of messages
as bitstrings and cryptographic operations as algorithmic mappings between bit-
strings, while drawing security definition on complexity theory [GM84,GMW87,BR94].
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While proofs in the computational approach with its much more comprehensive
adversary model entail stronger security guarantees, verification methods based
on the Dolev-Yao abstraction have become efficient and robust enough to tackle
large commercial protocols, often even automatically [ABB+05,BCJS02,BCJ+ar,BR97,BP98,Mea99].

Kerberos, a widely deployed protocol that allows a user to authenticate her-
self to multiple end servers based on a single login, constitutes one of the most
important examples that have been formally analyzed within the Dolev-Yao ap-
proach so far. Kerberos 4, which was then the prevalent version, was verified
using the Isabelle theorem prover [BR97,BP98]. Butler et al. have extensively
analyzed the currently predominant version, Kerberos 5 [NYHR05], within the
Dolev-Yao approach [BCJS02,BCJ+ar]: they showed that a detailed specification
of the core protocol enjoys the expected authentication and secrecy properties
except for some relatively innocuous anomalies [CJSW05]; they examined the
support for cross-domain authentication, finding it correct against its specifi-
cation but very weak in practice [CJS+06]; and they exposed a serious attack
against the public key extension of Kerberos (PKINIT) which led to an imme-
diate correction of the specification and was accompanied by security patches
from several vendors, including Microsoft.

However, the proofs for both Kerberos 5 as well as the fixes to PKINIT
are restricted to the Dolev-Yao approach, and currently there does not exist
a theorem which allows for carrying the results of existing proofs of Kerberos
over to the cryptographic domain with its much more comprehensive adversary.
Thus, despite the extensive research dedicated to the Kerberos protocol, and
despite its tremendous importance in practice, it is still an open question whether
an actual implementation of Kerberos based on provably secure cryptographic
primitives is secure under cryptographic security definitions. We close this gap
(at least partially) by providing the first security proof of the core aspects of
the Kerberos protocol in the computational approach. More precisely, we show
that core parts of Kerberos 5 are secure against arbitrary active attacks if the
Dolev-Yao-based abstraction of the employed cryptograph is implemented with
actual cryptographic primitives that satisfy their commonly accepted security
notions under active attacks, e.g., IND-CCA2 for public-key encryption.

Obviously, establishing a proof in the computational approach presupposes
dealing with cryptographic details such as computational restrictions and error
probabilities, hence one naturally assumes that our proof heavily relies on com-
plexity theory and is far out of scope of current proof tools. However, our proof is
not performed from scratch in the cryptographic setting, but based on the Dolev-
Yao style model of Backes, Pfitzmann, and Waidner [BPW03a,BPW03b,BP04b]
(called the BPW model henceforth), which provides cryptographically faithful
symbolic abstractions of cryptographic primitives, i.e., the abstractions can be
securely implemented using actual cryptography. Thus our proof itself is sym-
bolic in nature, but refers to primitives from the BPW model. Kerberos con-
stitutes by far the largest protocol whose cryptographic security has so far
been inferred from a proof in this Dolev-Yao style approach; earlier proofs
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in this approach were only for small examples of purely scientific relevance,
e.g., for the Needham-Schroeder-Lowe, the Otway-Rees, and the Yahalom pro-
tocols [Bac04,BP04a,BPar]. We furthermore analyze the recently fixed version of
PKINIT and derive computational guarantees for it from a symbolic proof based
on the BPW model. Finally we also draw some lessons learned in the process,
which highlight areas where to focus research in order to simplify the verifica-
tion of large commercial protocols with computational security guarantees. In
particular it would be desirable to devise suitable proof techniques based on the
BPW model for splitting large protocols into smaller pieces which can then be
analyzed modularly while still retaining the strong link between the Dolev-Yao
and computational approach. We view this as a research opportunity for the
short-term future.

1.1 Related Work

Early work on linking Dolev-Yao models and cryptography [AJ01,AR00,GTZ01,Lau01]
only considered passive attacks, and therefore cannot make general statements
about protocols. A cryptographic justification for a Dolev-Yao model in the
sense of simulatibility [PW01], i.e., under active attacks and within arbitrary
surrounding interactive protocols, was first given in [BPW03a] with extensions
in [BPW03b,BP04b]. Based on that Dolev-Yao model, the well-known Needham-
Schroeder-Lowe, Otway-Rees, and Yahalom protocols were proved secure in
[BP04a,Bac04,BPar]. All these protocols are considerably simpler than Kerberos,
which we analyze in this paper, and arguably of much more limited practical in-
terest. Some work has been done on industrial protocols, such as 802.11i [HM05],
although Kerberos is still a much more complex protocol.

Laud [Lau04] has presented a cryptographic underpinning for a Dolev-Yao
model of symmetric encryption under active attacks. His work is directly con-
nected with a formal proof tool, but it is specific to certain confidentiality prop-
erties and protocol classes. Herzog et al. [HLM03] and Micciancio and Warin-
schi [MW04] have also given a cryptographic underpinning under active attacks.
Their results are narrower than that in [BPW03a] since they are specific for
public-key encryption and certain protocol classes, but consider slightly simpler
real implementations. Cortier and Warinschi [CW05] have shown that symbol-
ically secret nonces are also computationally secret, i.e., indistinguishable from
a fresh random value given the view of a cryptographic adversary. Backes and
Pfitzmann [BP05] and Canetti and Herzog [CH06] have established new sym-
bolic criteria for proving a key cryptographically secret. We stress that none of
this work is comprehensive enough to infer computational security guarantees of
Kerberos based on an existing symbolic proof; either they are missing suitable
cryptographic primitives or rely on slightly changed symbolic abstractions, e.g.,
as [BPW03a].

Finally, there is also work on formulating syntactic calculi for dealing with
probability and polynomial-time considerations and encoding them into proof
tools, in particular [Bla06,DDM+05,IK03,MMS98,MMST01] . This is orthogo-
nal to the work of justifying Dolev-Yao models, which offer a higher level of
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abstractions and thus much simpler proofs where applicable, so that proofs of
larger systems can be automated.

1.2 Structure of the Paper

We start in Section 2 with a review of Kerberos and its public-key extension. In
Section 3, we recall the Dolev-Yao style model of Backes, Pfitzmann, and Waid-
ner (e.g. [BJ03,BPW03c,BPW03b,BP04b]), and apply it to the specification of
Kerberos 5 and Public-key Kerberos (i.e. Kerberos with PKINIT). Section 4
proves security results for these protocols and lift them to the computational
level. Finally, Section 5 summarizes this effort and outlines areas of future work.

2 Kerberos 5 and its Public-Key Extension

The Kerberos protocol [NT94,NYHR05] allows a legitimate user to log on to her
terminal once a day (typically) and then transparently access all the networked
resources she needs for the rest of that day. Each time she wants to, e.g., retrieve
a file from a remote server, a Kerberos client running on her behalf securely
handles the required authentication. The client acts behind the scenes, without
any user intervention.

Kerberos comprises three subprotocols: the initial round of authentication,
in which the client obtains a credential that might be good for a full day; the
second round of authentication, in which she presents her first credential in
order to obtain a short-term credential (five-minute lifetime) to use a particular
network service; and the client’s interaction with the network service, in which
she presents her short-term credential in order to negotiate access to the service.

In the core specification of Kerberos 5 [NYHR05], all three subprotocols
use symmetric (shared-key) cryptography. Since the initial specification of Ker-
beros 5, the protocol has been extended by the definition of an alternate first
round which uses asymmetric (public-key) cryptography. This new subprotocol,
called PKINIT, may be used in two modes: “public-key encryption mode” and
“Diffie-Hellman (DH) mode.” In recent work [CJS+06], we showed that there was
an attack against the then-current draft specification of PKINIT when public-
key encryption mode was used and then symbolically proved the security of the
specification as it was revised in response to our attack. Here we study both
basic Kerberos (without PKINIT) and the public-key mode of PKINIT as it
was revised to prevent our attack. The fix first appeared in revision 27 of the
PKINIT specification [IET06]; subsequent drafts have not changed this aspect
of PKINIT, and the current draft (revision 34 of PKINIT) has moved to the
next stage in the IETF [The] standards process. In the rest of this section, we
describe the operation of both basic Kerberos and Kerberos with PKINIT in
public-key mode.

Kerberos Basics The client process—usually acting for a human user—inter-
acts with three other types of principals when using Kerberos 5 (with or without
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Fig. 1. Message Flow in the Traditional AS Exchange, where TGT = {AK, C, tK}kT
.

PKINIT). The client’s goal is to be able to authenticate herself to various appli-
cation servers (e.g., email, file, and print servers). This is done by obtaining a
“ticket-granting ticket” (TGT) from a “Kerberos Authentication Server” (KAS)
and then presenting this to a “Ticket-Granting Server” (TGS) in order to obtain
a “service ticket” (ST), the credential that the client uses to authenticate herself
to the application server. A TGT might be valid for a day, and may be used to
obtain several STs for many different application servers from the TGS, while a
single ST is valid for a few minutes (although it may be used repeatedly) and is
used for a single application server. The KAS and the TGS are together known
as the “Key Distribution Center” (KDC).

The client’s interactions with the KAS, TGS, and application servers are
called the Authentication Service (AS), Ticket-Granting (TG), and Client-Server
(CS) exchanges, respectively. We will describe the AS exchange separately for
basic Kerberos and PKINIT; as PKINIT does not modify the other subprotocols,
we only need to describe them once.

The Traditional AS Exchange The abstract structure of the AS exchange is
given in Figure 1. A client C generates a fresh nonce n1 and sends it, together
with her own name and the name T of the TGS for whom she desires a TGT,
to the KAS K. This message is called the AS REQ message [NYHR05]. The
KAS responds by generating a fresh authentication key AK for use between the
client and the TGS and sending an AS REP message to the client. Within this
message, AK is sent back to the client in the encrypted message component
{AK,n1, tK , T}kC

; this also contains the nonce from the AS REQ, the KAS’s
local time tK , and the name of the TGS for whom the TGT was generated.
(The AK and tK to the right of the figure illustrate that these values are new
between the two messages.) This component is encrypted under a long-term key
kC shared between C and the KAS; this key is usually derived from the user’s
password. This is the only time that this key is used in a standard Kerberos
run because later exchanges use freshly generated keys. AK is also included
in the ticket-granting ticket sent alongside the message encrypted for the client.
The TGT consists of AK,C, tK , where tK is K’s local time, encrypted under a
long-term key kT shared between the KAS and the TGS named in the request.
The computational model we use here does not support timestamps, so we will
treat these as nonces. These encrypted messages are accompanied by the client’s
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Fig. 2. Message flow in the fixed version of PKINIT, where TGT = {AK, C, tK}kT
.

name—and other data that we abstract away—sent in the clear. Once the client
has received this reply, she may undertake the Ticket-Granting exchange.

It should be noted that the actual AS exchange, as well as the other exchanges
in Kerberos, is more complex than the abstract view given here. We refer the
reader to [NYHR05] for the complete specification of Kerberos 5, [IET06] for
the specification of PKINIT, and [BCJS02] for a formalization of Kerberos at an
intermediate level of detail.

The AS Exchange in PKINIT PKINIT [IET06] is an extension to Kerberos 5
that uses public key cryptography to avoid shared secrets between a client and
KAS; it modifies the AS exchange but not other parts of the basic Kerberos 5
protocol. The long-term shared key (kC) in the traditional AS exchange is typ-
ically derived from a password, which limits the strength of the authentication
to the user’s ability to choose and remember good passwords; PKINIT does not
use kC and thus avoids this problem. Furthermore, if a public key infrastruc-
ture (PKI) is already in place, PKINIT allows network administrators to use
it rather than expending additional effort to manage users’ long-term keys as
in traditional Kerberos. This protocol extension adds complexity to Kerberos
as it retains symmetric encryption in the later rounds but relies on asymmetric
encryption, digital signatures, and corresponding certificates in the first round.

In PKINIT, the client C and the KAS possess independent public/secret
key pairs, (pkC , skC) and (pkK , skK), respectively. Certificate sets CertC and
CertK issued by a PKI independent from Kerberos are used to testify of the
binding between each principal and her purported public key. This simplifies
administration as authentication decisions can now be made based on the trust
the KDC holds in just a few known certification authorities within the PKI,
rather than keys individually shared with each client (local policies can, however,
still be installed for user-by-user authentication). Dictionary attacks are defeated
as user-chosen passwords are replaced with automatically generated asymmetric
keys.5

5 The login process changes as very few users would be able to remember a random
public/secret key pair. In Microsoft Windows, keys and certificate chains are stored
in a smartcard that the user swipes in a reader at login time. A passphrase is
generally required as an additional security measure [DCB01]. Other possibilities
include keeping these credentials on the user’s hard drive, again protected by a
passphrase.
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As noted above, PKINIT can operate in two modes. These resemble the
basic AS exchange in that the KAS generates a fresh key AK for the client
and TGS to use, and then the KAS transmits AK and the TGT to the client.
The modes of PKINIT provide two different ways for the KAS to transmit this
key using the asymmetric key pairs rather than a key that is shared between
the client and KAS. In DH mode, the key pairs (pkC , skC) and (pkK , skK) are
used to provide digital signature support for an authenticated Diffie-Hellman
key agreement which is then used to protect the fresh key AK. A variant of
this mode allows the reuse of previously generated shared secrets. In public-key
encryption mode, analyzed here, the key pairs are used for both signature and
encryption. The latter is designed to (indirectly) protect the confidentiality of
AK, while the former ensures its integrity.

We will not discuss the DH mode any further as our preliminary investigation
did not reveal any flaw in it; we are still working on a complete analysis of this
mode. Furthermore, it appears not to have yet been included in any of the major
operating systems. The only support we are aware of is within the PacketCable
system [Cab04], developed by CableLabs, a cable television research consortium.

Figure 2 illustrates the AS exchange when the fixed version (which defends
against the attack of [CJS+06]) of PKINIT is used. Here we use [m]sk for the
digital signature of message m with secret key sk, {{m}}pk for the encryption of
m with the public key pk, and {m}k for the encryption of m with the symmetric
key k.

The first line of Figure 2 shows our formalization of the AS REQ message
that a client C sends to a KAS K when using PKINIT. The last part of the
message—C, T, n1—is exactly as in the traditional AS REQ. The new data
added by PKINIT are the client’s certificates CertC and her signature (with
her secret key skC) over a timestamp tC and another nonce n2. (The nonces
and timestamp at the left of this line indicate that these are generated by C
specifically for this request.)

The second line in Figure 2 shows our formalization of K’s response, which
is more complex than in basic Kerberos. The last part of the message—C, TGT,
{AK,n1, tK , T}k—is very similar to K’s reply in basic Kerberos; the difference
is that the symmetric key k protecting AK is now freshly generated by K and
is not a long-term shared key. Because k is freshly generated for the reply, it
must be communicated to C before she can learn AK. PKINIT does this by
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adding the message {{CertK , [k, ck]skK
}}pkC

. This contains K’s certificates and
his signature, using his secret key skK , over k and a keyed hash ck (‘checksum’
in the language of [NYHR05]) taken over the entire request from C using the
key k; all of this is encrypted under C’s public key pkC . The keyed hash ck binds
this response to the client’s request and was added in response to the attack we
discovered and reported in [CJS+06].

The Later Exchanges After the client C has obtained the key AK and the
TGT, either through the basic AS exchange or the PKINIT AS exchange, she
then initiates the TGS exchange. This exchange is shown in Fig. 3. The first line
of this figure shows our formalization of the client’s request, called a TGS REQ
message; it contains the TGT, which is opaque to the client, an authenticator
{C, tC}AK , the name of the server S for which C desires a service ticket, and
C’s local time. Once the TGS receives this message, he decrypts the TGT to
learn AK and uses this to decrypt the authenticator. Assuming his local policies
for granting a service ticket are satisfied (while we do not model these here,
they might include whether the request is sufficiently fresh), the TGS produces
a fresh key SK for C and S to share and sends this back to the client in a
TGS REP message. The form of this message is essentially the same as the
AS REP message from the KAS to C: it contains a ticket (now the service ticket
ST = {SK,C, tT }kS

) encrypted for the next server (now S instead of T ) and
encrypted data for C (now encrypted under AK instead of kC).

Finally, after using the AS exchange to obtain the key SK and the ST, the
client may use the CS exchange to authenticate herself to the end server. Figure 4
shows this exchange, including the optional reply from the server that authenti-
cates this server to the client. As shown in the first line of the figure, C starts
by sending a message (AP REQ) that is similar to the TGS REQ message of the
previous round: in contains the (service) ticket and an authenticator ({C, t′C}SK)
that is encrypted under the key contained in the service ticket. As shown in the
second line of the figure, the server S simply responds with an AP REP message
{t′C}SK containing the timestamp from the authenticator encrypted under the
key from the service ticket.

Attack on PKINIT The attack that we found against the then-current speci-
fication of PKINIT was reported in [CJS+06]. This attack was possible because,
at the time, the reply from the KAS to the client contained [k, n2]skK

in place
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of [k, ck]skK
. In particular, the KAS did not sign any data that depended upon

the client’s name. This allowed an attacker who was herself a legitimate client
to copy a message from another client C to the KAS, use this data in her own
request to the KAS, read the reply from the KAS, and then send this reply to C
as though it was generated by the KAS for C (instead of for the attacker). The
effect of this attack was that the attacker could impersonate the later servers
(TGS and application servers) to the client, or she could let the client continue
the authentication process while the attacker gains knowledge of all new keys
shared by the client and various servers. In the latter variation, the client would
be authenticated as the attacker and not as C.

Security Properties We now summarize the security properties that we prove
here at the symbolic level for both basic Kerberos and Kerberos with PKINIT;
the implications on the computational level are discussed in the subsequent sec-
tions. We have proved similar properties in symbolic terms using a formalization
in MSR for basic Kerberos [BCJS02,BCJ+ar] and for the AS exchange when
PKINIT is used [CJS+06]. The first property we prove here concerns the secrecy
of keys, a notion that is captured formally as Def. 1 in Sec. 4. This property may
be summarized as follows.

Property 1 (Key secrecy). For any honest client C and honest server S, if the
TGS T generates a symmetric key SK for C and S to use (in the CS-exchange),
then the intruder does not learn the key SK.

The second property we study here concerns entity authentication, formalized
as Def. 2 in Sec. 4. This property may be summarized as follows.

Property 2 (Authentication properties).

i. If a server S completes a run of Kerberos, apparently with C, then earlier:
C started the protocol with some KAS to get a ticket-granting ticket and
then requested a service ticket from some TGS.

ii. If a client C completes a run of Kerberos, apparently with server S, then S
sent a valid AP REP message to C.

Theorem 1 below shows that these properties hold for our symbolic formaliza-
tions of basic and public-key Kerberos in the BPW model; Thm. 2 shows that
the authentication property holds as well for cryptographic implementations
of these protocols if provably secure primitives are used; the standard crypto-
graphic definition of key secrecy however turns out not to hold for cryptographic
implementations of Kerberos, which we further investigate below. Because au-
thentication can be shown to hold for Kerberos with PKINIT, it follows that
at the level of cryptographic implementation, the fixed specification of PKINIT
does indeed defend against the attack reported in [CJS+06].

3 The BPW Model

We will now abstractly review the BPW model and then formalize Kerberos
using it.
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Fig. 5. Overview of the Kerberos symbolic system

3.1 Review of the BPW Model

The BPW model introduced in [BPW03c] offers a deterministic Dolev-Yao style
formalism of cryptographic protocols with commands for a vast range of cryp-
tographic operations such as public-key, symmetric encryption/decryption, gen-
eration and verification of digital signatures as well as message authentication
codes, and nonce generation. Every protocol participant is assigned a machine
(an I/O automaton), which is connected to the machines of other protocol partic-
ipants and which executes the protocol for its user by interacting with the other
machines (see Fig. 5). In this reactive scenario, semantics is based on state, i.e.,
of who already knows which terms. The state is here represented by an abstract
“database” and handles to its entries: Each entry (denoted D[j]) of the database
has a type (e.g., “signature”) and pointers to its arguments (e.g., “private key”
and “message”). This corresponds to the way Dolev-Yao terms are represented.
Furthermore, each entry in the abstract database also comes with handles to
participants who have access to that entry. These handles determine the state.
The BPW model does not allow cheating: Only if a participant has a handle
to the entry D[j] itself or to the right entries that could produce a handle to
D[j] can the participant learn the term stored in D[j]. For instance, if the BPW
model receives a command, e.g. from a user machine, to encrypt a message m
with key k, then it makes a new abstract database entry for the ciphertext with
a handle to the participant that sent the command and pointers to the message
and the key as arguments; and only if a participant has handles to the cipher-
text and also to the key can the participant ask for decryption. Furthermore, if
the BPW model receives the same encryption command a second time then it
will generate a new (different) entry for the ciphertext. This meets the fact that
secure encryption schemes are necessarily probabilistic. Entries are made known
to other participants by a send command, which adds handles to the entry.

The BPW model is based on a detailed model of asynchronous reactive sys-
tems introduced in [PW01] and is represented as a deterministic machine THH

(also an I/O automaton), called trusted host, where H ⊂ {1, ..., n} denotes the
set of honest participants out of all m participants. This machine executes the
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commands from the user machines, in particular including the commands for
cryptographic operations. A system consists of several possible structures. A
structure consists of a set M̂ of connected correct user machines and a subset S

of the free ports, i.e. S is the user interface of honest users. In order to analyze the
security of a structure (M̂, S), an arbitrary probabilistic polynomial-time user
machine H is connected to the user interface S and a polynomial-time adversary
machine A is connected to all the other ports and H. This completes a structure
into a configuration of the system (see Fig. 5). The machine H represents all
users. A configuration is a runnable system, i.e., for each security parameter k,
which determines the input lengths (including the key length), one gets a well-
defined probability space of runs. To guarantee that the system is polynomially
bounded in the security parameter, the BPW model maintains length functions
on the entries of the abstract database. The view of H in a run is the restriction
to all inputs and outputs that H sees at the ports it connects to, together with
its internal states. Formally one defines the view viewconf (H) of H for a configu-
ration conf to be a family of random variables Xk where k denotes the security
parameter. For a given security parameter k, Xk maps runs of the configuration
to a view of H.

Corresponding to the BPW model, there exist a cryptographic implementa-
tion of the BPW model and a computational system, in which honest partici-
pants also operate via handles on cryptographic objects. However, the objects
are now bitstrings representing real cryptographic keys, ciphertexts, etc., acted
upon by interactive polynomial-time Turing machines (instead of the symbolic
machines and the trusted host). The implementation of the commands now uses
provably secure cryptographic primitives according to standard cryptographic
definitions (with small additions like type tagging and additional randomiza-
tion). In [BPW03a,BPW03b,BP04b,BPW03c] it was established that the cryp-
tographic implementation of the BPW model is at least as secure as the BPW
model, (denoted by ≥, Fig. 6) meaning that whatever an active adversary can
do in the implementation can also be achieved by another adversary in the
BPW model, or the underlying cryptography can be broken. More formally,
a system Sys1 being at least as secure as another system Sys2 means that
for all probabilistic polynomial-time user H, for all probabilistic polynomial-
time adversary A1 and for every computational structure (M̂1,S) ∈ Sys1, there
exist a polynomial-time adversary A2 on a corresponding symbolic structure
(M̂2,S) ∈ Sys2 such that the view of H is computationally indistinguishable in
both configurations(Fig. 6). This captures the cryptographic notion of reactive
simulatability.

3.2 Public-key Kerberos in the BPW Model

We now model the Kerberos protocol in the framework of [BPW03c] using the
BPW model. We write “:=” for deterministic assignment, “=” for testing for
equality and “←” for probabilistic assignment.

The descriptions of the symbolic systems of Kerberos 5 and PKINIT are very
similar, with the difference that the user machines follow different algorithms
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Fig. 6. Simulatability: The views of H must be indistinguishable

for the two protocols. We denote Kerberos with PKINIT by “PK,” and basic
Kerberos by “K5.” If we let Kerb∈{PK, K5} then, as described in Section 3.1,
for each user u ∈ {1, ..., n} there is a protocol machine MKerb

u which executes
the protocol for u. There are also protocol machines for the KAS K and the
TGT T , denoted by MKerb

K and MKerb
T . Furthermore, if S1, ..., Sl are the servers

in the realm of T then there are server machines MKerb
S for S ∈ {S1, ..., Sl}. Each

user machine is connected to the user via ports: A port for outputs to the user
and a port for inputs from the user, labeled KA outu! and KA inu?, respectively
(“KA” for“Key sharing and Authentication”). The ports for the server machines
are labeled similarly (see Fig. 5).

The behaviors of the protocol machines is described in Algorithm 1 to 5
(Fig. 7- 16). In the following, we comment on two algorithms of PKINIT (Fig. 7
and Fig. 8) , the rest is displayed in Appendix A. If, for instance, a protocol
machine MPK

u receives a message (new prot, PK, K, T ) at KA inu? then it
will execute Algorithm 1A (Fig. 7) to start a protocol run. We give a description
below. The state of the protocol machine MKerb

u consists of the bitstring u and the
sets Nonceu, Nonce2u, TGTicket, and Session KeysSu, in which MKerb

u stores
nonces, ticket-granting tickets, and the session keys for server S, respectively.
This is the information a client needs to remember during a protocol run.

Only the machines of honest users u ∈ {1, ..., n} and honest servers S ∈
{S1, ..., Sl} will be present in the protocol run, in addition to the machines for K
and T . The others are subsumed in the adversary. We denote by H ⊂ {1, ..., n,
K, T, S1, ..., Sl} the honest participants, i.e. for v ∈ H the machine MKerb

v is
guaranteed to run correctly. And we assume that KAS K and TGS T are always
honest, i.e. K,T ∈ H.

Furthermore, given a set H of honest participants, with {K,T} ⊂ H ⊂
{1, ..., n, K, T, S1, ..., Sl} the user interface of public-key Kerberos will be the
set SH := {KA outu!, KA inu? |u ∈ H \ {K,T}}. The symbolic system is the
set SysKerb, symb := {(M̂H, SH)}. Note that, since we are working in an asyn-
chronous system, we are replacing protocol timestamps by arbitrary messages
that we assume are known to the participants generating the timestamps. All
algorithms should immediately abort if a command to the BPW model yields
an error, e.g., if a decryption request fails.
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Notation The entries of the database D are all of the form (ind, type, arg,
hndu1

,...,hndum
,hnda, len), where H = {u1, ..., um}. We denote by ↓ an error

element available to all ranges and domains of all functions and algorithms. So,
e.g., hnda =↓ means the adversary does not have a handle to the entry. For each
entry x ∈ D: x.hnd ∈ INDS, called index, consecutively numbers all entries in
D. The set INDS is isomorphic to N and is used to distinguish index arguments.
We write D[i] for the selection D[ind = i], i.e. it is used as a primary key attribute
of the database. The entry x.type ∈ typeset = {auth, cert, enc, nonce, list, pke,
pkse, sig, ske, skse,} identifies the type of x. Here ske/pke is a private/public
key pair and skse is a symmetric key which comes with a ‘public’ key pkse. This
“public key identifier” pkse cannot be used for any cryptographic operation but
works as a pointer to skse instead (see [BP04a] for a more detailed explanation) .
The entry x.arg = (a1, ..., aj) is a possibly empty list of arguments. Many values
ai are in INDS. x.hndu ∈ HNDS ∪ {↓} for u ∈ H ∪ {a} are handles by which
u knows this entry. We always use a superscript “hnd” for handles. x.len ∈ N0

denotes the “length” of the entry; it is computed by applying the functions from
L.

Initially, D is empty. THH has a counter size ∈ INDS for the current size of
D. For the handle attributes, it has counters currhndu initially 0. First we need
to add the symmetric keys shared exclusively by K and T , S and T . Public-key
Kerberos uses certificates, therefore, in this case all users need to know the public
key for certificate authorities and have their own public-key certificates signed
by a certificate authority. For simplicity we use only one certificate authority
CA. Therefore, we add to D an entry for the public key of CA with handles to
all users (i.e. to all user machines). And for every user we add an entry for the
certificate of that user signed by the certificate authority with a handle to the
user (machine). In the case of Kerberos 5, we are adding entries for the key ku

shared exclusively by K and u, for all user u.

Example of Algorithms Due to space constraints we are only going to ex-
amine PKINIT (Fig. 2) and explain the steps of its Algorithms 1A and 2
(Fig. 7 and Fig. 8) which are more complex than the algorithms in Kerberos 5.
However, with these explanations the remaining algorithms (App. A) should
be easily understandable. For details on the definition of the used commands
see [BPW03c,BPW03b,BP04b]. For readability of the figures, we noted on the
right (in curly brackets) to which terms in the more commonly used Dolev-Yao
notation the terms in the algorithms correspond (≈).

Protocol start of PKINIT. In order to start a new PKINIT protocol, user u
inputs (new prot, PK, K, T ) at port KA inu?. Upon such an input, MPK

u runs
Algorithm 1A (Fig. 7) which prepares and sends the AS REQ to K using the
BPW model. MPK

u generates symbolic nonces in steps 1A.1 and 1A.2 by sending
the command gen nonce(). In step 1A.3 the command list( , ) concatenates tu

and nu,2 into a new list that is signed in step 1A.4 with u’s private key. Since
we are working in an asynchronous system, the timestamp tu is approximated
by some arbitrary message. The command store( ) in step 1A.5-6 makes entries
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A) Input:(new prot, PK, K, T ) at KA inu? .

1. nu,1t
hnd
u ← gen nonce()

2. nhnd
u,2 ← gen nonce()

3. lhnd ← list(thnd
u , nhnd

u,2 ) {l ≈ (tC , n2)}
4. shnd ← sign(skehnd

u , lhnd) {s ≈ [tC , n2]skC
}

5. uhnd ← store(u)
6. T hnd ← store(T )
7. mhnd

1 ← list(certhnd
u , shnd, uhnd, T hnd, nhnd

u,1 ) {m1 ≈ CertC , [tC , n2]skC
, C, T, n1}

8. Nonceu := Nonceu ∪ {(n
hnd
u,1 , mhnd

1 , K)}
9. send i(K, mhnd

1 )

B) Input:(continue prot, PK, T, S, AKhnd) at KS inu? for S ∈ {S1, ..., Sl}

1. if (@ (TGT hnd, AKhnd, T ) ∈ TGTicketu) then
2. Abort
3. end if
4. zhnd ← list(uhnd, thnd

u ) {z ≈ C, tC}
5. authhnd ← sym encrypt(AKhnd, zhnd) {auth ≈ {C, tC}AK}
6. nhnd

u,3 ← gen nonce()
7. Nonce2u := Nonce2u ∪ {n

hnd
u,3 , T, S)}

8. mhnd
2 ← list(TGT hnd, authhnd, Shnd, nhnd

u,3 ) {m2 ≈ TGT , {C, tC}AK , S, n3}
9. send i(T, mhnd

2 )

Fig. 7. Algorithm 1 of Public-key Kerberos: Evaluation of inputs from the user (starting
the AS and TG exchanges).

in the database for the names of u and T . Handles for the names u and T are
returned, which are added to a list in the next step. MPK

u stores information in
the set Nonceu, which it will need later in the protocol to verify the message
authentication code sent by K. In step 1A.8 Nonceu is updated. Finally, in step
1A.9 the AS REQ is sent over an insecure (”i” for ”insecure”) channel.

Behavior of the KAS K in PKINIT. Upon input (v, K, i, mhnd) at port outK?
with v ∈ {1, .., n}, the machine MPK

K runs Algorithm 2 (Fig. 8) which first
checks if the message m is a valid AS REQ and then prepares and sends the
corresponding AS REP. In order to verify that the input is a possible AS REQ,
the types of the input message m’s components are checked in steps 2.1 - 2.5. The
command retrieve(xhnd

i ) in step 2.3 returns the bitstring of the entry D[hndu =
xhnd

i ]. Next the machine verifies the received certificate x1 of v by checking the
signature of the certificate authority CA (steps 2.6 - 2.10). Then the machine
extracts the public key pkev out of v’s certificate with the command pk of cert( )
and uses this public key to verify the signature x2 received in the AS REQ (steps
2.11 - 2.16). In steps 2.17 - 2.21 the types of the message components of the signed
message y1 are checked, as well as the freshness of the nonce y12 by comparison
to nonces stored in Nonce3K . If the nonce is fresh then it will be stored in the
set Nonce3K in step 2.23 for freshness checks in future protocol runs. Finally,
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Input:(v, K, i, mhnd) at outK? with v ∈ {1, ..., n}.

1. xhnd
i ← list proj(mhnd, i) for i = 1, ..., 5

2. typei ← get type(xhnd
i ) for i = 1, 2, 5 {x1 ≈ CertC , x2 ≈ [tC , n2]skC

, x5 ≈ n1}
3. xi ← retrieve(xhnd

i ) for i = 3, 4 {x3 ≈ C, x4 ≈ T}
4. if (type1 6= cert) ∨ (type2 6= sig) ∨ (type5 6= Nonce) ∨ (x3 6= v)∨ (x4 6= T ) then
5. Abort
6. end if
7. vhnd ← store(v)
8. b← verify cert(pkehnd

CA , xhnd
1 , vhnd)

9. if b = false then
10. Abort
11. end if
12. pkehnd

v ← pk of cert(pkehnd
CA , xhnd

1 )
13. type6 ← get type(pkehnd

v )
14. if (type6 6= pke) then
15. Abort
16. end if
17. yhnd

1 ← msg of sig(xhnd
2 ) {y1 ≈ tC , n2}

18. b← verify(xhnd
2 , pkehnd

v , yhnd
1 ) {x2 ≈ [tC , n2]skC

}
19. if b = false then
20. Abort
21. end if
22. yhnd

1i ← list proj(yhnd
1 , i) for i = 1, 2 {y11 ≈ tC , y12 ≈ n2}

23. type12 ← get type(yhnd
12 )

24. if (type12 6= nonce) ∨ ((yhnd
12 , .) ∈ Nonce3K) then

25. Abort
26. end if
27. Nonce3K := Nonce3K ∪ {(y

hnd
12 , v)}

28. khnd ← gen symenc key()
29. AKhnd ← gen symenc key()
30. authhnd ← auth(khnd, mhnd) {auth ≈ ck}
31. zhnd

1 ← list(khnd, authhnd) {z1 ≈ k, ck}
32. shnd

2 ← sign(skehnd
K , zhnd

1 ) {s2 ≈ [k, ck]skK
}

33. zhnd
2 ← list(certhnd

K , shnd
2 ) {z2 ≈ CertK , [k, ck]skK

}
34. m21 ← encrypt(pkehnd

K , zhnd
2 ) {m21 ≈ {{CertK , [k, ck]skK

}}pkC
}

35. zhnd
3 ← list(AKhnd, xhnd

3 , thnd
K ) {z3 ≈ AK, C, tK , T}

36. TGT hnd ← sym encrypt(sksehnd
K,x4

, zhnd
3 ) {TGT ≈ {AK, C, tK}kT

}
37. zhnd

4 ← list(AKhnd, xhnd
5 , thnd

K , xhnd
4 ) {z4 ≈ AK, n1, tK , T}

38. m24 ← sym encrypt(khnd, zhnd
4 ) m24 ≈ {Ak, n1, tK , T}k}

39. mhnd
2 ← list(mhnd

21 , xhnd
3 , TGT hnd, mhnd

24 )
{m2 ≈ {{CertK , [k, ck]skK

}}pkC
, C, TGT, {Ak, n1, tK , T}k}

40. send i(v, mhnd
2 )

Fig. 8. Algorithm 2 of Public-key Kerberos: Behavior of the KAS
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in steps 2.24 - 2.36 MPK
K generates two symmetric keys k and AK, composes the

AS REP, and sends it to v over an insecure channel.

4 Formal Results

discussed earlier possesses the properties informally outlined in Section 2. We
begin by formalizing the respective security properties and verify them properties
in the BPW model in Section 4.1. Then, in Section 4.2, we rely on previous
work to transfer the authentication aspect of these results to the computational
setting, and discuss the notion of computational secrecy.

4.1 Security in the Symbolic Setting

In order to use the BPW model to prove the computational security of Kerberos,
we first formalize the respective security properties and verify them in the BPW
model. We first prove that Kerberos keeps the symmetric key, which the TGS
T generated for use between user u and server S, symbolically secret from the
adversary. In order to prove this, we show that Kerberos also keeps the keys gen-
erated by KAS K for the use between u and the TGS T secret. Furthermore, we
prove entity authentication of the user u to a server S (and subsequently entity
authentication of S to u). This form of authentication is weaker than the au-
thentication Kerberos offers, since we do not consider the purpose of timestamps
in Kerberos. Timestamps are currently not modeled in the BPW model.

Secrecy and Authentication Requirements We now define the notion of
key secrecy, which was informally captured already in Property 1 of Section 2,
as the following formal requirement in the language of the BPW model.

Definition 1 (Key secrecy requirement). For Kerb ∈{PK, K5} the secrecy
requirement ReqSec

Kerbis:
For all u ∈ H ∩ {1, ..., n}, and S ∈ H ∩ {S1, ..., Sl}, and t1, t2, t3 ∈ N:

(t1 : KA outS ! (ok,Kerb, u, SKhnd)
∨ t2 : KA outu! (ok,Kerb, S, SKhnd)
⇒ t3 : D[hndu = SKhnd].hnda =↓

where t : D denotes the contents of database D at time t. Similarly t : p?m
and t : p!m denotes that message m occurs at input (respectively output) port
p at time t. As above PK refers to Public-key Kerberos and K5 to Kerberos 5.
In the next section Theorem 1 will show that the symbolic Kerberos systems
specified in Section 3.2 satisfy this notion of secrecy, and therefore Kerberos
enjoys Property 1.

Next we define the notion of authentication in Property 2 in the language of
the BPW model.

Definition 2 (Authentication requirements). For Kerb ∈ {PK,K5}:
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i. The authentication requirement ReqAuth1

Kerb is: For all v ∈ H∩ {1, ..., n}, for all
S ∈ H ∩ {S1, ..., Sl}, and K,T :

∃ t3 ∈ N. t3 : KA outS ! (ok,Kerb, v, SKhnd)
⇒ ∃ t1, t2 ∈ N with t1 < t2 < t3. t2 : KA inv! (continue prot,Kerb,T, S, ·)

∧ t1 : KA inv! (new prot,Kerb,K, T )

ii. The authentication requirement ReqAuth2

Kerb is: For all u ∈ H∩{1, ..., n}, for all
S ∈ H ∩ {S1, ..., Sl}, and K,T :

∃ t2 ∈ N. t2 : KA outu! (ok,Kerb, S, SKhnd)
⇒ ∃ t1 ∈ N with t1 < t2. t1 : KA inS ! (ok,Kerb, u, SKhnd)

iii. The overall authentication ReqAuth

Kerb for protocol Kerb is:

ReqAuth

Kerb := ReqAuth1

Kerb ∧ReqAuth2

Kerb

Theorem 1 will show that this notion of authentication is satisfied by the sym-
bolic Kerberos system. Therefore Kerberos has Property 2.

When proving that Kerberos has these properties, we will use the notion of
a system Sys perfectly fulfilling a requirement Req, Sys |=perf Req. This means
the property Req holds with probability one over the probability space of runs
for a fixed security parameter (as defined in Section 3.1). Later we will also
need the notion of a system Sys computationally fulfilling a requirement Req,
Sys |=poly Req, i.e., the property holds with negligible error probability for all
polynomially bounded users and adversaries (again, over the probability space of
all runs for a fixed security parameter). In particular, perfect fulfillment implies
computational fulfillment.

In order to prove Theorem 1, we need first to prove a number of auxiliary
properties (previously called invariant in, e.g., [Bac04,BPar]). Although these
properties are nearly identical for Kerberos 5 and Public-key Kerberos, their
proofs had to be carried out separately. We consider it interesting future work
to augment the BPW model with proof techniques that allow for conveniently
analyzing security protocols in a more modular manner. In fact, a higher de-
gree of modularity would simplify the proofs for each individual protocol as it
could exploit the highly modular structure of Kerberos; moreover, it would also
simplify the treatment of the numerous optional behaviors of this protocol.

Some of the key properties needed in the proof of Theorem 1, which formalizes
Properties 1 and 2, make authentication and confidentiality statements for the
first two rounds of Kerberos. They are listed intuitively next. These properties
are formalized and proved in Appendix B.

i) Authentication of KAS to client and Secrecy of AK: If user u receives
a valid AS REP message then this message was indeed generated by K for
u and an adversary cannot learn the contained symmetric keys.

ii) TGS Authentication of the TGT: If TGS T receives a TGT and an au-
thenticator {v, tv}AK where the key AK and the username v are contained
in the TGT, then the TGT was generated by K and the authenticator was
created by v.
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iii) Authentication of TGS to client and Secrecy of SK: If user u receives
a valid TGS REP then it was generated by T for u and S. And an adversary
cannot learn the contained session key SK.

iv) Server Authentication of the ST: If server S receives a ST and an au-
thenticator {v, tv}SK where the key SK and the name v are contained in
the ST, then the ST was generated by T and the authenticator was created
by v.

We can now capture the security of Kerberos in the BPW model in the
following theorem; which says that Properties 1 and 2 hold symbolically for
Kerberos. We show a proof excerpt in the case of Public-key Kerberos (the
outline is analogous for Kerberos 5).

Theorem 1. (Security of the Kerberos Protocol based on the BPW Model)

– Let SysK5, symb be the symbolic Kerberos 5 system defined in Section 3.2,
and let ReqSec

K5and ReqAuth
K5 be the secrecy and authentication requirements

defined above. Then SysK5, symb |=perf ReqSec
K5 ∧ReqAuth

K5 .
– Let SysPK, symb be the symbolic Public-key Kerberos system, and let ReqSec

PK

and ReqAuth
PK be the secrecy and authentication requirements defined above.

Then SysPK, symb |=perf ReqSec
PK∧ ReqAuth

PK .

Proof (sketch). We assume that all parties are honest. If user u successfully ter-
minates a session run with a server S, i.e. there was an output (ok, PK, S, khnd)
at KA outu!, then the key k was stored in the set Session KeysSu. This implies
that the key was generated by T and sent to u in a valid TGS REP. By auxiliary
property i), an adversary cannot learn k. Similar holds for the case that S suc-
cessfully terminates a session run. This shows the key secrecy property ReqSec

PK .
As for the authentication property ReqAuth1

PK , if server S successfully terminates
a session with u, i.e. there was an output (ok, PK, u, khnd) at KA outS !, then S
must have received a Ticket generated by T (for S and u) and also a matching
authenticator generated by user u (by auxiliary property iv)). But the Ticket
will only be generated if u sends the appropriate request to T , i.e. there was an
input (continue prot,PK, T , S, AKhnd) at KA inu?. The request, on the other
hand, contains a TGT that was generated by K for u (by auxiliary property
ii)), therefore u must have sent an request to K. In particular, there had been
an input (new prot, PK, K, T ) at KA inu?. As for the authentication property
ReqAuth2

PK , if the user u successfully terminates a session with server S, i.e. there
was an output (ok, PK, S, khnd) at KA outu!, then it must have received a mes-
sage encrypted under k that does not contain u’s name. The key k was contained
in a valid TGS REP and was therefore generated by T , by auxiliary property
iii). Only T , u, or S could know the key k, but only S uses this key to encrypt
and send a message that u received. On the other hand, S follows sending such
a message immediately by an output (ok, PK, u, khnd) at KA outS !. ut

This proof shares similarities with the Dolev-Yao style proofs of analogous results
attained for Kerberos 5 and PKINIT using the MSR framework [BCJS02,BCJ+ar,CJS+06].
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The two approaches are similar in the sense that both reconstruct a necessary
trace backward from an end state, and in that they rely on some form of induc-
tion (based on rank/co-rank functions in MSR). In future work, we plan to draw
a formal comparison between these two Dolev-Yao encodings of a protocol, and
the proof techniques they support.

4.2 Security in the Cryptographic Setting

The results of [BPW03c] allow us to take the authentication results in Thm. 1
and derive a corresponding authentication results for a cryptographic implemen-
tation of Kerberos. Just as Property 2 hold symbolically for Kerberos, this shows
that it holds in a cryptographic implementation as well. In particular, entity au-
thentication between a user and a server in Kerberos holds with overwhelming
probability (over the probability space of runs). However, symbolic results on
key secrecy can only be carried over to cryptographic implementations if the
protocol satisfies certain additional conditions. Kerberos unfortunately does not
fulfill these definitions, and it can easily be shown that cryptographic imple-
mentations of Kerberos do not fulfill the standard notion of cryptographic key
secrecy, see below. This yields the following theorem.

Theorem 2. (Computational security of the Kerberos protocol)

– Let SysK5, comp denote the computational Kerberos 5 system implemented
with provable secure cryptographic primitives. Then SysK5, comp |=poly ReqAuth

K5 .
– Let SysPK, comp denote the computational Public-key Kerberos system imple-

mented with provable secure cryptographic primitives. Then SysPK, comp |=poly

ReqAuth
PK .

Proof (Sketch for public-key Kerberos). By Theorem 1, we know that SysPK, id

|=perf ReqAuth
PK . And, as we mentioned earlier, the cryptographic implementa-

tion of the BPW model (using provably secure cryptographic primitives) is at
least as secure as the BPW model, Syscry, comp ≥poly

sec Syscry, id. After checking
that the “Commitment Problem” does not occur in the protocol, we can use
the Preservation of Integrity Properties Theorem from [BJ03] to automatically
obtain Thm. 2.

The Commitment Problem occurs when keys that have been used for cryp-
tographic work are revealed later in the protocol. If the simulator in [BPW03c]
(with which one can simulate a computational adversary attack on the symbolic
system) learns in some abstract way that e.g. a ciphertext was sent, the simu-
lator generates a distinguishable ciphertext without knowing the symmetric key
nor the plaintext. If the symmetric key is revealed later in the protocol then
the trouble for the simulator will be to generate a suitable symmetric key that
decrypts the ciphertext into the correct plaintext. This is typically an impossible
task. In order for the simulation with the BPW model to work, one thus needs
to check that the Commitment Problem does not occur in the protocol. ut

As far as key secrecy is concerned, it can be proven that the adversary attack-
ing the cryptographic implementation does not learn the secret key string as a
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whole. However, it does not necessarily rule out that an adversary will be able to
distinguish the key from other fresh random keys, as required by the definition
of cryptographic key secrecy. This definition of secrecy says that an adversary
cannot learn any partial information about such a key and is hence considerable
stronger than requiring that an adversary cannot obtain the whole key. For Ker-
beros we can show that the key SK does not satisfy cryptographic key secrecy
after the last round of Kerberos, i.e., SK is distinguishable from other fresh
random keys. It should also be noted that this key SK is still indistinguishable
from random after the second round but before the start of the third round of
Kerberos. We have the following proposition

Proposition 1. a) Kerberos does not offer cryptographic key secrecy for the key
SK generated by the TGS T for the use between client C and server S after the
start of the last round of Kerberos.

b) After the TGS exchange and before the start of the CS exchange is the key
SK generated by the TGS T still cryptographically secret.

Proof. a) To see that Kerberos does not offer cryptographic key secrecy for
SK after the start of the third round, note that the key SK is used in the
protocol for symmetric encryption. As symmetric encryption always provides
partial information to an adversary if the adversary also knowsn the message
that was encrypted. We explain in the following how an adversary can exploit
this to distinguish the key SK: An adversary first completes a regular Kerberos
execution between C and S learning the message {C, t′}SK encrypted under the
unknown key SK. The adversary will also learn a bounded time period TP (of a
few seconds) in which the timestamp t′ was generated. Next a bit b is flipped and
the adversary receives a key k, where k = SK for b = 0 and k is a fresh random
key for b = 1. The adversary now attempts to decrypt {C, t′}SK with k yielding
a message m. If m 6= C, t for a timestamp t then the adversary guesses b = 1. If
m = C, t for a timestamp t then the adversary checks whether t ∈ TP or not. If
t /∈ TP then the adversary guesses b = 1 otherwise the adversary guesses b = 0.
The probability of the adversary guessing correctly is then 1− ε, where ε is the
probability that for random keys k, SK the ciphertext {C, t′}SK decrypted with
k is C, t with t ∈ TP . Clearly, ε is negligible (since the length of the time period
TP does not depend on the security parameter). Hence, SK is distinguishable
and cryptographic key secrecy does not hold.

b) However, before the third round has been started the key SK is not only
unknown to the adversary but, in particular, SK has not been used for symmetric
encryption yet. We can therefore invoke the key secrecy preservation theorem
of [BP05], which states that a key that is symbolically secret and symbolically
unused is also cryptographically secret. This allows us to conclude that SK is
cryptographically secret from the adversary.

For similar reasons, one also has the next proposition

Proposition 2. a) Kerberos does not offer cryptographic key secrecy for the key
AK generated by the KAS K for the use between client C and TGS T after the
start of the second round of Kerberos.
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b) After the AS exchange and before the start of the TGS exchange is the key
AK generated by the KAS K still cryptographic secret.

Optional Sub-Session Key Kerberos may allow the client or the server to
generate a sub-session key. This optional key can then be used for the encryption
of further communication between the two parties. To send the optional sub-
session key to the other party, the generator of this optional key (C or S) includes
the key as part of the message which is encrypted using the session key SK. For
instance, server S may generate the optional key k and send {t′, k}SK as the
AP REP. It is easy to see that, due to the key secrecy of SK, an adversary cannot
learn the optional key (i.e., in the language of the BPW model, an adversary
does not get a handle to this key). Since the optional key is not used in the
protocol, we may invoke Thm. IV.1 of [BP05]. This theorem says that unused
keys, which the adversary cannot learn, are kept cryptographically secret by the
protocol. This approach is illustrated for the Yahalom protocol in [BPar].

Corollary 1. (Computational security of the optional sub-session) For fixed
Kerb ∈ {PK,K5}, the symbolic Kerberos system SysKerb, id from section 3.2
keeps the optional sub-session key symbolically secret, and all polynomial-time
configurations of the computational public-key Kerberos system SysKerb, comp

keep the optional sub-session key cryptographically secret.

5 Conclusions and Future Work

In this paper, we have exploited the Dolev-Yao style model of Backes, Pfitzmann,
and Waidner [BPW03a,BPW03b,BP04b] to obtain the first computational proof
of authentication for the core exchanges of the Kerberos protocol and its exten-
sion to public keys (PKINIT). Although the proofs sketched here are conducted
symbolically, grounding the analysis on the BPW model automatically lifts the
results to the computational level, assuming that all cryptography is imple-
mented using provably secure primitives. Cryptographic key secrecy in the sense
of indistinguishability of the exchanged key from a random key could only be
established for the optional sub-key exchanged in Kerberos while for the actually
exchanged key, cryptographic key secrecy could be proven not to hold.

Concerning future work, it seems promising to augment the BPW model
with specialized proof techniques that allow for conveniently performing proofs
in a modular manner. Such techniques would provide a simple and elegant
way to integrate the numerous optional behaviors supported by Kerberos and
nearly all commercial protocols; for example, this would facilitate the analy-
sis of DH mode in PKINIT which is part of our ongoing work. We intend
to tackle the invention of such proof techniques that are specifically tailored
towards the BPW model in the near future, e.g., by exploiting recent ideas
from [DDMW06]. Another potential improvement we plan to pursue in the near
future is to augment the BPW model with timestamps; this would in particular
allow us to establish authentication properties that go beyond entity authentica-
tion [BCJS02,BCJ+ar,CJSW05,CJS+06]. A further item on our research agenda
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is to fully understand the relation between the symbolic correctness proof for
Kerberos 5 presented here and the corresponding results achieved in the MSR
framework [BCJS02,BCJ+ar,CJS+06].
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ruani, Luca Viganò, and Laurent Vigneron. The AVISPA Tool for the
Automated Validation of Internet Security Protocols and Applications.
In Proc. of Computer-aided Verification (CAV). Springer, 2005. URL:
www.avispa-project.org.

[AJ01] Mart́ın Abadi and Jan Jürjens. Formal eavesdropping and its computa-
tional interpretation. In Proc. 4th International Symposium on Theoretical
Aspects of Computer Software (TACS), pages 82–94, 2001.

[AR00] Mart́ın Abadi and Phillip Rogaway. Reconciling two views of cryptography:
The computational soundness of formal encryption. In Proc. 1st IFIP
International Conference on Theoretical Computer Science, volume 1872
of Lecture Notes in Computer Science, pages 3–22. Springer, 2000.

[Bac04] Michael Backes. A cryptographically sound Dolev-Yao style security proof
of the Otway-Rees protocol. In Proc. 9th European Symposium on Re-
search in Computer Security (ESORICS), volume 3193 of Lecture Notes in
Computer Science, pages 89–108. Springer, 2004.

[BCJ+ar] Frederick Butler, Iliano Cervesato, Aaron D. Jaggard, Andre Scedrov, and
Christopher Walstad. Formal analysis of Kerberos 5. Theor. Comp. Sci.,
Special issue on Automated Reasoning for Security Protocol Analysis, to
appear.

[BCJS02] Fred Butler, Iliano Cervesato, Aaron D. Jaggard, and Andre Scedrov. An
Analysis of Some Properties of Kerberos 5 Using MSR. In Proc. CSFW’02,
2002.

[BJ03] Michael Backes and Christian Jacobi. Cryptographically sound and
machine-assisted verification of security protocols. In Proceedings of 20th
STACS’03, volume 2607 of LNCS, pages 675–686. Springer-Verlag, Berlin
Heidelberg, February 2003.

[Bla06] Bruno Blanchet. A computationally sound mechanized prover for security
protocols. In Proc. 27th IEEE Symposium on Security & Privacy, 2006.

[BP98] G. Bella and L. C. Paulson. Kerberos Version IV: Inductive Analysis of
the Secrecy Goals. In Proc. ESORICS’98, pages 361–375. Springer LNCS
1485, 1998.

[BP04a] Michael Backes and Birgit Pfitzmann. A cryptographically sound security
proof of the Needham-Schroeder-Lowe public-key protocol. Journal on
Selected Areas in Communications, 22(10):2075–2086, 2004.

[BP04b] Michael Backes and Birgit Pfitzmann. Symmetric encryption in a simu-
latable dolev-yao style cryptographic library. In Proc. CSFW’04, pages
204–218, June 2004.

[BP05] Michael Backes and Birgit Pfitzmann. Relating symbolic and crypto-
graphic secrecy. IEEE Trans. Dependable Secure Comp., 2(2):109–123,
April–June 2005.

22



[BPar] Michael Backes and Birgit Pfitzmann. On the cryptographic key secrecy
of the stregthened Yahalom protocol. In Proceedings of 21st IFIP SEC’06,
to appear.

[BPW03a] Michael Backes, Birgit Pfitzmann, and Michael Waidner. A composable
cryptographic library with nested operations (extended abstract). In Proc.
10th ACM Conference on Computer and Communications Security, pages
220–230, 2003. Full version in IACR Cryptology ePrint Archive 2003/015,
Jan. 2003, http://eprint.iacr.org/.

[BPW03b] Michael Backes, Birgit Pfitzmann, and Michael Waidner. Symmetric au-
thentication within a simulatable cryptographic library. In Proc. ES-
ORICS’03, volume 2808, pages 271–290. Springer-Verlag, Berlin Heidel-
berg, 2003.

[BPW03c] Michael Backes, Birgit Pfitzmann, and Michael Waidner. A universally
composable cryptographic library. IACR Cryptology ePrint Archive, Re-
port 2003/015, http://eprint.iacr.org/, January 2003.

[BR94] Mihir Bellare and Phillip Rogaway. Entity authentication and key distri-
bution. In Advances in Cryptology: CRYPTO ’93, volume 773 of Lecture
Notes in Computer Science, pages 232–249. Springer, 1994.

[BR97] G. Bella and E. Riccobene. Formal Analysis of the Kerberos Authentica-
tion System. J. Universal Comp. Sci., 3(12):1337–1381, December 1997.

[Cab04] Cable Television Laboratories, Inc. PacketCable Security Specification,
2004. Technical document PKT-SP-SEC-I11-040730.

[CH06] Ran Canetti and Jonathan Herzog. Universally composable symbolic
analysis of cryptographic protocols (the case of encryption-based mutual
authentication and key exchange). In Proc. 3rd Theory of Cryptography
Conference (TCC), 2006.

[CJS+06] Iliano Cervesato, Aaron D. Jaggard, Andre Scedrov, Joe-Kai Tsay, and
Chris Walstad. Breaking and fixing public-key Kerberos. In Proc.
WITS’06, pages 55–70, 2006.

[CJSW05] Iliano Cervesato, Aaron D. Jaggard, Andre Scedrov, and Christopher
Walstad. Specifying Kerberos 5 Cross-Realm Authentication. In Proc.
WITS’05, pages 12–26. ACM Digital Lib., 2005.
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A Additional Algorithms

For completeness, this appendix collects the algorithms omitted from the main
body of this paper. The algorithms for Public-key Kerberos are in Fig. 7–12. The
algorithms for Kerberos 5 are in Fig. 11–16. Note that the algorithms for the
TGS T and a server S (i.e. Algorithms 4 and 5 in Fig. 11 and 12) are identical
for Public-key Kerberos and Kerberos 5.

B Additional Proof Sketches

B.1 Conventions

In the following we will use following convention for the algorithms:

Convention 1 Let Kerb ∈ {PK,K5}. For all w ∈ {1, ..., n} ∪ {S1, ..., Sl} ∪
{K,T} the following holds. If MKerb

w enters a command at port inw! and receives
↓ at port outw? as the immediate answer of the cryptographic library, then MKerb

w

aborts the execution of the current algorithm, except if the command was of the
form list proj or send i.

B.2 Auxiliary Properties

In the following we will consider the auxiliary properties for Public-key Kerberos.
Let ck be a Message Authentication Code of some list/message m with some key
k (instead of a keyed Hash Function Hk).

Handles contained in the sets Nonceu and Nonce2u are indeed handles of u
to handles.

Lemma 1 (Correct Nonce Owner).
For all u ∈ H, and (xhnd, ...) ∈ Nonceu or (xhnd, ...) ∈ Nonce2u, it holds

D[hndu = xhnd] 6=↓ and D[hndu = xhnd].type = nonce.

Proof. Let (xhnd, ...) ∈ Nonceu. By construction, this entry has been added
to Nonceu by MPK

u in step 1A.8. xhndhas been generated by the command
gen nonce() at some time t, input at port inu? of THH. Convention 1 implies
xhnd 6=↓, as MPKINIT

u would abort otherwise and not add the entry to Nonceu.
By definition of gen nonce() and using Lemma 5.2 of [Bac04] one gets that
D[hndu = xhnd] 6=↓ and D[hndu = xhnd].type = nonce holds (the proof of the
statement for Nonce2u is analogous).

If K generated a symmetric key k or AK for v (i.e., on receiving a AS REQ
from v) and w has a handle to k or AK then w must either be v or K. And if T
generated a symmetric key SK for v and server S and w has a handle to SK,
then w must be either v, T or S.
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Input: (v, u, i, mhnd) at outu?

1. if v = K then {AS REP is input}
2. chnd

i ← list proj(mhnd, i) for i = 1, 2, 3, 4 {c1 ≈ {{CertK , [k, ck]skK
}}pkC

, c2 ≈
C, c3 ≈ TGT, c4 ≈ {AK, n1, tK , T}k }

3. c2 ← retrieve(chnd
2 )

4. if (c2 6= u) then
5. Abort
6. end if
7. lhnd

1 ← decrypt(skehnd
u , chnd

1 ) {l1 ≈ CertK , [k, ck]skK
}

8. lhnd
1.i ← list proj(lhnd

1 , i) for i = 1, 2 {l1.1 ≈ CertK , l1.2 ≈ [k, ck]skK
}

9. Khnd ← store(K)
10. b← verify cert(pkehnd

CA , lhnd
1.1 , Khnd)

11. if b = false then
12. Abort
13. end if
14. pkehnd

K ← pk of cert(pkehnd
CA , lhnd

1.1 )
15. zhnd

1.2 ← msg of sig(l1.2) {z1.2 ≈ k, ck}
16. b← verify(lhnd

1.2 , pkehnd
k , zhnd

1.2 )
17. if (b = false) then
18. Abort
19. end if
20. xhnd

i ← list proj(z1.2, i) for i = 1, 2 {x1 ≈ k, x2 ≈ ck}
21. typei ← get type(xhnd

i ) for i = 1, 2
22. if (type1 6= skse) ∨ (type2 6= auth) then
23. Abort
24. end if
25. lhnd

4 ← sym decrypt(xhnd
1 , chnd

4 ) {x1 ≈ k, c4 ≈ {AK, n1, tK , T}k}
26. yhnd

i ← list proj(lhnd
4 ), i for i = 1, 2, 4 {y1 ≈ AK, y2 ≈ n1, y4 ≈ T}

27. type3 ← get type(yhnd
1 )

28. type4 ← get type(yhnd
2 )

29. y4 ← retrieve(yhnd
4 )

30. if (type3 6= skse)∨(type4 6= nonce)∨(y4 6= T )∨(@! m̃hnd : (yhnd
2 , m̃hnd) ∈ Nonceu)

then
31. Abort
32. end if
33. b← auth test(xhnd

2 , xhnd
1 , m̃hnd) {x2 ≈ ck = Hk(m̃)}

34. if (b = false) then
35. Abort
36. end if
37. TGTicketu := TGTicketu ∪ {(c

hnd
3 , yhnd

1 , T )} {c3 ≈ TGT, y1 ≈ AK}
38. output (ok, KAS exchange PK, K, T, yhnd

1 , chnd
3 ) at KA outu!

Fig. 9. Algorithm 3 of Public-key Kerberos, part 1: Behavior of user in after initializa-
tion
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39. else if v = T then {TGS REP is input}
40. dhnd

i ← list proj(mhnd, i) for i = 1, 2, 3 {d1 ≈ C, d2 ≈ ST, d3 ≈ {SK, n3, tT S}AK}
41. d1 ← retrieve(dhnd

1 )
42. if (d1 6= u)
∨ (@! (., AKhnd, T ) ∈ TGTicketu) : sym decrypt(AKhnd, dhnd

3 ) 6=↓) then
43. Abort
44. end if
45. lhnd

2 ← sym decrypt(AKhnd, dhnd
3 ) {l2 ≈ SK, n3, tT , S}

46. xhnd
2.i ← list proj(lhnd

2 , i) for i = 1, 2, 4 {x2.1 ≈ SK, x2.2 ≈ n3, x2.4 ≈ S}
47. type5 ← get type(xhnd

2.1 )
48. type6 ← get type(xhnd

2.2 )
49. if (type5 6= skse) ∨ (type6 6= nonce) ∨ ((xhnd

2.2 , T, .) /∈ Nonce2u) then
50. Abort
51. end if
52. xhnd

3 ← list(uhnd, t′hnd
u ) {x3 ≈ C, t′C}

53. mhnd
3.2 ← sym encrypt(xhnd

2.1 , xhnd
3 ) {m3.2 ≈ {C, t′C}SK}

54. mhnd
3 ← list(dhnd

2 , mhnd
3.2 ) {m3 ≈ ST, {C, t′C}SK}

55. S ← retrieve(xhnd
2.4 )

56. Session KeysSu := Session KeysSu ∪ {(S, xhnd
2.1 )} {x2.1 ≈ SK}

57. send i(S, mhnd
3 )

58. else if v = S ∈ {S1, ..., Sl} then {AP REP is input}
59. if (@!(S, SKhnd) ∈ Session KeysSu: sym decrypt(SKhnd, mhnd) 6=↓) then
60. Abort
61. end if
62. lhnd

3 ← sym decrypt(SKhnd, mhnd) {m ≈ {t′C}SK}
63. xhnd

3.1 ← list proj(lhnd
3 , 1) {x3.1 ≈ t′C}

64. x3.1 ← retrieve(xhnd
3.1 )

65. if x3.1 = u then
66. Abort
67. end if
68. output (ok, PK, S, SKhnd) at KA outu!

Fig. 10. Algorithm 3 of Public-key Kerberos, part 2: Behavior of user after initialization
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Input: (v, T, i, mhnd) at outT ? with v ∈ {1, ..., n}.

1. xhnd
i ← list proj(mhnd, i) for i = 1, 2, 3, 4, 5 {x1 ≈ TGT, x2 ≈
{C, tC}AK , x3S, x5 ≈ n3 }

2. yhnd
1 ← sym decrypt(sksehnd

KT , xhnd
1 ) {y1 ≈ AK, C, tK}

3. yhnd
1.i ← list proj(yhnd

1 , i) for i = 1, 2 {y1.1 ≈ AK, y1.2 ≈ C}
4. type1 ← get type(yhnd

1.1 )
5. type2 ← get type(xhnd

5 )
6. xi ← retrieve(xhnd

i ) for i = 3, 4
7. y1.2 ← retrieve(yhnd

1.2 )
8. if (type1 6= skse) ∨ (type2 6= nonce) ∨ ((xhnd

5 , v) ∈ NonceT ) ∨ (x4 /∈ {S1, ..., Sl}) ∨
(y1.2 6= v)then

9. Abort
10. end if
11. Nonce4T := Nonce4T ∪ {(x

hnd
5 , v)}

12. zhnd ← sym decrypt(yhnd
1.1 , xhnd

2 ) {z ≈ C, tC}
13. zhnd

1 ← list proj(zhnd, 1) {z1 ≈ C}
14. z1 ← retrieve(zhnd

1 )
15. if (z1 6= v) then
16. Abort
17. end if
18. SKhnd ← gen symenc key()
19. lhnd ← list(SKhnd, zhnd

1 , thnd
T ) {l ≈ SK, n3, tT }

20. ST hnd ← sym encrypt(sksehnd
TS , lhnd) {ST ≈ {SK, C}kS

}
21. l̃hnd ← list(SKhnd, xhnd

5 , thnd
T , xhnd

3 ) {l̃ ≈ SK, n3, tT , S}
22. mhnd

4.3 ← sym encrypt(yhnd
1.1 , l̃hnd) {m4.3 ≈ {SK, n3, tT , S}AK}

23. mhnd
4 ← list(xhnd

3 , ST hnd, mhnd
4.3 ) {m4 ≈ C, ST, {SK, n3, tT , S}AK}

24. send i(v, mhnd
4 )

Fig. 11. Algorithm 4: Behavior of TGS
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Input: (v, S, i, mhnd) at outS? with v ∈ {1, ..., n}.

1. mhnd
5.i ← list proj(mhnd, i) for i = 1, 2 {m5.1 ≈ ST, m5.2 ≈ {C, t′C}SK}

2. xhnd ← sym decrypt(sksehnd
TS , mhnd

5.1 )
3. xhnd

i ← list proj(xhnd, i) for i = 1, 2 {x1 ≈ SK, x2 ≈ C}
4. x2 ← retrieve(xhnd

2 )
5. type1 ← get type(xhnd

1 )
6. if (type1 6= skse) ∨ (x2 6= v) then
7. Abort
8. end if
9. yhnd ← sym decrypt(xhnd

1 , mhnd
5.2 ) {y ≈ C, t′C}

10. yhnd
i ← list proj(yhnd, i) for i = 1, 2 {y1 ≈ C, y2 ≈ t′C}

11. y1 ← retrieve(yhnd
1 )

12. if (y1 6= v) then
13. Abort
14. end if
15. mhnd

6 ← sym encrypt(xhnd
1 , yhnd

2 ) {m6 ≈ {t
′

C}SK}
16. send i(S, mhnd

6 )
17. output (ok, PK, v, xhnd

1 ) at KA outS !

Fig. 12. Algorithm 5: Behavior of server

Lemma 2 (Key Secrecy). For all u, v ∈ H, honest K, T, and S ∈ {S1, ..., Sl},
and for all j ≤ size with D[j].type = skse:

a) If D[j] was created by MPK
K in step 2.24 then (with the notation of Algorithm

2 (Fig. 8))
D[j].hndw 6= ↓ implies w ∈ {v, K}.

b) If D[j] was created by MPK
K in step 2.25 then (with the notation of Algorithm

2 (Fig. 8))
D[j].hndw 6= ↓ implies w ∈ {v, K, T}.

c) If D[j] was created by MPK
T in step 4.18 then (with the notation of Algorithm

4 in Fig. 11)
D[j].hndw 6= ↓ implies w ∈ {v, T, S}

where with the notation of Algorithm 4, S = x4.

Proof. a) Let j ≤ size, D[j].type = skse such that D[j] was created by MPK
K

in step 2.24 at time t. The output in step 2.36 contains D[j] encrypted with
v’s public key. Since, by assumption, handles to private keys are not allowed to
be sent around, only v can decrypt the output and get a handle to D[j] after
output in step 2.36. But v never sends D[j] as part of a new list for time t′ > t
(by Algorithms 1 and 3). One immediately gets D[j].hnda =↓ for all t′ > t.

b) Let j ≤ size, D[j].type = skse such that D[j] was created by MPK
K in

step 2.25 at time t. The output in step 2.36 contains D[j] encrypted under the
symmetric key created by MPK

K in step 2.24 (see step 2.33, 2.34). By Key Secrecy
a), only v or K can decrypt that part of the output in step 2.36. The output in
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A) Input:(new prot, K5, K, T ) at KA inu? .

1. nhnd
u,1 ← gen nonce()

2. uhnd ← store(u)
3. T hnd ← store(T )
4. mhnd

1 ← list(uhnd, T hnd, nhnd
u,1 ) {m1 ≈ C, T, n1}

5. Nonceu := Nonceu ∪ {(n
hnd
u,1 , K)}

6. send i(K, mhnd
1 )

B) Input:(continue prot, K5, T, S, AKhnd) at KS inu? for S ∈ {S1, ..., Sl}

1. if (@ (TGT hnd, AKhnd, T ) ∈ TGTicketu) then
2. Abort
3. end if
4. zhnd ← list(uhnd, thnd

u ) {z ≈ C, tC}
5. authhnd ← sym encrypt(AKhnd, zhnd) {auth ≈ {C, tC}AK}
6. nhnd

u,3 ← gen nonce()
7. Nonce2u := Nonce2u ∪ {n

hnd
u,3 , T, S)}

8. mhnd
2 ← list(TGT hnd, authhnd, Shnd, nhnd

u,3 ) {m2 ≈ TGT, {C, tC}AK , C, S, n3}
9. send i(T, mhnd

2 )

Fig. 13. Algorithm 1 of Kerberos 5: Evaluation of inputs from the user (starting the
AS and TG exchanges).

step 2.36 also contains D[j] encrypted under a symmetric key shared exclusively
between K and T ( sksehnd

K,T ; see step 2.32). By construction of Algorithm 4
(Fig. 11) and since T is honest, one sees that T does not send out a list containing
D[j] for time t′ > t. Also, by construction of Algorithms 1 and 3 (Fig. 7,9, 10)
and since v and K are honest, one sees that v and K do not send out a list
containing D[j] for time t′ > t.

c) Let j ≤ size, D[j].type = skse such that D[j] was created by MPK
T in step

4.18 at time t. The output in step 4.24 contains D[j] in a list ST hnd encrypted
under a symmetric key shared exclusively between T and S (sksehnd

TS ; see step
4.20) and also in a list mhnd

4.3 encrypted under a second symmetric key for which
T gets a handle in step 4.3, i.e. after decryption with the symmetric key shared
exclusively between T and K (sksehnd

KT ; see step 4.1), otherwise there would be
an abort, by Convention 1. Since, by construction, MPK

T does not use the key
sksehnd

KT for encryption, MPK
K must have created the ciphertext containing the

second symmetric key. Key Secrecy b) implies that only v, T, K have handles
to this key. T and K do not use this second key for decryption, therefore only v
can get a handle to D[j] through decryption with this second key. Also, only S
uses sksehnd

TS for decryption (in step 5.2). But, by construction, neither S nor v
send out D[j] as part of a newly created list for time t′ > t.

If user u receives a valid AS REP message then this message was indeed
generated by K for u and an adversary cannot learn the contained symmetric
keys.
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Input:(v, K, i, mhnd) at outK? with v ∈ {1, ..., n}.

1. xhnd
i ← list proj(mhnd, i) for i = 1, 2, 3 {x1 ≈ C, x2 ≈ T, x3 ≈ n1}

2. type1 ← get type(xhnd
3 )

3. xi ← retrieve(xhnd
i ) for i = 1, 2

4. if (type1 6= nonce) ∨ ((x3, .) ∈ Nonce3K) ∨ (x1 6= v)∨ (x2 6= T ) then
5. Abort
6. end if
7. vhnd ← store(v)
8. Nonce3K := Nonce3K ∪ {(x

hnd
3 , v)}

9. AKhnd ← gen symenc key()
10. zhnd

1 ← list(AKhnd, vhnd, thnd
K ) {z1 ≈ AK, C, tK}

11. TGT hnd ← sym encrypt(sksehnd
K,x2

, zhnd
1 ) {TGT ≈ {AK, C, tK}kT

}
12. zhnd

2 ← list(AKhnd, xhnd
3 , thnd

K , xhnd
2 ) {z2 ≈ AK, n1, tK , T}

13. m23 ← sym encrypt(khnd
v , zhnd

2 ) {m23 ≈ {AK, n1, tK , T}kC
}

14. mhnd
2 ← list(vhnd, TGT hnd, mhnd

23 ) {m2 ≈ C, TGT, {AK, n1, tK , T}kC
}

15. send i(v, mhnd
2 )

Fig. 14. Algorithm 2 of Kerberos 5: Behavior of the KAS

Input: (v, u, i, mhnd) at outu?

1. if v = K then {AS REP is input}
2. chnd

i ← list proj(mhnd, i) for i = 1, 2, 3 {c1 ≈ C, c2 ≈ TGT, c3 ≈
{AK, n1, tK , T}kC

}
3. c1 ← retrieve(chnd

1 )
4. if (c1 6= u) then
5. Abort
6. end if
7. typei ← get type(chnd

i ) for i = 2, 3
8. if (type2 6= skse) ∨ (type3 6= auth) then
9. Abort

10. end if
11. lhnd

3 ← sym decrypt(sksehnd
uK , chnd

3 ) {l3 ≈ AK, n1, tK , T}
12. yhnd

i ← list proj(lhnd
3 ), i for i = 1, 2, 4 {y1 ≈ AK, y2 ≈ n1, y4 ≈ T}

13. type4 ← get type(yhnd
1 )

14. type5 ← get type(yhnd
2 )

15. y4 ← retrieve(yhnd
4 )

16. if (type3 6= skse) ∨ (type4 6= nonce) ∨ (y4 6= T ) ∨ (@! (ñhnd, K) /∈ Nonceu) then
17. Abort
18. end if
19. TGTicketu := TGTicketu ∪ {(c

hnd
2 , yhnd

1 , T )}
20. output (ok, KAS exchange K5, K, T, yhnd

1 , chnd
2 ) at KA outu!

Fig. 15. Algorithm 3 of Kerberos 5, part 1: Behavior of user after initialization
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21. else if v = T then {TGS REP is input}
22. dhnd

i ← list proj(mhnd, i) for i = 1, 2, 3 { d1 ≈ C, d2 ≈ ST, d3 ≈
{SK, n3, tT , S}AK }

23. d1 ← retrieve(dhnd
1 )

24. if (d1 6= u)
∨ (@! (., AKhnd, T ) ∈ TGTicketu) : sym decrypt(AKhnd, dhnd

3 ) 6=↓) then
25. Abort
26. end if
27. lhnd

2 ← sym decrypt(AKhnd, dhnd
3 ) {l2 ≈ SK, n3, tT , S}

28. xhnd
2.i ← list proj(lhnd

2 , i) for i = 1, 2, 4 {x2.1 ≈ SKey, x2.2 ≈ n3, x2.4 ≈ S}
29. type5 ← get type(xhnd

2.1 )
30. type6 ← get type(xhnd

2.2 )
31. if (type5 6= skse) ∨ (type6 6= nonce) ∨ ((xhnd

2.2 , T, .) /∈ Nonce2u) then
32. Abort
33. end if
34. xhnd

3 ← list(uhnd, t′hnd
u ) {x3 ≈ C, t′C}

35. mhnd
3.2 ← sym encrypt(xhnd

2.1 , xhnd
3 ) {m3.2 ≈ {C, t′u}SK}

36. mhnd
3 ← list(dhnd

2 , mhnd
3.2 ) {m3 ≈ ST, {C, t′u}SK}

37. S ← retrieve(xhnd
2.4 )

38. Session KeysSu := Session KeysSu ∪ {(S, xhnd
2.1 )}

39. send i(S, mhnd
3 )

40. else if v = S ∈ {S1, ..., Sl} then {AP REP is input}
41. if (@!(S, SKhnd) ∈ Session KeysSu: sym decrypt(SKhnd, mhnd) 6=↓) then
42. Abort
43. end if
44. lhnd

3 ← sym decrypt(SKhnd, mhnd) {m ≈ {t′C}SK}
45. xhnd

3.1 ← list proj(lhnd
3 , 1) {x3.1 ≈ t′C}

46. x3.1 ← retrieve(xhnd
3.1 )

47. if x3.1 = u then
48. Abort
49. end if
50. output (ok, K5, S, SKhnd) at KA outu!

Fig. 16. Algorithm 3 of Kerberos 5, part 2: Behavior of user after initialization
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Lemma 3 (Authentication of KAS to client and Secrecy of AK). For all
u, v ∈ H, honest KAS K and TGS T , and for all j ≤ size with D[j].type = list
and jhnd := D[j].hndu 6= ↓:
If li := D[j].arg[i] for i = 1, 4
with D[l1].type = enc and D[l4].type = symenc,
x1 := D[l1].arg[2] with D[x1].type = list, {≈ certK , [k, ck]skK

}
x1.1 := D[x1].arg[1] with D[x1.1].type = cert,
x1.2 := D[x1].arg[2] with D[x1.2].type = sig, {≈ [k, ck]skK

}
y1.1 := D[x1.1].arg[2] with D[x1.1].type = pke,
y1.2 := D[x1.2].arg[2] with D[y1.2].type = list, {≈ k, ck}
s1 := D[y1.2].arg[1] with D[s1].type = skse,
r1 := D[y1.2].arg[2] with D[r1].type = auth,
q1 := D[r1].arg[1] with D[q1].type = list, {≈ m1}
p1 := D[r1].arg[2] with D[p1].type = pkse,
x4 := D[l4].arg[1] with D[x4].type = list, {≈ AK,n1, tk, T}
y4 := D[x4].arg[2] with D[y4].type = nonce, {≈ n1}
and if furthermore

a) pke := D[l1].arg[1] and D[pke].hndu 6= ↓
b) D[x1.2].arg[1] = D[x1.1].arg[2]
c) p1 + 1 = D[l4].arg[2] = y1.1 + 1
d) (D[y4].hndu, D[q1].hndu, K) ∈ Nonceu

then D[l1] was created by MPK
K in step 2.30 and D[l4] was created by MPK

K in
step 2.34 and both their indices were arguments of a list created by MPK

K in step
2.35.
Furthermore, Key Secrecy implies that D[s1].hnda =↓, and therefore also
D[x4.arg[1]].hnda =↓.

Proof. By the definition of the commands sign and verify together with b) one
gets that the list (y1.1, y1.2)(≈ {k, ck}) was sent by MPK

K , in particular, by con-
struction of Algorithm 2, symmetric key y1.1 was generated by MPK

K in step 2.24
. Key Secrecy gives that the encryption of list (., y4, .), for the nonce y4, under
key y1.1 was generated by MPK

K in step 2.34. Therefore there must have been
an input (u,K, i,mhnd) at outK? where the list m contains y4 (see step 2.2-
2.5 and 2.33-2.34). Otherwise the algorithm would stop by Convention 1. Since
(D[y4].hndu, D[q1].hndu, K) ∈ Nonceu, Correct Nonce Owner implies that it
was stored there by MPK

u while running Algorithm 1A, in particular MPK
u must

have sent list of the form q1 to K. And since y1.2 (≈ ck = message authentica-
tion code of message m1 with key k) was sent by MPK

K as part of a message, by
definition of auth and by Key Secrecy, MPK

K must have created this ck in step
2.26 which only occurs on response to receiving the request q1 from u (step 2.1
- 2.21), otherwise there would have been an abort, by Convention 1.

If TGS T receives a TGT and an authenticator {v, tv}AK where the key AK
and the username v are contained in the TGT, then the TGT was generated by
K and the authenticator was created by v.
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Lemma 4 (TGS Authentication of the TGT). For all honest KAS K and
TGS T and for all j ≤ size with D[j].type =list and jhnd := D[j].hndT 6= ↓:
l1 := D[j].arg[1] with D[l1].type =symenc, {≈ TGT}
l2 := D[j].arg[2] with D[l2].type =symenc, {≈ {u, tu}AK}
x1 := D[l1].arg[1] with D[x1].type =skse, {≈ kKT }
x2 := D[l1].arg[2] with D[x2].type =list,
x2.1 := D[x2].arg[1] with D[x1.1].type =skse, {≈ AK}
x2.2 := D[x2].arg[2] with x2.2 ∈ H
y1 := D[l2].arg[1] with D[x1].type =skse, {≈ AK}
y2 := D[l2].arg[2] with D[y2].type =list,
y2.1 := D[y2].arg[1] with y2.1 ∈ H
and if furthermore

a) D[x1] = skseKT

b) D[x2.1] = D[y1]

c) x2.2 = y2

then entry D[l1] was generated by MPK
K in step 2.32 at a time t and entry D[l2]

was generated by MPK
u in step 1B.4 at a time t′ > t for u = y2.

Proof. By assumption, only MPK
K and MPK

T have handles to the long-term key
skseKT . But since, by construction of Algorithm 4 (Fig. 11), MPK

T does not use
this key for encryption, MPK

K must have generated D[l1] in step 2.32. The entry
D[l1] contains a symmetric key x2.1 and the name of a user x2.2 = y2. Part i)
implies that y2 must have generated D[l2].

If user u receives a valid TGS REP then it was generated by T for u and S.
And an adversary cannot learn the contained session key SK.

Lemma 5 (Authentication of TGS to client and Secrecy of SK). For all
u ∈ H and for all j ≤ size with D[j].type =symenc and jhnd := D[j].hndu 6= ↓:
x1 := D[j].arg[1] with D[x1].type =skse,
x2 := D[j].arg[2] with D[x2].type =list,
x2.1 := D[x2].arg[1] with D[x2.1].type =skse,
x2.2 := D[x2].arg[2] with D[x2.2].type =nonce,
x2.3 := D[x2].arg[3],
and if furthermore

a) (., xhnd
1 , T ) ∈ TGTicketu

b) (xhnd
2.2 , T, x2.3) ∈ Nonce2u

then D[j] was created by MPK
T in step 4.20.

Furthermore, Key Secrecy implies D[x1].hnda =↓ (since not more than one hon-
est can have a handle to x1 besides K and T ) .
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Proof. a) guarantees that MPK
u has a handle to the symmetric key x1 needed

to decrypt the message in D[j]. a) also ensures that x1 is generated by MPK
K ,

and therefore Key Secrecy implies that an adversary cannot have a handle to
x1, since at most one honest user u can have a handle to x1 besides K and T .
But MPK

u does not generate a list of the form of D[j], neither does K. So T must
have generated D[j] in step 4.20. By construction of Algorithm 4, u must have
sent an corresponding request to T (steps 4.1-4.9),otherwise, by Convention 1,
Algorithm 4 would abort.

If server S receives a ST and an authenticator {v, tv}SK where the key SK
and the name v are contained in the ST, then the ST was generated by T and
the authenticator was created by v.

Lemma 6 (Server Authentication of the ST). For all u,K, T, S ∈ H and
for all j ≤ size with D[j].type =list and jhnd := D[j].hndS 6= ↓:
l1 := D[j].arg[1] with D[l1].type =symmenc,
l2 := D[j].arg[2] with D[l2].type =symmenc,
x1 := D[l1].arg[1] with D[x1].type =skse,
x2 := D[l1].arg[1] with D[x2].type =list,
x2.1 := D[x2].arg[1] with D[x2.1].type =skse,
x2.2 := D[x2].arg[2] with x2.2 ∈ H,
y1 := D[l2].arg[1] with D[y1].type =skse,
y2 := D[l2].arg[2] with D[y2].type =list,
y2.1; = D[y2].arg[1] with y2.1 ∈ H and if furthermore

a) D[x1] = kS

b) D[x2.1] = D[y1]
c) x2.2 = y2.1

then D[l1] was generated by MPK
T in step 4.20 at time t and D[l2] was generated

by MPK
u in step 3.53 at time t′ > t, where x2.2 = u.

Proof. By assumption, only MPK
T and MPK

S have handles to the key kS = D[x1].
But since, by construction, MPK

S does not use the key kS for encryption, D[l1]
must have been generated by MPK

T in step 4.20. This step only occurs after
step 4.18, in which MPK

T generated a symmetric key, and after receiving valid
TGS REQ from u (steps 4.1 - 4.9), otherwise there would be an abort, by Con-
vention 1. The key generated in step 4.18 must be the key contained in D[l1],
i.e. the key is D[x2.1]. By Key Secrecy, only u, T, S can have handles to that key.
D[l2] is a list encrypted under that key. And since, by construction, MPK

T and
MPK

S do not generate a list of the form D[l2], MPK
u must have created it.

B.3 Detailed Proof of Theorem 1

Now we present the proof of Theorem 1:

Proof (of Theorem 1). First we prove the Secrecy Property: Say there was an
output (ok,PK, S, SKhnd) at KA outu!. Examining Algorithm 3 (Fig. 9, 10)
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we see that a handle to this key was contained in the set Session KeysSu (see
steps 3.59, 3.60). Also by Algorithm 3, one sees that elements in Session KeysSu

contain handle to keys which MPK
u gets a handle in step 3.46. With the nota-

tion of Algorithm 3, any element in Session KeysSu was contained in a list
l2 to which MPK

u gets a handle in step 3.45. Here l2.hndu 6=↓ since otherwise
the algorithm would abort by Convention 1. Algorithm 3 implies that l2 was
encrypted with a symmetric key AK which was part of a list contained in the
set TGTicketu (see steps 3.42, 3.43). Elements stored in TGTicketu in step 3.37
were received by MPK

u as part of a message m. Steps 3.1-3.35 ensure that m was
a valid TGS REP. In particular, Authentication of TGS to client and Secrecy of
SK implies that the key SK was generated by MPK

T and an adversary cannot
get a handle to the key SK.

Now say there was an output (ok,PK, u, xhnd
1 ) at KA outS !. By Algorithm 5,

the handle to x1 was contained in a list x to which MPK
S got handle in step 5.2.

Here x.hndS 6=↓ since otherwise the algorithm would abort by Convention 1.
Steps 5.6, 5.7 ensure that x1 is really a symmetric key. Since also all other steps
of Algorithm 5 must have been executed by MPK

S without abort before the out-
put (ok,PK, u, khnd), and steps 5.1 - 5. 14 ensure that the server received a
valid AP REQ (including a ST and a corresponding authenticator), TGS Au-
thentication of the TGT implies that the key was generated by MPK

T and the
authenticator was created by MPK

u . Key Secrecy implies that only u, T, S can
have handles to SK. This proves the Secrecy Property.

Next we prove the Authentication Property: i) Say there was an output (ok,
PK, v, xhnd

1 ) at KA outS ! at a time t3 ∈ N. This only happens in step 5.17. By
construction, there must have been an input (v, S, i,mhnd) at outS? at a past
time. By step 5.3, mhnd contained a list x encrypted under the symmetric key
skseTS . Here x.hndu 6=↓ otherwise the algorithm would abort by Convention 1.
By steps 5.4 - 5.7 one sees that the list contained the handle to a symmetric key x1

and the name v. By assumption, only MPK
S and MPK

T have keys to the key skseTS

but MPK
S does not use this key for encryption (see Algorithm 5). In the notation

of Algorithm 4, MPK
T uses skseTS in step 4.20 to encrypt a list l, which contains

a handle to a symmetric key SK that was freshly generated in step 4.18 and also
the user name z1. The same name was also contained in a list z encrypted under
a symmetric key y1.1 (see steps 4.12 - 4.16). So if the symmetric key x1 from
above is SK, then v = z1, since the symmetric key SK was freshly generated in
step 4.18. The symmetric key y1.1 was contained in a list encrypted under the
secret key skseKT shared exclusively by K and T , as assumed. By construction,
this encryption must have been done by MPK

K since MPK
T (in Algorithm 4) does

not use skseKT for encryption. This implies the symmetric key y1.1 was gener-
ated by MPK

K in step 2.25. And Key Secrecy therefore implies that only MPK
K and

MPK
u for one u ∈ H have handles to y1.1. By construction, only u uses the key

y1.1 to encrypt its own name in step 1B.4. So one gets u = v. Furthermore, step
1B.4 will only be executed if there was an input (continue prot PK, T, S, y1.1)
at KA inv! at time t2 < t3. On the other hand, there must have been an output
in step 3.38 that contained the same symmetric key as in the input, namely the
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key y1.1. Otherwise there will be an abort in step 1B.2, i.e., the constructions of
Algorithm 3 and Algorithm 1B and the definition of TGTicket in step 3.37 imply
that there was an output (ok,KAS exchange PK,K, T, (., ., ., y1.1)) at KA outv!.
Since the execution of Algorithm 3 did not produce an error, Authentication
of KAS to client and Secrecy of AK immediately implies that MPK

K must have
generated a AS REP for v using Algorithm 2. Finally, by construction of Al-
gorithm 2 and by definition of the command verify, one gets that v must have
given the input (new prot,PK,K, T )) at KA inv! at a time t1 < t2.

ii) Now say that there was on output (ok,PK, S, SKhnd) at KA outu! at
time t2. By construction of Algorithm 3, this only happens after u received a
handle to a message m that was encrypted under a key contained in the set
Session KeysSu (see steps 3.59, 3.60). Elements in the set Session KeysSu are
stored there in step 3.56 and consist of pairs (S, xhnd

2.1 ), where step 3.47, 3.49, 3.50
ensure that x2.1 is indeed a symmetric key. Each such key x2.1 was contained in
a message m which must be a valid TGS REP. Otherwise Algorithm 3 (part 2)
would abort somewhere between step 3.40 to step 3.50. Authentication of TGS
to client and Secrecy of SK now implies that each x2.1, i.e. in particular also the
key SK, must have been generated by MPK

T in step 4.18. Key Secrecy implies
that only T, u, S can have handles to SK but MPK

T does not use this key for
encryption. Although MPK

u does use this key for encryption in step 3.53, the
list it encrypts includes u’s name (see step 3.52). On the other hand, the list
MPK

u receives a handle to in step 3.60 (after decryption with SK and before the
output (ok,PK, S, SKhnd) at KA outu! at time t2) does not contain u’s name
(steps 3.63 - 3.65). Therefore, MPK

S must have used the key SK for encryption at
a time t1 < t2. This can only happen in step 5.15 after receiving a valid AP REQ
from v. This encryption must have been sent, so there was no abort in step 5.16,
and therefore there must have been an output (ok,PK, v, SKhnd) at KA outS !
at some time t1 < t2.
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