
Multi-Dimensional Montgomery Ladders for Elliptic Curves

Daniel R. L. Brown

June 12, 2006

Abstract

Montgomery’s ladder algorithm for elliptic curve scalar multiplication uses only the x-
coordinates of points. Avoiding calculation of the y-coordinates saves time for certain curves.
Montgomery introduced his method to accelerate Lenstra’s elliptic curve method for integer fac-
toring. Bernstein extended Montgomery’s ladder algorithm by computing integer combinations
of two points, thus accelerating signature verification over certain curves. This paper modifies
and extends Bernstein’s algorithm to integer combinations of two or more points.

1 Introduction

Montgomery observed that, for some elliptic curves, the x-coordinate of the point P + Q, where +
is elliptic curve addition, could be calculated from the x-coordinate of the three points P , Q and
Q− P .

Using this observation, Montgomery proposed that kG could be computed in such by computing
a sequence of pairs of x-coorindates of two points P = sG and Q = (s + 1)G, for appropriately
selected values of s. This sequence has property that Q−R = G, so the difference of the points in
known, and therefore P + Q = (2s + 1)G can be computed with using a y-coordinate. The other
element of the next pair is either 2sG = 2P or 2(s + 1)G = 2Q, either of whose x-coordinate can
be computed without y-coordinates.

For certain special kinds of elliptic curve, computing only with x-coordinates is faster than
other efficient implementation methods. For prime NIST curves, this does not seem to be the case.
Montgomery has defined a class of prime field curves for which not using the y-coordinate provides
some savings. For non-Koblitz binary fields, there are y-free formulae that are comparable in cost
with at least some other efficient implementations.

Suppose that one wants to compute k1G1 + · · · + kdGd, using x-coordinates only, or at least
mostly. Bernstein gives an algorithm for doing this when d = 2. At each step, a triple of x-
coordinates is computed. The three points whose x-coordinates are computed at each stage have
differences of the form l1G1 + l2G2 where l1, l2 ∈ {−1, 0, 1}. Therefore Montgomery’s formula can
be used, once the x-coordinates of G1 + G2 and G1 −G2 are found using convential addition with
y-coordinates. This paper modifies and extends Bernstein’s algorith to d > 2.

Potential applications of d > 2 include: batch ECC operations, accelerating Lenstra’s ECM
factoring algorithm, exploiting expanded ECC certificates (which contain pre-computed multiples
of a party’s public key), to incremental hashing based on elliptic curves, to accelerate verification
of ECDSA signatures. Careful analysis is needed in each case to ascertain whether the algorithm
presented outperforms existing efficient alternatives.

1

2 The Algorithm

Suppose that we wish to compute a1P1 + · · ·+ adPd using a Montgomery ladder, where the ai are
m bit positive integers. We do the following.

1. Execute the precomputation phase:

(a) Precompute and store, or otherwise make available, all the (3d − 1)/2 x-coordinates of
points c1P1 + · · ·+ cdPd where ci ∈ {−1, 0, 1}, and the ci are not all zero.

2. Execute the matrix phase, as follows.

(a) Allocate (m + 1)× d bit matrix A = (Ank) and two (d + 1)× d bit matrices B = (Bjk)
and Cjk. Rows of A and B are indicated as Aj and Bj , respectively.

(b) Allocate (d+1)× (m+1) integer matrices F = (Fj,n) and G = (Gj,n), with entry values
ranging from 0 to d + 1.

(c) Allocate an (m + 1)-wide array of {−1, 0, 1}-valued (d + 1)× d matrices Dj .

(d) Initialize A such that ak = A0,k + 2A1,k + 22A2,k +

(e) Initialize B as follows:

i. Let h be the number odd entries in row A0 (that is, the number of odd ak.
ii. Let Bh = A0.
iii. For each j < h, let Bj be obtained from Bj+1 by subtracting one from a 1 valued

entry (the choice of entry is arbitrary).
iv. For each j > h, let Bj be obtained from Bj−1 by adding one to a 0 valued entry

(the choice of entry is arbitrary).

(f) Let n = 0.

(g) Let Dn = B.

(h) Set Dn = Dn◦(−1)A1 , meaning to negate the columns of D in corresponding to positions
A1 with value 1.

(i) Set the value matrix C and entries of F and G as follows:

i. Set j ← 0.
ii. Set R← A0 + A1 mod 2.
iii. Let h be the Hammning weight of R.
iv. Let Ch = R.
v. Let F0,n = G0,n = h.
vi. Set R← Bj+1 + CFj,n .
vii. Let h be the Hamming weight of R.
viii. If h < Fj,n then

A. Set Fj+1,n = h,
B. Set Gj+1,n = Gj,n,
Else
A. Set R← Bj+1 + CGj,n ,
B. Let h be the Hammning weight of R,

2

C. Set Fj+1,n = Fj,n,
D. Set Gj+1,n = h,

ix. Set Ch = R.
x. If j < d− 1, then set j ← j + 1 and go back to Step 2(i)vi.

(j) Set B ← C.

(k) Drop row A0 from A, so that Aj ← Aj+1.

(l) Unless n = m, set n← n + 1, and go back to Step 2g.

3. Execute the point addition phase:

(a) Initialize points Q0, . . . , Qd, as follows:

i. Qj ← Bj,1P1 + · · ·+ Bj,dPd. These points are among the precomputed points. Note
that Q0 =∞ and Qd = P1 + · · ·+ Pd.

(b) Compute points R0, . . . , Rd as follows :

i. Rj ← QFj,n + QGj,n .
ii. When making above the computation, the difference of QFj,n−QGj,n is given by row

j of matrix Dn, which means one look up the difference among the pre-computed
points. Thus the y-coordinate is not needed to compute Rj from the Q points.

(c) Set Qj ← Rj for each j.

(d) If n > 0, then set n← n− 1 and go back to Step 3b.

(e) Let h be the number of ak that are odd.

(f) Output Qh.

2.1 Example

Suppose that one wants to compute 10P1 + 14P2 + 9P3 + 11P4 using the algorithm above.
The binary representations of the multiples 10, 14, 9, 11 are 10102, 11102, 10012, 10112, respec-

tively. Therefore, we initiliaze a matrix A as

A =

0 0 1 1
1 1 0 0
0 1 0 0
1 1 1 1
0 0 0 0

 (1)

where each column represnts a multipes with least significant bit at the top. A bottom row of all
zeroes is appended for bookkeeping purposes. During the execution of the algorithm, the top row
of A will be popped off. Equivalently, one can just move a pointer down a row, with the pointer
starting at the top row.

The three ways that A is used in the algorithm are (a) to initialize the matrix B, which is done
using the top row only, (b) to update matrix B, which is done using the modulo two sum of the
first and second rows, and (c) to add determines the signs of the D matrices, which is done using
the second row.

3

To initiliaze matrix B, first we take the top row of A, which has weight two. Therefore B2 = A0

(indexing the top row with 0). Rows B1 and B0 are obtained by replacing 1’s with 0’s and rows
B3 and B4, by replacing 0’s with 1’s:

B =

0 0 0 0
0 0 0 1
0 0 1 1
0 1 1 1
1 1 1 1

 (2)

We have thus used A to initialized B. The second use (b) of A uses the sum of consecutive rows,
that is A0 + A1, A1 + A2, A2 + A3 and A3 + A4, which we compute below:

A0 + A1 =
(
1 1 1 0

)
(3)

A1 + A2 =
(
1 0 0 1

)
(4)

A2 + A3 =
(
1 0 1 1

)
(5)

A3 + A4 =
(
1 1 1 1

)
(6)
(7)

These sums of rows are used to update B and in turn determine the integer entries in the arrays
F and G.

We now update B, putting the results temporarily in another matrix C. By definition A0 + A1

must be row of C, and since it has weight 3, it will be row C3. Also we get F0,0 = G0,0 = 3.
Now consider C3 + B1 = (1 1 1 1), which has weight 4, so must be row C4, and we get F0,1 = 3

and G0,1 = 4. Although not specified in the actual algorithm, we actually know that the entries of
G cannot decrease and as 4 is the maximum, we will have G0,j = 4 for j > 2. When G does not
increase, then F decreases by one, so we get F0,2 = 2, F0,3 = 1 and F0,4 = 0. Also, we know that
the value of F or G that differs from the previous iteration gives the index of the newly determined
row of C, so rows C2 = B2 + C4, and C1 = B3 + C4 and C0 = B4 + C4. Now B is updated to this
new value of C:

B ← C =

0 0 0 0
1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1

4
3
2
0
1

 (8)

where the column of integers indicates the order in which the rows of C were computed. The
matrices F and G have been partially computed as follows:

F =

3 . . .
3 . . .
2 . . .
1 . . .
0 . . .

 G =

3 . . .
4 . . .
4 . . .
4 . . .
4 . . .

 (9)

Now we repeat this process, starting with A1 + A2 which has parity two. Matrix B gets updated

4

to

B ← C =

0 0 0 0
0 0 0 1
1 0 0 1
1 1 0 1
1 1 1 1

4
1
0
2
3

 (10)

with the column again indicating the order of computing the rows of the updated B. Matrices F
and G have been further filled out as follows:

F =

3 2 . .
3 1 . .
2 1 . .
1 1 . .
0 0 . .

 G =

3 2 . .
4 2 . .
4 3 . .
4 4 . .
4 4 . .

 (11)

Though most of the work to obtain this updates have been left out, one can can see without any
work that C2 = A1+A2. Working out the computation of the other rows one on own’s is encouraged
to appreciate what is involved. The reader may by now have noticed that we have been skipping
the computation of the D matrices. We defer this because in this example, we will just look back
at all the values B and adjust their signs using rows of A. Another update of B is given by:

B ← C =

0 0 0 0
0 0 1 0
1 0 1 0
1 0 1 1
1 1 1 1

4
2
1
0
3

 . (12)

Matrices F and G have been further filled out as follows:

F =

3 2 3 .
3 1 2 .
2 1 1 .
1 1 1 .
0 0 0 .

 G =

3 2 3 .
4 2 3 .
4 3 3 .
4 4 4 .
4 4 4 .

 (13)

The final update is

B ← C =

0 0 0 0
0 1 0 0
0 1 0 1
1 1 0 1
1 1 1 1

4
3
2
1
0

 . (14)

Matrices F and G have been further finalized as:

F =

3 2 3 4
3 1 2 3
2 1 1 2
1 1 1 1
0 0 0 0

 G =

3 2 3 4
4 2 3 4
4 3 3 4
4 4 4 4
4 4 4 4

 . (15)

5

The difference matrices that we need are

D0 =

0 0 0 0
0 0 0 −1
0 0 1 −1
0 −1 1 −1
−1 −1 1 −1

 , D1 =

0 0 0 0
1 0 0 0
1 −1 0 0
1 −1 1 0
1 −1 1 1

 , D2 =

0 0 0 0
0 0 0 −1
−1 0 0 −1
−1 −1 0 −1
−1 −1 −1 −1

 , D3 =

0 0 0 0
0 0 1 0
1 0 1 0
1 0 1 1
1 1 1 1

 ,

(16)
which are obtained by taking the successive B matrices (excluding the last one), and negating the
columns where the corresponding rows of A (excluding the top row) have a one.

The final bit matrix B, the integer matrices F and G and the difference matrices D0, D1, D2, D3

make up the plan used for the point addition phase. The matrix B says how to initialize the the
sequence of points. The matrices F and G say how to update the sequence of points, by virtue of
which elements to add. The matrices Dj say how to determine the differences of the points being
added, which is needed to the x-only Montgomery addition laws.

We summarize the entire point addition phase in the following array

0 0 0 0 2 2 2 2 2 4 2 2 6 8 4 6 10 14 10 12
0 1 0 0 2 2 1 2 2 4 2 3 5 8 4 6 10 14 10 11
0 1 0 1 1 2 1 2 3 4 2 3 5 7 4 6 10 14 9 11
1 1 0 1 1 2 1 1 3 3 2 3 5 7 5 6 10 15 9 11
1 1 1 1 1 1 1 1 3 3 3 3 5 7 5 5 11 15 9 11

(17)

Think of this as five 5× 4 matrices whose rows of the form (r1, r2, r3, r4) represent computation of
the point r1P1 + · · ·+ r4P4. It remains to explain how the plan leads to this computatain.

The first of the five matrices is the final value of bit matrix B. To obtain the subsequent
matrices we use the previous matrix and the matrices F and G and the Dj matrices. However, we
must use the columns of F and G and the matrices Dj in the reverse order that they were obtained.

For example, to obtain the third row of the second matrix, we note that that third row of the
last column of F and G have the values two and four respecitvely, so therefore we add rows 2 and
4 of the first matrix to (0, 1, 0, 1)+(1, 1, 1, 1) = (1, 2, 1, 2). Here we have added using integer vector
arithmetic, we are no longer working modulo two. In fact, there is no big integer arithmetic in
the point addition phase, just point addition, so we actually be doing a single point addition, as
follows:

(P2 + P4) + (P1 + P2 + P3 + P4) = (P1 + 2P2 + P3 + 2P4) (18)

where the additions inside the parenthesis on the left hand side were already done as part of the
initialization, and the additions in the right hand side are achieve implicitly by the additions on the
left hand side. The only point addition actually being done in this step is the one in the left hand
side outside of the parentheses. Now (1, 1, 1, 1)− (0, 1, 0, 1) = (1, 0, 1, 0), which is row 2 (counting
with 0 from top as usual) of the last difference matrix.

2.2 Straightforward Simplifications

Evidently from the example, and from the theory numerous simplifications to the algorithm are
possible. For example, the top row of B is always all zeros and the bottom row is always all ones.
Similarly, the bottom row F is all zeros and the bottom row of G is always all d’s. The top rows
of F and G are identical and are determined by the weights of the sums of successive rows of A.

6

Because the columns of F weakly fall, and the columns of G weakly rise, with exactly one rise
or fall between rows, it follows that we use single bits to indicate whether F falls or G rises. Thus
integers can be used for only for the common top row of F and G, if this has some advantage.

2.3 Room for Improvement

It would be more convenient if the D matrices and columns of F and G could somehow be computed
in the opposite order, because then one could interleave the bit matrix phase and the point addition
phase. Technically, the total computation time might be the same whether or not one interleaves
the two phases, but in practice interleaving may help slightly because mainly some implementations
can do pipelining, effectively allowing independent computations to be done simultaneously. If the
bit matrix phase has to be done first, during that the time the pipeline is unavailable for doing
point additions.

3 Why It Works

This section describes why the algorithm works. To do this, several definitions, lemmas and theo-
rems about matrices are introduced.

The algorithm has two phases, the matrix phase and the point addition phase. In the matrix
phase, a plan, or ladder, is made of which intermediate integer combinations of the points that shall
be computed on the way to the compute the target combination. The matrix phase uses integer
matrices and does not involve any elliptic curve arithmetic. The point addition phase then uses
this plan, or climbs the ladder, to add points together, for the most part not using y-coordinates,
ultimately arriving at the target integer combination of points.

3.1 The Matrix Phase

We will use the following convention for indexing matrices. A matrix with d columns (rows) will
have columns (rows) indexed by 1, 2, . . . , d, while a matrix with d + 1 rows (columns) will have
rows (columns) indexed by 0, 1, 2, . . . , d. The parameter d is called the dimension, and will be the
number of points that we wish to combine in the application of the algorithm. Write Mj for the
row of a matrix M indexed by j under the conventions stated above . Write ei for an elementary
row vector that has a one in position i and zero in all other positions.
Definition 1. A state matrix is a (d + 1)× d integer matrix S such that

• Sj − Sj+1 = ±ei for some i.

• Sj has j odd entries.

An example state matrix is

S =

S0

S1

S2

S3

 =

28 30 18
28 29 18
29 29 18
29 29 19

 . (19)

Lemma 1. Any integer row vector R is the row of some state matrix S.

7

Proof. Suppose that R has j odd entries. Then set Sj = R. For 1 6 i 6 j, choose Si−1 be adding
±1 to one of the odd entries of Si. For j 6 i < d, choose row Si+1 by adding ±1 to one of the even
entries.

Lemma 2. If S is a state and i < j, the set of indices of odd entries of Si is a subset of the
corresponding set for row Sj .

Proof. If suffices to prove this for j = i + 1, for which it is obvious.

Definition 2. A transition matrix is an (d + 1)× (d + 1) integer matrix M such that

• Mj = ei + ei+j for some i.

• Mj −Mj+1 = ±(ei − ei+1) for some i.

An example transition matrix is

M =

M0

M1

M2

M3

 =

0 0 2 0
0 1 1 0
0 1 0 1
1 0 0 1

 . (20)

Theorem 3. If M is a transition matrix and S is a state, then T = MS is a state.

Proof. Now Tj = MjS. Since Mj = ei +ei+j , we have Tj = Si +Si+j . By Lemma 2, the odd entries
of Si will cancel i odd entries in Si+j , leaving j entries as desired. To establish the second state
property for T , we calculate that Tj−Tj+1 = (Mj−Mj+1)S = ±(ei−ei+1)S = ±(Si−Si+1) = ±ek

for some k.

Theorem 4. If T is a state matrix, then there exists a unique state matrix S and unique transition
matrix M , such that T = MS.

Proof. We determine the rows of M in order, M0,M1, . . . ,Md, and the rows of S in an order to be
determined. Suppose that 1

2T0 has h odd entries. This implies that

M0 = 2eh and Sh =
1
2
T0. (21)

This is the base of the induction for determining the remaining rows. The induction will be on
f and g such that 0 6 f 6 g 6 d, starting with f = g = h. At each stage of induction, rows
Sf , Sf+1, . . . , Sg and M0, . . . ,Mg−f will have have been determined. Moreover we will have

Mg−f = ef + eg. (22)

Let j = g − f + 1. By definition of transition matrices, we must have

Mj ∈ {ef−1 + eg, ef + eg+1}. (23)

In order for T = MS to hold, this must imply that

Tj ∈ {Sf−1 + Sg, Sf + Sg+1} (24)

8

Therefore we need one of the following two equations to hold:

Sf−1 = Tj − Sg

Sg+1 = Tj − Sf

(25)

Whichever these equations is valid will determine another row of the matrix S, namely, either Sf−1

or Sg+1. If Tj − Sg has f − 1 odd entries then we must have the equation for Sf−1. If Tj − Sf has
g + 1 odd entries, we must have the equation for Sg+1.

To show that exactly one of the conditions in (25) holds, note that Tj−1 = Sf + Sg, and that
Tj has one more odd entry than Tj−1. The extra odd entry in Tj can must in a position where Sf

has an even entry. The entry in that position can be even or odd for Sg. If it is even for Sg, then
the equation for Sg+1 holds, and if odd, the equation for Sf−1 holds.

To illustrate, let us apply the algorithm in the proof to

T =

T0

T1

T2

T3

T4

 =

24 28 18 22
24 28 18 23
24 29 18 23
25 29 18 23
25 29 19 23

 . (26)

As in the proof, we compute the rows of M and S one at a time.

1. Row T0 = (24, 28, 18, 22), so Sh = 1
2T0 = (12, 14, 9, 11). The number of odd entries of Sh is

two, so h = 2, and M0 = 2e2.

2. The next row of S to compute must be T1 − S2 = (12, 14, 9, 12), which has just one entry, so
must be S1. Thus M1 = e1 + e2.

3. The next row of S to compute is either S0 = T2 − S2 or S3 = T2 − S1, as in (25). Because
T2 − S1 = (12, 15, 9, 11) has three odd entries, S3 is the choice. Thus M2 = e1 + e3.

4. The next row of S to comptue is either S0 = T3 − S3 or S4 = T3 − S1, depending on parity.
The choice is S4 = T3 − S1 = (13, 15, 9, 11). Thus M3 = e1 + e4.

5. The last of S to be determined is thus S0 = T4 − S4 = (12, 14, 10, 12), and as always M4 =
e0 + e4.

Therefore
24 28 18 22
24 28 18 23
24 29 18 23
25 29 18 23
25 29 19 23

 =

0 0 2 0 0
0 1 1 0 0
0 1 0 1 0
0 1 0 0 1
1 0 0 0 1

12 14 10 12
12 14 9 12
12 14 9 11
12 15 9 11
13 15 9 11

 . (27)

Definition 3. For any matrix A, define |A| to the be maximum of the absolute values of the entries
of A.

Theorem 5. If S and T are state matrices, M is a transition matrix, and T = MS, then 2|S|−1 6
|T | 6 2|S|.

9

Proof. By definition, |T | = |Tj,k| for some j and k. Now Tj,k = Si,k + S(i+j),k, by the properties of
M . Therefore |T | 6 |Si,k|+ |S(i+j),k| 6 2|S|.

By definition, |S| = |Si,k| for some j and k. It is easy to see that there will some j such that
Mj = ef + eg where i ∈ {f, g}. Then Tj,k = Sf,k + Sg,k. Without loss of generality, suppose
that i = f . By properties of state matrices, Sg,k = Sf,k + σ, with σ ∈ {−1, 0, 1}. But |Sg,k| 6
|Sf,k| = |S|, so σ = 0, or it has the opposite sign to Sf,k. Noting that Tj,k = 2Si,k + σ, we see that
|Tj,k| > 2|Si,k| − 1, which gives |T | > 2|S| − 1.

Corollary 6. If S and T are state matrices, M is a transition matrix, and T = MS, then either
|S| < |T | or |T | = 1.

Proof. Suppose that |T | 6 |S|. Then 2|T | − 1 6 2|S| − 1 6 |T |, and adding 1 − |T | to both ends
gives |T | 6 1. The case |T | = 0 is impossible, because T has odd entries.

Lemma 7. If S and T are state matrices, M is a transition matrix, T = MS, and |T | = 1, then
S = T and Mj = e0 + ej for all j.

Proof. Since |T | = 1, row T0 = 0, because T0 has all even entries with absolute values at most
one. Suppose that M satisfies Mj = e0 + ej and S = T . Then S0 = T0 = 0 and Tj = S0 + Sj =
Sj . Therefore T = MS. Because T factors uniquely, these choices of M and S are the only
possibilities.

Theorem 8. Let S be a state matrix. Then S factors uniquely as a product

S = AB . . . CT (28)

where: A,B, . . . , C are transition matrices, C0 6= 2e0, and T is a state matrix with |T | = 1.
Conversely, every such product is a state matrix.

Proof. Immediate from the previous results.

To illustrate, we give the following factorization
12 14 10 12
12 14 9 12
12 14 9 11
12 15 9 11
13 15 9 11

 =

0 0 2 0 0
0 1 1 0 0
0 1 0 1 0
1 0 0 1 0
1 0 0 0 1

0 0 2 0 0
0 1 1 0 0
0 1 0 1 0
0 1 0 0 1
1 0 0 0 1

0 0 2 0 0
0 0 1 1 0
0 0 1 0 1
0 1 0 0 1
1 0 0 0 1

×

0 0 2 0 0
0 0 1 1 0
0 1 0 1 0
0 1 0 0 1
1 0 0 0 1

0 0 0 0 2
0 0 0 1 1
0 0 1 0 1
0 1 0 0 1
1 0 0 0 1

0 0 0 0
0 1 0 0
1 1 0 0
1 1 0 1
1 1 1 1

 (29)

Definition 4. Let A be a matrix or a vector. We write A > 0 and say that A is nonnegative, if all
entries of A are nonnegative.

Theorem 9. If S and T are state matrices, M is a transition matrix, and T = MS, and T > 0 if
and only if S > 0.

10

Proof. Suppose that S > 0. Since M > 0 and the product of nonnegative matrices is nonnegative,
we then have T = MS > 0.

Suppose that S � 0. Then S has a negative entry Si,k < 0. It follows that Sl,k 6 0 for all l.
There exists a j such that Tj,k = Sf,k + Sg,k for some f and g, with i ∈ {f, g}. It then follows that
Tj,k < 0, and thus T � 0.

Lemma 10. If T is a state matrix, then it has rank d.

Proof. Induction on |T |. For T = 1, it is obvious. Otherwise T = MS for some state matrix S
with |S| < |T |. Because M is invertible, matrices T and S have the same rank.

Doubtlessly, because of the general interest of matrices in mathematics, there exist many dif-
ferent matrix factorization algorithms, perhaps some quite general. One may thus wonder if any of
such algorithms cover the result above: here we speculate that they do not, mainly on the grounds
that nobody would have had reason to consider the peculiar form of matrices that we needed to
consider.

Incidentally, transition matrices have determinant ±2, because only one permuation is embed-
dable into the nonzero entries of M . Therefore, transition matrices are always invertible. State
matrices are not square, so have neither determinant nor inverse. Although not needed for the
multi-dimensional Montgomery ladder algorithm, one can amend the definition of state matrices
by preprend a zeroth column, all of whose entries are equal to a power of two. If |T | = 1, the power
of two should be one, and otherwise it should be 2t where t is the number of transition matrices in
the (28). These amended state matrices are invertible and have determinant ±2t.

The number of transition matrices is 2d, which can be seen by starting from the last row, which
is always e0 + ed, and noting that each successive row can have either the left entry or the right
entry shifted one step in the opposite direction. The number of state matrices T with |T | = 1 is
2dd!, or just d! if T is also nonnegative. Therefore, the number of state matrices that factor into
the form in (28) with t transition matrices is 2dt(2d − 1)d!, or just 2d(t−1)(2d − 1)d! when counting
only nonnegative state matrices.

3.2 Difference Matrices

The point addition phases needs not only the transition matrices and the minimal state matrix,
but it also needs the difference matrices (to be defined), so that Montgomery formula for point
addition with x-coordinate only can be used.

Let M be a state matrix, such that it rows of the form Mj = ef + eg with f 6 g. Define M̂

such that it rows of the form M̂j = ef − eg. As usual, suppose that T is a state matrix factoring
uniquely into as T = MS where M is a transition matrix and S is a state matrix. The difference
matrix corresponding to T is the matrix D = M̂S. We note that a difference matrix D is actually
a state matrix and that |D| = 1.

A simple rule may be used to determine the difference matrix D = (dj,k) corresponding to state
matrix T = (tj,k). If tj,k is even, then dj,k = 0. Otherwise tj,k ≡ dj,k mod 4.

3.3 Simplified Matrix Phase

One disadvantage of the methods given by §3.1 is the big integer arithmetic in the computation
of the intermediate state matrices. A second disadvantage is the computation of the transition
matrices in the matrix phase is in an order opposite to how they applied in the point addition

11

phase, which means that matrix phase has to be complete before the addition phase can be begun.
Therefore we develop some more theory that can be used to overcome these disadvantages.
Definition 5. Fix some 1 6 c 6 d. Let S be any state matrix S. Let S′ the matrix obtained by
deleting column c and the deleting the row in which the entry of column c does not equal the value
in the row below.

Lemma 11. If S is a state matrix for dimension d, then S′ is a state matrix for dimension d− 1.

Proof. For any row vector R, let R′ indicate the row vector with entry c deleted. For each j, we
have S′j = (Sj′)′ where j′ ∈ {j, j+1}, with the choice depending on whether j lies below the deleted
row of matrix S. Now S′j has j odd entries if j′ = j, because the deleted entry of Sj′ is even, and S′j
has j odd entries if j′ = j + 1 because Sj′ has j′ = j + 1 odd entries and one odd entry, in position
c, is deleted to give j odd entries.

Now S′j−S′j+1 ∈ {(Sj−Sj+1)′, (Sj−Sj+2)′, (Sj+1−Sj+2)′}, depending on whether j lies above,
at, or below the deleted row of the matrix S. Because S is a state matrix will have i 6= c such that
Sj − Sj+1 = ±ei, and Sj − Sj+2 = ±ei± ec and Sj+1 − Sj+2 = ±ei. Upon deleteion of entry c, wee
see that S′j − S′j+1 has the form ±ei.

Theorem 12. If S and T are state matrices, M is a transition matrix, and T = MS, then
T ′ = M ′S′ for some transition matrix M ′.

Proof. For any row vector R, let R′ indicate the row vector with entry c deleted. For each j we
have Tj = Sf + Sg for some f and g. Therefore (Tj)′ = (Sf)′ + (Sg)′. We write (Tj)′ = T ′

j′ where
j′ ∈ {j, j +1}, with the choice of value depending on whether j lies above or below the row deleted
from T . Similarly, we write (Sk)′ = S′k′ where k′ ∈ {k, k + 1}. Therefore, we have T ′

j′ = S′f ′ + S′g′ .
This means that T ′ = M ′S′ for matrix M ′ such that M ′

j′ = ef ′ +eg′ with the same values of indices
as used previously. We need only now to show that M ′ is a transition matrix.

To prove that M ′ is a transition matrix, we need to show both (a) that g′ − f ′ = j′ and (b)
that successive rows of M ′ differ by ±(ei − ei+1) for some i.

To show (a), consider the parity of the entries of rows of state matrices S′ and T ′ (in other
words, look at the Hamming weight modulo two). Since T ′

j′ has j′ odd entries, the f ′ odd entries
of row S′f ′ are subset of the g′ odd entries of row S′g′ , we must have j′ = g′ − f ′.

To show (b), consider that successive rows of T ′ differ in just one entry, with a difference of ±1.
Suppose that T ′

j − T ′
j+1 = ±ei. We may also suppose, because the work above, that T ′

j = Sf + Sg

where g − f = j and T ′
j+1 = Se + Sh where h − e = j + 1. Therefore ±ei = S′f + S′g − S′e − S′h.

The columns of S′ may be ordered according to in which row they become odd. The odd entried
positions of S′f + S′g correspond an interval, a contigous set of consecutive entries, in this ordering
of the colmunns of S′. The same holds for S′e + S′h. The difference of these two sums of rows,
has only one odd entry, so therefore, the corresponding intervals must overlap in all but one point.
Moreover the interval for S′e +S′h must extend that of S′f +S′g by appending the next element either
above or below. This implies that (e, h) ∈ {(f − 1, g), (f, g + 1)}, which implies condition (b) for
M ′ be a transition matrix.

An application of Theorem 12, is that the all integers appearing the successive state matrices
need not be computed multiple times for occurrence. Instead, one can reduce each column to di-
mension d = 1 for computing the values of the entries. Dimension d = 1 is the classical Montgomery
method. An advantage of this observation is that values in the intermediate state matrix entries

12

may be computed easily from the bit representations of the initial state matrix, as the following
theorem illustrates.
Theorem 13. For d = 1, let T be a state matrix of the form

T =
(

2a0 + 2as+1 + 4as+2 + 23a3 + . . .
1 + 2as+1 + 4as+2 + 23a3 + . . .

)
(30)

where ai ∈ {0, 1}. Then for s > 1, we have

T = Ma0+a1Ma1+a2 . . .Mas−1+as

(
2as + 2as+1 + 4as+2 + . . .
1 + 2as+1 + 4as+2 + . . .

)
(31)

where M0 = M2 = (2 0
1 1) and M1 = (0 2

1 1).

Proof. Induction on s. For s = 1, we can verify the result by inspecting each of four cases (a0, a1) ∈
{(0, 0), (0, 1), (1, 0), (1, 1)} individually. This covers the base of induction. Suppose (31) holds, then
we shall show that it also holds with s replaced by s + 1. Let

S =
(

2as + 2as+1 + 4as+2 + . . .
1 + 2as+1 + 4as+2 + . . .

)
(32)

so that (31) becomes T = Ma1Ma1+a2 . . .Mas−1+asS. Now apply the base case of induction to
matrix S, getting S = Mas+as+1U , where U has the desired form.

This result represents a simplification to the procedure in this d = 1, by overcoming both of the
disadvantages mentioned earlier. The transition matrices can be computed using only manipula-
tions of the bit representations of the entries of the initial state matrix T , and they can be computed
in any order. Furthermore, the intermediate state matrices do not even need to be calculated, so
no big integer arithmetic is required in the matrix phase. The output of the matrix phase only
needs to include the transition matrices and the minimal state matrix.

Note that traditionally, the Montgomery ladder is presented in a slightly different, but equiva-
lent manner. The differnce is that intermediate state matrices even and odd entries are occasionally
swapped as needed, so that the transition operations depend on only a single bit in the represen-
tation, not two consecutive bits. The reason for us to use a slightly different form is to extend the
algorithm to d > 1 consistently with the methods already described.

The first step of extending the simplification to d > 1, is to recognize that the value entries in
each column of the sth intermediate state matrix may be represented by the bit values (as, as+1, . . .)
in the notation of Theorem 13. The reduction of the intermediate state matrix modulo two, a binary
matrix, together with the information (as, as+1, . . .), completely determines the full value of the
intermediate state matrix. Therefore we may equivalent represent the state matrices as a pair
(A,B) of binary matrices, where A = (aj,k) encodes values like as and B = (bj,k) encodes the
modulo two values of the state matrix. More precisely for state matrix S = (sj,k) , we have

sj,k = 2a0,k(1− bj,k) + bj,k + 2a1,k + 4a2,k + 23a3,k + . . . (33)

On the basis of Theorems 12 and 13, when transitioning to a smaller matrix, the effect on the A
component of the state is precisely deletion of the zeroth row. Although the B component is itself
a state matrix, the effect on B depends on A.

13

To determine the effect on B, when transitioning down, we review how Theorem 4 takes a
state matrix T and determines the unique transition matrix M and smaller state matrix S such
that T = MS. The first step of the proof is to halve T0 and examine the parity. We have
1
2 t0,k = a0,k + a1,k + 2a2,k + Therefore h is the number of k such that a0,k + a1,k is odd, and
Sh = 1

2T0. Let B′ be the B component of S. Then we have b′h,k ≡ a0,k + a1,k mod 2. We may write
this B′

h ≡ A0 + A1 mod 2.
We have determined M0 and Sh and B′

h, and next is to determine M1 and Sh±1 and B′
h±1, for

some choice of h ± 1. To do this, we consider Sh±1 = T1 − Sh = T1 − T0 + Sh. But (T1 − T0)k =
(2a0,k − 1)(b1,k − b0,k) = 2a0,k − 1b1,k. Now 2a0,k − 1 ∈ {−1, 1}, and there is a unique value of
k such that b1,k = 1. Now the next row to consider is h′ = h + 1 if, for this unique k, we have
b′h,k = 0 and otherwise the next row to consider to consider is h′ = h − 1. In either case, we have
B′

h′ ≡ B′
h + B1 mod 2.

Continuing, we just imitate the proof of Theorem 4, except that now the decisions made in that
proof using rows of T and S are replaced by decision made using rows of B and B′. This can be
done, since only the parities of the differences of rows of T and S are used to determine M and S.

When implementing the algorithm, it is not necessary to actually the transition matrices M as
matrices per se, because most the entries are 0. Instead, one can compute the values of f and g
for each row, so that Mj = ef + eg. In the description of the algorithm the f values are put into a
matrix F and the g values are put into a matrix G.

3.4 The Point Addition Phase

A row (r1, . . . , rd) of a state will represent a point r1G1 + · · · + rdGd whose x-coordinate we may
compute. The difference of any two rows of a state has the form (l1, . . . , ld) where l1, . . . , ld ∈
{−1, 0, 1}. The Montgomery point addition formula will be used, with the aid of computation of
l1G1+ · · ·+ ldGd when needed. To compute a combination k1G+ · · ·+kdG, we first find a state with
(k1, . . . , kd) as a row. From this state, we will find a sequence successfully smaller states, related
transition matrices, which are defined next.

Therefore to compute r1G1 + · · ·+ rdGd. Find a state matrix T with R = (r1, . . . , rd) as a row.
It will be convenient to write G = (G1, . . . , Gd), and to write RG = r1G1 + · · ·+ rdGd, for any such
row vector R in general.

Now factor T per Theorem 8, which can be done efficiently. For each of the intermediate state
matrix S in the factorization, and each row Sj of the state matrix, we will calculate the elliptic
curve point SjG. Now S is obtained from a smaller state, say U , and Sj = Uf + Ug for some rows
of Uf and Ug of U . We calculate SjG = UfG + UgG.

Acknowledgements

Adrian Antipa, René Struik, Rob Lambert, and Scott Vanstone provided extremely helpful discus-
sions of this algorithm.

References

To be added.

14

