
Deterministic Authenticated-Encryption
A Provable-Security Treatment of the Key-Wrap Problem

P. ROGAWAY∗ T. SHRIMPTON†

Aug 7, 2007

An earlier version of this paper appears in Advances in Cryptology — EUROCRYPT ’06, Lecture Notes in Computer Science,
vol. 4004, Springer, 2006. This is the full version of that paper.

Abstract

Standards bodies have been addressing the key-wrap problem, a cryptographic goal that has never re-
ceived a provable-security treatment. In response, we provide one, giving definitions, constructions, and
proofs. We suggest that key-wrap’s goal is security in the sense of deterministic authenticated-encryption
(DAE), a notion that we put forward. We also provide an alternative notion, a pseudorandom injection (PRI),
which we prove to be equivalent. We provide a DAE construction, SIV, analyze its concrete security, de-
velop a blockcipher-based instantiation of it, and suggest that the method makes a desirable alternative to the
schemes of the X9.102 draft standard. The construction incorporates a method to turn a PRF that operates
on a string into an equally efficient PRF that operates on a vector of strings, a problem of independent inter-
est. Finally, we consider IV-based authenticated-encryption (AE) schemes that are maximally forgiving of
repeated IVs, a goal we formalize as misuse-resistant AE. We show that a DAE scheme with a vector-valued
header, such as SIV, directly realizes this goal.

Keywords: Authenticated encryption, cryptographic definitions, cryptographic standards, key wrapping,
modes of operation, provable security, secret-key cryptography, symmetric encryption, X9.102.

∗ Dept. of Computer Science, University of California at Davis, Davis, California 95616, USA; and Dept. of Computer Science,
Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.

† Department of Computer Science, Portland State University, Portland, Oregon 97201, USA

1

Contents

1 Introduction 1

2 The Draft X9.102 Standard 3

3 DAE Security 5

4 Building a DAE Scheme: The SIV Construction 6

5 Enriching a PRF to take Vectors of Strings as Input: The S2V Construction 9

6 The SIV Mode of Operation 11

7 Misuse-Resistant AE 12

8 The PRI Characterization of DAE Security 13

Acknowledgments 16

References 16

A Critique of the Draft X9.102 Standard 18

B All-in-One vs. Two-Requirement Notions for AE 22

C DAEs Achieve Semantic Security when Plaintexts Carry a Key 25

D Building a DAE Scheme: The PTE Constructions 27

E Proof of Security for S2V 31

F Key Rap 35

2

1 Introduction

The American Standards Committee Working Group X9F1 has proposed four key-wrap schemes in a draft
standard known as ANS X9.102, and NIST has promulgated a request for comments on the proposal [13]. The
S/MIME working group of the IEEE had earlier adopted a key-wrap scheme [17], and their discussions on this
topic go back to at least 1997 [37]. NIST is considering specifying a key-wrap mechanism in their own series
of recommendations [M. Dworkin, personal communications]. But despite all this, the key-wrap goal would
seem to be essentially unknown to the cryptographic community. No published paper analyzes any key-wrap
scheme, and there is no formal definition for key wrap in the literature, let alone any proven-secure scheme.
Consequently, the goal of this paper is to put the key-wrap problem on a proper, provable-security footing. In
the process, we will learn quite a bit that’s new about authenticated-encryption (AE).

Before proceeding it may be useful to give a very informal description of the key-wrap goal, echoing the
wording in [13, p. 1]. A key-wrap scheme is a kind of shared-key encryption scheme. It aims to provide
“privacy and integrity protection for specialized data such as cryptographic keys, . . . without the use of nonces”
(meaning counters or random bits). So key-wrap’s raison d’être is to remove AE’s reliance on a nonce or random
bits. At least in the context of transporting cryptographic keys, a deterministic scheme should be just as good
as a probabilistic one, anyway. Another goal of key wrap is to provide “integrity protection . . . for cleartext
associated data, . . . which will typically contain control information about the wrapped key” [13, p. 1].

CONTRIBUTIONS. We begin with a critique of the X9.102 key-wrap schemes, identifying the basic charac-
teristics of each of the four algorithms. Overall, we find the proposed mechanisms somewhat disappointing in
terms of usage restrictions, efficiency, and foundations. That said, we break none of the four schemes, and we
owe this work to their existence. See Section 2 and Appendix A.

Guided by the proposed schemes, we offer a definition for what a key-wrap scheme should do. We call the
goal deterministic authenticated-encryption (DAE). A thesis underlying our work is that the goal of a key-wrap
scheme is DAE. In a DAE scheme, encryption deterministically turns a key, a header, and a message into a
ciphertext. The header (which may be absent, a string, or even a vector of strings) is authenticated but not
encrypted. To define security, the adversary is presented either a real encryption oracle and a real decryption
oracle (both are deterministic), or else a bogus encryption oracle that just returns random bits and a bogus
decryption oracle that always returns an indication of invalidity. For a good DAE scheme, the adversary should
be unable to distinguish these possibilities. See Section 3.

Next we provide a DAE construction, SIV. (The acronym stands for Synthetic IV, where IV stands for
Initialization Vector.) The construction combines a conventional IV-based encryption scheme (eg, CTR mode
[27]) and a special kind of pseudorandom function (PRF)—one that takes a vector of strings as input. To
encrypt, apply the PRF to the header and the message and use the result as the IV of the encryption scheme.
We prove that SIV is a good DAE, assuming its components are secure. See Section 4.

In practice one would want to realize SIV from a blockcipher, and so we show how to turn a PRF f that
operates on a single string into a PRF f∗ that takes a vector of strings. Under our S2V construction, the cost of
computing the PRF f∗ = S2V[f] on a vector X = (X1, . . . , Xn) is at most the total cost to compute f on each
component Xi, and it can be considerably less, as the contribution from a component Xi can be precomputed
if it is to be held constant. See Section 5.

For a concrete alternative to the X9.102 schemes, we suggest to instantiate SIV using modes CTR and
CMAC∗ = S2V[CMAC], where CTR is counter mode [27] and CMAC is an arbitrary-input-length variant of
the CBC MAC [28]. The specified mechanism removes unnecessary usage restrictions, improves efficiency,
and provides provable security. See Section 6.

Applications of DAEs go beyond the wrapping of keys. Many IV-based encryption schemes, such as CBC,
require an adversarially unpredictable IV. Experience has shown that implementers and protocol designers often
supply an incorrect IV, such as a constant or counter. In a misuse-resistant AE scheme the aim is to do as well as
possible with whatever IV is provided. We formalize this goal and show that a DAE scheme that takes a vector-

1

DAE Deterministic authenticated-encryption. Section 3. The main notion being investigated by this paper.

PRI
Pseudorandom injection. Section 8. Like a strong PRP but injective instead of bijective. DAE-security and
PRI-security differ by an amount that vanishes exponentially in the stretch of the scheme.

MRAE
Misuse-resistant AE, Section 7. Strengthening of the usual definition of nonce-based AE to speak to what
happens when a nonce gets reused. Easily constructed from a DAE that handles vector-valued headers.

SIV
Synthetic IV. Section 4. Makes a DAE by first applying a PRF to the header and message to get an IV. Also
our blockcipher-based mode of operation that instantiates this using CTR mode and S2V-applied-to-CMAC.

S2V
String to vector. Section 5. Turns a PRF that takes a string as input into a PRF that takes a vector of strings
as input. More efficient than an encoding-based approach.

PTE
Pad-then-encipher. Appendix D. Makes a DAE by padding the input and then enciphering. Two versions,
depending on how headers are handled. Most natural approach to DAE, but less desirable than SIV.

Figure 1: Roadmap of the new notions and schemes. The first three entries are security notions; the next three entries are
schemes. The section reference indicates where the definition of the notion or scheme can be found.

valued header provides an immediate solution: just regard the IV as one component of the header. Adopting
this viewpoint, SIV can be regarded as an IV-based AE scheme, one as efficient with respect to blockcipher
calls as conventional two-pass AE schemes like CCM [29] but more resilient to IV misuse. See Section 7.

Finally, we give an alternative characterization of DAEs. A pseudorandom injection (PRI) is like a block-
cipher except that the ciphertext may be longer than the plaintext (also, the message space may be richer than
{0, 1}n for some fixed n, and a header may be provided). We prove PRIs equivalent to DAEs, up to a term that
is negligible when the PRI is adequately length-increasing.

Our definition of DAE merges the traditionally separate privacy and authenticity requirements of an AE
scheme. It is possible to split the definition into separate privacy and authenticity goals and require both. Doing
this yields an equivalent definition. Similarly, the separate privacy and authenticity requirements normally used
to define AE [6, 8, 19, 20, 31, 33] can be merged into a single, unified goal. The all-in-one approach for defining
AE seems to us simpler and more elegant than giving separate privacy and authenticity definitions and then
asking for both. See Appendix B.

A reason for doing key wrap (DAE) instead of conventional (probabilistic) AE is the intuition that, if the
plaintext carries a key, there shouldn’t be any need to inject additional randomness into the encryption process.
One can formalize and prove this intuition, establishing, in effect, the semantic security of DAE for the context
in which keys are embedded into plaintexts. A DAE scheme cannot by itself achieve semantic security because
it is deterministic—we are saying that a random enough message space compensates for this, letting you recover
the equivalent of semantic security. See Appendix C.

Besides SIV we also provide a second construction, one that uses different primitives. The pad-then-
encipher scheme, PTE, is based on an enciphering scheme (ie, a length-preserving encryption scheme, like
CMC [16]). One pads the plaintext (eg, appending 0-bits) before enciphering. We prove the security of PTE.
We investigate the pad-then-encipher is the paradigm because it seems to us the most natural approach to solving
the key-wrap problem, as well as the approach that underlies two of the X9.102 schemes. See Appendix D.

ROADMAP. Given the number of new acronyms, definitions, and schemes introduced in this paper, the table
of Figure 1 may provide a helpful summary. For the security notions, lower-case labels (eg, dae) are used
as a superscript for advantage measures (eg, Advdae

Π) while their upper-case counterpart (eg, DAE) are used
in English prose. Our table omits mention of notions that are standard or whose mention is confined to the
appendices.

WHY THIS GOAL? There are two main reasons to prefer DAE over conventional (probabilistic or stateful)
AE. First, DAE saves one from having to introduce random bits or state in contexts where these measures are
infeasible or unnecessary. Relatedly, DAE saves on bandwidth, since no nonce or random value need be sent.

2

That said, in many contexts where one would think to use key wrap, one can use a conventional AE scheme,
instead. This does not make studying the key-wrap problem pointless. First, it clarifies the relationship between
key wrap and conventional AE. Second, DAE leads to misuse-resistant AE, and methods that achieve this aim
make practical alternatives to conventional (not misuse-resistant) two-pass AE methods. Finally, practitioners
have already “voted” for key-wrap by way of protocol-design and standardization efforts, and it is simply not
productive to say “use a conventional AE scheme” after this option has been rejected.

THE SIGNIFICANCE OF HEADERS. We emphasize that our formalization of DAEs includes a header (also
called a tweak or associated-data). For cryptographic practice, allowing a header seems to be almost essential.
Network security protocols require sending packets only portions of which are encrypted, but all of which must
be authenticated and bound together. Good security practice requires keys to be bound to control information
such as expiration date and permitted usage, and the binding of keys to such control information has strongly
informed security architecture (eg, IBM’s cryptographic control vectors [25]). Regarding headers as vectors
facilitates both efficiency advantages and a cleaner abstraction boundary.

FURTHER RELATED WORK. AE goals were formalized over a series of papers [6, 8, 20, 31, 33]. The idea of
binding the encryption process to unencrypted strings is folklore, with recent work in this direction includ-
ing [23, 31, 36]. Bellare and Rogaway [8] investigate the paradigm of adding randomness or redundancy to a
plaintext and then enciphering it, an approach related to the ideas and results of Appendices C and D. Rus-
sell and Wong [35] introduce a completely different approach for dealing with the encryption of low-entropy
messages, and Dodis and Smith [12] extend this entropy-based approach. Phan and Pointcheval [30] study
relationships among security notions for conventional (length-preserving and headerless) ciphers. The SIV
construction resembles the AE scheme EAX [9]. A less ambitious relaxation on IV requirements than that
formalized as misuse-resistant encryption is given in [32]. The proceedings version of this paper was published
as [34].

2 The Draft X9.102 Standard

Four key-wrap schemes are defined in the draft ANS X9.102 standard [13]. The schemes are called AESKW
and TDKW (which are essentially the same scheme, the former using AES and the later using triple-DES),
AKW1, and AKW2. Scheme AESKW is based on a six-round, non-standard Feistel network. It was first
proposed by NIST and is pictured and specified in Figure 7. Scheme AKW1 involves two layers of CBC
encryption and one application of SHA1. It was developed by the S/MIME working group of the IETF [17]
and is pictured in Figure 8. Scheme AKW2 involves a CBC encryption layer and a CBC MAC layer. It was
designed to accommodate legacy financial-services devices and is pictured in Figure 9.

EXPLANATION OF SUMMARY TABLE. Here and in Figure 2 we summarize basic properties of the X9.102
schemes [13]; see Appendix A for further discussion. The columns represent three of the four schemes (TDKW
is omitted because of its similarity to AESKW). Let us explain the meaning of the table’s rows. Goal: This is
our understanding of the mechanism’s aim. Schemes AESKW and TDKW seem intended to achieve DAE, the
focus of this paper. We don’t know if the schemes actually achieve this goal (we expect that they do). Scheme
AKW1 is described as a probabilistic scheme that aims to achieve (probabilistic) AE, the original notion of AE
put forward in [6, 8, 20]. But we explain in Appendix A why we view AKW1 as a peculiar approach for trying
to achieve probabilistic AE. Scheme AKW1 seems to reflect no single and ascertainable cryptographic goal (this
sometimes happens in committee-based design). Scheme AKW2 achieves only a specialized (not of general
interest) notion of deterministic privacy, along with a deterministic version of authenticity-of-ciphertexts. The
combination of these aims is substantially weaker than the goal of being a DAE. Message space: The message
space over which the scheme is defined. Header space: The space of headers (also called tweaks or associated
data) over which the scheme is defined. But: Specifies any technical requirement about the relationship between

3

AESKW AKW1 AKW2

Goal DAE see text see text

Message space X ∈ {0, 1}[0..238−64] X ∈ (BYTE8)[1..216] X ∈ (BYTE8)[2..216]

Header space H ∈ BYTE≤255 not supported H ∈ (BYTE8)+

But H �= ε or X �= ε nothing nothing

Ciphertext bits 64�(|H| + |X|)/64� + 64 |X| + 128 |X|+Tlen where Tlen ∈ [32..64]

Expansion |H| + 64 to |H| + 127 128 32–64

Blockcipher AES (any key length) TDEA (two-key or three-key) TDEA (two-key or three-key)

Forging prob 2−63 2−64 2−Tlen with Tlen ∈ [32..64]

Maxqueries 248 232 232

Overhead 12× 2×+3 (plus SHA1 overhead) 2× on message, 1× on header

Key usage one blockcipher key one blockcipher key two blockcipher keys

Parallelizable? no no no

Preprocess header? no not applicable yes

Expedited auth? no no yes

Provably secure? no no no

Figure 2: Basic characteristics of key-wrap mechanisms AESKW, AKW1, and AKW2 from the X9.102 draft. We omit
TDKW because of its similarity to AESKW. Explanations of rows are given in the body.

the message space and the header space. Ciphertext bits: Ciphertext length as a function of already-named
values. Expansion: How much longer the ciphertext is than the plaintext. Blockcipher: The underlying
blockcipher. Forging prob: The target forging probability asserted by the spec. We are not asserting that
the scheme actually achieves this value. Maxqueries: The maximum number of plaintext values that may
be encrypted in an implementation compliant with the spec. We are not asserting that the scheme is actually
secure up to this value. Overhead: The computational overhead, measured in blockcipher calls per block of
data (message or header). Scheme AKW1 incurs additional overhead for applying SHA1 to the message. Key
usage: The number of blockcipher keys that key the blockcipher calls. Parallelizable? Can the computation-
time of the mechanism be arbitrarily sped up by adding additional hardware? Preprocess header? Can a fixed
header be cryptographically processed just once, as opposed to dealing with it for each and every message?
Expedited auth? Is it faster to see if a ciphertext is inauthentic than to fully decrypt it? Provably secure?
Does the mechanism enjoy any provable-security guarantee? That is, has a proof of security been offered,
under standard or reasonable assumptions, that the mechanism achieves some well-defined and desirable goal?

INTERPRETATION. Given Figure 2 and the associated discussion in Appendix A, our conclusion is that none of
the X9.102 algorithms are mature. Most severely, none has been proven secure—and, prior to this paper, there
was not even a clear target for a security proof. Each scheme has multiple problems from among the following:
a restricted message space; an inability to handle an associated header; a restricted header space; ciphertext
lengths that grow with the header length (even though the header is only authenticated); a large number of
blockcipher calls; mysterious aspects of the construction (eg, the byte-reversals or xoring-in counters); and
use of cryptographic primitives beyond a blockcipher. For a modern encryption scheme one might reasonably
hope for a formally defined and provably achieved security goal, an aesthetic construction coming out of an
enunciated paradigm, message headers being supported and the message space and header space being large
and natural sets, message expansion of some fixed value, one or two blockcipher calls per block, and further
efficiency characteristics (like being able to cheaply handle static headers).

That said, we do not mean to be overly negative about the X9.102 schemes. We have not broken any of them,
and the six-round Feistel-network of AESKW/TDKW could have beyond-birthday-phenomenon security. The
standardization effort has engendered our own work, and it is very hard to design a correct key-wrap scheme
prior to having supporting definitions and results. Finally, it is hard to design a correct key-wrap scheme if the

4

abstraction boundary one is thinking in terms of is a blockcipher, too low-level a tool to make a convenient
conceptual starting point.

3 DAE Security

NOTATION. For a distribution S let S
$←S mean that S is selected randomly from S (if S is a finite set the

assumed distribution is uniform). All strings are binary strings. When X and Y are strings we write X‖Y
for their concatenation. When X ∈ {0, 1}∗ is a string |X| is its length and, if 1≤ i≤ j ≤ |X|, then X[i..j]
is the substring running from its ith to jth characters, or the empty string ε otherwise. By a vector we mean
a sequence of zero or more strings, and we write {0, 1}∗∗ for the space of all vectors. We write a vector as
X = (X1, . . . , Xn) where n = |X| is its number of components. If X = (X1, . . . , Xn) and Y = (Y1, . . . , Ym)
are vectors then X, Y is the vector (X1, . . . , Xn, Y1, . . . , Ym). In pseudocode, Boolean variables are silently
initialized to false, sets are initialized to the empty set, and partial functions are initialized to everywhere
undefined (set to undef). An adversary is an algorithm with access to one or more oracles, which we write as
superscripts. By AO ⇒ 1 we mean the event that adversary A, running with its oracle O, outputs 1. When an
adversary has an oracle with an expressed domain D we understand that the oracle returns the distinguished
value ⊥, read as invalid, if the adversary asks a query outside of D.

SYNTAX. A scheme for deterministic authenticated-encryption, or DAE, is a tuple Π = (K, E ,D). The key
space K is a set of strings or infinite strings endowed with a distribution. For a practical scheme there must be
a probabilistic algorithm that samples from K, and we identify this algorithm with the distribution it induces.
The encryption algorithm E and decryption algorithm D are deterministic algorithms that take an input in
K × {0, 1}∗∗ × {0, 1}∗ and return either a string or the distinguished value ⊥. We write EH

K (X) or EK(H, X)
for E(K, H, X) andDH

K(Y) orDK(H, Y) forD(K, H, Y). We assume there are setsH ⊆ {0, 1}∗∗, the header
space, and X ⊆ {0, 1}∗, the message space, such that EH

K (X) ∈ {0, 1}∗ iff H ∈ H and X ∈ X . We assume

that X ∈ X ⇒ {0, 1}|X| ⊆ X . The ciphertext space is Y = {EH
K (X): K ∈ K, H ∈ H, X ∈ X}. We

require DH
K(Y) = X if EH

K (X) = Y , and DH
K(Y) = ⊥ if there is no such X . It will be our convention that

EH
K (⊥) = DH

K(⊥) = ⊥ for all K ∈ K and H ∈ H. For any K ∈ K, H ∈ H, and X ∈ X , we assume that
|EH

K (X)| = |X| + e(H, X) for a function e: {0, 1}∗∗ × {0, 1}∗ → N where e(H, X) depends only on the
number of components of H , the length of each of these components, and the length of X . The function e is
called the expansion function of the DAE scheme. Often we are concerned with the minimum expansion that
might arise, and so define the number s = minH∈H,X∈X {e(H, X)} as the stretch of the scheme.

Among what is formalized above: (1) encryption and decryption are given by algorithms, not just functions;
(2) trying to encrypt something outside of the header space or message space returns ⊥; (3) trying to decrypt
something that isn’t the encryption of anything returns ⊥; (4) if you can encrypt a string of some length you
can encrypt all strings of that length; and (5) the length of a ciphertext exceeds the length of the plaintext by an
amount that depends on, at most, the length of the plaintext and the length of the components of the header.

A DAE is length-preserving if e(H, X) = 0 for all H ∈ H, X ∈ X . An enciphering scheme is a length-
preserving DAE. A tweakable blockcipher is an enciphering scheme where the plaintext space is X = {0, 1}n
for some n ≥ 1. A blockcipher is a tweakable blockcipher where the header space H = {ε} is a singleton set;
as such, we omit mention of it and write E: K × {0, 1}n → {0, 1}n.

SECURITY. We now give our formalization for DAE security.

Definition 1 Let Π = (K, E ,D) be a DAE scheme with header space H, message space X , and expansion
function e. The DAE-advantage of adversary A in breaking Π is defined as

Advdae
Π (A) = Pr

[
K

$←K : AEK(·,·), DK(·,·) ⇒ 1
]
− Pr

[
A$(·,·), ⊥(·,·) ⇒ 1

]
.

5

On query H ∈ H, X ∈ X , the adversary’s random-bits oracle $(·, ·) returns a random string of length |X| +
e(H, X). As always, oracle queries outside the specified domain return⊥. The⊥(·, ·) oracle returns⊥ on every
input. We assume that the adversary does not ask (H, Y) of its right (ie, second) oracle if some previous left
(ie, first) oracle query (H, X) returned Y ; does not ask (H, X) of its left oracle if some previous right-oracle
query (H, Y) returned X; does not ask left queries outside of H × X ; and does not repeat a query. The last
two assumptions are without loss of generality, as an adversary that violated any of these constraints could be
replaced by a more efficient and equally effective adversary (in the Advdae

Π -sense) that did not. The first two
assumptions are to prevent trivial wins.

DISCUSSION. The DAE-notion of security directly captures the amalgamation of privacy and authenticity.
Assume that Advdae

Π (A) is insignificantly small for any reasonable adversary. Then, for privacy, we know that
any sequence of distinct EK-queries results in a distribution on outputs resembling a distribution on outputs
that depends only on the length of each query (in fact, the outputs look like random strings of the appropriate
lengths). For authenticity we have that, despite the ability to perform a chosen-plaintext attack (as provided by
the EK oracle), we are unable to come up with a new query Y for which DH

K(Y) �= ⊥.
It is possible to disentangle the privacy and authenticity notions in the DAE definition, defining separate

notions for deterministic privacy and deterministic authenticity. We do this in Appendix B, and explain why
asking for both of these conditions is equivalent to DAE. While the traditional approach for defining AE has
been to split the goal into two separate properties, the unified definition seems to us nicer and more succinct.

We point out that the DAE notion does not formalize the idea that the party that produces a valid ciphertext
(a value that decrypts to something other than⊥) necessarily knows the underlying key K. One could formalize
this, but it would not coincide with DAE. Sometimes the key-wrap goal has been described in these terms. We
suspect that when security-designers speak of having to know the key in order to produce a valid ciphertext what
they typically mean is not a proof of knowledge, but just the inability for a party to produce a valid ciphertext
in the absence of the key. It is the latter notion that is well captured by our DAE definition.

4 Building a DAE Scheme: The SIV Construction

CONVENTIONAL IV-BASED ENCRYPTION SCHEMES. Encryption modes like CBC and CTR are what we call
conventional IV-based encryption schemes. Such a scheme Π = (K, E ,D) is syntactically similar to a DAE but
in this context the header space H is a set of strings and is renamed the IV space, IV . We expect only privacy
in a conventional IV-based encryption scheme, and demand a random IV. This makes the security notion rather
weak, but sufficient for our purposes. The following definition captures the desired notion.

Fix a conventional IV-based encryption scheme Π = (K, E ,D) with IV-space IV = {0, 1}n. For simplicity,
assume Π is length-preserving. Let E$ be the probabilistic algorithm defined from E that, on input K ∈ K and
M ∈ {0, 1}∗, chooses an IV

$←{0, 1}n, computes C ← E IV
K (M) and returns IV ‖ C. Then we define the

advantage of adversary A in violating the privacy of Π by

Advpriv$
Π (A) = Pr

[
K

$←K : AE$
K(·) ⇒ 1

]
− Pr

[
A$(·) ⇒ 1

]

where the $(·) oracle, on input M , returns a random string of length n + |M |. We assume that the adversary
never asks a query M outside of the message space X of Π.

ARBITRARY-INPUT PSEUDORANDOM FUNCTIONS. Fix nonempty sets K and X , the first being finite or oth-
erwise endowed with a distribution and the second being finite or countably infinite. A pseudorandom function
(PRF) is a map F : K × X → {0, 1}n for some n ≥ 1. We write FK(X) for F (K, X). Let Func(X ,Y) be
the set of all functions from X to Y and let Func(X , n) = Func(X , {0, 1}n). Regarding a function as the key,
we can consider Func(X , n) to be a PRF; to each X ∈ X associate a random string in {0, 1}n. Let A be an

6

X

CIV

EK2

FK1

 IV’ if =

Hm X

CIV

DK2

H1 ...

...

FK1

HmH1 ...

...

Algorithm ẼK1,K2(H, X)
IV ← FK1(H, X)
C ← E IV

K2(X)
return Y ← IV ‖ C

Algorithm D̃K1,K2(H, Y)
if |Y | < n then return ⊥
IV ← Y [1 .. n], C ← Y [n + 1 .. |Y |]
X ← DIV

K2(C)
IV ′ ← FK1(H, X)
if IV = IV ′ then return X else return ⊥

Figure 3: The SIV construction. The left side illustrates and defines encryption, the right side, decryption. The header
is H = (H1, . . . , Hm), the plaintext is X , the key is (K1,K2), and the ciphertext is Y = IV ‖ C. Function F : K1 ×
{0, 1}∗∗ → {0, 1}n is a PRF and (K2, E ,D) is an IV-based encryption scheme, such as CTR mode.

adversary. The advantage of A in violating the pseudorandomness of F is

Advprf
F (A) = Pr

[
K ← K : AFK(·) ⇒ 1

]
− Pr

[
ρ

$← Func(X , n) : Aρ(·) ⇒ 1
]

.

It is tacitly assumed that the adversary has a mechanism of naming points in X by strings; if X ⊆ {0, 1}∗ then
a string names itself, but if X is not a set of strings then points of X are encoded as strings in some natural way.
Our definition of PRFs is unusual for allowing the input X to be arbitrary (possibly not a string).

THE SIV CONSTRUCTION. Let F : K1 × {0, 1}∗∗ → {0, 1}n be a PRF. Let Π = (K2, E ,D) be a conven-
tional IV-based encryption scheme with IV-length n and message space X . We write FK(H, M) instead of
FK((H, M)). We construct from (F, Π) a DAE Π̃ = SIV[F, Π] = (K̃, Ẽ , D̃) with header space {0, 1}∗∗ and
message space X where K̃ = K1 × K2 and the encryption and decryption algorithms are as illustrated and
defined in Figure 3. Recall that Y [n + 1..|Y |] = ε if |Y | < n.

We will now show that if F is PRF-secure and Π is IND$-secure then Π̃ = SIV[F, Π] is DAE-secure. The
intuition behind the proof is this. If any bit of the header H or plaintext X is new then the string IV will
look like a random string and so IV ‖ C will be difficult to distinguish from random bits. On decryption, the
adversary must create a new (H, Y) where Y = IV ‖ C. Let’s imagine giving the adversary the corresponding
plaintext X for free. Now (H, X) is new because (H, X) determines (H, Y) and the adversary is not allowed
to decipher values that it trivially knows the decipherment of. But if (H, X) is new then IV ′ is adversarially
unpredictable and so its chance of being equal to IV is only about 2−n.

In the following result we write TimeΠ(μ), where Π = (K, E ,D) is an IV-based encryption scheme and

μ > 0 is an integer, for the sum of the worst-case times: to select K
$←K, to compute E IV

K on inputs of total
length μ, and to compute DIV

K on inputs of total length μ. Here, by convention, “time” means actual running

7

time plus program size, all relative to some fixed RAM model of computation.

Theorem 2 Let F : K1 × {0, 1}∗∗ → {0, 1}n be a PRF and let Π = (K2, E ,D) be a conventional IV-based
encryption scheme with message space X and IV-length n. Let Π̃ = SIV[F, Π]. Let A be an adversary (for
attacking Π̃) that runs in time t and asks q queries, these of total length μ. Then there exists adversaries B
and D such that

Advpriv$
Π (B) + Advprf

F (D) ≥ Advdae
Π̃

(A)− q/2n .

What is more, B and D run in time at most t′ = t + TimeΠ(μ) + cμ for some absolute constant c and ask at
most q queries, these of total length μ.

Proof: The proof proceeds in two stages. First we consider the DAE scheme G = SIV[Func({0, 1}∗∗, n), Π]
(replacing the function FK1 with a random function ρ ∈ Func({0, 1}∗∗, n)). Then we extend this to account
for the insecurity of the PRF F .

Denote the forward and reverse algorithms associated to G as Gρ,K2 and G−1
ρ,K2, with (ρ, K2) being the key.

Let δ = Advdae
G (A) and q = qL + qR and μ = μL + μR where qL and qR are the number of left and right oracle

queries, these totaling μL and μR bits, respectively. With the obvious simplifications in notation we have

δ = Pr
[
AGρ,K2(·,·), G−1

ρ,K2(·,·) ⇒ 1
]
− Pr

[
A$(·,·), ⊥(·,·) ⇒ 1

]

=
(
Pr

[
AGρ,K2(·,·), G−1

ρ,K2(·,·) ⇒ 1
]
− Pr

[
AGρ,K2(·,·), ⊥(·,·) ⇒ 1

])

+
(
Pr

[
AGρ,K2(·,·), ⊥(·,·) ⇒ 1

]
− Pr

[
A$(·,·), ⊥(·,·) ⇒ 1

])
= p1 + p2

where p1 and p2 represent the corresponding parenthesized expressions; it remains to bound these quantities.
For p2 we construct from A an adversary Bg for attacking the priv$-security of Π. Let B run A. When A
asks its left-oracle a query (H, X), let B ask g(M) and return the result to A. When A asks a right-oracle
query have B return ⊥. When A halts with output bit b, let B output b. Notice that if g = E$

K then B
properly simulates Gρ,K2(·, ·),⊥(·, ·) oracles for A (here we need the assumption that A never repeats a query).

Similarly, if g = $ then B simulates $(·, ·),⊥(·, ·) oracles for A. Hence p2 ≤ Advpriv$
Π (B).

To bound p1 consider giving the key K2 to the adversary and then asking it to carry out its distinguishing task.
As this can only make the task easier we may assume

p1 = Pr
[
AGρ,K2(·,·), G−1

ρ,K2(·,·) ⇒ 1
]
− Pr

[
AGρ,K2(·,·), ⊥(·,·) ⇒ 1

]

≤ Pr
[
A(K2)Gρ,K2(·,·), G−1

ρ,K2(·,·) ⇒ 1
]
− Pr

[
A(K2)Gρ,K2(·,·), ⊥(·,·) ⇒ 1

]
.

We can assume without loss of generality that A halts and outputs 1 as soon as a right-oracle query returns
something other than ⊥. Under this assumption, encryption queries are useless for distinguishing between
these two oracle pairs, as prior to the right oracle returning M �= ⊥ both pairs behave as Gρ,K2(·, ·),⊥(·, ·).
Hence p1 is bounded by the probability that A asks a right-oracle query (H, Y) such that G−1

ρ,K2(H, Y) �= ⊥.

Examining the algorithm for G−1
ρ,K2 we see that this occurs only when ρ(H, X) = IV , where X = DIV

K2(C)
(with Y having been parsed into IV and C). Since the adversary is given the key K2, it can compute DIV

K2(C)
for any strings IV, C of its choosing. In particular, when it asks a right-oracle query (H, Y) it knows what is
the input to the random function ρ and what is the target output IV . But under our assumption that A never
queries its right oracle (H, Y) when some left-oracle query (H, X) returned Y , either the input (H, X) is new,
or the target IV is new. Thus, the probability that ρ(H, X) = IV is at most 1/2n for each right-oracle query,
and we conclude that p1 ≤ qR/2n. Since qR ≤ q we have δ ≤ Advpriv$

Π (B) + q/2n.

8

For the second part of the proof note that

Advdae
Π̃

(A) = δ + Pr
[
AẼK1,K2(·,·),D̃K1,K2(·,·) ⇒ 1

]
− Pr

[
AGρ,K2(·,·),G−1

ρ,K2 ⇒ 1
]

where Π̃ = (K1×K2, Ẽ , D̃) and we have suppressed the random selections K1 $←K1 and K2 $←K2. Let Dg

be an adversary for attacking F as a PRF, and let it operate as follows. Adversary D picks K2 $←K2 and runs A.
When A asks a left oracle query (H, X), B answers by setting IV ← g(H, X), computing C ← E IV

K2(X) and
returning to A the string IV ||C. On a right oracle query (H, Y), adversary D parses IV = Y [1..n], C =
Y [n + 1..|Y |], computes X ← DIV

K2(C) and tests if IV = g((H, X)), returning X to A if so and ⊥ otherwise.
When A halts with output bit b, let D output b. Clearly D correctly simulates ẼK1,K2(·, ·), D̃K1,K2(·, ·) when
its oracle g = FK1 for some random key K1, and GK1,K2(·, ·), G−1

K1,K2(·, ·) if instead g = ρ for a random

ρ ∈ Func(M, n). So, Advdae
Ẽ (A) ≤ δ + Advprf

F (D) and rearranging gives the result.

5 Enriching a PRF to take Vectors of Strings as Input: The S2V Construction

THE GOAL. Traditionally, a pseudorandom function (PRF) takes a single string as input: under the control of
a key K, a PRF f maps a string X ∈ {0, 1}∗ into a string fK(X). But SIV uses a non-traditional PRF—a
function F that, under the control of a key K, maps a vector of strings X = (X1, . . . , Xm) ∈ {0, 1}∗∗ into a
string FK(X). Let us call a PRF that takes a string as input an sPRF (string-input PRF) and a PRF that takes
a vector of strings as input a vPRF (vector-input PRF). This section is about efficient ways to turn an sPRF f
into a vPRF f∗.

At first glance it might seem like there’d be little to say about sPRF-to-vPRF conversion: there’s an obvious
approach for solving the problem, and it’s obviously correct. Namely, encode any vector of strings X =
(X1, . . . , Xm) into a single string 〈X〉 and apply the sPRF to that, f∗

K(X) = fK(〈X〉). By encode we mean
any reversible, easily-computed map of a vector of strings into a single one, say

〈X1, . . . , Xm〉 = X1 ‖ N1 ‖ · · · ‖ Xm ‖ Nm

where Ni = |Xi|64 is the length of Xi encoded into 64 bits (assume that |Xi| < 264 for all i). The problem
with making a vPRF in such a way is a diminution of efficiency. First, computing f∗

K(X) may take longer than
the total time to compute fK(Xi) for each component Xi since we have added 64m bits for length annotation.
(As an example, if f = CMAC-AES then we are doubling the time to MAC X = (X1) where X1 is 16-
bytes. CMAC was designed to avoid any unnecessary blockcipher calls and it seems a shame to squander
this effort with sloppy sPRF-to-vPRF conversion.) Second, even if some components of X stay fixed (say X2

is constant), we must still re-process the entire encoded string each time we compute f∗
K at a new value.

Third, the mechanism is not parallelizable; one cannot process Xi until one is done processing Xi−1. Fourth,
the assumption that |Xi| < 264, while reasonable in practice, is artificial and potentially wasteful, yet use
of a stingier encoding will lead to greater complexity. Finally, the given encoding disrupts word alignment:
if, for example, the first argument is one byte and all subsequent arguments are multiples of eight bytes, an
implementation will now be dealing with non-word-aligned data. Fixing this problem by a smarter encoding
will lead to increased complexity. We aim to do sPRF-to-vPRF conversion in a way that fixes the problems
above.

NOTATION. Fix a value n ≥ 2. Let 0 = 0n and 1 = 0n−11 and 2 = 0n−210. These are regarded as points
in finite field F2n represented using a primitive polynomial in the customary way. For S ∈ {0, 1}n let 2S
mean the n-bit string representing the product of 2 and S. This can be computed with a left shift of S followed
by a conditional xor. By 2iS we mean to do this multiplication by 2 a total of i times. By N ⊕end X (“xor-
into-the-end”) we mean to xor the n-bit string N into the end of the string X , which will have at least n bits;

9

fK

Y1

fK

Y3

X1 X4X2 X3

fK

Y2

fK

Z

T

dbl

end

fK

Y1

fK

Y3

X4

fK

Y2

fK

Z

T

10*X1 X2 X3

dbl dbl dbl

dbl

fK (0)

dbl

fK (0)

dbl

Algorithm f∗
K(X1, . . . , Xm) The S2V Construction, f∗ = S2V[f]

10 if m = 0 then return fK(1)
11 S ← fK(0)
12 for i← 1 to m− 1 do S ← 2S⊕ fK(Xi)
13 if |Xm| ≥ n then T ← S ⊕end Xm else T ← 2S⊕Xm10∗

14 return Z ← fK(T)

Figure 4: The S2V construction makes a PRF f∗: K × {0, 1}∗∗ → {0, 1}n from a PRF f : K × {0, 1}∗ → {0, 1}n.
Bottom: Definition of S2V. Strings X1, . . . , Xm ∈ {0, 1}∗ and m ≥ 0 are arbitrary. Top: Illustration of it, computing
Z = f∗

K(X1,X2,X3,X4). The left side shows the case for |X4| ≥ n, the right side for |X4| < n

N ⊕end X = (0x−nN)⊕X where x = |X|. By X10∗ we mean X10i where i ≥ 0 is the least number such
that |X|+ 1 + i is divisible by n.

THE S2V CONSTRUCTION. Let f : K × {0, 1}∗ → {0, 1}n be an sPRF. We construct from it the vPRF
f∗ = S2V[f] where f∗: K× {0, 1}∗∗ → {0, 1}n is specified and illustrated in Figure 4. The special treatment
of the last component of input, Xm, is to handle the case where |Xm| < n. The construction has the desired
efficiency characteristics. The time to compute f∗

K(X) is essentially the sum of the times to compute fK(Xi)
on each component; in particular, when f = CMAC, say, the number of blockcipher calls to compute f∗

K(X)
is the sum of the number of blockcipher calls to compute each fK(Xi). Also, one can preprocess invariant
components so that the time to compute f∗

K(X) will not significantly depend on them. The computation of f∗

is on-line (assuming that f itself is on-line); in particular, the component lengths need not be known in ad-
vance. Word alignment is not disrupted. And the scheme is parallelizable: different arguments can be acted on
simultaneously, so f∗ will be parallelizable if f is.

In a related effort we have proven the following result. The complexity-theoretic analog of Theorem 3
follows in the usual way. We only prove security when queries are restricted to vectors with n − 1 or fewer
components. In practice n ≥ 64 well exceeds the number of components in a vector of associated data, making
the restriction irrelevant. The proof appears in Appendix E.

Theorem 3 Let f = Func({0, 1}∗, n) and f∗ = S2V[f]. Let A be an adversary that asks at most q ≥ 3
vector-valued queries having p components in all, and each vector having fewer than n components. Then
Advprf

f∗ (A) ≤ pq/2n .

The complexity-theoretic statement for the security of f∗ follows from the information-theoretic statement in

10

the standard way, so we omit a proof of the following:

Corollary 4 Let f : K× {0, 1}∗ → {0, 1}n be a PRF and let f∗ = S2V[f]. Let A be an adversary that runs in
time t and asks q ≥ 3 vector-valued queries, the q queries having a total of p components and μ bits and each
vector having fewer than n components. Then there exists an adversary B where

Advprf
f (B) ≥ Advprf

f∗ (A)− pq/2n

and B asks q queries having a total of p components and μ bits and B runs in time t + c(μ + p + q) for some
absolute constant c.

PRACTICAL USES OF S2V. In the next section we will use the S2V construction for sPRF-to-vPRF conversion
to make a DAE scheme. But we point out that real-world security protocols already employ, implicitly, PRFs
that operate on vectors of strings. They usually do this in a complex and inefficient manner. A good illustration
is the TLS protocol; they define a PRF that operates on 2-vectors, the PRF defined in a complex and feedback-
dependent way from HMAC-MD5 and HMAC-SHA1. Then, wanting to apply the PRF to vectors with more
than two components, they concatenate logically-separate strings to form the second component. Similarly,
IEEE 802.11r does key derivation by applying a PRF to input that includes long constants (host and user names)
that remain fixed across many derivations. We suggest that when a security protocol wants to apply a PRF to
what is logically a vector of strings the protocol should realize this with just such an abstraction. Concatenation
should be avoided in achieving that abstraction (because it is, in general, both inefficient and wrong). The vPRF
primitive should be realized in the protocol as a higher-level abstraction made from an sPRF.

6 The SIV Mode of Operation

SIV MODE. Fix an n-bit blockcipher E and let Π = CTR be counter mode [27] over E, with an incrementing
function of S �→ 2S (that is, multiply by x in the finite field). Let F = CMAC∗ = S2V[CMAC] be the result
of applying the S2V construction to the CMAC [28], again with an underlying blockcipher of E. (Recall that
CMAC is a NIST-recommended CBC MAC variant. It has a message space {0, 1}∗.) Consider the scheme
SIV[F, Π]. By combining Theorems 2 and 3 and known results about CMAC and CTR mode [3, 18], the
suggested mechanism is a provably secure DAE assuming E is a secure PRP. The proven security falls off, as
usual, in σ2/2n where σ is the total number of blocks asked about. We overload the name SIV and call the
mode of operation just described SIV mode. See Figure 5. We emphasize that the only thing left unspecified in
the definition of SIV mode is the underlying blockcipher, which would typically be AES.

COMMENTS. Comparing SIV-AES and the X9.102 scheme AESKW, say, we note that, with SIV-AES, (1) the
message space and header space are now {0, 1}∗ instead of unusual sets; (2) message expansion is now inde-
pendent of header length and message length; (3) the number of blockcipher calls is reduced by a factor of at
least six; (4) vector-valued headers can now be handled, and the contribution of any component can be pre-
processed if it is to be held fixed; (5) one now has a provable-security guarantee, falling off in σ2/2n, where σ
is the total number of message blocks acted on. On the other hand, there is an effective attack on SIV if one can
ask this many message blocks, while we do not know if this is true for AESKW.

In the instantiation of SIV we could have used, in place of CMAC, the composition of a universal hash
function that gives n-bit outputs with an n-bit blockcipher. This demonstrates that the DAE goal can be achieved
by a single “cryptographic” pass over the plaintext, plus a universal-hash-function computation over the header
and plaintext. Similarly, a parallelizable MAC like PMAC [10] could have been used in place of CMAC,
illustrating that DAE can be achieved by a parallelizable scheme.

We realize CTR mode with the S �→ 2S instead of adding one for reasons of economy of techniques: the
primitive is already used within S2V construction (as well as in CMAC), but modulo-2n incrementing is not.
The latter is likely to be more expensive in hardware, too.

11

Algorithm EH1,...,Ht

K1 K2 (X)
IV ← CMAC∗

K1(H1, . . . , Ht,X)
C ← CTRK2(IV , X)
return Y ← IV ‖ C

Algorithm DH1,...,Ht

K1 K2 (Y)
if |Y | < n then return ⊥
IV ← Y [1 .. n], C ← [n + 1 .. |Y |]
X ← CTRK2(IV , C)
IV ′ ← CMAC∗

K1(H1, . . . , Ht,X)
if IV = IV ′ then return X else return ⊥

Algorithm CMAC∗
K(X1, . . . , Xm)

S ← CMACK(0) // precompute
for i←1 to m−1 do S←2S⊕CMACK(Xi)
if |Xm| ≥ n

then return CMACK(S ⊕end Xm)
else return CMACK(2S⊕Xm10∗)

Algorithm CTRK(IV ,X)
m← � |X|/n�
Pad ← EK(21 IV) ‖ · · · ‖ EK(2m IV)
return C ← X ⊕ Pad [1..|X|]

Figure 5: The SIV mode of operation. The mechanism is the generic SIV scheme instantiated using CMAC∗ and CTR
modes, each of these based on a blockcipher E: K × {0, 1}n → {0, 1}n.

The raw CBC MAC could have been used in lieu of CMAC only if all messages to be encrypted were of
one length, that length being a positive multiple of the blocksize.

7 Misuse-Resistant AE

This section gives an application of DAEs motivated not by the key-wrap problem but by the goal of construct-
ing symmetric encryption schemes that are resistant to misuse. We are specifically concerned with IV-misuse,
meaning that the IV is used in a way other than the way mandated by the scheme; for example, using a counter
when the scheme requires a random value, or repeating an IV when the scheme requires it to be a nonce. Ex-
perience has shown that IVs are frequently mishandled. An encryption scheme robust against misuse should
at least be an AE scheme (as programmers, protocol designers, and even books often assume that encryption
provides for authenticity) and so we will treat IV-misuse within the context of authenticated encryption and not
privacy-only encryption. The notion is applicable to the latter context, too.

Designing an IV-based AE scheme that is secure when its IV is an arbitrary nonce—not just when it is
a random value—is a first move in the direction of making schemes robust against IV-misuse. The current
section takes this a step further; we aim for an AE scheme in which if the IV is a nonce then one achieves
the usual notion for nonce-based AE; and if the IV does get repeated then authenticity remains and privacy is
compromised only to the extent that some minimal amount of information may be revealed, the information
being if this plaintext is equal to a prior one, and even that is revealed only if both the message and its header
have been used with this particular IV. Our formalization will capture this intent.

REVISED SYNTAX FOR AN IV-BASED ENCRYPTION SCHEME. Let us update the syntax of a conventional
IV-based encryption scheme to accommodate an associated header. In this case an IV-based encryption scheme
is a tuple Π = (K, E ,D) where everything is as before except that the encryption algorithm and decryption
algorithm take an extra argument: now they are deterministic algorithms that map K × {0, 1}∗∗ × {0, 1}∗ ×
{0, 1}∗ to {0, 1}∗∪{⊥}. We write EK(H, IV, X) or EH,IV

K (X) in place of E(K, H, IV, X) andDK(H, IV, C)
or DH,IV

K (Y) in place of D(K, H, IV, Y). There must be sets H, IV , and X such that EH,IV
K (X) ∈ {0, 1}∗

iff H ∈ H and IV ∈ IV and X ∈ X . We call IV the IV space of Π. We require that DH,IV
K (Y) = X if

EH,IV
K (X) = Y and DH,IV

K (Y) = ⊥ if there is no such X .

MISUSE-RESISTANT AE SECURITY. To measure the AE-security of an encryption scheme Π = (K, E ,D)
in the face of possible IV-reuse, imagine an adversary that may ask any sequence of encryption queries, even
those that repeat IVs, and any sequence of decryption queries, which may likewise repeat IVs. We want the
encryption oracle to return bits that look random except when this is impossible—on a repeated triple of (header,

12

IV, message)—and the decryption oracle should return⊥ except when the triple is already known to have a valid
decryption. For simplicity, assume as before that our IV-based encryption scheme is length-preserving.

Definition 5 Let Π = (K, E ,D) be an IV-based encryption scheme that can handle an associated header and
let A be an adversary. Then the MRAE-advantage of A in attacking Π is

Advmrae
Π (A) = Pr

[
K

$←K : AEK(·,·,·), DK(·,·,·) ⇒ 1
]
− Pr

[
A$(·,·,·), ⊥(·,·,·) ⇒ 1

]
.

The adversary may not repeat a left-query and may not ask a right-query (H, IV, Y) if some previous left-query
(H, IV, X) returned Y .

Of course the EK oracle returns EK(H, IV, X) on input (H, IV, X) and DK returns DK(H, IV, Y) on input
(H, IV, Y). As before $(H, IV, X) returns a random string of length n + |X| and ⊥(·, ·, ·) always returns ⊥.

The MRAE-notion of security trivially implies nonce-based AE-scheme security: the latter is the special
case where the adversary is not allowed to repeat an IV to any left query. Note that all proposed AE schemes
to date [19, 21, 26, 29, 33] do fail should an IV get repeated: existing AE schemes are not MRAE-secure.

BUILDING A MISUSE-RESISTANT AE SCHEME. We can turn a DAE scheme Π = (K, E ,D) with header space
{0, 1}∗∗ and message space X into a misuse-resistant AE scheme Π̃ = (K, Ẽ , D̃) by regarding the IV as one of
the components, say the last component, of the header. In particular, SIV mode can be regarded as an MRAE
scheme by asserting that one of the header components, say the last one specified, is an IV.

CORRECTNESS. Correctness of the MRAE scheme described above is nearly immediate. Given an adversary A
for breaking the misuse-resistant AE scheme (it distinguishes EK(·, ·, ·), DK(·, ·, ·) from $(·, ·, ·), ⊥(·, ·, ·)) we
get a comparably good adversary B for breaking the DAE, distinguishing EK(·, ·), DK(·, ·) from $(·, ·), ⊥(·, ·):
adversary B runs A and maps left queries (H, IV, X) to queries (〈H, IV 〉, X), and maps right queries (H, IV, Y)
to queries (〈H, IV 〉, Y). The syntax and DAE-security notion for a PRI have been designed to “match up” so
that there is nothing to do.

COMMENTS. Since all we have done in the construction is to hijack a component of the header as an IV, it
seems as though nothing has actually been done. Yet the MRAE goal is conceptually different from the DAE
goal, the former employing an IV and gaining for this a stronger notion of security. The header and the IV
are conceptually different, the one being user-supplied data that the user wants authenticated, the other being a
mechanism-supplied value needed to obtain a strong notion of security.

In retrospect, it is easy to construct an MRAE scheme by a sequence of simple steps. One can achieve this
goal in a trivial way from a DAE scheme that takes a vector-valued header. Such a DAE scheme is easily built
from a vector-input PRF and an IND$-secure conventional encryption scheme. At least if one is unconcerned
with optimizing efficiency, a vector-input PRF is easily made from a string-input PRF. String-input PRFs and
IND$-secure conventional encryption schemes can be built from blockciphers by well-known means. So each
step along our path is easy or well-known. Still, the direct construction of an MRAE or DAE scheme from a
blockcipher is not a simple matter, as evidenced by the long history of buggy or baroque AE schemes Perhaps
simple is how things seem after finding the right abstraction boundaries.

8 The PRI Characterization of DAE Security

A secure pseudorandom injection (PRI) resembles a random injective function with the desired amount of
length-expansion. We allow a chosen-ciphertext attack in our definition (that is, we focus on a “strong” PRI,
analogous to a strong PRP [24]), giving the adversary both the forward and backward direction of the function.
We allow the PRI to be tweakable [23], so that the scheme can be used to authenticate an associated header.

13

We allow the domain to be fairly arbitrary—in particular, we consider message spaces that contain strings of
various lengths.

Formally, let Π = (K, E ,D) be a DAE with header spaceH and message space X . Imagine an adversary A
given access to two oracles—one for E and one for D. We want to say that this pair looks just like a random
injection f and its inverse f−1, the random injection f having the same signature as E . For e: H×X → N let
InjHe (X ,Y) be the set of all injective functions f fromH×X to Y such that |f(H, X)| = |X|+ e(H, X).

Definition 6 Let Π = (K, E ,D) be a DAE with header space H, message space X , and expansion e. The
PRI-advantage of adversary A in breaking Π is

Advpri
Π (A) = Pr

[
K

$←K : AEK(·,·), DK(·,·) ⇒ 1
]
− Pr

[
f

$← InjHe (X ,Y) : Af(·,·), f−1(·,·) ⇒ 1
]

.

The f−1 oracle above, on input (H, Y) returns the point X such that f(H, X) = Y ; if there is no such point
then it returns the distinguished value ⊥. Recall that oracle queries outside the domain of the oracle return ⊥.
As before, we may assume without loss of generality that the adversary does not repeat a query, that it does not
ask (H, Y) of its right oracle if some previous left oracle query (H, X) returned Y , that it does not ask (H, X)
of its left oracle if some previous right-oracle query (H, Y) returned X , and that it does not ask any query
(H, X) outside of H × X . When a PRI is length-preserving we call it an enciphering scheme and use the
notation Adv±prp

Π (A) or Adv±p̃rp
Π (A) according to whether or not it accommodates a nontrivial tweak space.

Assuming a reasonable amount of stretch, the PRI and DAE notions of security are very close, as the
following theorem shows.

Theorem 7 Let Π = (K, E ,D) be a DAE with header space H, message space X , and stretch s, and let
τ = minX∈X {|X|} be the length of a shortest plaintext. Let A be an adversary that asks at most qL left-oracle
queries, qR right-oracle queries, for a total of q = qL + qR queries. Then

∣∣∣Advpri
Π (A)−Advdae

Π (A)
∣∣∣ ≤ q2/2s+τ+1 + 4qR/2s.

In other words, as the stretch s grows, the DAE and PRI notions converge. The quantitative difference be-
tween the measures is small if the stretch is, say, s = 128 bits. Among other reasons, it is to achieve this
equivalence with PRIs that our definition for them used indistinguishability from random bits rather than, say,
indistinguishability from the encryption of random bits.

Proof: Let A be an adversary that has access to two oracles. Let it ask qL queries of its left oracle and qR queries
of its right oracle, and let q = qL + qR. With the obvious notational simplifications we have

∣∣∣Advpri
Π (A)−Advdae

Π (A)
∣∣∣ =

∣∣∣Pr
[
Af(·,·), f−1(·,·) ⇒ 1

]
− Pr

[
A$(·,·), ⊥(·,·) ⇒ 1

]∣∣∣
=

∣∣Pr
[
AG1 ⇒ 1]− Pr[AG0 ⇒ 1

]∣∣
for the games G0 and G1 defined in Figure 6. Recall that booleans are initialized to false, sets are initial-
ized to empty, and partial functions are initialized to everywhere undefined with the symbol undef. The set
Image(f(H, ·)) contains all points Y �= undef such that f(H, X) = Y for some X ∈ X . Set difference is
indicated with a minus sign. Look first at game G0. Much of the code (lines 12–13 and 20–26) is irrelevant to
what the adversary sees. Each query left(H, X) returns a random string of |X|+ e(H, X) bits and each query
right(H, Y) returns ⊥. Thus game G0’s (left, right) oracles faithfully simulate a pair of oracles ($,⊥) and we
have that Pr[AG0 ⇒ 1] = Pr[A$,⊥ ⇒ 1].

Game G1 is more subtle. We claim that its (left, right) oracles are simply a lazy evaluation of a pair of oracles
(f, f−1) with the desired domain and range. To see this, understand first that the partial function f(H, ·) main-
tains the correspondence X �→ f(H, X) for those domain points that we have already assigned values to, while

14

On query left(H,X):
10 c← |X|+ e(H,X)
11 Y

$←{0, 1}c
12 if Y ∈ Image(f(H, ·)) ∪ InvalidH then

13 bad← true , Y
$←{0, 1}c − Image(f(H, ·))− InvalidH

14 return f(H,X)← Y

On query right(H,Y):

20 c← |Y |
21 EligibleX ← {X ∈ {0, 1}≤c: |X|+ e(H,X) = |Y | and f(H,X) = undef}
22 EligibleY ← {0, 1}c − Image(f(H, ·))− InvalidH

23 x
$← [1 .. |EligibleY |]

24 if x ∈ [1..|EligibleX |] then

25 bad← true , X ← the xth string of EligibleX , f(H,X)← Y , return X

26 InvalidH ← InvalidH ∪ {Y }
27 return ⊥

Figure 6: Games used in the proof of Theorem 7. Game G1 is the complete code; game G0 omits the shaded statements.

the set InvalidH maintains the set of points Y that have become ineligible to be f(H, X) values, for any X , by
virtue of having been asked right(H, Y) and having returned ⊥, effectively asserting that f−1(H, Y) = ⊥ and
so Y is outside the image of f(H, ·). Now, starting at left(H, X) queries, we begin at line 10 by calculating the
length c of the ciphertext that we must return. The code at lines 11–14 returns a random string Y of length c
subject to the constraint that Y is outside of the image of f(H, ·) and not ineligible to be an f(H, X) value by
virtue of having asserted that there is no preimage for Y with tweak H . Looking next at right(H, Y) queries,
we calculate at line 21 the set EligibleX of values X that could possibly map to Y using tweak H , and we
calculate at line 22 the set of strings Y that could, at this moment be paired with strings in EligibleX . By our
conventions on the adversary making no “pointless” queries, the string Y will necessarily be among the strings
in EligibleY . Since we aim to randomly and injectively pair points in EligibleX with points in EligibleY ,
the chance that a given point Y in EligibleY has a preimage in EligibleX is just |EligibleX |/|EligibleY |.
Lines 23 and 24 effectively flip a coin with this bias, deciding if the string Y ∈ EligibleY should or should not
be given a (random) preimage in EligibleX . If it is not given a preimage, we record this decision by augmenting
InvalidH at line 26. If it is given a preimage, it is given a random one by lines 23–25, the choice is recorded,
and the random preimage is returned. We have thus provided a perfect simulation of an (f, f−1) oracle, and so
Pr[AG1 ⇒ 1] = Pr[Af,f−1 ⇒ 1].

To bound |Pr[AG1 ⇒ 1] − Pr[AG0 ⇒ 1]| we can now invoke the fundamental lemma of game-playing [7],
since games G1 and G0 have been defined to be identical apart from the sequel of statements bad ← true.
The lemma assures us that |Pr[AG1 ⇒ 1]− Pr[AG0 ⇒ 1]| ≤ Pr[AG0 sets bad].

Let BAD be the event that AG0 causes bad to get set to true. We must bound the probability of BAD. Remem-
ber that the shaded statements have been expunged from the game. Prior to BAD occurring, each left-query
adds a single point to a set Image(f(H, ·)) but has no impact on any set InvalidH , while each right-query
adds a single point to a set InvalidH but has no impact on any set Image(f(H, ·)). If the ith query is left-
query then the set Image(f(H, ·)) ∪ InvalidH will have at most i − 1 points and the chance that bad will get
set at line 13 will be at most (i − 1)/2s+τ and so, overall, the probability that bad gets set at line 13 is at
most

∑q
i=1(i − 1)/2s+τ ≤ q2/2s+τ+1. If the ith query is a right-query then bad will be set with probability

|EligibleX |/|EligibleY | for the current sets EligibleX and EligibleY . How big can |EligibleX | be? Asked a
query Y of length c, even if every string of length at most c−s (the maximal possible length) is in EligibleX , still
we will have that |EligibleX | < 2c+1−s. Conversely, how small can |EligibleY | be? On the ith query we know

15

that |EligibleY | > 2c−i. So on the ith query we have that |EligibleX |/|EligibleY | < 2c+1−s/(2c−i) ≤ 22−s

assuming i ≤ 2c−1 or, more strongly, assuming q ≤ 2s+τ−1. Summing over all qR right-queries we have that the
probability that bad gets set at line 25 is at most 4qR/2s. Since the result becomes vacuous when q > 2s+τ−1,
we may now drop that technical condition and conclude the theorem.

Acknowledgments

Many thanks to the X9F1 working group, whose draft standard motivated this paper, and Morris Dworkin, who
made this work known to us [13]. Thanks to Jesse Walker for an enormous number of valuable comments; to
Susan Langford for noticing a significant error in an earlier draft; to Steve Bellovin for voicing his concerns
about IV-misuse at a meeting back in 2000 (his comments ultimately motivated Section 7); to Mihir Bellare
for his typically perceptive reading; to the Eurocrypt 2006 PC for their comments, and to Dan Harkins for his.
Phil Rogaway was supported by NSF 0208842 and a gift from Intel Corp. Much of this paper was written
while Rogaway was a visitor to the School of Information Technology at Mae Fah Luang University, Thailand.
Many thanks to MFLU and, in particular, to Dr. Thongchai Yooyativong and Dr. Tatsanee Mallanoo, for their
generous hospitality.

References

[1] J. An and M. Bellare. Does encryption with redundancy provide authenticity? Advances in Cryptology – Euro-
crypt ’01, LNCS vol. 2045, Springer, pp. 512–528, 2001.

[2] M. Bellare, A. Boldyreva, L. Knudsen, and C. Namprempre. On-Line ciphers and the Hash-CBC constructions.
Advances in Cryptology – Crypto ’01, LNCS vol. 2139, Springer, pp. 292–309, 2001.

[3] M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A concrete security treatment of symmetric encryption: analysis
of the DES modes of operation. Proc. of the 38th Symposium on Foundations of Computer Science, IEEE Press,
pp. 394–403, 1997.

[4] M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations among notions of security for public-key en-
cryption schemes. Advances in Cryptology – Crypto’98, LNCS vol.1462, Springer, pp. 26–45, 1998.

[5] M. Bellare, J. Kilian, and P. Rogaway. The security of the cipher block chaining message authentication code.
J. of Computer and System Science (JCSS), vol. 61, no. 3, pp. 362–399, Dec 2000.

[6] M. Bellare and C. Namprempre. Authenticated encryption: relations among notions and analysis of the generic
composition paradigm. Advances in Cryptology – Asiacrypt ’00, LNCS vol. 1976, Springer, pp. 531–545, 2000.

[7] M. Bellare and P. Rogaway. Code-based game-playing proofs and the security of triple encryption. Cryptology
ePrint report 2004/331, 2004.

[8] M. Bellare and P. Rogaway. Encode-then-encipher encryption: how to exploit nonces or redundancy in plaintexts
for efficient encryption. Advances in Cryptology – Asiacrypt ’00, LNCS vol. 1976, Springer, pp. 317–330, 2000.

[9] M. Bellare, P. Rogaway, and D. Wagner. The EAX mode of operation. Fast Software Encryption (FSE 2004),
LNCS vol. 3017, Springer, pp. 389–407, 2004.

[10] J. Black and P. Rogaway. A block-cipher mode of operation for parallelizable message authentication. Advances
in Cryptology – Eurocrypt ’02, LNCS vol. 2332, Springer, pp. 384-397, 2001.

[11] J. Black and P. Rogaway. CBC MACs for arbitrary-length messages: the three-key constructions. Advances in
Cryptology – Crypto ’00, LNCS vol. 1880, Springer, pp. 197–215, 2000.

16

[12] Y. Dodis and A. Smith. Entropic security and the encryption of high entropy messages. Theory of Cryptography
(TCC 2005), LNCS vol. 3378, Springer, pp. 556-577, 2005.

[13] M. Dworkin. Request for review of key wrap algorithms. Cryptology ePrint report 2004/340, 2004. Contents are
excerpts from a draft standard of the Accredited Standards Committee, X9, entitled ANS X9.102 — Wrapping of
Keys and Associated Data.

[14] O. Goldreich, S. Goldwasser, and S. Micali, How to construct random functions. Journal of the ACM, vol. 33,
no. 4, pp. 210–217, 1986.

[15] S. Goldwasser and S. Micali. Probabilistic encryption. J. Comput. Syst. Sci., vol. 28, no. 2, pp. 270–299, 1984.

[16] S. Halevi and P. Rogaway. A tweakable enciphering mode. Advances in Cryptology – Crypto ’03, LNCS
vol. 2727, Springer, pp. 482–499, 2003.

[17] R. Housley. Triple-DES and RC2 key wrapping. IETF RFC 3217, Dec. 2001. Earlier version in RFC 2630,
June 1999.

[18] T. Iwata and K. Kurosawa. OMAC: One-key CBC MAC. Fast Software Encryption (FSE 2003), LNCS vol. 2887,
Springer, pp. 129–153, 2003.

[19] C. Jutla. Encryption modes with almost free message integrity. Advances in Cryptology – Eurocrypt ’01, LNCS
vol. 2045, Springer, pp. 529–544, 2001.

[20] J. Katz and M. Yung. Unforgeable encryption and adaptively secure modes of operation. Fast Software Encryption
(FSE 2000), LNCS vol. 1978, Springer, pp. 284–299, 2000.

[21] T. Kohno, J. Viega, and D. Whiting. CWC: A high-performance conventional authenticated encryption mode. Fast
Software Encryption (FSE 2004), LNCS vol. 3017, Springer, pp. 427–445, 2004.

[22] H. Krawczyk. The order of encryption and authentication for protecting communications (or: how secure is SSL?)
Advances in Cryptology – Crypto ’01, LNCS vol. 2139, Springer, pp. 310–331, 2001.

[23] M. Liskov, R. Rivest, and D. Wagner. Tweakable block ciphers. Advances in Cryptology – Crypto ’02, LNCS
vol. 2442, Springer, pp. 31–46, 2002.

[24] M. Luby and C. Rackoff. How to construct pseudorandom permutations from pseudorandom functions. SIAM
J. Comput., vol. 17, no. 2, pp. 373–386, 1988.

[25] S. Matyas. Key handling with control vectors. IBM Systems Journal, vol. 30, no. 2, pp. 151–174, 1991.

[26] D. McGrew and J. Viega. The Galois/Counter mode of operation (GCM). Manuscript, May 2005. Available from
the NIST website.

[27] National Institute of Standards and Technology, M. Dworkin, author. Recommendation for block cipher modes of
operation, methods and techniques. NIST Special Publication 800-38A, 2001.

[28] National Institute of Standards and Technology, M. Dworkin, author. Recommendation for block cipher modes of
operation: the CMAC mode for authentication. NIST Special Publication 800-38B, May 2005.

[29] National Institute of Standards and Technology, M. Dworkin, author. Recommendation for block cipher modes of
operation: the CCM mode for authentication and confidentiality. NIST Special Publication 800-38C, May 2004.

[30] D. Phan and D. Pointcheval. About the security of ciphers (semantic security and pseudo-random permutations).
Selected Areas in Cryptography (SAC 2004), LNCS vol 3357, Springer, pp. 182-197, 2004.

[31] P. Rogaway. Authenticated-encryption with associated-data. Proceedings of the 9th Annual Conference on Com-
puter and Communications Security (CCS-9), ACM, pp. 98–107, 2002.

17

[32] P. Rogaway. Nonce-based symmetric encryption. Fast Software Encryption (FSE 2004), LNCS vol. 3017,
Springer, pp. 348–359, 2004.

[33] P. Rogaway, M. Bellare, and J. Black. OCB: A block-cipher mode of operation for efficient authenticated encryp-
tion. ACM Transactions on Information and System Security (TISSEC), vol. 6, no. 3, pp. 365–403, Aug. 2003.

[34] P. Rogaway and T. Shrimpton. A provable-security treatment of the key-wrap problem. Advances in Cryptology –
Eurocrypt ’06, LNCS vol. 4004, Springer, pp. 373–390, 2006. Proceedings version of this paper.

[35] A. Russell and H. Wong. How to fool an unbounded adversary with a short key. Advances in Cryptology –
Eurocrypt ’02, LNCS vol. 2332, Springer, pp. 133–148, 2002.

[36] R. Schroeppel. The hasty pudding cipher. AES candidate submitted to NIST, 1998.

[37] S/MIME Working Group, IETF. Mailing list archives, 1997. http://www.imc.org/ietf-smime/index.html

A Critique of the Draft X9.102 Standard

Review of the X9.102 proposal [13] motivated the current paper. The following summary comments on that
proposal address the models/definitions it describes, and then each of its schemes.

MODELS AND DEFINITIONS. The specification document outlines an attack model and goal [13, Section 2] for
the four key-wrap schemes. This is more then specs usually do, but the description is not very precise.

� The stated security goals for AESKW, TDKW, and AKW1 are indistinguishability of ciphertexts [3, 15] under
an adaptive chosen-ciphertext attack (IND-CCA2), and unforgeability of ciphertexts [8, 20] under an adaptive
chosen-ciphertext attack. In effect, the goal would then be to provide authenticated-encryption [6, 8, 20]. But
indistinguishability—at least as it is traditionally defined and understood—cannot be achieved by schemes
AESKW and TDKW because they are deterministic and stateless; the usual formulation of indistinguishability
demands that one conceal in a sequence of ciphertexts whether or not a given plaintext was encrypted twice.
While deterministic encryption schemes have been considered in the literature, usually going under the name of
a blockcipher or an enciphering scheme, security is typically understood to be in the sense of a pseudorandom
permutation (PRP) [5, 24] and the scheme must therefore be length-preserving.

� It is unnecessary to ask for indistinguishability and unforgeability under a chosen-ciphertext attack. Un-
forgeability under a chosen-plaintext attack implies unforgeability under a chosen-ciphertext attack, since the
decryption oracle will only return a valid plaintext if it is asked a valid ciphertext, which is then a forgery. More-
over, a scheme that provides indistinguishability and unforgeability under a chosen-plaintext will automatically
provide indistinguishability under a chosen-ciphertext attack [6, 20].

� The model section limits the number of key-wrapping oracle queries to 248 for AESKW and 232 for the other
schemes. Where do these numbers come from? No limit is placed on the total lengths of all queries (beyond that
which can be inferred by using maximal-length messages), but one expects that a security proof, if it existed,
would show a dependency on that.

� The definitional suggestions for AKW2 in [13, Section 2.4] are weak in focusing on random plaintexts. It
would seem that a definition only needs to make the first block of the message be random, and even this block
does not need to be hidden from the adversary. to this scheme.

In summary, a more precise definition would be desirable. For AESKW, TDKW, and a deterministic version
of AKW1, we advocate a PRI as the desired notion. For AKW2, a specialized notion of security is required.
We sketch one following our subsequent comments on AKW2.

THE AESKW AND TDKW SCHEMES. Encryption under AESKW is a deterministic function that maps a
key K, a bit string X , an octet string H , and a six-byte integrity check vector ICV into a ciphertext a little

18

P1

P2

P3

P4

1 Y2

Y4

Y3

Y1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Algorithm AESKW.EncryptICV, H
K (X)

10 if X �∈ {0, 1}≤238−64 or H �∈ BYTE≤255 or H = X = ε or |ICV | �= 48 then return ⊥
11 s← 64− (|H|+ |X|) mod 64
12 P1 · · ·Pn ← ICV ‖ [s]8 ‖ [|H|/8]8 ‖ H ‖ X // each Pj of length 64. Necessarily n ≥ 2
13 for t← 0 to 5 do
14 for i← 1 to n− 1 do
15 Pi ‖ Pi+1 ← AES(Pi+1 ‖ Pi)⊕ [6t + i]128 // each Pj of length 64
16 (P1, P2, P3, · · · , Pn)← (Pn, P1, P2, · · · , Pn−1)
17 return P1 · · ·Pn

Figure 7: Top: Illustration of AESKW encryption, one of the four key-wrap algorithms in the X9.102 draft standard.
Wires carry 64 bits and each block represents an AES call keyed with the underlying encryption key. On the left side of
each block the input block’s most significant 64 bits are on top, while on the right side of each block, the output block’s
most significant 64 bits are on bottom. The odd convention makes for fewer wire crossings. Bottom: Definition of the
AESKW encryption algorithm. Decryption works in the natural way, verifying ICV , H , and the validity of the encoding.

longer than the sum of the lengths of |X| and |H|. The mechanism uses an apparently new six-round Feistel-
network variant; see Figure 7. We comment:

� The description of AESKW/TDKW in [13] is very awkward. The specification does not indicate the en-
cryption and decryption signature; the length restriction on input X is not clearly stated (restrictions are stated
on derived strings); plaintext formatting is viewed as a separate mechanism from encryption rather than a part
of it; integrity-checking is viewed as a separate mechanism from decryption rather than a part of it; integrity
checking is described before the encryption method is described; the algorithm specification repeatedly re-
names variables; and the provided picture does little to illustrate the algorithm’s actual structure. Extracting the
definition and drawing of Figure 7 took much work.

� The message space is unnatural; one can encrypt bit strings up to 238 − 64 bits? Algorithms should be
designed to work on “natural” message spaces. Similarly, the restriction that either X is nonempty or H is
nonempty is unnatural; what’s allowed for header should be independent of what’s allowed for a message.

� The length of the ciphertext increases with the length of the header. This goes against the notion of a
header, which should be authenticated but not encrypted. It would be preferable if the ciphertext length were
independent of the header length. In addition, the length of the ciphertext increases by at least eight bytes and
at most 16 bytes minus one bit. It would be preferable if the length increased by exactly eight bytes regardless
of the length of the message.

� It is not clear what is the intended semantics of “prerequisites”—is the ICV under the adversary’s control or
not? We interpret that the ICV should be treated definitionally just like the header.

19

� There is a mixture of bit-orientation and byte-orientation in the spec. It seems preferable to make everything
bit strings or make everything byte strings.

� The xoring of the counter 6t + i into the blockcipher output is not explained; why is this done?

� The mechanism would be more natural if it reversed the most-significant 64-bits and the least-significant
64-bits in each AES call; that is, replace AES(Pi+1 ‖ Pi) at line 15 of Figure 7 by AES(Pi ‖ Pi+1) or,
alternatively, replace Pi ‖ Pi+1 by Pi+1 ‖ Pi. The current convention looks odd in the pseudocode and
seems to make it impossible to draw a picture of the mechanism with a small number of wire crossings without
establishing peculiar conventions.

� The string X will be “misaligned” (not fall on a word boundary) if H is of non-word length. This would
cause unnecessary inefficiency in typical implementations. It seems preferable if mechanisms don’t disrupt the
alignment of H and X in doing internal work.

� The number of blockcipher calls seems large: roughly 12 per block of data (the same price paid for X or H).
This is six times more than that used for AKW1.

� Even if the header H is held fixed, one must spend time (as well as bits) to re-authenticate it with each
message that is encrypted or decrypted.

� There is no proof of security, and the mechanism is so complex that providing one would be difficult.

The above criticism notwithstanding, we find it likely that the mechanism is correct. Namely, the modified
Feistel network illustrated in Figure 7 is, we conjecture, a secure enciphering scheme (in the sense of a strong,
variable-input-length PRP). Scheme AESKW is then seen as an instance of the PTE paradigm, except that the
header is folded into the plaintext instead of used to tweak the enciphering scheme.

Our comments on AESKW apply equally to TDKW. But for TDKW we appreciate the use of a multiround
Feistel network more, for it is more important to go beyond mechanisms that have security degrading in σ2/2η,
where η is the blockcipher block size and σ is the total number of blocks acted on. The modified Feistel network
used here probably does have security (as a strong PRP) better than σ2/2η, but it would be hard to prove.

THE AKW1 SCHEME. We recreate an illustration of the AKW1 scheme in Figure 8. High-level comments
about the mechanism are as follows.

� Whereas AESKW and TDKW are deterministic and stateless, and therefore have no chance to achieve
semantic security [3, 15], algorithm AKW1 is probabilistic and can achieve that goal; it would seem to be a
probabilistic AE scheme [6, 8, 20].

� But as a probabilistic AE scheme, AKW1 is highly atypical. It does not employ generic composition, nor is
it obtained by optimizing a generic-composition scheme, nor does it employ techniques associated to one-pass
AE. Furthermore, it is straightforward to achieve AE using two blockcipher calls per block, but AKW1 uses,
beyond that, an application of SHA1. Why did the designers choose such an odd and comparatively expensive
design? Perhaps the scheme wasn’t actually meant to be “just” an AE scheme; maybe it should work even if the
random-number generator used to make the IV fails (cf. [13, page 3, item 2]). But if one regards the IV as part
of the header and looks to see if the resulting algorithm is a secure DAE scheme, the answer is no; for an attack,
find 64-bit strings A and B such that Hash(A) = Hash(B) (this takes about 232 time) and then notice that the
encryption of (A, A) and (B, B) will have the same first block Y1, which violates the goal of a DAE scheme.
Perhaps the scheme is intended to function as a deterministic AE scheme when IV = 0n, say. Probably the best
explanation for the odd structure of AKW1 is that there is no explanation, according to a participant, and as
revealed by the S/MIME working group’s mail log, the scheme grew by accretion, with different people having
their own goals and ideas, with no underlying design rationale.

� The constraint that the input to the algorithm must be a positive multiple of 64 bits seems an unfortunate
limitation for a general-purpose algorithm.

� The lack of a header/associated-data is a significant limitation for a general-purpose PRI or AE scheme.

20

+

Rev

+

Rev

+

Rev

+

RevRevRev

+

+ + + ++

X1 X2 X3 X4

IV

Const+

Y5 Y4 Y3 Y2 Y1Y6

ICV

EKEKEKEKEK

EK EK EK EK EK EK

Hash

Figure 8: Encryption under AKW1. The boxes are TDEA, all keyed by the underlying encryption key, and the ovals
reverse the bytes of their eight-byte inputs. The value Const = 0x4adda22c79e82105 is a fixed eight-byte string. The
string IV is a random eight-byte string. The value ICV = Hash(X1X2X3X4) is the first 64 bits of SHA1(X1X2X3X4).

� The byte-reversal operations seem gratuitous; what is their purpose?

� There is no provable security result associated to AKW1.

� The AKW1 mechanism resembles CMC [16], which is a tweakable, proven-secure, wide-blocksize blockci-
pher. The paradigm of adding redundancy (even 0-bits) to a wide-blocksize blockcipher and then enciphering is
the PTE construction of this paper. This suggests one way to eliminate the hash function and obtain a provable-
secure construction at the same time.

THE AKW2 SCHEME. We recreate an illustration of the AKW2 scheme in Figure 9.

� The AKW2 mechanism is deterministic, but the goal cannot be that of a secure PRI, or even deterministic
indistinguishability detPriv, since encryption of plaintext block i does not impact any prior ciphertext block.
As a consequence, ciphertexts leak equality of prefixes: the encryption of (H, P) and (H ′, P ′) reveals the
length of the longest block-aligned prefix of P and P ′, assuming the first blocks of H and H ′ agree.

� There is no provable-security claim associated to the mode, and the key-separation method used in AKW2
precludes the possibility of proving security relative to a standard assumption. Provable security could be
pursued by regarding the key as K ′ ‖ K ′′, or it is easy to describe a (nonstandard) assumption under which the
style of key separation used by the mode works.

� The SIV construction of this paper is an alternative design approach having similar efficiency characteristics
and that does achieve PRI-security.

Let us consider how to define security for this mode. Begin with privacy. For b ∈ {0, 1} the adversary
is given an oracle Enc1b that behaves as follows: on receipt of (H, M0, M1), where |M0| = |M1|, the oracle

chooses a random R
$←{0, 1}η, where η = 64, and returns (R, EH

K (R ‖ Mb)). The adversary’s goal for
violating privacy is to ascertain if it has a “left oracle” (b = 0) or a “right oracle” (b = 1). One can measure
the adversary’s effectiveness by AdvdetPriv1

Π (A) = Pr[AEnc11 ⇒ 1] − Pr[AEnc10 ⇒ 1]. This is a weakening

21

+ ++

X1 X2 X3

+ ++

H1 H2

+ +

H3

+

X4

+

C1 C2

T

C3 C4

EK2

EK1EK1 EK1EK1

EK2 EK2 EK2EK2EK2 EK2

Figure 9: Encryption under AKW2. The header is H1H2H3 and the message is P1P2P3P4. The boxes are TDEA, where
the first row is keyed by the confidentiality subkey K′ = K ⊕ 0x4545454545454545 and the second row is keyed by
authentication subkey K′′ = K ⊕ 0x4d4d4d4d4d4d4d4d, where K is the underlying key. The ciphertext is C1C2C3C4T .

of the detPriv-notion that is defined in Appendix B. The adversary’s goal for violating authenticity would be
the detAuth-notion of authenticity from Appendix B: given a pair of oracles FK , F−1

K the adversary aims to
make a right-oracle call of (H, C) where C was not the return value to a prior left-query (H, M) and where
F−1

K (H, C) �= ⊥. The goal for AKW2 would then be detPriv1 + detAuth.
Let us assume that AKW2 actually achieves security in the detPriv1+auth sense. Then one can distill out

a simple and concrete usage restriction that could be stated in the mechanism’s documentation: the first block
of plaintext P1 should be random. This may be a reasonable restriction for a key-wrapping mechanism.

B All-in-One vs. Two-Requirement Notions for AE

An alternative approach for defining DAE-security is to specify a notion for deterministic privacy, detPriv, a
notion for deterministic authenticity, detAuth, and demand both. This “two-requirement” approach is the one
that has been taken in all prior work on AE. In this section we specify the two-requirement definition for DAE
and show where it leads: to a notion equivalent to our “all-in-one” definition. We go on to recall prior variants
for AE security and explain that, in each case, the two-requirement definition is equivalent to the all-in-one
definition.

DETERMINISTIC PRIVACY. We adapt the indistinguishability-from-random-bits notion of privacy [32] to the
setting where the encryption scheme takes an header. Fix a DAE scheme Π = (K, E ,D) with header space H
and message space X . Then, for A an adversary, define its detPriv-advantage in attacking Π as

AdvdetPriv
Π (A) = Pr

[
K

$←K : AEK(·,·) ⇒ 1
]
− Pr

[
A$(·,·) ⇒ 1

]

where we assume that A does not repeat a query. Informally, adversary A is trying to determine if its oracle is
enciphering its queries or returning random bits, and the trivial way to make that determination is barred.

22

DETERMINISTIC AUTHENTICITY. The usual notion of integrity of ciphertexts [6, 8, 20] must be adapted to
the deterministic setting (the difference is just a matter of syntax). Let Π = (K, E ,D) be a DAE with header
space H and message space X , and consider an adversary A with access to oracles for EK and DK . We
define A’s detAuth-advantage in attacking Π as

AdvdetAuth
Π (A) = Pr

[
K

$←K : AEK(·,·), DK(·,·) forges
]

.

Above, when we say that A forges it means that it asks a right-query (H, Y) and gets a response other than ⊥,
and A did not earlier ask a left-query (H, X) that returned Y . We assume without loss of generality that A
never asks a right-query (H, Y) having already asked a left-query (H, X) that returned Y .

EQUIVALENCE OF DETPRIV+DETAUTH-SECURITY AND DAE-SECURITY. Here we show that our all-in-one
notion of DAE security is equivalent to the two-part notion that requires detPriv and detAuth.

Proposition 8 [detPriv+detAuth implies DAE] Let Π = (K, E ,D) be a DAE with header space H and mes-
sage space X . Let A be an adversary with access to two oracles. Suppose A runs in time t and asks qL queries
to its left oracle, these totaling μL bits, and asks qR queries to its right oracle, these totaling μR bits. Then there
exist adversaries D and F such that

Advdae
Π (A) ≤ AdvdetPriv

Π (D) + qR AdvdetAuth
Π (F)

where D runs in time t+O(μL +μR) and asks qL queries totaling μL bits, and F runs in time t+O(μL +μR),
asking at most qL left-queries and one right-query, these totaling at most μL + μR bits.

Proof: Let Dg operate by running A, answering left oracle queries (H, X) with g(H, X), and responding to
all right oracle queries with ⊥. When A halts with output bit b, let D return b. Then

Advdae
Π (A) = Pr[AEK(·,·),DK(·,·) ⇒ 1]− Pr[A$(·,·),⊥(·,·) ⇒ 1]

= Pr[AEK(·,·),DK(·,·) ⇒ 1]− Pr[AEK(·,·),⊥(·,·) ⇒ 1]

+ Pr[AEK(·,·),⊥(·,·) ⇒ 1]− Pr[A$(·,·),⊥(·,·) ⇒ 1]

= Pr[AEK(·,·),DK(·,·) ⇒ 1]− Pr[AEK(·,·),⊥(·,·) ⇒ 1]

+ Pr[DEK(·,·) ⇒ 1]− Pr[D$(·,·) ⇒ 1]

= Pr[AEK(·,·),DK(·,·) ⇒ 1]− Pr[AEK(·,·),⊥(·,·) ⇒ 1] + AdvdetPriv
Π (D)

where K
$←K throughout. Let δ = Pr[AEK(·,·),DK(·,·) ⇒ 1]− Pr[AEK(·,·),⊥(·,·) ⇒ 1]; it remains to bound this

quantity. Let E be the event that A asks at least one valid right-oracle query (H, Y) (ie, DK(H, Y) �= ⊥). We
can write

δ =
(
Pr[AEK(·,·),DK(·,·) ⇒ 1 ∧ E] + Pr[AEK(·,·),DK(·,·) ⇒ 1 ∧ E]

)

−
(
Pr[AEK(·,·),⊥(·,·) ⇒ 1 ∧ E] + Pr[AEK(·,·),⊥(·,·) ⇒ 1 ∧ E]

)

=
(
Pr[AEK(·,·),DK(·,·) ⇒ 1 ∧ E]− Pr[AEK(·,·),⊥(·,·) ⇒ 1 ∧ E]

)

+
(
Pr[AEK(·,·),DK(·,·) ⇒ 1 ∧ E]− Pr[AEK(·,·),⊥(·,·) ⇒ 1 ∧ E]

)

=
(
Pr[AEK(·,·),DK(·,·) ⇒ 1 ∧ E]− Pr[AEK(·,·),⊥(·,·) ⇒ 1 ∧ E]

)

23

where the last equality holds since, if E does not occur, all right-oracle queries are answered by ⊥ whether A
had been provided with a DK(·, ·) oracle or a ⊥(·, ·) oracle. Conditioning on event E we obtain

δ =
(
Pr[AEK(·,·),DK(·,·) ⇒ 1 |E]− Pr[AEK(·,·),⊥(·,·) ⇒ 1 |E]

)
Pr[E]

≤ Pr[E]

For j ∈ [1..qR] let Ej be the event that E occurs on the jth right-oracle query. Then δ ≤ Pr[E] ≤∑qR
i=1 Pr[Ej].

It must be the case that Pr[Ej] ≥ δ/qR for some j. Fix this value of j and let F be the following forging
adversary. Adversary F runs A, answering all of A’s left-oracle queries with its own EK oracle, and answering
the first j − 1 of A’s right-oracle queries with ⊥. When A asks its jth right oracle query (H, Y), adversary F
asks DK(H, Y). Then AdvdetAuth

Π (F) ≥ Pr[Ej] ≥ δ/qR = so δ ≤ qR AdvdetAuth
Π (A) and we are done.

Proposition 9 [DAE implies detPriv+detAuth] Let Π = (K, E ,D) be a DAE with header space H and mes-
sage space X . Let D be a detPriv-adversary that runs in time t and asks q queries to its oracle, these totaling μ
bits. Let F be a detAuth-adversary that runs in time t′ and asks q′ queries totaling μ′ bits. Then there exists
adversaries A and A′ such that

Advdae
Π (A) ≥ AdvdetPriv

Π (D)

Advdae
Π (A′) ≥ AdvdetAuth

Π (F)

where A runs in time t and asks at most q queries totaling μ bits, and where A′ runs in time t′ and asks at
most q′ queries totaling μ′ bits.

Proof: The first result is trivial, so we do not bother with it. The second is also simple. Let A run F , answering
left-oracle queries with its left oracle (either EK(·, ·) or $(·, ·)) and right-oracle queries with its right oracle
(eitherDK(·, ·) or⊥(·, ·)). If any right oracle query returns a value other than⊥ then let A output 1; otherwise, it
outputs 0. Notice that Pr[AEK(·,·),DK(·,·) ⇒ 1] = Pr[F EK(·,·),DK(·,·) forges], and that Pr[A$(·,·),⊥(·,·) ⇒ 1] = 0,
since in the latter case the right oracle always returns ⊥.

ALL-IN-ONE AND TWO-REQUIREMENT NOTIONS FOR AE ARE INVARIABLY EQUIVALENT. There are now
several variants of AE: the encryption scheme may be probabilistic, nonce-based, deterministic, or misuse-
resistant; the privacy requirement can be indistinguishability from random bits or conventional indistinguisha-
bility; and message headers may be present or absent, strings or vectors. For any of these variants one can give
a two-requirement definition or an all-in-one definition. In all cases the results come out as above, showing that
the all-in-one definition and the two-requirement definition are equivalent.

As a first example, the indistinguishability-from-random-bits notion of privacy we selected for detPriv and
within DAE can be relaxed to conventional indistinguishability, formalized, say, by indistinguishability from
the encryption of random bits. Each oracle $(·, ·) gets changed to a EK(·, $|·|) oracle that encrypts as many
random bits as the message-portion of its query is long. The all-in-one and two-requirements definitions will
again be equivalent, with a proof just as before.

As a second example, consider probabilistic AE, no headers, privacy in the sense of conventional indistin-
guishability. The usual two-requirement definition [6, 8, 20] would specify

Advpriv
Π (A) = Pr[K $←K : AEK(·) ⇒ 1]− Pr[K $←K : AE($|·|) ⇒ 1]

Advauth
Π (A) = Pr[K $←K : AEK(·) forges]

and a good AE scheme would have to be secure in both of these senses. Then all-in-one definition would define

Advae
Π (A) = Pr[K $←K : AEK(·),DK(·) ⇒ 1]− Pr[K $←K : AEK($|·|),⊥(·) ⇒ 1]

24

where the adversary may not ask a right-query of C after this is returned by a left-query. It is again simple to
show that the all-in-one definition and the two-requirement one are equivalent (where, as before, the all-in-one
notion will have quantitatively tighter authenticity).

In general, we prefer the all-in-one definitions for authenticated-encryption, finding them more aesthetic
and concise.

AE AS A FORM OF CHOSEN-CIPHERTEXT SECURITY. All-in-one definitions for AE resemble the definition
for chosen-ciphertext-attack (CCA2) security [3, 4]: in the definition just given, say, change the ⊥(·) oracle to
a DK(·) oracle to recover the CCA2 notion for the same setting. The definition of AE thus strengthens CCA2
security in a simple and natural way. Perhaps it is only “historical accident” that our community came to think
of AE as privacy+authenticity and not as “CCA3 security.”

C DAEs Achieve Semantic Security when Plaintexts Carry a Key

A folklore justification for using a key-wrap scheme instead of a probabilistic, semantically secure encryption
scheme is that, in the key-wrap setting, one expects the plaintext to carry a random cryptographic key, and so
a probabilistic encryption scheme ought not be needed. In this section we provide a result that validates this
intuition. We show that encoding a random key into the plaintext (the key may be dropped into the message in
any fashion) and then applying a DAE will achieve what amounts to probabilistic AE—in particular, it achieves
what amounts to semantic security. We begin with some definitions.

KEY INSERTION. A key-insertion scheme is a pair of algorithms Φ = (InsertKey, ExtractKey). The first
algorithm is used to insert a key into a plaintext and the second algorithm is used to extract it. For the remainder,
fix a constant κ, the length of the key to be inserted. Algorithm InsertKey, on input of X ∈ {0, 1}∗, chooses a

random R
$←{0, 1}κ and, depending on |X|, returns either M

$← InsertKey(X) ∈ {0, 1}∗ or the distinguished
value ⊥. An equivalent viewpoint is that InsertKey is a deterministic function that takes as input a string X ∈
{0, 1}∗ and a random string R ∈ {0, 1}κ; then we write M ← InsertKey(X, R). The set of all strings X such

that M
$← InsertKey(X) is a string is called the message space of Φ. We insist that if M = InsertKey(X, R)

is a string then |M | = |X| + e(|X|) for some fixed expansion function e. (Recall that we have fixed the key
length κ and so, implicitly, the expansion depends on κ = |R| as well as on |X|.) Algorithm ExtractKey takes
a string M ∈ {0, 1}∗ and, depending on |M |, returns either ⊥ or the encoding of a pair of strings 〈X, R〉 with
|R| = κ. The set of strings M such that M = InsertKey(X, R) for some R is called the image,M, of Φ. We
insist that if M = InsertKey(X, R) �= ⊥ then ExtractKey(M) = 〈X, R〉, and ExtractKey(M) = ⊥ for all
M �∈ M. To simplify the subsequent theorem statement and capture the intent that InsertKey and ExtractKey
are simple mappings, we require that they be computable in linear time.

INSERTKEY-THEN-DAE ENCRYPTION. Let Φ = (InsertKey, ExtractKey) be a key-insertion scheme with
message space X , imageM, and key length κ. Let Π = (K, E ,D) be a DAE with header spaceH and message
spaceM. We define from Φ and Π the probabilistic encryption scheme Π̃ = (K, Ẽ , D̃) = InsKey[Φ, Π] by

Algorithm ẼK(H, X)
R

$←{0, 1}κ
M ← InsertKey(X, R)
if M = ⊥ return ⊥
return EK(H, M)

Algorithm D̃K(H, Y)
M ← DK(H, Y)
if M = ⊥ then return ⊥
return ExtractKey(M)

The encryption scheme Π̃ is nonstandard insofar as decryption of a ciphertext Y returns not only the underlying
plaintext X but also the random bits R that were inserted (algorithm ExtractKey returns such a pair). The

25

formalization should not be interpreted as meaning that the encrypting party that does not “know” R—indeed
if it follows the algorithm above then it chooses R and therefore knows it. The return value from encrypt does
not include R because the ciphertext that is to be sent to the receiver already incorporates it. On the other
hand, the decryption algorithm does return R, as this value is conceptually a part of the plaintext. We must
correspondingly strengthen the notion of security, providing the random bits R to the attacker. To do this, we
must adapt the definition of AE. Consider an encryption oracle EK(·, ·) that behaves exactly as the encryption
algorithm in Π̃, above, but returns the random string R as part of the ciphertext. Specifically, on input (H, X),
where H ∈ H and X ∈ X , it computes: R

$←{0, 1}κ, M ← InsertKey(X, R), Y ← EK(H, M), and then
returns an encoded string 〈R, Y 〉. Let oracle $(·, ·), on input (H, X), where H ∈ H and X ∈ X , operate
identically to EK(·, ·) but return |〈R, Y 〉| random bits. Finally, consider a decryption oracle DK(·, ·) that,
on input (H, Y) where H ∈ H, computes M ← DK(H, Y); then if M �= ⊥ then it computes (R, X) ←
ExtractKey(M) and returns (R, X), while otherwise it returns ⊥. Define

Advkiae
Π̃

(A) = Pr[K $←K : AEK(·,·), DK(·,·) ⇒ 1]− Pr[K $←K : A$(·,·), ⊥(·,·) ⇒ 1] .

Basically, when the adversary asks for the encryption of X we embellish the string to (X, R) for a random
key R, inform the adversary of the random key that was inserted, and give the adversary the resulting ciphertext.
We are saying that this looks like random bits, even in the presence of a decryption oracle. As usual, the
adversary may not ask a right-query (H, C) following a left-query (H, M) that returned C.

We emphasize that the KIAE-notion is in effect the usual notion for probabilistic AE as it must be interpreted
for a key-insertion scheme; some change is essential because, if nothing else, the syntax of a scheme has
changed. But we have given the adversary all the abilities it would normally have in the probabilistic AE
setting, and have taken away nothing. The adversary cannot specify the inserted key—that it does not control—
but it learns the inserted key and it is otherwise in full control of the plaintexts.

INSERTKEY-THEN-DAE ACHIEVES KIAE. We now show that as long as the inserted key is “long enough” the
InsertKey-then-DAE scheme achieves the version of probabilistic authenticated-encryption we have defined.

Theorem 10 Let Φ = (InsertKey, ExtractKey) be a key-insertion scheme with message spaceM and im-
ageX , and let Π = (K, E ,D) be a DAE scheme with message spaceX . Define Π̃ = (K, Ẽ , D̃) = InsKey[Φ, Π]
and let B be an adversary (for attacking Π̃). Suppose that B runs in time t and asks q queries totaling μ bits.
Then there exists an adversary A (for attacking Π) where

Advkiae
Π̃

(B) ≤ Advdae
Π (A) + q2/2κ−1

where A runs in time at most t′ = t+O(μ), and asks at most q′ = q queries of total length at most μ′ = μ+O(q).

Proof: Let δ = Advkiae
Π̃

(B) and let E
∗
K(·, ·) be an oracle that behaves exactly as E, except that it never uses

the same random string R twice. Now, suppressing obvious notation, we have

δ = Pr[BEK(·,·),DK(·,·) ⇒ 1]− Pr[B$(·,·),⊥(·,·) ⇒ 1]

= Pr[BEK(·,·),DK(·,·) ⇒ 1]− Pr[BE
∗
K(·,·),DK(·,·) ⇒ 1]

+ Pr[BE
∗
K(·,·),DK(·,·) ⇒ 1]− Pr[B$(·,·),⊥(·,·) ⇒ 1]

≤ q2/2κ + Pr[BE
∗
K(·,·),DK(·,·) ⇒ 1]− Pr[B$(·,·),⊥(·,·) ⇒ 1]

= q2/2κ + p

where the inequality holds because the observable behavior of E and E
∗ differs only when the former uses twice

some randomly chosen string R, and this happens with probability at most q2/2κ (by the sum bound).

26

To bound the probability p, we construct a DAE adversary Ag,h that will run B and faithfully simulate either
the pair of oracles E

∗
K , DK (if g = EK and h = DK), or the pair $,⊥ (if g = $ and h = ⊥). Specifically,

let R be initialized to the empty set and let A run B. When B asks a left-oracle query (H, X), adversary A

chooses R
$←{0, 1}κ. If R ∈ R, A outputs 0 and halts. Otherwise, it computes M ← InsertKey(X, R),

Y ← g(H, M), setsR ← R∪ {R}, and returns 〈R, Y 〉 to B. When B asks a right-oracle query (H, Y), let A
compute M ← h(H, Y). If M = ⊥ then A returns⊥ to B; otherwise A computes 〈R, X〉 ← ExtractKey(M)
and returns 〈R, X〉 to B. When B halts with bit b, let A output b.

Advdae
Π (A) = Pr[AEK(·,·),DK(·,·) ⇒ 1]− Pr[A$(·,·),⊥(·,·) ⇒ 1]

= Pr[AEK(·,·),DK(·,·) ⇒ 1|BAD] Pr[BAD] + Pr[AEK(·,·),DK(·,·) ⇒ 1|BAD] Pr[BAD]

−Pr[A$(·,·),⊥(·,·) ⇒ 1|BAD] Pr[BAD]− Pr[A$(·,·),⊥(·,·) ⇒ 1|BAD] Pr[BAD]

=
(
Pr[AEK(·,·),DK(·,·) ⇒ 1|BAD]− Pr[A$(·,·),⊥(·,·) ⇒ 1|BAD]

)
Pr[BAD]

=
(
Pr[BE

∗
K(·,·),DK(·,·) ⇒ 1]− Pr[B$(·,·),⊥(·,·) ⇒ 1]

)
Pr[BAD]

= p Pr[BAD]

= p− p Pr[BAD]

≥ p− Pr[BAD]

≥ p− q2/2κ

where, as before, we have bounded the probability of an R-repeat (ie,BAD) by q2/2κ. Rearranging to p ≤
Advdae

Π (A) + q2/2κ, and putting it all together, we have Advkiae
Π̃

(B) ≤ Advdae
Π (A) + q2/2κ−1.

Noting that the InsertKey is computed in linear time (necessary for the time bound t′, the theorem follows.

D Building a DAE Scheme: The PTE Constructions

A folklore approach for achieving authenticity is to add redundancy and then encrypt, an approach investigated
in works like [1, 8]. One pads the plaintext (for example, by appending a particular number of zero-bits) and
then applies a length-preserving enciphering scheme (that is, a wide-blocksize blockcipher, like CMC [16]).
We call this the pad-then-encipher (PTE) approach.

To accommodate an associated header under this paradigm either (a) use it as a tweak for the enciphering
scheme, or (b) incorporate it into the plaintext before enciphering. The former will be more efficient in terms
of the length of the resulting ciphertext, but it requires the underlying enciphering scheme to be tweakable.

Three of the four X9.102 key-wrap schemes (AESKW, TDKW, and AKW1) can be seen as instances of pad-
then-encipher (although they use enciphering schemes for which there has been offered no proof of security).
In this section we formalize and prove security for pad-then-encipher, for both options (a) and (b).

PADDING SCHEMES. A padding scheme is a pair of deterministic algorithms Φ = (Pad, Unpad) where
Pad, Unpad: {0, 1}∗ → {0, 1}∗ ∪ {⊥}. The set X = {X ∈ {0, 1}∗: Pad(X) ∈ {0, 1}∗} is the domain
of Φ and M = {Pad(X): X ∈ X} is the range of Φ. Our convention is that Pad(⊥) = Unpad(⊥) =
⊥. We insist that Unpad(Pad(X)) = X for all X ∈ X , that Unpad(M) = ⊥ for all M �∈ M, that
|Pad(X)| = |X| + e(|X|) for some expansion function e, that Pad and Unpad are linear-time computable,
and that X ∈ X ⇒ {0, 1}|X| ⊆ X . Call s = minX∈X {e(|X|)} the stretch of Φ. We emphasize that unpadding
not only extracts the padding but, equally important, it returns ⊥ if the presented point is not a properly padded
domain point. If a padding function has stretch s ≥ 1 then a fraction at most 2−s of the points inM will unpad
to give strings, while the remainder will unpad to give ⊥.

27

ENCODING SCHEMES. We have already spoken of encoding schemes as reversible and easily computable map-
pings from tuples of vectors to strings. Here we will be more formal. An encoding scheme is a pair of determin-
istic algorithms Λ = (Encode, Decode) where Encode: {0, 1}∗∗ → {0, 1}∗ ∪ {⊥} and Decode: {0, 1}∗ →
{0, 1}∗∗ ∪ {⊥}. The domain of Λ is the set of tuples Y = {Y ∈ {0, 1}∗∗: Encode(Y) ∈ {0, 1}∗}.

We assume this to be a cross-product of sets of strings, and insist that if Y ∈ Y then Y ′ ∈ Y when
|Y ′| = |Y | and the corresponding components of Y and Y ′ have equal lengths. The range of Λ is the set
of strings M = {Encode(Y): Y ∈ Y}. We insist that Decode(Encode(Y)) = Y for all Y ∈ Y , that
Decode(M) = ⊥ if M �∈ M, and that Encode(⊥) = Decode(⊥) = ⊥. We assume that Encode and Decode
are linear-time computable.

THE PTE1 CONSTRUCTION. The PTE1 construction builds a DAE out of an enciphering scheme by padding
the input message prior to enciphering, and by using the header directly as the header (or tweak) of the under-
lying enciphering scheme. (We recall that an enciphering scheme is a length-preserving DAE.) Fix a padding
scheme Φ = (Pad, Unpad) with domain X and range M, and an enciphering scheme Π = (K, E ,D) with
header space H and message spaceM. Then we define the DAE scheme Π̃ = (K, Ẽ , D̃) with header space H
and message space X , written Π̃ = PTE1[Φ, Π], as

Algorithm ẼK(H, X)
M ← Pad(X)
return EK(H, M)

Algorithm D̃K(H, Y)
M ← DK(H, Y)
return X ← Unpad(M)

Theorem 11 tells us that if Π is a an enciphering scheme that is secure in the PRI sense, then Π̃ is a secure
length-increasing DAE. In the proof, we will make use of the notation PermH(M) to mean the space of all
maps π: H ×M →M such that |π(H, M)| = |M | and π(H, ·) is a permutation; ie., the space of all length-
preserving injections fromH×M toM. Also, recall our notational convention is to use Adv±p̃rp

Π in place of
Advpri

Π when Π is an enciphering scheme with a nontrivial header (tweak) space.

Theorem 11 Let Φ = (Pad, Unpad) be a padding scheme with domain X , rangeM, expansion function e,
stretch s, and let τ = minX∈X {|X|}. Let Π = (K, E ,D) be an enciphering scheme with header space H and
message spaceM. Let Π̃ = (K, Ẽ , D̃) = PTE1[Φ, E]. Let B be a DAE-adversary that runs in time t, asks qL

left-queries, these of total length μL bits, and asks qR right-queries, these of total length μR bits. Let q = qL +qR

and μ = μL + μR. Then there exists an adversary A such that

Adv±p̃rp
Π (A) ≥ Advdae

Π̃
(B)− (q2/2s+τ+1 + 4qR/2s)

where A runs in time t + O(μ) and asks q queries of total length μ + O(q).

Proof: We construct an adversary Ag,h for attacking the PRI-security of Π as follows. Let A run B answering
left-oracle queries (H, X) by computing M ← Pad(X) and returning g(H, M) to B. To answer right-oracle
queries (H, Y), adversary A asks M ← h(H, Y) returns ⊥ to B if M = ⊥, and otherwise returns to B the
result of Unpad(M). When B halts with output bit b, let A output b as well.

Recall that A’s oracles are instantiated either as g = EK , h = DK for a random K ∈ K, or as g = π, h =
π−1 for a random element π ∈ PermH(M). In the former case, A perfectly simulates for B a left oracle
ẼK and right oracle D̃K . In the latter case, A simulates for B a left oracle Ẽπ that computes Ẽ but with
the underlying enciphering algorithm E replaced by π, and a right oracle D̃π that computes D̃ but with the

28

underlying deciphering algorithm D replaced by π−1. Now,

Adv±p̃rp
Π (A) = Pr

[
AEK(·,·), DK(·,·) ⇒ 1

]
− Pr

[
Aπ(·,·), π−1(·,·) ⇒ 1

]

= Pr
[
BẼK(·,·), D̃K(·,·) ⇒ 1

]
− Pr

[
BẼπ(·,·), D̃π(·,·) ⇒ 1

]

= Pr
[
BẼK(·,·), D̃K(·,·) ⇒ 1

]
− Pr

[
B$(·,·), ⊥(·,·) ⇒ 1

]

−
(
Pr

[
BẼπ(·,·), D̃π(·,·) ⇒ 1

]
− Pr

[
B$(·,·), ⊥(·,·) ⇒ 1

])

= Advdae
Π̃

(B)− α

where α = Pr
[
BẼπ(·,·), D̃π(·,·) ⇒ 1

]
− Pr

[
B$(·,·), ⊥(·,·) ⇒ 1

]
and, throughout, K

$←K and π ← PermH(M)
are understood. It remains to bound the information-theoretic quantity α.

It is easy to see that, for a random π ∈ PermH(M), Ẽπ is a random element from InjHe (X ,M). To see this,
notice that Ẽπ(H, X) = π(H, Pad(X)) where Pad(X) deterministically and reversible maps X ∈ X into a
string in M ∈M. Thus we can appeal directly to Theorem 7, and conclude that α ≤ q2/2s+τ+1 +4qR/2s.

THE PTE2 CONSTRUCTION. The PTE2 construction builds a DAE from an enciphering scheme by encoding
the header and the plaintext into a string, padding that string, and then enciphering the result. Fix an encoding
scheme Λ = (Encode, Decode) with domainH×X and rangeM. Fix a padding scheme Φ = (Pad, Unpad)
with domainM and rangeM∗. Fix an enciphering scheme Π = (K, E ,D) with message spaceM∗ and no
tweak space (ie, a singleton set, which is ignored). Then we define the DAE scheme Π̃ = (K, Ẽ , D̃) with header
spaceH and message space X , written Π̃ = PTE2[Λ, Φ, Π], as

Algorithm ẼK(H, X)
M ← Encode(H, X)
M∗ ← Pad(M)
return EK(M∗)

Algorithm D̃K(H, Y)
M∗ ← DK(Y)
M ← Unpad(M∗)
if Decode(M) = ⊥ then return ⊥
(H ′, X)← Decode(M)
if H ′ = H then return X
return ⊥

We point out that the header and message spaces of Π̃ are determined by the domain of the encoding scheme.
The following theorem tells us that if Π is an enciphering scheme secure in the PRI sense, then Π̃ is a secure
length-increasing DAE. Since we consider enciphering schemes with no tweak space, we use Perm(M) instead
of Perm{ε}(M), and use Adv±prp

Π in place of Advpri
Π .

Theorem 12 Let Λ = (Encode, Decode) be an encoding scheme with domain H × X , range M, and let
τ = minX∈X |X|. Let Φ = (Pad, Unpad) be a padding scheme with domainM, rangeM∗, and stretch s. Let
Π = (K, E ,D) be an enciphering scheme with header space H and message spaceM∗. Let Π̃ = (K, Ẽ , D̃) =
PTE2[Λ, Φ, Π]. Let B be a DAE-adversary that runs in time t, asks qL ≤ 2s−1 left queries of total length μL

bits, and qR right queries of total length μR bits. Let q = qL + qR and μ = μL + μR. Then there exists an
adversary A such that Adv±prp

Π (A) ≥ Advdae
Π̃

(B) − (2qR/2s + q2
L/2s+τ+1) where A runs in time t + O(μ)

and asks q queries of total length μ + O(q).

Proof: We construct an adversary Ag,h for attacking the PRI-security of Π as follows. Let A run B answering
left-oracle queries (H, X) by computing M ← Encode(H, X), M∗ ← Pad(X) and returning g(M∗) to B. To

29

answer right-oracle queries (H, Y), adversary A: asks M ← h(Y); computes M ← Unpad(M∗); computes
Decode(M), returning⊥ to B if this results in⊥, and otherwise assigning (H ′, X)← Decode(M); returns X
to B if H = H , and ⊥ if not. When B halts with output bit b, let A output b as well.

Recall that A’s oracles are instantiated either as g = EK , h = DK for a random K ∈ K, or as g = π, h = π−1

for a random element π ∈ Perm(M). In the former case, A perfectly simulates for B a left oracle ẼK and
right oracle D̃K . In the latter case, A simulates for B a left oracle Ẽπ that computes Ẽ but with the underlying
enciphering algorithm replaced by π, and a right oracle D̃π that computes D̃ but with the underlying deciphering
algorithm replaced by π−1. Now,

Adv±prp
Π (A) = Pr

[
AEK(·,·), DK(·,·) ⇒ 1

]
− Pr

[
Aπ(·,·), π−1(·,·) ⇒ 1

]

= Pr
[
BẼK(·,·), D̃K(·,·) ⇒ 1

]
− Pr

[
BẼπ(·,·), D̃π(·,·) ⇒ 1

]

= Pr
[
BẼK(·,·), D̃K(·,·) ⇒ 1

]
− Pr

[
B$(·,·), ⊥(·,·) ⇒ 1

]

−
(
Pr

[
BẼπ(·,·), D̃π(·,·) ⇒ 1

]
− Pr

[
B$(·,·), ⊥(·,·) ⇒ 1

])

= Advdae
Π̃

(B)− α

where α = Pr
[
BẼπ(·,·), D̃π(·,·) ⇒ 1

]
− Pr

[
B$(·,·), ⊥(·,·) ⇒ 1

]
and, throughout, K

$←K and π ← Perm(M)
are understood. It remains to bound the information-theoretic quantity α.

Claim: α ≤ 2qR/2s + q2
L/2s+τ+1

Proof: Write α = α1 + α2 where

α1 = Pr
[
BẼπ(·,·), D̃π(·,·) ⇒ 1

]
− Pr

[
BẼπ(·,·), ⊥(·,·) ⇒ 1

]

α2 = Pr
[
BẼπ(·,·), ⊥(·,·) ⇒ 1

]
− Pr

[
B$(·,·), ⊥(·,·) ⇒ 1

]

We will show that α1 ≤ 2qR/2s and α2 ≤ q2
L/2s+τ+1, establishing the claim.

For bounding α1 we can assume that adversary B halts and outputs 1 as soon as some right-oracle query
returns a valid string. Let BAD be the event B asks a right-oracle query that returns a string X . Condi-
tioning probabilities on BAD leads to α1 ≤ Pr[BAD]. Notice that D̃π(H, Y) returns a string if and only if
Unpad(M∗) = M �= ⊥ and Decode(M) = (H ′, X) �= ⊥ and H ′ = H . Moreover, if Unpad(M∗) = ⊥,
then by our conventions the other two conjuncts must be false. Letting U be the event that some right-query
causes Unpad to return a string, we have Pr[BAD] ≤ Pr[U]. Let Ui be the event that U occurs on the ith query,
i ∈ [1..qR]. We will now bound Pr[U] by bounding Pr[Ui].

Fix an n ≥ 0 such that {0, 1}n ⊂M∗ and let

V(n) = |{M∗ ∈ {0, 1}n : Unpad(M) �= ⊥}| .

Since the padding scheme has stretch s, we know that V(n)/2n ≤ 2−s for all n. At the time of the ith right
oracle query, adversary B can know at most qL valid encipherings under Ẽπ. Since B is forbidden to ask
(H, Y) of its right oracle if some left-oracle query (H, X) returned Y , the probability that Ui occurs is at most
V(n)/(2n − qL). If V(n) = 0 this probability is zero (which is certainly less than the claimed upperbound),
so assume that V(n) ≥ 1. Then Pr[Ui] ≤ V(n)/(2n − qL) ≤ (2n)(2−s)/(2n − qL). Now, we have assumed
that qL ≤ 2s−1; by substitution for 2s−1 and since V(n) ≥ 1, we have qL ≤ 2n/2V(n) ≤ 2n−1. Hence
Pr[Ui] ≤ (2n)(2−s)/2n−1 = 2(2−s) and, finally, Pr[U] ≤ ∑qR

i=1 Pr[Ui] ≤ qR/2s−1. Putting it all together
yields the claimed bound α1 ≤ 2qR/2s.

30

On query left(H,X):
10 M ← Encode(H,X); M∗ ← Pad(M)
11 if M∗ = ⊥ then return ⊥
12 c← |M∗|; Y

$←{0, 1}c
13 if Y ∈ Image(π) then

14 bad← true , Y
$←{0, 1}c − Image(π)

14 return π(M∗)← Y

On query right(H,Y):

27 return ⊥

Figure 10: Games used to bound α2 in the proof of Theorem 12. Game G1 is the complete code; game G0 omits the
shaded statement.

For α2, a simple game playing argument shows that α2 ≤ q2
L/2s+τ+1. Consider the games G1 and G0

in Figure 10. Recall that booleans are initialized to false, sets are initialized to empty, and partial functions are
initialized to everywhere undefined with the symbol undef. The set Image(π) contains all points Y �= undef
such that π(M∗) = Y for some M ∈ M∗. Set difference is indicated with a minus sign. Both games G1 and
G0 simulate a ⊥ oracle on the right. We claim that game G1 faithfully simulates an Ẽπ oracle on the left, while
game G0 faithfully simulates an $ left oracle. Let’s examine what happens when a left query (H, X) is made.
The result of Pad(Encode(H, X)) is assigned to M∗, and if M∗ = ⊥, then ⊥ is returned. Since oracles are
always defined to return ⊥ when queried outside of their domains, this is consistent with both Ẽπ and $. A
random string of c = |M∗| bits is then selected and assigned to Y . If Y is in Image(π), then the flag bad is
set to true; here is where the games begin to behave differently. In game G1, to observe the permutivity of π,
a new point is selected from among the unused c-bit strings, and this is subsequently assigned to π(M∗) and
returned. Game G0, on the other hand, continues on with the uniform value Y , ultimately returning it.

Under our convention that adversaries not repeat queries, it is clear that α2 = Pr[BG1 ⇒ 1]− Pr[BG0 ⇒ 1].
Moreover, since these games are identical until bad is set, we can invoke the fundamental lemma of game-
playing [7] and state that α2 ≤ Pr[BG0 sets bad]. Now, prior to bad being set in game G0, each left query adds
a single point to Image(π). Accordingly, the probability that bad is set on the ith query is at most (i−1)/2s+τ ,
so the probability that it is ever set is at most q2

L/2s+τ+1 and we are done.

E Proof of Security for S2V

Proof: Consider the game S0 defined in Figure 11. The game is a faithful simulation of F = f∗. The intuition
underlying this formulation of F is as follows. We grow a random function ρ to compute ρ(X1), . . . , ρ(Xm−1)
for each query (X1, . . . , Xm), and we grow a separate random function ρ′ for the final call ρ(T). But whenever
we need a value ρ(I) we force it to take on the value ρ′(I) if the latter has already been defined, and whenever
we need a value ρ′(I) we force it to take on the value ρ(I) if the latter has already been defined, but if either
happens we give up in the analysis by setting bad. Since ρ and ρ′ are grown by adding uniform random values
and kept in sync, their joint effect is the same as choosing a single random function ρ for both purposes. We
have that Pr[f $← Func({0, 1}∗, n) : Af∗(·) ⇒ 1] = Pr[AS0 ⇒ 1].

Game S1 is a faithful simulation of a random function from {0, 1}∗∗ to {0, 1}n (recall that the adversary may

not repeat a query); Pr[R $← Func({0, 1}∗∗, n) : AR(·) ⇒ 1] = Pr[AS1 ⇒ 1]. Furthermore, games S1 and S0
differ only by the sequels of statements that set the flag bad. So by the fundamental lemma of game-playing,
the advantage we wish to bound is at most Pr[AS1 sets bad].

31

Initialize Game S0 (as written) and S1 (without the highlighted statements)

100 ρ(0) $←{0, 1}n, ρ(1) $←{0, 1}n
On query F (X1, . . . , Xm)
100 if m = 0 then return ρ(1)
101 S ← ρ(0)
112 for i← 1 to m− 1 do
113 if Xi ∈ Domain(ρ′) then bad← true, ρ(Xi)← ρ′(Xi)

114 if Xi �∈ Domain(ρ) then ρ(Xi)
$←{0, 1}n

115 S ← 2S⊕ ρ(Xi)
116 if |Xm| ≥ n then T ← S ⊕end Xm else T ← 2S⊕Xm10∗

117 if T ∈ Domain(ρ) then bad← true, return ρ′(T)← ρ(T)

118 if T ∈ Domain(ρ′) then bad← true, return ρ′(T)

119 return ρ′(T) $←{0, 1}n

200 ρ(0) $←{0, 1}n, ρ(1)← C Game S2
201 for t← 1 to q do
202 S ← ρ(0)
203 for i← 1 to mt − 1 do
204 if Xt

i ∈ Domain(ρ′) then bad← true

205 if Xt
i �∈ Domain(ρ) then ρ(Xt

i)
$←{0, 1}n

206 S ← 2S⊕ ρ(Xt
i)

207 if |Xt
mt
| ≥ n then T t ← S ⊕end Xt

mt
else T t ← 2S⊕Xt

mt
10∗

208 if T t ∈ Domain(ρ) then bad← true
209 if T t ∈ Domain(ρ′) then bad← true
210 ρ′(T t) = arbitrary

300 for I ∈ {0, 1}∗ do ρ(I) $←{0, 1}∗ od, ρ(1)← C Game S3
301 for t← 1 to q do
302 S ← ρ(0)
303 for i← 1 to mt − 1 do S ← 2S⊕ ρ(Xt

i)
304 if |Xt

mt
| ≥ n then T t ← S ⊕end Xt

mt
else T t ← 2S⊕Xt

mt
10∗

305 if
[∃ r, s, t, i

] [
(T t = Xr

i) or (T t = 0) or (T t = 1) or (T t = T s)
]

then bad← true

400 for I ∈ {0, 1}∗ do ρ(I) $←{0, 1}∗ od, ρ(1)← C Game S4
401 for t← 1 to q do
402 if |Xt

mt
| ≥ n

403 then T t ← [
2mt−1ρ(0)⊕2mt−2ρ(Xt

1)⊕2mt−3ρ(Xt
2)⊕ · · · ⊕2ρ(Xt

mt−2)⊕ ρ(Xt
mt−1)

] ⊕end Xt
mt

404 else T t ← [
2mtρ(0)⊕2mt−1ρ(Xt

1)⊕2mt−2ρ(Xt
2)⊕ · · · ⊕22ρ(Xt

mt−2)⊕2ρ(Xt
mt−1)

]⊕Xt
mt

10∗

405 if
[∃ r, s, t, i]

[
(T t = Xr

i) or (T t = 0) or (T t = 1) or (T t = T s)
]

then bad← true

Figure 11: Games used in the proof of security for S2V.

To bound this assume for a moment that the adversary never asks the no-argument query (m = 0) and so
all values returned to the adversary are returned at line 119. The n-bit strings, call them Z1, . . . , Zq, that are
returned to the adversary and placed into the range of ρ′ have no impact on the running of the game—they are
never even referred to—what matters is the domain of ρ′, not its range. Thus one could let the adversary choose
whatever return values it likes as Z1, . . . , Zq and it would not matter in the setting of bad. Now as for the
no-argument query, we let the adversary choose the value C = fK(1) that is best for it, along with an optimal
sequence of queries X1, . . . , Xq (each query Xt = (Xt

1, . . . , X
t
mt

) ∈ {0, 1}∗∗) for the adversary to ask having
total length of at most μ bits. Fixing all of these values, Game S1 has now been reduced to the non-interactive
Game S2 that is specified in Figure 11.

32

Examining game S2, notice that points are added into the domain of ρ only at line 200, where ρ gets defined
at 0 and 1, and at line 205, when ρ gets defined at Xt

i . Points are added into the domain of ρ′ only at line 210,
when ρ′ is defined at T t. Thus bad gets set to true in exactly the following situations: at line 204, when an Xt

i

value is equal to some T s value for some s < t; at line 208, when a T t value is equal to an Xr
i value for

some r ≤ t and 1 ≤ i < mr; at line 208, when a T t value is equal to 0 or 1; and at line 209, when a T t value
is equal to a T s value for some s < t. Recalling that p is the assumed total number of vector components, we
see that, all in all, there are a total of: (p − q)q pairs (T t, Xr

i) which, if equal, set bad; q pairs (T t, 0) which,
if equal, set bad; q pairs (T t, 1) which, if equal, set bad; and

(
q
2

)
pairs (T t, T s), for s < t, which, if equal, set

bad. In a moment we will show that for each of these pairs the probability that the first and second components
are equal is at most 2−n. Given this, we can conclude that the probability that bad gets set is in game S2 at most(
(p− q)q + 2q +

(
q
2

)) · 2−n. This value is at most pq for q ≥ 3, the result we want.

Now, to show that each of the specified pairs collide with probability at most 2−n we first rewrite game S2 as
game S3, which makes its random choices up front and checks for domain collisions (ie., when bad begin set
to true in game s2) at the end. Then, in game S4, we unroll the loop to more explicitly specify T t. Now our
job is to show that, for any valid r, s, t, i, each of the four equalities at line 405, namely, (Case 1) T t = Xr

i and
(Case 2) T t = 0 and (Case 3) T t = 1 and (Case 4) T t = T s, the equality holds with probability at most 2−n.
The implicit quantification for a “valid” r, s, t, i at lines 305 and 405 is r, s, t ∈ [1..q], r ≤ t, s < t, and
i ∈ [1..mr − 1]. Fix a valid r, s, t, i.

Case 1. First we show that Pr[T t = Xr
i] ≤ 2−n. Keep clear that all of the Xr

i values are constants. There are
two subcases to consider, depending on |Xt

mt
|.

Case 1.0. Assume first that |Xt
mt
| ≥ n. In this case we are looking to bound

Pr
[(

2mt−1ρ(0)⊕ 2mt−2ρ(Xt
1)⊕ 2mt−3ρ(Xt

2)⊕ · · · ⊕ 2ρ(Xt
mt−2)⊕ ρ(Xt

mt−1)
) ⊕end Xt

mt
= Xr

i

]
.

If |Xr
i | �= |Xt

mt
| then the above probability is zero and we are done. So assume |Xr

i | = |Xt
mt
|. If Xr

i and Xt
mt

differ in some bit before their last n bits then the above probability is again zero (because of the behavior of
⊕end) and we are done. Hence there is no loss of generality to assume that |Xr

i | = |Xt
mt
| = n; just strip away

the leading, irrelevant prefix. The probability we wish to bound is then

Pr
[
2mt−1ρ(0)⊕ 2mt−2ρ(Xt

1)⊕ 2mt−3ρ(Xt
2)⊕ · · · ⊕ 2ρ(Xt

mt−2)⊕ ρ(Xt
mt−1)⊕Xt

mt
= Xr

i

]
.

In this formula, various pairs of the Xt
i values may coincide. Whenever this happens, combine the multipliers

of the coinciding quantities by xoring them. This will never form the zero multiplier because each coefficient is
of the form 2j where j ∈ [0..n− 1]. Combine all terms where Xt

i = 1 and collect them into a single constant,
together with the constant Xr

i , to make the single constant B. (Thus B contains all of the quantities in the
formula that the adversary controlled.) Rename variables and coefficients to get an expression

Pr[c0 ρ(0)⊕ c1 ρ(C1)⊕ · · · ⊕ cu ρ(Cu) = B]

for some u ≥ 0 and where C1, . . . , Cu are distinct strings different from 1 and where each ci �= 0. As every ρ(I)
value is random with the exception of ρ(1), the above probability is at most 2−n.

Case 1.1. Assume instead that |Xt
mt
| < n . We are looking to bound

Pr
[(

2mtρ(0)⊕ 2mt−1ρ(Xt
1)⊕ 2mt−2ρ(Xt

2)⊕ · · · ⊕ 22ρ(Xt
mt−2)⊕ 2ρ(Xt

mt−1)
)⊕Xt

mt
10∗ = Xr

i

]
.

Showing that this is at most 2−n is done in a manner directly analogous to Case 1.0, so details are omitted.

Case 2 and Case 3. We immediately have that Pr[T t = 0] ≤ 2−n and Pr[T t = 1] ≤ 2−n, since these are just
specializations of Case 1.0 where Xr

i = 0 or Xr
i = 1.

33

Case 4, that Pr[T t = T s] ≤ 2−n. There are four subcases, depending on whether each of Xt
mt

and Xs
ms

are or
are not longer than n bits.

Case 4.0. Suppose first that both |Xt
mt
| ≥ n and |Xs

ms
| ≥ n. Then we must show that

Pr
[(

2mt−1ρ(0)⊕ 2mt−2ρ(Xt
1)⊕ 2mt−3ρ(Xt

2)⊕ · · · ⊕ 2ρ(Xt
mt−2)⊕ ρ(Xt

mt−1) ⊕end Xt
mt

)
=(

2ms−1ρ(0)⊕ 2ms−2ρ(Xs
1)⊕ 2ms−3ρ(Xs

2)⊕ · · · ⊕ 2ρ(Xs
ms−2)⊕ ρ(Xs

ms−1) ⊕end Xs
ms

)] ≤ 2−n .

If |Xt
mt
| �= |Xs

ms
| then the above probability is zero and we are done. Likewise if Xt

mt
and Xs

ms
differ in bits

before their final n bits. So we can assume that |Xt
mt
| = |Xs

ms
| = n (again by stripping away the irrelevant

prefix) and the xor-at-the-end becomes an ordinary xor. Letting Z = Xt
mt
⊕Xs

ms
, we are thus aiming to bound

the probability

Pr
[
2mt−1ρ(0)⊕ 2mt−2ρ(Xt

1)⊕ 2mt−3ρ(Xt
2)⊕ · · · ⊕ 2ρ(Xmt−2)⊕ ρ(Xt

mt−1) =

2ms−1ρ(0)⊕ 2ms−2ρ(Xs
1)⊕ 2ms−3ρ(Xs

2)⊕ · · · ⊕ 2ρ(Xms−2)⊕ ρ(Xs
ms−1)⊕Z

]
.

Since the adversary may not repeat a query, (Xt
1, . . . , X

t
mt−2, X

t
mt−1

) = (Xs
1 , . . . , Xs

ms−2, X
s
ms−1

) implies
Z �= 0 and so the probability above is zero in this case. Consequently, we may assume that (Xt

1, . . . , X
1
mt−2) �=

(Xs
1 , . . . , Xs

ms−1). Collect all terms as before to get an expression

Pr[c0 ρ(C0)⊕ c1 ρ(C1)⊕ · · · ⊕ cu ρ(Cu) = B]

for some u ≥ 0 and where C0, C1, . . . , Cu are distinct strings different from 1 (all ρ(1) terms are included
in B) and where each ci �= 0. The probability of this event is at most 2−n.

Case 4.1. Suppose next that |Xt
mt
| ≥ n and |Xs

ms
| < n. Then we must show that

Pr
[(

2mt−1ρ(0)⊕ 2mt−2ρ(Xt
1)⊕ 2mt−3ρ(Xt

2)⊕ · · · ⊕ 2ρ(Xt
mt−2)⊕ ρ(Xt

mt−1)
) ⊕end Xt

mt
=(

2msρ(0)⊕ 2ms−1ρ(Xs
1)⊕ 2ms−2ρ(Xs

2)⊕ · · · ⊕ 22ρ(Xs
ms−2)⊕ 2ρ(Xs

ms−1)
)⊕Xs

ms
10∗

] ≤ 2−n .

If |Xt
mt
| �= |Xs

ms
10∗| = n then the probability above is zero, so assume |Xt

mt
| = n and the xor-at-then-end

becomes an ordinary xor. We are now considering

Pr
[(

2mt−1ρ(0)⊕ 2mt−2ρ(Xt
1)⊕ 2mt−3ρ(Xt

2)⊕ · · · ⊕ 2ρ(Xt
mt−2)⊕ ρ(Xt

mt−1)
)⊕Xt

mt
=(

2msρ(0)⊕ 2ms−1ρ(Xs
1)⊕ 2ms−2ρ(Xs

2)⊕ · · · ⊕ 22ρ(Xs
ms−2)⊕ 2ρ(Xs

ms−1)
)⊕Xs

ms
10∗

] ≤ 2−n .

We must separately examine the subcases that mt �= ms +1 and mt = ms +1. In the former subcase, we again
gather together terms that coincide and write the probability as

Pr[c0 ρ(0)⊕ c1 ρ(C1)⊕ · · · ⊕ cu ρ(Cu) = B]

where C1, . . . , Cu are distinct strings different from 1 (all ρ(1) terms are included in B). We must argue that
one of the ci �= 0; in particular, we will show that c0 �= 0. To see this, notice that the xor of coefficients that
describes c0 contains 2ms and 2mt−1 �= 2ms , and that one of these is a term of greatest degree. The inequality
holds because we have restricted both mt and ms to be less than n. Hence the string c0 contains at least one
nonzero bit, and it follows that

Pr[c0 ρ(0) = c1 ρ(C1)⊕ · · · ⊕ cu ρ(Cu)⊕B] ≤ 2−n .

On the other hand, assume that mt = ms + 1. Then we have

Pr
[(

2msρ(0)⊕ 2ms−1ρ(Xt
1)⊕ 2m2−2ρ(Xt

2)⊕ · · · ⊕ 2ρ(Xt
ms−1)

)⊕ 20ρ(Xt
ms

)⊕Xt
mt

=(
2msρ(0)⊕ 2ms−1ρ(Xs

1)⊕ 2ms−2ρ(Xs
2)⊕ · · · ⊕ 2ρ(Xs

ms−1)
)⊕Xs

ms
10∗

]
.

34

Once more, gather together terms that coincide and write the probability as

Pr[c0 ρ(C0)⊕ c1 ρ(C1)⊕ · · · ⊕ cu−1 ρ(Cu−1)⊕ cu ρ(Xt
ms

) = B]

where C1, . . . , Cu−1, X
t
ms

are distinct strings different from 1. In this case, notice that the xor of coefficients
that describes cu contains 20 (ie, cu ρ(Xt

ms
) contains an unshifted copy of ρ(Xt

m2
). Since we have restricted

both mt and ms to be less than n, there can be no wrap-around of the coefficients 2i, and so the string cu

contains at least one nonzero bit. It follows that the probability in question is 2−n.

Case 4.2. The case in which |Xs
ms
| ≥ n and |Xt

mt
| < n is the same as Case 4.1 after a renaming of variables.

Case 4.3. The case in which |Xt
mt
| < n and |Xs

ms
| < n is just like Case 4.0 and is therefore omitted. This

completes the proof.

F Key Rap

Mihir Bellare has asked why key wrap needs that apparently superfluous w, inspiring this appendix.1

Yo! We’z gonna’ take them keys
an’ whatever you pleaze
We gonna’ wrap ’em all up
looks like some ran’om gup
Make somethin’ gnarly and funky
won’t fool no half-wit junkie
So the game’s like AE
but there’s one major hitch
No coins can be pitched
there’s no state to enrich
the IV’s in a ditch
dead drunk on cheap wine

Now NIST and X9
and their friends at the fort
suggest that you stick it
in a six-layer torte
S/MIME has a scheme
there’s even one more
So many ways
that it’s hard to keep score
And maybe they work
and maybe they’re fine
but I want some proofs
for spendin’ my time

After wrappin’ them keys
gonna’ help out some losers
chronic IV abusers
don’t read no directions
risk a deadly infection
If a rusty IV’s drippin’ into yo’ veins
and ya never do manage
to get it exchanged
Then we got ya somethin’
and it comes at low cost
When you screw up again
not all ’ill be lost

1 The contents of this appendix also appear in the Journal of Craptology, volume 3, November 2006.

35

