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Abstract

Consider the provable security of RSA-OAEP when not instantiated with random oracles.
Suppose a security reduction exists to show that finding a plaintext from a RSA-OAEP cipher-
text (breaking the basic OW-CPA security) is as hard as the RSA problem.

• The reduction can be used in an adaptive chosen ciphertext text (IND-CCA2) attack
against RSA-OAEP.

• The reduction cannot succeed in the random oracle model, so depends on how RSA-OAEP
is instantiated.

Therefore, even the most basic security of RSA-OAEP without random oracles seems unprovable.
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1 Introduction

Public-key encryption’s most well-known provably secure scheme is RSA-OAEP (Rivest Shamir
Adleman Optimal Asymmetric Encryption Padding). This scheme is proven [BR94, Sho01, FOPS01]
to have semantic security against chosen ciphertext attacks, which is commonly abbreviated to
IND-CCA2 security. This security property is widely considered the gold standard of security
for public-key encryption. Earlier provably secure schemes were not as compact or as efficient as
RSA-OAEP, which partially explains its popularity.

The main criticisms of the provable security of RSA-OAEP have been (a) that its security
proof is only defined in the random oracle model, (b) there was long-standing misimpression about
what security the original proof provided, which was ultimately resolved to the silver standard
of IND-CCA1 so new proofs were devised for IND-CCA2, and (c) the reductions in the proofs
are not tight, so for RSA-OAEP to achieve a provable security level of useful, larger public key
sizes are needed. These criticism have been ordered in order of decreasing significance, which is
coincidentally apparently also in order of increasing attention.

This paper examines the provable security of RSA-OAEP in the standard model, where random
oracles are not allowed. Hypothetical security proofs for RSA-OAEP are then considered. Two
types of proofs are considered. The first is a very simple type, perhaps the most natural one would
consider, and the least one could expect. This first type is shown to imply a security weakness
of RSA-OAEP. Indeed, the weakness is an IND-CCA2 attack, contradicting the existing security
proofs. In fact, this show the IND-CCA2 security is difficult to prove in the standard model.
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The second type of security proof considers a slight more ambitious type of proof. This proof
aims to not depend on the specific instantiation of RSA-OAEP, but otherwise has the same goal as
the first type of proof, which is the most basic security property of RSA-OAEP: the lowly “iron”
standard, OW-CPA security, that an adversary cannot recover the plaintext by observation the
ciphertext and public key only. It is shown that this proof is impossible. This suggests that any
proof of the basic security must of the first type, which undermines the IND-CCA2 security.

2 Review of RSA-OAEP and OW-CPA Security

This section reviews the definition of RSA-OAEP and the definition of OW-CPA security of RSA-
OAEP.

2.1 RSA-OAEP

We recall how RSA-OAEP works. It consists of a triple of algorithms (K, E,D).

• Algorithm K, key generation, takes a public exponent e and input seed value s (for random-
ization), and outputs an RSA modulus (public key) n and a RSA private exponent d. The
public key n is such that gcd(e, φ(n)) = 1 and n = pq where p and q are primes in a given
fixed interval. A typical public exponent is e = 216 + 1. The private exponent is such that
de ≡ 1 mod φ(n). The detailed workings of K are not needed for the analysis here. We write
(n, d) = K(e, s).

• Algorithm E, public key encryption, takes an RSA public exponent e, and RSA public modu-
lus n, a plaintext message m, and input value r (for randomization). The bit lengths of these
of values is to be taken implicitly from below. The output is a ciphertext:

c = (((m‖z)⊕G (r)) ‖ (r ⊕H ((m‖z)⊕G (r))))e mod n (1)

where ‖ indicates concatenation, z is fixed bit string (such as an all zero bit string), G and
H are mask generation (hash) functions, and ⊕ indicates bit-wise exclusive-or. We write
c = E(e, n, m, r). The length of z should match the security level, so is usually at least
80 bits, which is necessary to ensure the plaintext awareness and other advanced security
properties of OAEP. Note that G, H and z are parameters of the scheme, not inputs. The
functions G and H are often modeled by random oracles in security proofs, but in practice
are derived by combining counters and secure hash functions such as SHA-1.

• Algorithm D, private key decryption, takes an RSA public modulus n, an RSA private ex-
ponent d, and an alleged ciphertext c. It outputs a boolean value β and a message m, as
follows. Let t = cd mod n, and parse this as t = u‖v into pieces of lengths matching G and
H respectively. Let r = H(u) ⊕ v. Let w = G(r) ⊕ u, and parse this as w = x‖y, where y
has the same bit length as the fixed bit string z. If y 6= z, then set output β = 0 (false) and
set output m to some fixed error message. If y = z, then set output β = 1 (true) and output
m = x, as the purported plaintext message. We write this as (β, m) = D(n, d, c).

Certain minor details have been left out of the description above. For example, the length of the
input to RSA encryption can be up to 8 bits shorter than that of the public modulus n, in which
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case one effectively pads the base of the exponent with a leading zero octet. As one might expect,
decryption undoes encryption, assuming the public key corresponds to the private key:

K(e, s) = (n, d)⇒ D(n, d, E(e, n, m, r)) = (1,m). (2)

2.2 OW-CPA and IND-CCA2 Security

Consider first the most basic type of adversary of an asymmetric (public-key) encryption scheme.
This adversary takes a challenge ciphertext and outputs the corresponding plaintext. Indeed, RSA-
OAEP was deliberately designed to resist much stronger adversaries, so presumably such adversaries
ought not to exist. We formalize A as follows. In equation form, we have:

K(e, s) = (n, d)⇒ A(e, n, E(e, n, m, r)) = m. (3)

Where needed, we consider the success rate of A and the computation cost of A. Essentially,
adversary A reproduces the decryption algorithm D, except that it has to use the public key
instead of the private key. The action of A when fed invalid ciphertexts (for which D outputs
β = 0), is irrelevant for determining the success of A.

The input to A is an RSA public exponent e, an RSA public modulus n consistent with e in
that gcd(e, φ(n)) = 1, and a valid ciphertext c, meaning a ciphertext that would be obtained by
randomly selecting a message m from some message space, and random value of r of the designate
length, and computing c = E(e, n, m, r). For the purposes of this definition, we use a message space
large enough so that if A guesses a random message in the space, then A has negligible chance of
guessing a given message m. We may also require that the space be efficiently sampleable. Note
that A, as described, is a probabilistic algorithm, but we can also model it as a deterministic
function if we give it an additional input, a randomizing value.

In IND-CCA2 security, the adversary A gets the public key, and then chooses two messages m0

and m1 which are submitted to an encryption oracle, who picks random b ∈ {0, 1} and encrypts
message mb as ciphertext cb. The adversary is given cb and has the goal of finding b. The adversary
gets access to a decryption oracle that will decrypt any valid ciphertext except cb.

2.3 Security Reductions for the OW-CPA Security of RSA-OAEP

Consider a certain kind of reduction R that uses an OW-CPA adversary A to RSA-OAEP as
described above. The reduction R is an algorithm that takes input of a public exponent e, a RSA
public modulus n consistent with e, and random integer y ∈ [0, n− 1]. Algorithm R then attempts
to output x such that

xe ≡ y mod n (4)

which is known as solving the RSA problem. Algorithm R gets to call algorithm A as a subroutine.
When calling A, reduction R must supply e and n input values for A identical the values given to
R, but it may choose any value for the ciphertext c. Assuming that A is a successful adversary and
the chosen ciphertext is valid, then A will decrypt and give the answer to R. If the ciphertext is
invalid, then the output of a successful adversary A need not satisfy any conditions.

We assume that reduction R is successful whenever A is (or more generally has a success rate
at least proportional to that of A). We make no restrictions on what A can do. In particular,
when G and H are instantiated with specific hash functions, then A is permitted to process their
descriptions and make computations upon them. In other words, A is not required to treat G and
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H as random oracles. A specific adversary A may work only for the single pair G and H are not
for any other pair of hash functions. Even with such an adversary A, reduction R must be able to
use A to the solve the RSA problem.

We will call this type of reduction a simple reduction. We note that a simple reduction is
arguably too simple, since it does not seem to depend in any way on the security of G and H.
Therefore, we will also consider some other kinds of reduction.

2.4 Weak Reductions: Dependence on the Instantiation

One way to handle G and H in the reduction is to modify the goal of the reduction: solve either
the RSA problem or defeat the security of G or H, under some arbitrary definition. This better
reflects the intuition that the security of RSA-OAEP depends to some extent on the security of G
and H.

We will call this type of reduction, a weak reduction. Intrinsic to the idea of weak reduction,
is the separation of the RSA problem from the security of G and H. One may define even weaker
reductions that do not make such a separation or that substitute a potentially easier problem for
the RSA problem (whose hardness is thus a stronger assumption). Such weaker reductions shall
not be considered formally in this paper.

2.5 Strong Reductions: Succeeding in the Random Oracle Model

We shall also consider a powerful type of reduction R. This type of reduction is not specific to G
and H. To formalize this precisely, we restrict the access of R to G and H to be random oracle
access. The success rate of R is defined over random choices of G and H. Provided that for a
random choice of G and H, we can supply a successful adversary A, then R should be able to solve
the RSA problem, with a reasonable chance of success. One can easily test any given reduction R
algorithm by simulating A using an RSA private key and simulating random oracles G and H for
R.

We will call this type of reduction a strong reduction. A strong reduction is desirable for
three reasons. The first is its power. It suggests that if G and H appear random enough (to the
reduction), then RSA-OAEP is secure even if the adversary is not limited to random oracle access
to G and H. The second reason is that the alternative seems implausible: if the reduction does
not treat G and H like random oracles, then it would seem to be depend on properties of G and
H that do not hold for random functions. This defies the existing intuition that G and H are
most secure when instantiated as random functions. A third reason is to avoid our metareduction
against simple and weak reductions.

3 A Metareduction Against Simple and Weak Reductions

We now describe a metareduction M that takes a simple reduction R for the OW-CPA security of
RSA-OAEP and uses it to break the IND-CCA2 security of RSA-OAEP. The idea is simple: M
acts as an IND-CCA2 adversary, calling R to solve RSA problem upon a randomized version of its
challenge ciphertext, answering the queries of R using its decryption oracle. This also gives rise to
a OW-CCA2 attack, not just an IND-CCA2 attack.

Figure 1 illustrates the details of M . First M receives a challenge public key (n, e) generated by
K. Then M selects two distinct messages m0 and m1, as required for an IND-CCA2. It does not
matter what these values are for M to succeed, so the selection may be arbitrary. Next these two
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M R
K n,e−−−−→

b m0,m1←−−−− m0,m1

E cb−−−−→
r

y ≡ cbr
e mod n

n,e,y−−−−→

D c′i←−−−−
c′i←−−−−

m′
i−−−−→

m′
i−−−−→

x←−−−− x ≡ y1/e mod n
w ≡ x/r mod n

m′ = OAEP−1(w)

b′←−−−− b′ =

{
0 if m′ = m0

1 if m′ = m1

Figure 1: Converting OW-CPA Reduction to IND-CCA2 Adversary

messages are sent to an encryption oracle that randomly chooses a value b ∈ {0, 1}, and the applies
E to mb to obtain a ciphertext cb. Then M receives cb and its goal is to find b. In the OW-CCA2
setting, M would instead receive the encryption of a message selected at random from some large
message space. Now M picks a random value r, and computes y ≡ cbr

e mod n, which effectively
produces a random RSA challenge value to be sent to reduction R. Reduction R requires access to
an OW-CPA adversary, to which it sends ciphertext queries c′i, and from which it expects decryption
m′

i of the ciphertext queried. To answer the ciphertext queries from R, the metareduction passes
them on to the decryption oracle, which it has by virtue of playing the role of an IND-CCA2 (or
OW-CCA2) adversary. We see that R has negligible chance of choosing c′i = cb, so therefore the
decryption oracle is allowed to decrypt the ciphertexts as m′

i. Now, the metareduction returns
these back to the reduction R. Iterating as many times as needed, eventually all the queries of R
are answered correctly, and R solves the RSA problem with a value x such that xe ≡ y mod n.
Metareduction computes w = x/r mod n, which satisfies we = cb mod n. This means that w is the
OAEP padding of some message, and that the OAEP padding can be removed to recover a message
m′ = OAEP−1(w). We have m′ ∈ {m0,m1} and now the metareduction can recover b.

Suppose the reduction is weak, as defined earlier, so that it is possible that R does not solve
the RSA problem but instead breaks the security of G or H according to some definition. Then
it seems that M , as described above, succeeds in breaking the IND-CCA2 security of RSA-OAEP
or succeeds in breaking the security of G or H. Assuming that RSA-OAEP is IND-CCA2 secure,
then M can break the security of G or H, in which case the security reduction R is not useful,
because it rests on a broken security property of G or H. If the G and H are secure, in whatever
defined sense, then it is safe to say that M cannot break the security of G or H, and therefore it
can defeat the IND-CCA2 security of RSA-OAEP.

Metareduction M applies to other public-key encryption schemes and related reductions. The
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reduction needs to show the OW-CPA security of the encryption scheme is related to a hard problem
with certain properties. The hard problem must be a necessary for the OW-CPA security in the
sense that be able to solve the problem implies a OW-CPA attack, and the problem has to be
blindable: one can randomize an instance of the problem, solve the randomized instance, then
use the solution to solve the original problem. In particular, the metareduction M works against
RSA-KEM.

The metareduction M also implies that a reduction R′ in the standard model that shows break-
ing the IND-CCA2 security of RSA-OAEP is as hard as the RSA problem cannot exist, unless the
RSA is insecure. If such a reduction R′ existed, one can translate it into a reduction R showing
that the OW-CPA security of RSA-OAEP is hard as the problem RSA problem. In the transla-
tion, reduction R simulates an IND-CCA2 adversary to R′, without making any chosen ciphertext
(decryption oracle) queries. Reduction R selects any two messages for R for the encryption oracle
query that R′ is expecting. Reduction R calls its decryption oracle, the adversary it is expecting
to use as subroutine, to decrypt the challenge ciphertext generated by R′ as a response to the
encryption oracle query. The decryption enables R to determine which message was encrypted.
Therefore R will appear to be a successful IND-CCA2 adversary to R′, and R′ will solve the given
instance of the RSA problem on behalf of R. Given this reduction R, now metareduction M can
be used to give an attack on the IND-CCA2 security of RSA-OAEP, and then reduction R′ on
this attack can be used to solve the RSA problem, so RSA would be insecure. It is more plausible
to conclude that RSA-OAEP cannot be proven IND-CCA2 secure in the standard model under
only the assumption that RSA problem is hard (and some reasonable assumption about G and H).
This does not mean that RSA-OAEP is IND-CCA2 insecure, or that a security proof is impossible.
Perhaps a reduction involving a modified variant of the RSA problem should be sought.

4 A Metareduction Against Strong Reductions

We define a metareduction M that uses a strong reduction, as defined earlier, to solve the RSA
problem. Therefore if the RSA problem is hard, no strong reduction R exists. If a strong reduction
exists, then RSA problem is easy, and therefore the security proof using the strong reduction
provides no assurance for RSA-OAEP.

The metareduction M is given a random challenge instance of the RSA problem, and to solve
this challenge, M simply asks the reduction R to solve the challenge. The reduction R has the same
objective as the metareduction M , so this is fine. The reduction R, however, expects to talk to an
adversary A to the RSA-OAEP scheme, specifically an adversary A that can take valid RSA-OAEP
ciphertext and decrypt it. The metareduction must be able to play the role of the adversary of A,
or else, R is not guaranteed to solve the RSA problem challenge.

In order to be able to decrypt the ciphertexts that R expects A to decrypt, the metareduction
employs the random oracle model. Metareduction M runs R with a random oracle, randomly
selecting and recording the outputs of the outputs of the random oracles. When R generates a
claimed ciphertext c, there is negligible chance that it is valid unless R has already queried the
corresponding inputs associated with the plaintext and OAEP randomizer to the random oracle.

When M sees a ciphertext query from R, it can search the random oracle queries, re-encrypting
to compare to c. If c does not match any pair of random oracle queries, then M reports the
ciphertext to be invalid, and otherwise M provides the decryption, which is visible from the random
oracles queries made by R. Now M is able to answer the RSA-OAEP decryption queries made
by R. Note that this is the same principle of plaintext awareness used in Bellare and Rogaway’s
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[BR94] original proof of security for RSA-OAEP. Reduction R thinks it speaking to an adversary
A, and therefore R solves the RSA challenge on behalf of the metareduction M , as required.

A formal description of the metareduction M follows. Its input is a public exponent e, a
corresponding RSA modulus n, and a random integer y ∈ [0, n− 1]. This is the same input as for
R. More precisely, e is a fixed value, and n is obtained from (n, d) = K(e, s) for some random choice
of s. Next, metareduction M runs reduction R on inputs e and n. Algorithm R sends queries to
subroutine A, G and H. Metareduction M answers these queries as follows:

• If a G-query input is new, then M chooses a random output value of the correct length, and
responds to R with this value. For old queries, M responds with the previous output.

• If an H-query input is new, then M chooses a random output of the correct length, and
response to R with this value. For old queries, M responds with the previous output.

• If an A-query input is new, then M goes through all past G and H inputs. For each pair, say
r to G and s to H, compute

c = (s‖(r ⊕H(s)))e mod n (5)

If c equals the ciphertext input to A, then compute t = s ⊕ G(r) and parse this is t = x‖y,
where y is the length of z. If y = z, then answer the A-query with message m = x. Otherwise,
that is, if y 6= z, or if no value of c matches the A-query input, then answer the A-query
arbitrarily, such as with a random message or an error message.

After having all its queries answered, reduction R will either fail or succeed, solving the RSA
problem for instance (e, n, y) giving a solution x. If reduction R succeeds, then metareduction M
succeeds by outputting the solution x to its challenge RSA problem.

We need to prove R cannot distinguish the answers that M provides from true random oracles
for G and H and a true adversary A. The metareduction responses to hash function queries to G
and H are chosen purely at random, so therefore are statistically indistinguishable from random
oracles.

The queries to the adversary A are more interesting. The ciphertext queries of R can be
classified in two types. The first type is that one for which the metareduction can find r and s and
compute the plaintext. It is easy to see that M responds to correctly to these A-queries, and that
R cannot use these to detect that A is being simulated. The second type of ciphertext query to
the A-oracle is one in which the corresponding the r and s values (that exist) were not submitted
to the G-oracle and H-oracle, respectively.

We argue that the second type of ciphertext query has negligible probability of being a valid
ciphertext, and therefore, reduction R cannot feasibly expect that the second type of ciphertext to
be valid, and therefore cannot feasibly expect to gain anything from the responses. More to the
point, there is negligible probability that the second type of query will be indistinguishable from
the case when G and H are random oracles and A is true adversary to RSA-OAEP. This is because
if R were to somehow generate a valid ciphertext of the second type of ciphertext it would have to
guess in advance correctly the outputs of the functions G and H which it has not yet seen, and the
probability of guessing them correctly is negligible.

5 Insecure Instantiations

In this section are considered some contrived insecure instantiations of G and H in RSA-OAEP and
their impact on its OW-CPA security. They serve to demonstrate that the particular instantiation
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of RSA-OAEP has some relevance, and that a security proof in the standard model should consider
G and H.

5.1 An Impractical Instantiation

The following is an impractical instantiation, because H is not efficiently computable. Set up the
parameters of RSA-OAEP so that r and z have the same bit length, and choose the length of these
to very close to the length of m. Choose G to be a zero constant value padded with the identity
function. Therefore (m‖z)⊕G(r) = m‖(z ⊕ r). The function H is defined implicitly by

H(m‖(r ⊕ z)) = h (6)

where h is a bit string such that

(m‖(r ⊕ z)‖(r ⊕ h))e ≡ m‖w mod n (7)

for some bit string w, if such an h exists. We call this a good case. If an h with this property does
not exist, then the output can be arbitrary, and this is the bad case.

We argue heuristically, that the good case for H occurs fairly frequently. Modeling the function
x 7→ xe mod n as random, we expect that for random choice of h, the probability of (7) is one over
the number of choices for m. But the number of choices for h is the same as the number of choices
for m, and thus we expect that about one choice of h will cause (7) to hold.

In the good case, the ciphertext generated upon encryption of m will contain the message m,
padded with some nonsense string w. This is clearly insecure in the OW-CPA sense, since with a
good probability the adversary can just read the plaintext immediately off the ciphertext.

5.2 A Practical Instantiation

Let G be a constant zero function, let e = 3, let z have length more than two-thirds of the ciphertext
length. A ciphertext then has the form c ≡ (m‖z‖s)3 mod n, for some unknown string s. It seems
plausible that algorithms similar to Coppersmith’s [Cop96] can be used to solve for m given c.
These algorithms invert the RSA function when given sufficient information about the input to the
RSA function, which in this case is represented by the fixed value z.

6 Conclusion

Metareductions show that it is difficult to prove the OW-CPA security of RSA-OAEP in the stan-
dard model.
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A Similar Work on Metareductions and OAEP

Metareductions are not new. Boneh and Venkatesan [BV98] give a metareduction that essentially
shows there is no reduction proving the equivalence of the low exponent RSA problem and integer
factorization. More precisely, they show there is no algebraic reduction, which is somewhat analo-
gous to our result that there is no strong reduction. Paillier and Vergnaud [PV05], who won the
best paper award at Asiacrypt 2005, give some similar results in the discrete log setting.

Shoup gives [Sho01] an argument that the design of OAEP cannot be proven secure when RSA is
replaced by an arbitrary trapdoor one-way function. He hypothesizes a pathological trapdoor one-
way function for which OAEP becomes insecure. This is more akin to the insecure instantiations
of RSA-OAEP proposed in this paper than to a metareduction.

The phenomenon of security proofs leading to attacks is not new either. Rabin’s digital signa-
tures and public key encryption had reductions showing that their the basic security against passive
adversaries was equivalent to the integer factorization problem. It was soon discovered, though,
that these reduction algorithms also led to an active attacks. Countermeasures have since been
discovered to thwart the active attacks.
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