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Abstract

We prove the equivalence of two definitions of non-malleable encryption, one based on the
simulation approach of Dolev, Dwork and Naor [6] and the other based on the comparison
approach of Bellare, Desai, Pointcheval and Rogaway [2]. The equivalence relies on a new char-
acterization of non-malleable encryption in terms of the standard notion of indistinguishability
of Goldwasser and Micali. We show that non-malleability is equivalent to indistinguishability
under a “parallel chosen ciphertext attack,” this being a new kind of chosen ciphertext attack we
introduce, in which the adversary’s decryption queries are not allowed to depend on answers to
previous queries, but must be made all at once. This characterization simplifies both the notion
of non-malleable encryption and its usage, and enables one to see more easily how it compares
with other notions of encryption. The results here apply to non-malleable encryption under any
form of attack, whether chosen-plaintext, chosen-ciphertext, or adaptive chosen-ciphertext.
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1 Introduction

Public-key encryption has several goals in terms of protecting the data that is encrypted. The
most basic is privacy, where the goal is to ensure that an attacker does not learn any useful
information about the data from the ciphertext. Indistinguishability and semantic security [9] are
formalizations of this goal. A second goal, introduced by Dolev, Dwork and Naor [6], is non-
malleability, which, roughly, requires that an attacker given a challenge ciphertext be unable to
modify it into another, different ciphertext in such a way that the plaintexts underlying the two
ciphertexts are “meaningfully related” to each other. Both these goals can be considered under
attacks of increasing severity: chosen-plaintext attacks, and two kinds of chosen ciphertext attacks
[15, 16].

Recent uses of public-key encryption have seen a growing need for, and hence attention to,
stronger than basic forms of security, like non-malleability. This kind of security is important
when encryption is used as a primitive in the design of higher level protocols, for example for
key distribution (cf. [1]). The interest is witnessed by attention to classification of the notions of
encryption [2, 6] and efficient constructions of non-malleable schemes [3, 5].

1.1 Themes in foundations of encryption

Our confidence that we have the “right” formalizations of privacy is due in part to results which
show that several definitions, based on different approaches and intuition, are the equivalent in the
sense that a scheme meets one definition if and only if it meets the others. In particular, definitions
based on indistinguishability, semantic security and computational entropy have been shown to be
equivalent [9, 17, 14]. These foundational results have since been refined and extended to other
settings [8]. These equivalences are a cornerstone of our understating of privacy.

Semantic security captures in perhaps the most direct way one’s intuition of a good notion of
privacy. (Roughly, it says that “whatever can be efficiently computed about a message given the
ciphertext can be computed without the ciphertext”). But it is a relatively complex and subtle
notion to formalize, and hard to use to analyze applications of encryption. Indistinguishability has
the opposite attributes. The formalization is simple, appealing and easy to use. (It says that if
we take two equal-length messages m0, m1, an adversary given an encryption of a random one of
them cannot tell which it was with a probability significantly better than that of guessing). It is
by far the first choice when analyzing the security of an encryption based application. But it is less
clear (by just a direct examination of the definition) that it really captures an intuitively strong
notion of privacy. However, we know it does, because it is in fact equivalent to semantic security.
Accordingly, we can view indistinguishability as a “characterization” of semantic security, a simple,
easy to use notion backed by the fact of being equivalent to the more naturally intuitive one.

Thus, beyond equivalences between notions, one also seeks characterizations that are simple
and easy to work with.

1.2 Questions for non-malleability

The foundations of non-malleable encryption are currently not as well laid as those of privacy, for
several reasons.

First, there are in the literature two formalizations. The first is the original one of Dolev,
Dwork and Naor [6], which we call simulation based non-malleability (SNM). A second approach
was introduced by Bellare, Desai, Pointcheval and Rogaway [2], and we call it comparison based non-
malleability (CNM). A priori, at least, the two seem to have important differences. Second, there is
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no simple and easy-to-use characterization of non-malleable encryption akin to indistinguishability
for privacy. Rather, the current formalizations of non-malleability follow the definitional paradigm
of semantic security and in particular both existing formulations are quite complex (even though
that of [2] is somewhat simpler than that of [6]), and subtle at the level of details. A consequence is
that non-malleability can be hard to use. The applicability of non-malleability would be increased
by having some simple characterization of the notion.

Although not required for the statement of our results, it may be instructive to try to convey
some rough idea of the existing definitional approaches. The definitions involve considering some
relation R between plaintexts, having an adversary output a distribution on some set of messages,
and then setting up a challenge-response game. The adversary is given as input a ciphertext y of
a plaintext x drawn from the message distribution, and must produce a vector of ciphertexts y,
none of whose components is y. If x is the plaintext vector corresponding to y, security requires,
roughly, that the adversary’s ability to make R(x,x) true in this game is not much more than her
ability to make it true had she had to produce y without being given y at all, namely given no
information about x other than its distribution. The two known definitions differ in how exactly
they measure the success in the last part of the game. The simulation-based notion, as the name
indicates, is based on the simulation paradigm: a scheme is secure if for any adversary there exists
a simulator which does almost as well without any information about the challenge ciphertext
given to the adversary. In the comparison-based formalization, there is no simulator. Instead, it
is required that the success probability of the adversary under the “real” challenge and a “fake”
challenge be about the same. Besides the fundamental difference of one being simulation based
and the other not, the first notion does not allow the simulator access to the decryption oracle
even when the adversary gets it —meaning when chosen-ciphertext attacks are being considered—
while, in this case, the second notion allows the adversary the same access to the decryption oracle
in both games.

1.3 The equivalence

In this paper we formalize a definition of simulation-based non-malleability and one of comparison-
based non-malleability and show that they are equivalent. The equivalence holds for the three
major classes of attacks usually considered in the literature, namely chosen-plaintext (CPA), type-
1 chosen ciphertext [2], also called lunch-time attack [15], and type-2 chosen ciphertext [2], also
called adaptive chosen-ciphertext attack [16, 6]. That is, for ATK ∈ {CPA, CCA1, CCA2} we have
notions SNM-ATK and CNM-ATK, and show they are equivalent. In other words, an encryption
scheme meets the SNM-ATK notion of security if and only if it meets the CNM-ATK notion of
security.

Our definitions are slightly stronger than the original ones of [6, 2] in one respect. Namely,
while the latter declare an adversary unsuccessful if its output y contains an invalid ciphertext, we,
instead, leave it up to the relation to decide whether the adversary wins or loses even in this case.
(As far as CNM-ATK goes, this is the only difference between our version and that of [2], but it
seems SNM-ATK differs from the notion of [6] in other minor ways too. See Section 6 for more
information.) Lindell [13] points to an advantage of the stronger SNM-ATK, CNM-ATK notions we
have introduced, namely that they imply non-malleability of the encryption of multiple ciphertexts
(interestingly, the proof of this relies on the characterization we discuss next) which he shows is not
true of the original definition of [6]. Another advantage of our notions, of course, is the equivalence
itself. We note that also in (past) work on privacy, it has not been uncommon to slightly modify
existing definitions to establish equivalences, so that such endeavors and results also serve to refine
our definitions.
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Thus, we are saying that two formalizations of non-malleability that are underlain by some-
what different intuitions are, in fact, capturing the same underlying notion. Like the equivalences
amongst notions of privacy, this result serves to strengthen our conviction that this single, unified
notion of non-malleability is in fact the appropriate one.

1.4 An indistinguishability-based characterization

Perhaps even more interesting than the above-mentioned equivalence is a result used to prove it.
This is a new characterization of non-malleability that we feel simplifies the notion, makes it easier to
use in applications, and increases our understanding of it and its relation to the more classic notions.
Roughly speaking, we show that non-malleability is actually just a form of indistinguishability,
but under a certain special type of chosen-ciphertext attack that we introduce and call a parallel

chosen-ciphertext attack. Thus, what appears to be a different adversarial goal (namely, the ability
to modify a ciphertext in such a way as to create relations between the underlying plaintexts)
corresponds actually to the standard goal of privacy, as long as we add power to the attack model.

Our characterization dispenses with the relation R and the message space: it is just about
a game involving two messages. To illustrate, consider non-malleability under chosen-plaintext
attack. Our characterization says this is equivalent to indistinguishability under a parallel chosen-
ciphertext attack. In this attack, the adversary gets to ask a single vector query of the decryption
oracle. This means it specifies a sequence c[1], . . . , c[n] of ciphertexts, and obtains the corresponding
plaintexts p[1], . . . ,p[n] from the oracle. But the choice of c[2] is not allowed to depend on the
answer to c[1], and so on. (So we can think of all the queries as made in parallel, hence the name.
Perhaps a better name would have been non-adaptive queries, but the term non-adaptive is already
in use in another way in this area and was best avoided.) This query is allowed to be a function
of the challenge ciphertext. In more detail the game is that we take two equal-length messages
m0, m1, give the adversary a ciphertext y of a random one of them, and now allow it a single
parallel vector decryption oracle query, the only constraint on which is that the query not contain
y in any component. The adversary wins if it can then say which of the two messages m0, m1

had been encrypted to produce the challenge y, with a probability significantly better than that of
guessing.

Thus, as mentioned above, our notion makes no mention of a relation R or a probability space
on messages, let alone of a simulator. Instead, it follows an entirely standard paradigm, the only
twist being the nature of the attack model, or alternatively, what is given to the distinguisher. See
the end of Section 4 for further intuition.

A special case that might be worth noting is that when the relation R is binary, the parallel
attack need contain just one ciphertext. In general, the number of parallel queries needed is one
less than the arity of R.

The characterization holds for all three forms of attack ATK ∈ {CPA, CCA1, CCA2}. We
introduce parallel chosen-ciphertext attacks PCAX ∈ {PCA0, PCA1, PCA2} corresponding to each
of these, and show that CNM-ATK and SNM-ATK are equivalent to IND-PCAX.

1.5 Discussion, extensions and other relations

Six notions of encryption, namely non-malleability and indistinguishability, each under the three
forms of attack, are related in [2, 6] by showing either an implication or a separation between
each pair of notions. The same picture emerges even though the two works use different for-
malizations of non-malleability. Given that our notions of non-malleability are slightly different
from the ones used in either of these papers, we revisit this question. However, as indicated in
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Figure 1, we again show that the same relations continue to hold, meaning the picture is the
same as before modulo the substitution of the new notions of non-malleability. In particular,
CNM-CCA2, SNM-CCA2 and IND-PCA2 are all equivalent to the standard IND-CCA2. We note
that our characterization in terms of indistinguishability under parallel attack helps to provide
simpler proofs of these implications and separations than given in [2, 6] because it reduces us to
considering relations between five notions of indistinguishability, namely indistinguishability under
the attacks CPA, PCA0, CCA1, PCA1 and CCA2 = PCA2. See Section 6 for more details.

The proceedings version of our paper [4] had claimed that our results held for the original def-
initions of non-malleability of [6, 2]. (Actually, the formal definitions in [4] had been of the same
stronger SNM-ATK and CNM-ATK notions defined here, and the theorems and proofs correctly
established the same relations as here, but the Introduction, and discussion surrounding the defini-
tions, had given the impression that we were talking about the original notions.) This discrepancy
was pointed out to us by Lindell [13] and is rectified in the current version. Section 6 discusses in
more detail the relations between the old and new notions.

1.6 Related work

Halevi and Krawczyk introduce a weak version of chosen-ciphertext attack which they call a one-
ciphertext verification attack [10]. This is not the same as a parallel attack. In their attack, the
adversary generates a single plaintext along with a candidate ciphertext, and is allowed to ask a
verification query, namely whether or not the pair is valid. In our notion, the adversary has more
power: it can access the decryption oracle.

Katz and Yung [12] provide relations among notions of security for symmetric (i.e. shared
key) encryption schemes. In this context they mention that the stronger form of non-malleability
(considered here) in which we do not impose an automatic fail on the adversary depending on
whether the ciphertext vector contains an invalid ciphertext, may be more appropriate for some
applications, and its use would simplify their proofs.

2 Preliminaries

Notation. Let N = {1, 2, 3, . . .} denote the set of positive integers. Unless otherwise indicated,
an algorithm is randomized. If A is an algorithm, then A(x1, x2, . . . ; r) is the result of running A

on inputs x1, x2, . . . and coins r. We let y
$
← A(x1, x2, . . .) denote the experiment of picking r at

random and letting y = A(x1, x2, . . . ; r). We say that y can be output by A(x1, x2, . . .) if there is
some r such that A(x1, x2, . . . ; r) = y. We denote by “X ⇒ x” the event that algorithm X has
output x. An experiment is an algorithm. When say that a tuple A = (A1, A2, . . .) of algorithms
is polynomial time we mean that each component algorithm is polynomial time. If S is a finite set

then x
$
← S is the operation of picking an element uniformly at random from S.

Encryption schemes. An asymmetric encryption scheme is given by a triple of algorithms,
Π = (K, E ,D), where

• K, the key generation algorithm takes a security parameter k ∈ N (provided in unary) and
returns a pair (pk, sk) of matching public and secret keys.

• E , the encryption algorithm, takes a public key pk and a message x ∈ {0, 1}∗ to produce a
ciphertext y.

• D, the decryption algorithm, is a deterministic algorithm which takes a secret key sk and
ciphertext y to produce either a message x ∈ {0, 1}∗ or a special symbol ⊥ to indicate that the
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ciphertext was invalid.

We require that for all positive integers k, all (pk, sk) which can be output by K(1k), all x ∈ {0, 1}∗,
and all y that can be output by Epk(x), we have that Dsk(y) = x. We also require that K, E and D
can be computed in polynomial time. As the notation indicates, the keys are indicated as subscripts
to the algorithms.

Further notation and terminology. We will need to discuss vectors of plaintexts or cipher-
texts. A vector is denoted in boldface, as in x. We denote by |x| the number of components in
x, and by x[i] the i-th component, so that x = (x[1], . . . ,x[|x|]). We extend the set membership
notation to vectors, writing x ∈ x or x 6∈ x to mean, respectively, that x is in or is not in the set
{ x[i] : 1 ≤ i ≤ |x| }. It will be convenient to extend the decryption notation to vectors with the
understanding that operations are performed component-wise. Thus x ← Dsk(y) is shorthand for
the following:

For i = 1, . . . , |y| do x[i]← Dsk(y[i]) .

Recall that a function ε : N→ R is negligible if for every constant c ≥ 0 there exists an integer kc

such that ε(k) ≤ k−c for all k ≥ kc.

3 Two definitions of non-malleable encryption

In the setting of non-malleable encryption, the goal of an adversary, given a ciphertext y, is not (as
with indistinguishability) to learn something about its plaintext x, but rather to output a vector y

of ciphertexts whose decryption x is “meaningfully related” to x, meaning that R(x,x) holds for
some relation R. There are several approaches to formalizing security. One approach is that of [6],
which asks that for every adversary there exists an appropriate “simulator” that does just as well as
the adversary but without being given y. Another, somewhat simpler approach is that of [2], where
there is no simulator: security is defined by comparing the success probability of the adversary
given y to the success of the same adversary given the encryption of a message unrelated to x. We
begin by presenting below a formal definition corresponding to each of these two approaches.

3.1 Definition of SNM

In this subsection we describe a definition of non-malleable encryption based on the approach of [6].
We call it SNM for “simulation based non-malleability.”

Our SNM formulation fixes a polynomial time computable relation R, which is viewed as taking
four arguments, x,x, M, s1, with x being a vector with an arbitrary number of components, each
component drawn from {0, 1}∗ ∪ {⊥}. The relation returns true or false. Given any such input,
the relation returns either true or false.

The adversary A = (A1, A2) runs in two stages. The first stage of the adversary, namely A1,
is given the public key pk and computes (the encoding of) a distribution M on messages (strings)
and also some state information: a string s1 to pass to the relation R, and a string s2 to pass on
to A2. (At A1’s discretion, either of these might include M and pk.) We call M the message space.
It must be valid, which means that all strings having non-zero probability under M are of the same
length.

The second stage of the adversary, namely A2, receives s2 and the encryption y of a random
message x drawn from M . Algorithm A2 then outputs a vector of ciphertexts y. We say that A is
successful if R(x,x, M, s1) holds, and require that y 6∈ y.
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The requirement for security is that for any polynomial time adversary A and any polynomial
time relation R there exists a polynomial time S = (S1, S2), the simulator, that, without being
given y, has about the same success probability as A. The experiment here is that S1 is first run
on pk to produce M, s1, s2, then x is selected from M , then S2 is run on s2 (but no encryption of
x) to produce y. Success means x = Dsk(y) satisfies R(x,x, M, s1). Again, M is required to be
valid.

For CCA2 both A1 and A2 get the decryption oracle, but A2 is not allowed to call it on the
challenge ciphertext y; for CCA1 just A1 gets the decryption oracle; and for CPA neither A1 nor
A2 get it. However, a key feature of the SNM definition is that no matter what the attack, the

simulator does not get a decryption oracle, even though the adversary may get one.
We now provide a formal definition for simulation-based non-malleability. When we say Oi = ε,

where i ∈ {1, 2}, we mean Oi is the function which, on any input, returns the empty string, ε. We
let the string atk be instantiated by any of the formal symbols cpa, cca1, cca2, while ATK is then
the corresponding formal symbol from CPA, CCA1, CCA2.

Definition 3.1 [SNM-CPA, SNM-CCA1, SNM-CCA2] Let Π = (K, E ,D) be an encryption scheme,
let R be a relation, let A = (A1, A2) be an adversary consisting of a pair of algorithms, and let
S = (S1, S2) be a pair of algorithms that we call the simulator. For atk ∈ {cpa, cca1, cca2} and
k ∈ N define

Advsnm-atk
A,S,Π,R(k)

def
= Pr[Exptsnm-atk

A,Π,R (k)⇒ 1 ]− Pr[Exptsnm-atk
S,Π,R (k)⇒ 1 ] ,

where

Exptsnm-atk
A,Π,R (k)

(pk, sk)
$
← K(1k)

(M, s1, s2)
$
← AO1

1 (pk)

x
$
←M ; y

$
← Epk(x)

y
$
← AO2

2 (s2, y)
x← Dsk(y)
If R(x,x, M, s1) then return 1
Else return 0

Exptsnm-atk
S,Π,R (k)

(pk, sk)
$
← K(1k)

(M, s1, s2)
$
← S1(pk)

x
$
←M

y
$
← S2(s2)

x← Dsk(y)
If R(x,x, M, s1) then return 1
Else return 0

and

If atk = cpa then O1(·) = ε and O2(·) = ε
If atk = cca1 then O1(·) = Dsk(·) and O2(·) = ε
If atk = cca2 then O1(·) = Dsk(·) and O2(·) = Dsk(·)

We only consider adversaries A that are legitimate in the sense that with probability one the
following are true in the first experiment: message space M is valid, y 6∈ y, and, in the case of
CCA2, adversary A2 does not query its decryption oracle with the challenge ciphertext y. We only
consider simulators that are legitimate in the sense that message space M in the second experiment
is valid. We say that Π is secure in the sense of SNM-ATK if for every polynomial p(k), every R
computable in time p(k), every (legitimate) A that runs in time p(k) and outputs a message space
M sampleable in time p(k), there exists a (legitimate) polynomial-time simulator S = (S1, S2) such
that Advsnm-atk

A,S,Π,R(·) is negligible.

The condition that y 6∈ y is made in order to not give the adversary credit for the trivial and
unavoidable action of copying the challenge ciphertext. The requirement that M is valid stems
from the fact that encryption is not intended to conceal the length of the plaintext.
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3.2 Definition of CNM

In this subsection we describe a definition of non-malleable encryption based on the approach of
[2]. We call it CNM for “comparison based non-malleability.”

The adversary C = (C1, C2) runs in two stages. The first stage of the adversary, namely C1, is
given the public key pk, and outputs a description of a valid message space, described by a sampling
algorithm M , as well as state information s to pass on to C2. The second stage of the adversary,
namely C2, receives s and an encryption y of a random message x drawn from M . It then outputs a
(description of a) relation R together with a vector y, where R is viewed as taking two arguments,
x,x, with x being a vector with an arbitrary number of components, each component drawn from
{0, 1}∗ ∪{⊥}. The relation returns true or false. We consider the probability that R(x,x) holds,
where x = Dsk(y) and it is required that y 6∈ y. Alongside, we consider the probability that R(x,x)
holds, again requiring y 6∈ y, if C2 had been given as input not an encryption of x but rather an
encryption of some x̃ also chosen uniformly from M , independently of x. The advantage of the
adversary is the difference between these two probabilities.

We now provide the formal definition. Below we let the string atk be instantiated by any
of the formal symbols cpa, cca1, cca2, while ATK is then the corresponding formal symbol from
CPA, CCA1, CCA2.

Definition 3.2 [CNM-CPA, CNM-CCA1, CNM-CCA2] Let Π = (K, E ,D) be an encryption scheme
and let C = (C1, C2) be an adversary consisting of a pair of algorithms. For atk ∈ {cpa, cca1, cca2}
and k ∈ N define

Advcnm-atk
C,Π (k)

def
= Pr[Exptcnm-atk-1

C,Π (k)⇒ 1 ]− Pr[Exptcnm-atk-0
C,Π (k)⇒ 1 ] ,

where

Exptcnm-atk-1
C,Π (k)

(pk, sk)
$
← K(1k)

(M, s)
$
← CO1

1 (pk)

x
$
←M

y
$
← Epk(x)

(R,y)
$
← CO2

2 (s, y)
x← Dsk(y)
If R(x,x) then return 1 else return 0

Exptcnm-atk-0
C,Π (k)

(pk, sk)
$
← K(1k)

(M, s)
$
← CO1

1 (pk)

x
$
←M ; x̃

$
←M

ỹ
$
← Epk(x̃)

(R, ỹ)
$
← CO2

2 (s, ỹ)
x̃← Dsk(ỹ)
If R(x, x̃) then return 1 else return 0

and

If atk = cpa then O1(·) = ε and O2(·) = ε
If atk = cca1 then O1(·) = Dsk(·) and O2(·) = ε
If atk = cca2 then O1(·) = Dsk(·) and O2(·) = Dsk(·)

We only consider adversaries C that are legitimate in the sense that with probability one the
following are true in both experiments: message space M is valid, y 6∈ y, and, in the case of CCA2,
adversary C2 does not query its decryption oracle with the challenge ciphertext y. We say that Π is
secure in the sense of CNM-ATK if for every polynomial p(k), every (legitimate) C that runs in time
p(k), outputs a message space M sampleable in time p(k), and outputs a relation R computable in
time p(k), it is the case that Advcnm-atk

C,Π (·) is negligible.

The major difference between SNM and CNM is that the former asks for a simulator and the latter
does not, but some more minor differences exist too. For example in SNM the relation R is fixed
beforehand, while in CNM it is generated dynamically by the adversary in its second stage.
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4 Indistinguishability under parallel chosen-ciphertext attack

We present a new notion of security for a public key encryption scheme that we call indistin-
guishability under a parallel chosen-ciphertext attack. It is in the style of the classical definition
of indistinguishability of encryptions from [9, 14]. Here, malleability is not evident in any explicit
way; there is no relation R, and the adversary does not output ciphertexts, but rather tries to
predict information about the plaintext. Nonetheless we will show that this notion is equivalent to
both forms of non-malleability given above.

In the attack, the adversary is allowed to query the decryption oracle a polynomial number
of times, but the different queries made are not allowed to depend on each other. A simple way
to visualize this is to imagine the adversary making the queries “in parallel,” as a vector c where
c[1], . . . , c[n] are ciphertexts, for n = |c|. The oracle replies withDsk(c) = (Dsk(c[1]), . . . ,Dsk(c[n])),
the vector of the corresponding plaintexts. Only one of these parallel queries is allowed, and it is
always in the second stage, meaning can be a function of the challenge ciphertext.

It is convenient to make the parallel query quite explicit in the formalization. The adversary
I = (I1, I2, I3) runs in three stages. The first stage of the adversary, namely I1, is given the public
key pk and computes a pair x0, x1 of messages (strings), required to be of the same length, and
also some state information s1 to pass on to the second stage. A random one of x0 and x1 is now
selected, say xb. A “challenge” y is determined by encrypting xb under pk. The second stage of the
adversary, namely I2, receives s1 and y, and outputs a parallel query c and state information s2.
We require that y 6∈ c. The reply p = Dsk(c) to this query, a vector with entries in {0, 1}∗∪{⊥}, is
now computed. The third stage of the adversary, namely I3, receives p and s2, and outputs a bit g
that is its “guess” as to the value of the challenge bit b. The adversary wins if g = b. Its advantage
is the excess over one-half of the probability that it wins, scaled up to be a number between zero
and one.

We can add this parallel attack to any of the previous attacks CPA, CCA1, CCA2, yielding
respectively the attacks PCA0, PCA1, PCA2. Note that since in CCA2, the second stage of the
adversary can already do adaptive chosen ciphertext attacks, giving it the ability to perform a
parallel attack yields no additional power, so in fact CCA2 = PCA2. For concision and clarity
we simultaneously define indistinguishability with respect to PCA0, PCA1, and PCA2. The only
difference lies in whether or not I1 and I2 are given decryption oracles. We let the string atk be
instantiated by any of the formal symbols pca0, pca1, pca2, while ATK is then the corresponding
formal symbol from PCA0, PCA1, PCA2.

Definition 4.1 [IND-PA0, IND-PA1, IND-PA2] Let Π = (K, E ,D) be an encryption scheme and
let I = (I1, I2, I3) be an adversary consisting of a triple of algorithms. For atk ∈ {pca0, pca1, pca2}
and k ∈ N, let

Advind-atk
I,Π (k)

def
= 2 · Pr[Exptind-atk-b

I,Π (k)⇒ b ]− 1

where the probability is over a random choice of b from {0, 1} and over the coins of the following
experiment defined for each b ∈ {0, 1}:

Exptind-atk-b
I,Π (k)

(pk, sk)
$
← K(1k)

(x0, x1, s1)
$
← IO1

1 (pk) ; y
$
← Epk(xb)

(c, s2)
$
← IO2

2 (x0, x1, s1, y) ; p← Dsk(c)

g
$
← IO2

3 (p, s2)
Return g
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and

If atk = pca0 then O1(·) = ε and O2(·) = ε
If atk = pca1 then O1(·) = Dsk(·) and O2(·) = ε
If atk = pca2 then O1(·) = Dsk(·) and O2(·) = Dsk(·)

We only consider adversaries I that are legitimate in the sense that for each b ∈ {0, 1}, with
probability one the following is true in the above experiment: |x0| = |x1|, y 6∈ c and, in the case
of CCA2, adversary I2 does not query its decryption oracle with the challenge ciphertext y. We
say that Π is secure in the sense of IND-ATK if Advind-atk

I,Π (·) is negligible for every (legitimate)
polynomial-time adversary I.

Note that IND-PCA2 is equivalent to IND-CCA2. Indeed, in the CCA2 case, the parallel query is
redundant since the adversary already has a decryption oracle in the second stage.

It is convenient for some of our proofs to exploit the following alternative formulation of the
advantage:

Lemma 4.2 Let Π be an encryption scheme and let I = (I1, I2, I3) be an adversary. Then for
atk ∈ {pca0, pca1, pca2} and all k ∈ N we have:

Advind-atk
I,Π (k) = Pr[Exptind-atk-1

A,Π (k)⇒ 1 ]− Pr[Exptind-atk-0
A,Π (k)⇒ 1 ] .

The proof is a standard conditioning argument, but we would like to give the details for complete-
ness.

Proof of Lemma 4.2: Taking the probability over a random choice of b ∈ {0, 1} and the coins
of the experiments involved, we have

1

2
+

1

2
· Advind-atk

I,Π (k)

= Pr[Exptind-atk-b
I,Π (k)⇒ b ]

= Pr
[

Exptind-atk-b
I,Π (k)⇒ b | b = 1

]

· Pr[ b = 1 ] + Pr
[

Exptind-atk-b
I,Π (k)⇒ b | b = 0

]

· Pr[ b = 0 ]

= Pr[Exptind-atk-1
I,Π (k)⇒ 1 ] ·

1

2
+ Pr[Exptind-atk-0

I,Π (k)⇒ 0 ] ·
1

2

= Pr[Exptind-atk-1
I,Π (k)⇒ 1 ] ·

1

2
+

(

1− Pr[Exptind-atk-0
I,Π (k)⇒ 1 ]

)

·
1

2

= Pr[Exptind-atk-1
I,Π (k)⇒ 1 ] ·

1

2
− Pr[Exptind-atk-0

I,Π (k)⇒ 1 ] ·
1

2
+

1

2
.

Rearranging terms completes the proof of the lemma.

Some Intuition. One reason the indistinguishability-based formulation of privacy is so-named is
that it is equivalent to saying that the output of an adversary when given an encryption of m0 is
computationally indistinguishable from the output of the adversary when given an encryption of
m1, where m0, m1 are messages it itself previously produced. Our new notion of indistinguishability
under parallel chosen-ciphertext attack extends this in the following way. After an adversary chooses
m0, m1, allow it to output two things, namely an arbitrary string, and a set of ciphertexts that we
shall call the adversarial ciphertexts. Our definition requires that the adversary’s output, together

with the decryptions of the adversarial ciphertexts, be computationally indistinguishable in the two
cases. (Namely, when it got an encryption of m0 as input and when it got an encryption of m1
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as input.) In other words, when an encryption of m0 given to the adversary is replaced with an
encryption of m1, even the contents of encrypted messages that the adversary sends can’t change
in any computationally noticeable way. This might make the relation to non-malleability that we
establish more intuitive.

5 Results

We show that the three notions defined above are equivalent.

5.1 Result statements

The following sequence of theorems establishes the equivalence of all three notions discussed above.

Theorem 5.1 [CNM-ATK → SNM-ATK] For any ATK ∈ {CPA, CCA1, CCA2}, if encryption
scheme Π is secure in the sense of CNM-ATK then Π is secure in the sense of SNM-ATK.

The proof of the above is in Section 5.2.

Theorem 5.2 [SNM-ATK → IND-PCAX] For any ATK ∈ {CPA, CCA1, CCA2}, if encryption
scheme Π is secure in the sense of SNM-ATK then Π is secure in the sense of IND-PCAX, where

If ATK = CPA then PCAX = PCA0
If ATK = CCA1 then PCAX = PCA1
If ATK = CCA2 then PCAX = PCA2

The proof of the above is in Section 5.3.

Theorem 5.3 [IND-PCAX→ CNM-ATK] For any PCAX ∈ {PCA0, PCA1, PCA2}, if encryption
scheme Π is secure in the sense of IND-PCAX then Π is secure in the sense of CNM-ATK, where

If PCAX = PCA0 then ATK = CPA
If PCAX = PCA1 then ATK = CCA1
If PCAX = PCA2 then ATK = CCA2

The proof of the above is in Section 5.4.

5.2 Proof of Theorem 5.1: CNM→ SNM

Let us first consider the case that ATK = CPA. Namely we claim that CNM-CPA implies
SNM-CPA. Intuitively, the CNM-CPA definition can be viewed as requiring that for every ad-
versary A there exist a specific type of simulator, which we can call a “canonical simulator,”
A′ = (A1, A

′
2). The first stage, as the notation indicates, is identical to that of A. The second

simulator stage A′
2 simply chooses a random message from the message space M that was output

by A1, and runs the adversary’s second stage A2 on the encryption of that message. Since A does
not have a decryption oracle, A′ can indeed do this. With some additional appropriate tailoring
we can construct a simulator that meets the conditions of the definition of SNM-CPA.

Let us try to extend this line of thought to CCA1 and CCA2. If we wish to continue to think
in terms of the canonical simulator, the difficulty is that this “simulator” would, in running A, now
need access to a decryption oracle, which is not allowed under SNM. Thus, it might appear that
CNM-ATK is actually weaker than SNM-ATK for ATK 6= CPA, corresponding to the ability to
simulate by simulators which are also given the decryption oracle.
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However, this appearance is false. In fact, CNM-ATK is not weaker; rather, CNM-ATK implies
SNM-ATK for all three types of attacks ATK, including CCA1 and CCA2. (In other words, if
a scheme meets the CNM-ATK definition, it is possible to design a simulator according to the
SNM-ATK definition.)

Proof of Theorem 5.1: Let Π = (K, E ,D) be the given encryption scheme. Let relation R and
adversary A = (A1, A2) be given. To show the scheme is secure in the sense of SNM-ATK we need
to construct a simulator S = (S1, S2). The idea is that S will run A on a newly chosen public key
whose corresponding decryption key it knows:

Algorithm S1(pk)

(pk′, sk′)
$
← K(1k)

(M, s1, s2)
$
← AÕ1

1 (pk′)
s̃2 ← (M, s2, pk, pk′, sk′)
Return (M, s1, s̃2)

Algorithm S2(s̃2) where s̃2 = (M, s2, pk, pk′, sk′)

x̃
$
←M ; ỹ

$
← Epk′(x̃)

ỹ
$
← AÕ2

2 (s2, ỹ) ; x̃← Dsk′(ỹ) ; y
$
← Epk(x̃)

Return y

where

If atk = cpa then Õ1(·) = ε and Õ2(·) = ε

If atk = cca1 then Õ1(·) = Dsk′(·) and Õ2(·) = ε

If atk = cca2 then Õ1(·) = Dsk′(·) and Õ2(·) = D′
sk′(·)

A key point is that the simulator, being in possession of sk′, can indeed run A with the stated
oracles. (That’s how it avoids needing access to the “real” oracles O1,O2 that are provided to A
and might depend on sk.) Now we want to show that Advsnm-atk

A,S,Π,R(·) is negligible. We will do this
using the assumption that Π is secure in the sense of CNM-ATK. To that end, we consider the
following adversary C = (C1, C2) attacking Π in the sense of CNM-ATK:

Algorithm CO1

1 (pk)

(M, s1, s2)
$
← AO1

1 (pk)
Return (M, (M, s1, s2))

Algorithm CO2

2 ((M, s1, s2), y)
Define R′ by R′(a,b) = 1 iff R(a,b, M, s1) = 1

y
$
← AO2

2 (s2, y)
Return (R′,y)

It is clear from the definition of C that

Pr[Exptcnm-atk-1
C,Π (k)⇒ 1 ] = Pr[Exptsnm-atk

A,Π,R (k)⇒ 1 ]

for all k ∈ N. Now, let us expand the definition of Exptsnm-atk
S,Π,R (k), substituting in the definition of

S given above. We get the code on the left below:
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01. (pk, sk)
$
← K(1k)

02. (pk′, sk′)
$
← K(1k)

03. (M, s1, s2)
$
← AÕ1

1 (pk′)
04. s′2 ← (M, s2, pk, pk′, sk′)

05. x
$
←M ; x̃

$
←M

06. ỹ
$
← Epk′(x̃)

07. ỹ
$
← AÕ2

2 (s2, ỹ)
08. x̃← Dsk′(ỹ)

09. y
$
← Epk(x̃)

10. x← Dsk(y)
11. If R(x,x, M, s1) then return 1
12. Else return 0

(pk′, sk′)
$
← K(1k)

(M, s1, s2)
$
← AÕ1

1 (pk′)

x
$
←M ; x̃

$
←M

ỹ
$
← Epk′(x̃)

ỹ
$
← AÕ2

2 (s2, ỹ)
x̃← Dsk′(ỹ)

If R(x, x̃, M, s1) then return 1
Else return 0

Examining the code on the left we notice that x = x̃. This means that we can substitute x̃ for x

in line 11. This means x,y are not used in determining what the code returns, and thus lines 09,
10 can be dropped. Line 04 can also be dropped, because s′2 is never referred to. Since this means
that pk, sk are no longer referred to, line 01 can be dropped as well. The resulting code is on the
right above. We see that this code is equivalent to that of Exptcnm-atk-0

C,Π (k), so that

Pr[Exptcnm-atk-0
C,Π (k)⇒ 1 ] = Pr[Exptsnm-atk

S,Π,R (k)⇒ 1 ]

for all k ∈ N. Thus for all k ∈ N we have

Advsnm-atk
A,S,Π,R(k) = Advcnm-atk

C,Π (k) .

But Π is assumed secure in the sense of CNM-ATK, so Advcnm-atk
C,Π (·) is negligible. The above implies

that Advsnm-atk
A,S,Π,R(·) is negligible too. So Π is secure in the sense of SNM-ATK.

5.3 Proof of Theorem 5.2: SNM-ATK→ IND-PCAX

The case that ATK = CCA2 is easy since, as we have already noted, IND-PCA2 = IND-CCA2,
and thus our claim is simply that SNM-CCA2 → IND-CCA2, which can be shown just as in [6].
Let us discuss the interesting case, namely when ATK ∈ {CPA, CCA1}.

We are assuming that encryption scheme Π is secure in the SNM-ATK sense. We will show it
is also secure in the IND-PCAX sense. Let I = (I1, I2, I3) be an IND-PCAX adversary attacking
Π. We want to show that Advind-atk

I,Π (·) is negligible. To this end, we describe a relation R and an
SNM-ATK adversary A = (A1, A2) attacking Π using R. We wish to show that A will have the
same advantage attacking Π using R as I has as an IND-PCAX adversary using a parallel attack.
What allows us to do this is to pick the relation R to capture the success condition of I’s parallel
attack.

To get some intuition it is best to think of ATK = CPA, meaning A is allowed only a chosen-
plaintext attack. However, I has (limited) access to a decryption oracle; it is allowed the parallel
query. How then can A “simulate” I? The key observation is that the non-malleability goal involves
an “implicit” ciphertext attack on the part of the adversary, even under CPA. This arises from the
ciphertext vector y that such an adversary outputs. It gets decrypted, and the results are fed into
the relation R. Thus, the idea of our proof is to make A output, as its final response, the parallel
query that I will make. Now, I would expect to get back the response and compute with it, which
A can’t do; once it has output its final ciphertext, it stops, and the relation R gets evaluated on
the corresponding plaintext. So we define R in such a way that it “completes” I’s computation.
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A useful way to think about this is as if A were trying to “communicate” with R, passing it the
information that R needs to execute I.

Notice that for this to work it is crucial that I’s query is a parallel one. If I were making the
usual adaptive queries, A could not output a single ciphertext vector, because it would have to
know the decryption of the first ciphertext query before it would even know the ciphertext which
is the second query. Yet, for the non-malleability game, A must output a single vector.

This is the rough idea. There are a couple of subtleties. R needs to know several pieces of
information that depend on the computation of some stages of I, such as coin tosses. A must
communicate them to R. The only mechanism that A has to communicate with R is via the
ciphertext vector y that A outputs, whose decryption is fed to R. So any information that A wants
to pass along, it encrypts and puts in this vector.

Now let us provide a more complete description.

Proof of Theorem 5.2: Suppose we are given IND-PCAX adversary I = (I1, I2, I3). We assume
that the two messages m0, m1 output by I1 are always distinct. This is wlog because we can always
modify I to make this true without decreasing its advantage, as follows: any time I1 outputs equal
messages, we have it instead output some unequal ones, say 0 and 1, and have I3 return a random
bit as its guess.

The first case in the proof is that ATK ∈ {CPA, CCA1}. We define SNM-ATK adversary A =
(A1, A2) as follows:

Algorithm AO1

1 (pk)

(m0, m1, t1)
$
← IO1

1 (pk)
M ← {m0, m1}
s1 ← (m0, m1)
s2 ← (m0, m1, t1, pk)
Return (M, s1, s2)

Algorithm A2(s2, y) where s2 = (m0, m1, t1, pk)

(c, t2)
$
← I2(m0, m1, t1, y)

Choose random coins σ for I3

e1
$
← Epk(t2) ; e2

$
← Epk(σ)

y← (e1, e2, c[1], . . . , c[|c|])
Return y

Above, by M ← {m0, m1} we mean that M is (a canonical encoding of) the message space that
puts a uniform distribution on the set {m0, m1}. Notice above that A2 picks coins σ for I3. We
can think of each stage of I as picking its own coins afresh, since any information needing to be
communicated from stage to stage is passed along in the state information.

Before making any claims about security, we need to address a technical point. We need A to
be legitimate, which means we require that y 6∈ {e1, e2}. To ensure this, we can modify I if
necessary to ensure that t2 6∈ {m0, m1} and σ 6∈ {m0, m1} —and hence that y 6∈ {e1, e2}— without
affecting its advantage. We could do this, for example, by ensuring that |t2| > l and |σ| > l where
l = |m0| = |m1|. In the first case, just append some extra bits to t2 and ask the algorithm I3 that
uses t2 to ignore these bits. In the second case, increase the length of the random tape of I3. (The
algorithm can use the appropriate prefix.)

Now, let us specify the relation R:

Relation R(x,x, M, s1)
If s1 is not a pair of distinct strings then return false

Let m0, m1 be such that s1 = (m0, m1)
If |x| < 2 then return false

t2 ← x[1] ; σ ← x[2] ; p← (x[3], . . . ,x[|x|])
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If M 6= {m0, m1} then return false

If x = m0 then b← 0 else b← 1
g ← I3(p, t2; σ)
If g = b then return true else return false

The 5th line above tests that M is a canonical encoding of the message space that puts a uniform
distribution on {m0, m1}, where m0, m1 are the distinct messages specified by s1. Notice that R is
polynomial time computable. Also notice we use the assumption that ATK 6= CCA2, for otherwise
I3 needs a decryption oracle and R could not execute it.

We claim that

Pr[Exptind-atk-b
I,Π (k)⇒ b ] = Pr[Exptsnm-atk

A,Π,R (k)⇒ 1 ] (1)

for all k ∈ N, where the probability is over a random choice of b from {0, 1} and the coins of the
experiments. This can be seen by examining the experiments in question and using the definitions
of R and A above. Notice that we use here the fact that the messages m0, m1 are always distinct,
which tells us that the bit b computed by the relation identifies the challenge message.

The assumption that Π is secure in the sense of SNM-ATK tell us that there is a polynomial-time
simulator S = (S1, S2) such that Advsnm-atk

A,S,Π,R(·) is negligible. We claim that

Pr[Exptsnm-atk
S,Π,R (k)⇒ 1 ] ≤

1

2
(2)

for all k ∈ N. This is justified as follows. By construction, in order to satisfy R, the first stage S1 of
S must set its output state s1 to be a pair of distinct strings which we now denote (m0, m1). Also,
it must set M to the uniform distribution on {m0, m1}, and, to be valid, must make the lengths
of m0 and m1 the same. Let p be the probability with which all this happens. Let x = mc be the
random message chosen in Exptsnm-atk

S,Π,R (k). So c is a random bit. Then the bit b computed by R
equals c. On the other hand, S2 gets no information about x, and thus b. So the ciphertext vector
y that S2 outputs, and hence the inputs p, t2 and coins σ on which R runs I3, are independent of
b, and hence so is the bit g output by I3. Thus the probability that b = g is p/2 ≤ 1/2.

Now, for any k ∈ N we have the following, where the probability is over a random choice of b from
{0, 1} and the coins of the experiments:

Advind-atk
I,Π (k) = 2 · Pr[Exptind-atk-b

I,Π (k)⇒ b ]− 1

= 2 · Pr[Exptsnm-atk
A,Π,R (k)⇒ 1 ]− 1

≤ 2 · Pr[Exptsnm-atk
A,Π,R (k)⇒ 1 ]− 2 · Pr[Exptsnm-atk

S,Π,R (k)⇒ 1 ]

= 2 · Advsnm-atk
A,S,Π,R(k) .

The first equation above is by Definition 4.1. The second uses Equation (1). In the next step we
used Equation (2), and lastly Definition 3.1. Finally, since Advsnm-atk

A,S,Π,R(·) is negligible, the proof is
complete for the case that ATK ∈ {CPA, CCA1}.

We now consider the case that ATK = CCA2. With I = (I1, I2, I3) as above, we construct
A = (A1, A2) as follows:
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Algorithm AO1

1 (pk)

(m0, m1, t1)
$
← IO1

1 (pk)
M ← {m0, m1}
s1 ← (m0, m1)
s2 ← (m0, m1, t1, pk)
Return (M, s1, s2)

Algorithm AO2

2 (s2, y) where s2 = (m0, m1, t1, pk)

(c, t2)
$
← IO2

2 (m0, m1, t1, y)
p← Dsk(c)

g
$
← IO2

3 (p, t2)

If g = 0 then y[1]
$
← Epk(0m0) else y[1]

$
← Epk(0m1)

Return y

The second line of I2 is implemented via calls to the decryption oracle O2. We are denoting
by 0a the string obtained by pre-pending a 0 bit to a string a. Since |m0| = |m1| we have
{m0, m1} ∩ {0m0, 0m1} = ∅, which implies that A is legitimate. Now the relation R is

Relation R(x,x, M, s1)
If s1 is not a pair of distinct strings then return false

Let m0, m1 be such that s1 = (m0, m1)
If M 6= {m0, m1} then return false

If |x| 6= 1 then return false

If x[1] = 0x then return true else return false

Notice that R is polynomial time computable. The assumption that Π is secure in the sense of
SNM-ATK tell us that there is a polynomial-time simulator S = (S1, S2) such that Advsnm-atk

A,S,Π,R(·)
is negligible. Equations (1) and (2) are true just as above, and hence the proof is concluded in the
same way.

5.4 Proof of Theorem 5.3: IND-PCAX→ CNM-ATK

We are assuming that Π is secure in the IND-PCAX sense. We will show it is also secure in the
CNM-ATK sense.

Let C = (C1, C2) be an CNM-ATK adversary attacking Π. We will present an IND-PCAX
adversary I = (I1, I2, I3) attacking Π whose advantage is at least that of C. The intuition is
simple: since I has access to a parallel decryption oracle in the second stage, she can decrypt the
ciphertexts that C outputs, and check herself to see if C’s relation holds. The construction and
analysis follow.

Proof of Theorem 5.3: Given the CNM-ATK adversary C = (C1, C2), we define the IND-PCAX
adversary I = (I1, I2, I3) as follows:

Algorithm IO1

1 (pk)

(M, t)
$
← CO1

1 (pk)

m0
$
←M ; m1

$
←M

Return (m0, m1, t)

Algorithm IO2

2 (m0, m1, t, y)

(R, c)
$
← CO2

2 (t, y)
Return (c, (R, m1))

Algorithm IO2

3 (p, (R, m1))
If R(m1,p) then g ← 1
Else g ← 0
Return g

By examination of the experiments involved one can check that

Pr[Exptind-atk-1
I,Π (k)⇒ 1 ] = Pr[Exptcnm-atk-1

C,Π (k)⇒ 1 ] (3)

Pr[Exptind-atk-0
I,Π (k)⇒ 1 ] = Pr[Exptcnm-atk-0

C,Π (k)⇒ 1 ] (4)

for all k ∈ N. Subtracting, and using Lemma 4.2, we get

Advind-atk
I,Π (k) = Advcnm-atk

C,Π (k)
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for all k ∈ N. But Advind-atk
I,Π (·) is negligible by assumption, hence so is Advcnm-atk

C,Π (·).

6 Discussion, Relations and Extensions

We discuss the relations of our definitions to other ones. Let us begin with some definitions.

The SNM-ATK∗ and CNM-ATK∗ notions. In our SNM-ATK and CNM-ATK definitions, we
assume R(x,x, M, s1) and R(x,x), respectively, are defined also when ⊥ ∈ x, so that the adversary
may be successful even when ⊥ ∈ Dsk(y). In contrast, in the corresponding original definitions
of [6] and [2], the adversary is considered unsuccessful if it outputs y such that ⊥ ∈ Dsk(y). To
better discuss these variants, let us provide some formal definitions. Let SNM-ATK∗ be defined by
replacing “R(x,x, M, s1)” by “R(x,x, M, s1) and ⊥ 6∈ x” in the next-to-last lines of both experi-
ments in Definition 3.1. Similarly, let CNM-ATK∗ be defined by replacing “R(x,x)” by “R(x,x)
and ⊥ 6∈ x” in the last lines of both experiments in Definition 3.2.

The intuition behind the requirement that the adversary fail when ⊥ ∈ y is that the receiver
will not take any action on an invalid ciphertext. Our definitions, however, reflect the view that a
receiver might take some action, and thus it is best left to the relation to determine whether the
adversary wins or loses even when ⊥ ∈ y.

Relation to original notions. CNM-ATK∗ is exactly the notion of [2]. However, SNM-ATK∗

still appears to differ from the notion of [6] in a subtle way. In SNM-ATK∗, the experiments return 0
if ⊥ ∈ Dsk(y). In [6], the adversary is simply not allowed to output y such that ⊥ ∈ Dsk(y). In
our language, consider the notion of a legitimate adversary being extended to require that it never
output y with ⊥ ∈ Dsk(y). Then [6] quantifies only over such adversaries.

To us, the merit of this feature of the definition of [6] is questionnable. The legitimacy conditions
we oursleves have imposed on the adversary are for convenience and simplicity only. It would be
equivalent to have the experiments return 0 if they are not met because, given an illegitimate
adversary, it is possible to construct a legitimate adversary with about the same running time and
the same or greater advantage. This does not appear to be true for [6]. Intuitively, our view is that
an adversary should itself be able to check whether or not it is behaving legitimately. This is true
under our notions of legitimacy but does not seem true under that of [6].

Lindell [13] shows that the DDN-Lite encryption scheme [7] is secure in the sense of DDN-CPA,
the latter being the CPA case of the notion of [6]. However he also provides an attack showing
this scheme is not secure in the sense of SNM-CPA. It is not known whether or not this scheme is
secure in the sense of SNM-CPA∗ or CNM-CPA∗.

We would like to warn that we were not able to fully understand all the details of the definitions
of [6], and SNM-ATK∗, SNM-ATK represent in some cases our best guesses as to these details. This
means there may be still other differences between these definitions. In any case, since we believe
that our SNM-ATK∗ notions capture the issue of whether or not the adversary is successful when
⊥ ∈ Dsk(y) more appropriately than the definition of [6], we think it is interesting to further
consider the SNM-ATK∗, CNM-ATK∗ notions, the merits of our notions relative to these, and how
all these notions relate. This is what we turn to next.

Non-malleability for multiple ciphertexts. Lindell [13] points to an advantage of the
stronger SNM-ATK, CNM-ATK notions we have introduced, namely that they imply non-malleability
of the encryption of multiple ciphertexts. The notion being considered here is an extension of the
usual non-malleability framework in which the message-space M returns a vector of messages rather
than a single one. A corresponding vector of challenge ciphertexts is then generated for the adver-
sary, based on which it computes y as before. Interestingly, the easy way to see that the new notions
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SNM-CPA
CNM-CPA
IND-PCA0

SNM-CCA1
CNM-CCA1
IND-PCA1

SNM-CCA2
CNM-CCA2
IND-PCA2

IND-CPA IND-CCA1 IND-CCA2

Figure 1: Relations between notions of encryption. An arrow A → B is an implication, meaning
every scheme meeting notion A also meets notion B, while a barred arrow A 6→ B is a separation,
meaning that (under the assumption that there is a scheme meeting notion A) there is a scheme
meeting notion A but not notion B. Only a minimal set of arrows and barred arrows is shown;
others can be inferred. The picture is complete in the sense that it implies either an implication or
a separation between any pair of notions.

imply non-malleability of the encryption of multiple ciphertexts is to use our characterization. One
observes that our results extend to the multiple encryption setting, and then observes that security
of the extended IND-ATK notion is implied by security of the original one. This again points to
the value of indistinguishability-based characterizations in reasoning about non-malleability.

We do not know whether SNM-ATK∗ or CNM-ATK∗ imply corresponding non-malleability for
multiple ciphertexts. However, Lindell [13] shows that DDN-CPA does not imply non-malleability
for multiple ciphertexts. He obtains this result by observing that the DDN-Lite is not non-malleable
for multiple ciphertexts. (But, as we already noted, he has shown it is DDN-CPA.)

Relations among notions of encryption. Bellare, Desai, Pointcheval and Rogaway [2] con-
sider six notions of encryption, namely CNM-ATK∗, IND-ATK for ATK ∈ {CPA, CCA1, CCA2},
and relate them, showing either an implication or a separation between each pair. Dolev, Dwork
and Naor [6] do the same for their three notions of non-malleability and the notions IND-ATK for
ATK ∈ {CPA, CCA1, CCA2}. (And the relation pictures are the same in both cases, meaning up
to the interchange of CNM-ATK∗ with the corresponding notion of [6].) Given that our notions of
non-malleability are different from the ones used in either of these papers, we revisit this question.
As indicated in Figure 1, however, we show that the same relations continue to hold, meaning
the picture is the same as before modulo the substitution of the new notions of non-malleability.
However, we can use our characterization in terms of indistinguishability under parallel attack to
give proofs that are somewhat simpler than those of [2, 6]. Let us now provide some details.

By our results, we can work with the IND-PCAX notions, avoiding the need to reason di-
rectly about non-malleability. This means we are considering relations between five notions of
indistinguishability, namely indistinguishability under the attacks CPA, PCA0, CCA1, PCA1 and
CCA2 = PCA2. This makes all the implications in Figure 1 obvious, for each implication A → B
is simply of IND with the attack for A being at least as strong as that for B.

Now we turn to the separations. We know that IND-CCA1 6→ CNM-CPA∗ [2] and IND-PCA0 =
CNM-CPA → CNM-CPA∗ (Figure 2), whence IND-CCA1 6→ IND-PCA0. The other separations
need to be revisited.

To establish a separation A 6→ B we need to take a scheme Π = (K, E ,D) secure in the sense
of A and modify it to a new scheme Π′ = (K′, E ′,D′) secure in the sense of A but not B. To
show IND-PCA0 6→ IND-CCA1, the construction given in [2] to show CNM-CPA∗ 6→ IND-CCA1
continues to work but the proof is a little easier with IND-PCA0. Similarly, to show IND-PCA1 6→
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SNM-CPA
CNM-CPA

SNM-CCA1
CNM-CCA1

SNM-CCA2
CNM-CCA2

CNM-CPA∗ CNM-CCA1∗ CNM-CCA2∗

SNM-CPA∗ SNM-CCA1∗ SNM-CCA2∗

Figure 2: Relations between notions of non-malleable encryption. An arrow A→ B is an implica-
tion, meaning every scheme meeting notion A also meets notion B, while a barred arrow A 6→ B is
a separation, meaning that (under the assumption that there is a scheme meeting notion A) there
is a scheme meeting notion A but not notion B. Not all possible relations are resolved; several
remain open questions.

IND-PCA2 = IND-CCA, the construction given in [2] to show CNM-CCA1 6→ IND-CCA continues
to work but the proof is a little easier with IND-PCA1.

Relations between non-malleability notions. The next question we ask is how the variants
of non-malleability we have just defined relate to our definitions and to each other. In partic-
ular, is SNM-ATK∗ equivalent to SNM-ATK? Is CNM-ATK∗ equivalent to CNM-ATK? Are
SNM-ATK∗, CNM-ATK∗ equivalent? Figure 2 summarizes whatever we know about this, and we
now discuss it.

Figure 2 resolves all relations between the first and second row notions, and also all relations
between the first and third row notions. This can be seen by following arrows. For example,
CNM-CPA 6→ CNM-CCA1∗ because otherwise we would get CNM-CPA → SNM-CCA1∗, con-
tradicting a shown separation. What is left open is relations between some second and third
row notions. For example, are SNM-ATK∗ and CNM-ATK∗ equivalent? This comes down to
asking whether or not SNM-CPA∗ implies CNM-CPA∗ and whether or not SNM-CCA1∗ implies
CNM-CCA1∗. Now let us discuss how the shown relations are obtained.

The proof of Theorem 5.1 extends to show that CNM-ATK∗ → SNM-ATK∗ for all ATK ∈
{CPA, CCA1, CCA2}, justifying the corresponding implications in Figure 2. The other implications
are either trivial, results in this paper, or from [6, 2]. The CNM-CCA1 6→ CNM-CCA2 separation
is inherited from Figure 1.

Herranz, Hofheinz and Kiltz showed that CNM-CPA∗ 6→ CNM-CPA. Very roughly, the idea
is to modify a CNM-CPA∗ scheme so that it remains CNM-CPA∗ but there are certain special
ciphertexts such that the decryption of some random half of them XOR to the secret key, while the
other half decrypt to ⊥. Their constructed scheme is however not CNM-CCA1 so this does not show
that CNM-CCA1∗ 6→ CNM-CCA1. An extension by Bellare shows not only this but something
stronger, namely that CNM-CCA1 does not even imply CNM-CPA, and this is the separation
shown in Figure 2 since it implies the two others we have just discussed. The extension uses the
same secret sharing idea except that the XOR of the decryptions of certain related ciphertexts is
the message underlying the “main” ciphertext rather than the secret key. To make this work, the
coins for the secret sharing are obtained by applying a PRF to a part of the ciphertext. Both the
original result and the extension appear in [11]. Note that DDN-Lite does not serve to show that
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CNM-CPA∗ 6→ CNM-CPA or SNM-CPA∗ 6→ SNM-CPA, because, although it is not CNM-CPA
[13], it is not known to be SNM-CPA∗.

There remains only to justify the CNM-CPA 6→ SNM-CCA1∗ separation shown in Figure 2.
From Figure 1 we know that CNM-CPA 6→ IND-CCA1. But SNM-CCA1∗ → IND-CCA1, so it
must be that CNM-CPA 6→ SNM-CCA1∗.

Attempting to extend our results. There are some tempting ways to attempt to extend our
proofs to show that SNM-ATK∗ and CNM-ATK∗ are equivalent for all ATK. It is worth discussing
these to see where they fail. In the following, ATK ∈ {CPA, CCA1}.

The proof of Theorem 5.2, showing that SNM-ATK→ IND-PCAX, does not directly extend to
show that SNM-ATK∗ → IND-PCAX. The reason is that an IND-PCAX adversary can submit a
parallel decryption query c such that ⊥ ∈ c and utilize the response in its third stage. We need
the relation R to execute this third stage, and would not be able to do this if we have to give up
when c contains ⊥. There is an obvious way to attempt to fix this, however. Namely, modify the
definition of IND-PCAX to IND-PCAX∗, where the latter replaces the last line in Definition 4.1
with: “If ⊥ 6∈ p then return g else return 1− b.” In other words, here too, if the adversary makes a
parallel decryption query containing an invalid ciphertext, it automatically loses. Now, our proof
shows that SNM-ATK∗ → IND-PCAX∗. So the final question is whether our proof of Theorem 5.3,
showing that IND-PCAX → CNM-ATK, extends to show that IND-PCAX∗ → CNM-ATK∗. The
obvious modification to make is that, in the definition of I3, replace “If R(m1,p) then g ← 1” with
“If R(m1,p) and ⊥ 6∈ p then g ← 1”. But now, although Equation (3) remains true, Equation (4)
may not be true.
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