
ANOTHER LOOK AT “PROVABLE SECURITY”. II

NEAL KOBLITZ AND ALFRED J. MENEZES

Abstract. We discuss the question of how to interpret reduction ar-
guments in cryptography. We give some examples to show the subtlety
and difficulty of this question.

1. Introduction

Suppose that one wants to have confidence in the security of a certain
cryptographic protocol. In the “provable security” paradigm, the ideal situ-
ation is that one has a tight reduction (see §4 for a definition and discussion
of tightness) from a mathematical problem that is widely believed to be in-
tractable to a successful attack (of a prescribed type) on the protocol. This
means that an adversary who can attack the system must also be able to
solve the (supposedly intractable) problem in essentially the same amount
of time with essentially the same probability of success. Often, however,
the best that researchers have been able to achieve falls short of this ideal.
Sometimes reductionist security arguments have been found for modified
versions of the protocol, but not for the actual protocol that is used in prac-
tice; or for a modified version of the type of attack, but not for the security
definition that people really want; or based on a somewhat contrived and
unnatural modified version of the mathematical problem that is believed to
be hard, but not based on the actual problem that has been extensively
studied. In other cases, an asymptotic result is known that cannot be ap-
plied to specific parameters without further analysis. In still other cases,
one has a reduction, but one can show that there cannot be (or is unlikely
to be) a tight reduction.

In this paper we give examples that show the subtle questions that arise
when interpreting reduction arguments in cryptography.

2. Equivalence but No Reductionist Proof

In [13], Boneh and Venkatesan showed that an efficient reduction from
factoring to the RSA problem (the problem of inverting the function y =
xe mod N) is unlikely to exist. More precisely, they proved that for small
encryption exponent e the existence of an efficient “algebraic” reduction
would imply that factoring is easy.

Date: July 3, 2006.
Key words and phrases. Cryptography, Public Key, Provable Security.

1

2 NEAL KOBLITZ AND ALFRED J. MENEZES

The paper [13] appeared at a time of intense rivalry between RSA and el-
liptic curve cryptography (ECC). As enthusiastic advocates of the latter, we
were personally delighted to see the Boneh–Venkatesan result, and we wel-
comed their interpretation of it — that, in the words of their title, “breaking
RSA may not be equivalent to factoring” — as another nail in the coffin of
RSA.

However, to be honest, another interpretation is at least as plausible.
Both factoring and the RSA problem have been studied intensively for many
years. In the general case no one has any idea how to solve the RSA problem
without factoring the modulus. Just as our experience leads us to believe
that factoring (and certain other problems, such as the elliptic curve discrete
logarithm problem) are hard, so also we have good reason to believe that, in
practice, the RSA problem is equivalent to factoring. Thus, an alternative
interpretation of the Boneh–Venkatesan result is that it shows the limited
value of reduction arguments, and an alternative title of the paper [13] would
have been “Absence of a reduction between two problems may not indicate
inequivalence.”

Which interpretation one prefers is a matter of opinion, and that opinion
may be influenced, as in our own case, by one’s biases in favor of or against
RSA.

3. Results That Point in Opposite Directions

3.1. Reverse Boneh–Venkatesan. A recent result [16] by D. Brown can
be seen as giving support to the alternative interpretation of Boneh–Venka-
tesan that we described at the end of §2. For small encryption exponents
e,1 Brown proves that if there is an efficient program that, given the RSA
modulus N , constructs a straight-line program that efficiently solves the
RSA problem,2 then the program can also be used to efficiently factor N .
This suggests that for small e the RSA problem may very well be equivalent
to factoring. If one believes this interpretation, then one might conclude
that small e are more secure than large e. In contrast, the result of Boneh–
Venkatesan could be viewed as suggesting that large values of e are more
secure than small ones.

As Brown points out in §5 of [16], his result does not actually contradict
Boneh–Venkatesan. His reduction of factoring to a straight-line program for
finding e-th roots does not satisfy the conditions of the reductions treated
in [13]. His use of the e-th root extractor cannot be modeled by an RSA-
oracle, as required in [13], because he applies the straight-line program to
ring extensions of Z/NZ.3

1Brown’s result actually applies if e just has a small prime factor.
2This essentially means that it constructs a polynomial that inverts the encryption

function.
3For example, when e = 3 the polynomial that inverts cube roots is applied to the ring

Z/NZ[X]/(X2 − u), where the Jacobi symbol
`

u
N

´

= −1.

ANOTHER LOOK AT “PROVABLE SECURITY”. II 3

Brown’s choice of title is a helpful one: “Breaking RSA may be as difficult
as factoring.” All one has to do is put it together in a disjunction with the
title of [13], and one has a statement that cannot lead one astray, and
accurately summarizes what is known on the subject.

3.2. Random padding before or after hashing? When comparing
ElGamal-like signature schemes, one finds that some, such as Schnorr signa-
tures [35], append a random string to the message before evaluating the hash
function; and some, such as the Digital Signature Algorithm (DSA) and the
Elliptic Curve Digital Signature Algorithm (ECDSA), apply the hash func-
tion before the random padding. Is it more secure to do the padding before
or after hashing? What do the available “provable security” results tell us
about this question?

As we discussed in §5.2 of [27], the proof that forgery of Schnorr signatures
is equivalent to solving the discrete log problem (see the sketch in §5.1 of
[27] and §8.3 below, and the detailed proof in [33, 34]) relies in an essential
way on the fact that an attacker must choose the random r before making
his hash query. For this reason, the proof does not carry over to DSA, where
only the message m and not r is hashed. In §5.2 of [27] we commented that

...replacing H(m, r) by H(m) potentially gives more power
to a forger, who has control over the choice of k (which deter-
mines r) but no control over the (essentially random) hash
value. If H depends on r as well as m, the forger’s choice of
k must come before the determination of the hash value, so
the forger doesn’t “get the last word.”

That was our attempt to give an intuitive explanation of the circumstance
that in the random oracle model Schnorr signatures, unlike the closely re-
lated DSA signatures, have been tied to the discrete logarithm problem
(DLP) through a reduction argument. One could conclude from our com-
ment that it’s more secure to do the padding before hashing.

However, we were very much at fault in misleading the reader in this way.
In fact, there is another provable security result, due to D. Brown [14, 15],
that points in the opposite direction. It says: If the hash function and pseu-

dorandom bit generator satisfy certain reasonable assumptions, then ECDSA

is secure against chosen-message attack by a universal forger4 provided that

the “adaptive semi-logarithm problem” in the elliptic curve group is hard.5

Brown comments in [15] that his security reduction would not work for a
modification of ECDSA in which r as well as the message m is hashed.

4A forger is universal (or selective in Brown’s terminology) if it can forge an arbitrary
message that it is given.

5A semi-logarithm of a point Q with respect to a basepoint P of prime order p is a pair
(t, u) of integers mod p such that t = f(u−1(P + tQ)), where the “conversion function”
f is the map from points to integers mod p that is used in ECDSA. The adaptive semi-
logarithm problem is the problem of finding a semi-logarithm of Q to the base P given an
oracle that can find a semi-logarithm of Q to any base of the form eP with e 6= 1.

4 NEAL KOBLITZ AND ALFRED J. MENEZES

Brown does not claim that the modified version is therefore less secure than
the original version of ECDSA with only the message hashed. However,
in an informal communication [17] he explained how someone might make
such a claim: namely, the inclusion of a random r along with m in the input
could be viewed as “giving an attacker extra play with the hash function,”
and this could lead to a breach. (But note that both the results in [33, 34]
and in [14, 15] assume that the hash function is strong.)

Once again we have provable security results that suggest opposite an-
swers to a simple down-to-earth question. Is it better to put in the random
padding before or after evaluating the hash function? As in the case of the
question in §3.1, both answers “before” and “after” can be supported by
reduction arguments.

In §8 we shall discuss another question — whether or not forgery of
Schnorr-type signatures is equivalent to the DLP — for which different prov-
able security results give evidence for opposite answers.

4. Non-tightness in Reductions

We first give an informal definition of tightness of a reduction. Suppose
that we have an algorithm for solving problem A that takes time at most T
and is successful for a proportion at least ε of the instances of A, where T
and ε are functions of the input length. A reduction from a problem B to
A is an algorithm that calls upon the algorithm for A a certain number of
times and solves B in time T ′ for at least a proportion ε′ of the instances of
B. This reduction is said to be tight if T ′ ≈ T and ε′ ≈ ε. Roughly speaking,
it is non-tight if T ′ � T or if ε′ � ε.

Suppose that researchers have been able to obtain a highly non-tight
reduction from a hard mathematical problem to breaking a protocol. There
are various common ways to respond to this situation:

(1) Even a non-tight reduction is better than nothing at all. One should
regard the cup as half-full rather than half-empty, derive some re-
assurance from what one has, and try not to think too much about
what one wishes one had.6

(2) Even though the reduction is not tight, it is reasonable to expect
that in the future a tighter reduction will be found.

(3) Perhaps a tight reduction cannot be found for the protocol in ques-
tion, but a small modification of the protocol can be made in such
a way as to permit the construction of a tight reduction — and we

6We are reminded of the words of the popular song
If you can’t be with the one you love,
Love the one you’re with,

(Stephen Stills, 1970). The version for cryptographers is:
If you can’t prove what you’d love to prove,
Hype whatever you prove.

ANOTHER LOOK AT “PROVABLE SECURITY”. II 5

should regard this reduction as a type of assurance about the original
protocol.

(4) A tight reduction perhaps can be obtained by relaxing the underly-
ing hard problem (for example, replacing the computational Diffie–
Hellman problem by the decision Diffie–Hellman problem).

(5) Maybe the notion of security is too strict, and one should relax it a
little so as to make possible a tight reduction.

(6) Perhaps the protocol is secure in practice, even though a tight re-
duction may simply not exist.

(7) Perhaps the protocol is in fact insecure, but an attack has not yet
been discovered.

These seven points of view are not mutually exclusive. In fact, protocol
developers usually adopt some combination of the first six interpretations
— but generally not the seventh.

4.1. Insecure but provably secure: an example. We now give an exam-
ple that is admittedly somewhat artificial. Let us step into a time machine
and go back about 25 years to a time when naive index-calculus was pretty
much the best factoring algorithm. Let us also suppose that 22a operations

are feasible, but 2(2
√

2)a operations are not.
Let N be a c-bit RSA modulus, and let r be an a-bit integer. Let F =

{p1, . . . , pr} be a factor base consisting of the first r primes. Let 2b be the
expected time needed before a randomly selected x mod N has the property
that x2 mod N is pr-smooth (this means that it has no prime factors greater
than pr). The usual estimate is that 2b ≈ uu, where u = c/a. (Actually,
it’s more like u = c/(a+log(a ln 2)), where log denotes log2, but let’s ignore
second-order terms.)

If x has the property that x2 mod N is pr-smooth, then by its “exponent-
vector” we mean the vector in F

r
2 whose components εi are the exponents of

pi in the squarefree part of x2 mod N .
The basic (naive) index-calculus algorithm involves generating roughly

r such x values and then solving an r × r-matrix over F2. The first part
takes roughly r2b ≈ 2a+b operations, and the second part takes roughly 22a

operations. So one usually chooses b ≈ a. However, in our protocol, in order
to be able to give a “proof” of security we’ll optimize slightly differently,
taking b ≈ 2a.

Note that for fixed c, the value of a chosen with b ≈ 2a is different from the
optimal value a′ that one would choose to factor N . In the former case one
sets 22a ≈ uu (where u = c/a) — that is, 2a ≈ c

a log u — and in the latter
case one sets a′ ≈ c

a′ log u′ (where u′ = c/a′). Since u′ is of the same order
of magnitude as u, by dividing these two equations we get approximately

a′ ≈
√

2a. This leads to the estimate 2(2
√

2)a for the number of operations
needed to factor N .

We now describe the protocol. Alice wants to prove her identity to Bob,
i.e., prove that she knows the factors of her public modulus N . Bob sends

6 NEAL KOBLITZ AND ALFRED J. MENEZES

her a challenge that consists of s linearly independent vectors in F
r
2, where

0 ≤ s ≤ r−1. Alice must respond with an x such that x2 mod N is pr-smooth
and such that its exponent-vector is not in the subspace S spanned by Bob’s
challenge vectors. (The idea is to prevent an imposter from giving a correct
response by combining earlier responses of Alice; thus, in practice Bob would
be sure to include the exponent-vectors of Alice’s earlier responses among
his challenge vectors.) Alice can do this quickly, because it is easy to find
square roots modulo N if one knows the factorization of N .

We now reduce factoring to impersonating Alice. Let IO be the imperson-
ator-oracle. To factor N , we make r calls to IO (where each time our
challenge vectors consist of the exponent-vectors of all the earlier responses
of IO) to get a set of relations whose exponent-vectors span F

r
2. After that

we merely have to find k more randomly generated x with pr-smooth x2 mod
N in order to have probability 1 − 2−k of factoring N . Finding these x’s
takes time about k2b. Since we have to solve a matrix each time, the time is
really k(2b+22a). If a call to IO on average takes time T , then the total time
to factor N is T ′ ≈ k(2b +22a)+rT ≈ k22a+1 +2aT since b = 2a and r ≈ 2a.

We are assuming that factoring N requires 2(2
√

2)a operations, and so we

obtain the nontrivial lower bound T ≥ 2(2
√

2−1)a. Whenever one is able to
prove a lower bound for an adversary’s running time that, although far short
of what one ideally would want, is highly nontrivial and comes close to the
limits of practical feasibility, such a result can be viewed as reassuring (see
also Remark 2 below).

However, the protocol is insecure, because it can be broken in time roughly
2b = 22a.

This example is unrealistic not only because we’re supposing that naive
index-calculus is the best factoring algorithm, but also because it should
have been obvious from the beginning that the protocol is insecure. We
thus state as an open problem:

Problem. Find an example of a natural and realistic protocol that has a
plausible (non-tight) reductionist proof of security, and is also insecure when
used with commonly accepted parameter sizes.

Remark 1. Either success or failure in solving this problem would be of
interest. If someone finds a (non-tightly) provably secure but insecure pro-
tocol, then the importance of the tightness question in security reductions
will be clearer than ever. On the other hand, if no such example is found
after much effort, then practitioners might feel justified in doubting the need
for tightness in reductions.

Remark 2. It should be noted that something like this has already been
done in the context of symmetric–key message authentication codes
(MAC’s). In [18] Cary and Venkatesan presented a MAC scheme for which
they had a security proof (it was not actually a reductionist proof). Their
scheme depended on a parameter l, and for the practical value l = 32 their

ANOTHER LOOK AT “PROVABLE SECURITY”. II 7

proof showed that a collision cannot be found without at least 227 MAC
queries. Even though this figure falls far short of what one ideally would
want — namely, 64 bits of security — it could be viewed as providing some
assurance that the scheme does in fact have the desired security level. How-
ever, in [8] Blackburn and Paterson found an attack that could find a colli-
sion using 248.5 MAC queries and a forgery using 255 queries. This example
shows that the exact guarantees implied by a proof have to be taken seri-
ously, or else one might end up with a cryptosystem that is provably secure
and also insecure.

4.2. Coron’s result for RSA signatures. We first recall the basic RSA
signature scheme with full-domain hash function. Suppose that a user Alice
with public key (N, e) and secret exponent d wants to sign a message m.
She applies a hash function H(m) which takes values in the interval 0 ≤
H(m) < N , and then computes her signature s = H(m)d mod N .

When Bob receives the message m and the signature s, he verifies the
signature by computing H(m) and then se mod N . If these values are equal,
he is satisfied that Alice truly sent the message (because presumably only
Alice knows the exponent d that inverts the exponentiation s 7→ se) and
that the message has not been tampered with (because any other message
would presumably have a different hash value).

We now describe a classic reductionist security argument for this signature
scheme [6]:

Reductionist security claim. If the problem of inverting x 7→ xe mod N is
intractable, then the RSA signature with full-domain hash function is secure
in the random oracle model from chosen-message attack by an existential
forger.

Argument. Suppose that we are given an arbitrary integer y, 0 ≤ y < N ,
and asked to find x such that y = xe mod N . The claim follows if we show
how we could find x (with high probability) if we had a forger that can
mount chosen-message attacks.

So suppose that we have such a forger. We give it Alice’s public key (N, e)
and wait for its queries. In all cases but one, we respond to the hash query
for a message mi by randomly selecting xi ∈ {0, 1, . . . , N − 1} and setting
the hash value hi equal to xe

i mod N . For just one value mi0 we respond
to the hash query by setting hi0 = y (recall that y is the integer whose
inverse under the map x 7→ xe mod N we are required to find). We choose
i0 at random and hope that m = mi0 happens to be the message whose
signature will be forged by our existential forger. Any time the forger makes
a signature query for a message mi with i 6= i0, we send xi as its signature.
Notice that this will satisfy the forger, since xe

i ≡ hi (mod N). If the forger
ends up outputting a valid signature si0 for mi0 , that means that we have
a solution x = si0 to our original equation y = xe mod N with unknown
x. If we guessed wrong and mi0 was not the message that the forger ends
up signing, then we won’t be able to give a valid response to a signature

8 NEAL KOBLITZ AND ALFRED J. MENEZES

query for mi0 . The forger either will fail or will give us useless output, and
we have to start over again. Suppose that qh is a bound on the number of
queries of the hash function. If we go through the procedure k times, the
probability that every single time we fail to solve y = xe mod N for x is at
most (1−1/qh)k. For large k, this approaches zero; so with high probability
we succeed. This completes the argument.

Notice that the forgery program has to be used roughly O(qh) times
(where qh is the number of hash queries) in order to find the desired e-
th root modulo N . A result of Coron [19] shows that this can be improved
to O(qs), where qs denotes a bound on the number of signature queries.7

(Thus, qh = qs + q′h, where q′h is a bound on the number of hash func-
tion queries that are not followed later by a signature query for the same
message.)

Moreover, in a later paper [20] Coron essentially proves that his result
cannot be improved to give a tight reduction argument; O(qs) is a lower
bound on the number of calls on the forger needed to solve the RSA problem.

From the standpoint of practice (as emphasized, for example, in [5]) this
non-tightness is important. What it means is the following. Suppose that
you anticipate that a chosen-message attacker can get away with making up
to 220 signature queries. You want your system to have 80 bits of security;
that is, you want a guarantee that such a forger will require time at least
280. The results of [19, 20] mean that you should use a large enough RSA
modulus N so that you’re confident that e-th roots modulo N cannot be
found in fewer than 2100 = 220 · 280 operations. Thus, you should use a
modulus N of about 1500 bits.

4.3. The implausible magic of one bit. We now look at a construction
of Katz and Wang [25], who show that by adding only a single random bit
to a message, one can achieve a tight reduction.8 To sign a message m Alice
chooses a random bit b and evaluates the hash function H at m concatenated
with b. She then computes s = (H(m, b))d mod N ; her signature is the pair
(s, b). To verify the signature, Bob checks that se = H(m, b) mod N .

Remarkably, Katz and Wang show that the use of a single random bit b
is enough to get a tight reduction from the RSA problem to the problem
of producing a forgery of a Katz–Wang signature. Namely, suppose that
we have a forger in the random oracle model that asks for the signatures of
some messages and then produces a valid signature of some other message.
Given an arbitrary integer y, the simulator must use the forger to produce
x such that y = xe mod N . Without loss of generality we may assume that
when the forger asks for the hash value H(m, b), it also gets H(m, b′) (where

7In the above argument, instead of responding only to the i0-th hash query with hi0 = y,
Coron’s idea was to respond to a certain optimal number i0, i1, . . . with hij

= yze
j with zj

random.
8We shall describe a slightly simplified version of the Katz–Wang scheme. In particular,

we are assuming that Alice never signs the same message twice.

ANOTHER LOOK AT “PROVABLE SECURITY”. II 9

b′ denotes the complement of b). Now when the forger makes such a query,
the simulator selects a random bit c and two random integers t1 and t2. If
c = b, then the simulator responds with H(m, b) = te1y and H(m, b′) = te2; if
c = b′, it responds with H(m, b) = te2 and H(m, b′) = te1y. If the forger later
asks the simulator to sign the message m, the simulator responds with the
corresponding value of t2. At the end the forger outputs a signature that
is either an e-th root of te2 or an e-th root of te1y for some t1 or t2 that the
simulator knows. In the latter case, the simulator has succeeded in its task.
Since this happens with probability 1/2, the simulator is almost certain —
with probability 1 − 2−k — to find the desired e-th root after running the
forger k times. This gives us a tight reduction from the RSA problem to the
forgery problem.

From the standpoint of “practice-oriented provable security” the Katz–
Wang modification provides a much better guarantee than did the RSA
signature without the added bit. Namely, in order to get 80 bits of security
one need only choose N large enough so that finding e-th roots modulo N
requires 280 operations — that is, one needs roughly a 1000-bit N . Thus,
the appending of a random bit to the message allows us to shave 500 bits
off our modulus!

This defies common sense. How could such a “magic bit” have any signifi-
cant impact on the true security of a cryptosystem, let alone such a dramatic
impact? This example shows that whether or not a cryptographic protocol
lends itself to a tight security reduction argument is not necessarily related
to the true security of the protocol.

Does tightness matter in a reductionist security argument? Perhaps not,
if, as in this case, a protocol with a non-tight reduction can be modified
in a trivial way to get one that has a tight reduction. On the other hand,
the example in §4.1 shows that in some circumstances a non-tight reduction
might be worthless. Thus, the question of how to interpret a non-tight
reductionist security argument has no easy answer.

One interpretation of Coron’s lower bound on tightness is that if the RSA
problem has s1 bits of security and if we suppose that an attacker could make
2s2 signature queries, then RSA signatures with full-domain hash have only
s1 − s2 bits of security. However, such a conclusion seems unwarranted
in light of the Katz–Wang construction. Rather, it is reasonable to view
Coron’s lower bound on tightness as a result that casts doubt not on the
security of the basic RSA signature scheme, but rather on the usefulness
of reduction arguments as a measure of security of a protocol. This point
of view is similar to the alternative interpretation of Boneh–Venkatesan’s
result that we proposed in §2.

5. Equivalence but No Tight Reduction

Let P denote a presumably hard problem underlying a cryptographic
protocol; that is, solving an instance of P will recover a user’s private key.

10 NEAL KOBLITZ AND ALFRED J. MENEZES

For example, the RSA version of factorization is the problem P whose in-
put is a product N of two unknown k-bit primes and whose output is the
factorization of N .

Let Pm denote the problem whose input is an m-tuple of distinct inputs
for P of the same bitlength and whose output is the solution to P for any
one of the inputs. In the cryptographic context, m might be the number
of users. In that case, solving Pm means finding the private key of any one
of the users, while solving P means finding the private key of a specified
user. We call the former “existential key recovery” and the latter “universal
key recovery.” A desirable property of a cryptosystem is that these two
problems be equivalent — in other words, that it be no easier to recover the
private key of a user of the attacker’s choice than to recover the private key
of a user that is specified to the attacker.

To see how this issue might arise in practice, let’s suppose that in a certain
cryptosystem a small proportion — say, 10−5 — of the randomly assigned
private keys are vulnerable to a certain attack. From the standpoint of an
individual user, the system is secure: she is 99.999% sure that her secret
is safe. However, from the standpoint of the system administrator, who is
answerable to a million users, the system is insecure because an attacker
is almost certain (see below) to eventually obtain the private key of one or
more of the users, who will then sue the administrator. Thus, a system
administrator has to be worried about existential key recovery, whereas an
individual user might care only about universal key recovery.

5.1. The RSA factorization problem. In the case of RSA, is Pm equiva-
lent to P? (For now we are asking about algorithms that solve all instances
of a problem; soon we shall consider algorithms that solve a non-negligible
proportion of all instances.) It is unlikely that there is an efficient reduction
from P to Pm. Such a reduction would imply that the following cannot be
true: for every k there are a small number rk < m of moduli N that are
much harder to factor than any other 2k-bit N . On the other hand, all of
our knowledge and experience with factoring algorithms support the belief
that, in fact, these two problems are in practice equivalent, and that RSA
does enjoy the property that existential and universal private key recovery
are equivalent.

When studying the security of a protocol, one usually wants to consider
algorithms that solve only a certain non-negligible proportion of the in-
stances.9 In this case there is an easy reduction from P to Pm: given an
input to P, randomly choose m − 1 other inputs to form an input to Pm.
One can check that this transforms an algorithm that solves a non-negligible

9In this section probabilities are always taken over the set of problem instances (of a
given size), and not over sets of possible choices (coin tosses) made in the execution of
an algorithm. If for a given problem instance the algorithm succeeds for a non-negligible
proportion of sequences of coin tosses, then we suppose that the algorithm is iterated
enough times so that it is almost certain to solve the problem instance.

ANOTHER LOOK AT “PROVABLE SECURITY”. II 11

proportion of instances of Pm to one that solves a non-negligible proportion
of instances of P.

However, the proportion of instances solved can be dramatically different.
An algorithm A that solves ε of the instances of P, where ε is small but
not negligible, gives rise to an algorithm Am that solves ν = 1 − (1 − ε)m

of the instances of Pm (this is the probability that at least one of the m
components of the input can be solved by A). For small ε and large m,
ν ≈ 1 − e−εm. For example, if ε = 10−5 and m = 106, then ν is greater
than 99.99%. Thus, from a theoretical point of view there seems to be a
significant distance between universal private key recovery P and existential
private key recovery Pm for many systems such as RSA. In other words,
we know of no reductionist argument to show that if RSA is secure from
the standpoint of an individual user, then it must also be secure from the
standpoint of the system administrator.

But once again, all of our experience and intuition suggest that there is no
real distance between the two versions of the RSA factoring problem. This
is because for all of the known subexponential-time factoring algorithms,
including the number field sieve, the running time is believed not to be
substantially different for (a) a randomly chosen instance, (b) an instance
of average difficulty, and (c) a hardest possible instance. No one knows how
to prove such a claim; indeed, no one can even give a rigorous proof of the
L1/3 running time for the number field sieve. And even if the claim could
be proved for the current fastest factoring algorithm, we would be very far
from proving that there could never be a faster algorithm for which there
was a vast difference between average-case and hardest-case running times.
This is why there is no hope of proving the tight equivalence of universal
and existential private key recovery for RSA.

5.2. A non-cryptographic example. Consider the problem P of finding
all the prime factors of an arbitrary integer N . Let us say that N is “k-easy”
if it has at most one prime divisor greater than 2k. If k is small, then P
in that case can be solved efficiently by first using trial division, perhaps in
conjunction with the Lenstra elliptic curve factoring algorithm, to pull out
the prime factors < 2k, and then applying a primality test to what’s left
over if it’s greater than 1.

It is not hard to see that the proportion ε of n-bit integers N that are
k-easy is at least k/n. Namely, for 1 ≤ j < 2k consider N that are of the
form pj for primes p. The number of such n-bit integers is asymptotic to

2n−1

j ln(2n/j)
>

2n−1

ln 2n

1

j
.

Thus, the proportion of n-bit integers that are k-easy is greater than

1

ln 2n

∑

1≤j<2k

1

j
≈ ln 2k

ln 2n
=

k

n
.

12 NEAL KOBLITZ AND ALFRED J. MENEZES

As an example, let’s take n = 2000, k = 20. Then ε ≥ 0.01. We saw
that for m = 1000 more than 99.99% of all instances of Pm can be quickly
solved. In contrast, a significant proportion of the instances of P are outside
our reach. Obviously, it is infeasible to factor a 2000-bit RSA modulus. But
there is a much larger set of 2000-bit integers that cannot be completely
factored with current technology. Namely, let S≥1 denote the set of integers
that have at least one prime factor in the interval [2300, 2500] and at least one
prime factor greater than 2500. At present a number in S≥1 cannot feasibly
be factored, even using a combination of the elliptic curve factorization
method and the number field sieve; and a heuristic argument, which we now
give, shows that at least 25% of all 2000-bit integers N lie in S≥1.

To see this, let Sk denote the set of integers that have exactly k prime
factors in [2300, 2500] and at least one prime factor greater than 2500. Writing
a 2000-bit N ∈ S1 in the form N = lm with l a prime in [2300, 2500] and
m ∈ S0, we see that the number of such N is equal to

∑

l prime in [2300,2500]

#

(

S0

⋂

[

1

l
21999,

1

l
22000

])

.

The probability that an integer in the latter interval satisfies the two con-
ditions defining S0 is at least equal to

Prob(not divisible by any prime p ∈ [2300, 2500])− Prob(2500 − smooth)

≈
∏

p∈[2300,2500]

(1− 1

p
)− u−u,

where u = (2000−log2 l)/500 ≥ 3. The product is equal to exp
∑

ln(1− 1
p) ≈

exp
∑

(−1/p) ≈ exp(− ln ln 2500 + ln ln 2300) = 0.6, and so the probability
that an integer in [1l 2

1999, 1
l 2

2000] lies in S0 is greater than 50%. Thus, the
proportion of 2000-bit integers N that lie in S≥1 ⊃ S1 is at least

1

2

∑

l prime in [2300,2500]

1

l
≈ 1

2
(ln ln 2500 − ln ln 2300) =

1

2
ln(5/3) ≈ 0.25,

as claimed.
This problem P does not seem to have any cryptographic significance: it

is hard to imagine a protocol whose security is based on the difficulty of
completely factoring a randomly chosen integer. Rather, its interest lies in
the fact that, despite its apparent resemblance to the RSA factoring prob-
lem, it spectacularly fails to have a certain property — tight equivalence of
existential and universal solvability — that intuitively seems to be a char-
acteristic of RSA factoring. This example also suggests that it is probably
hopeless to try to prove that universal and existential private key recovery
are tightly equivalent for RSA.

ANOTHER LOOK AT “PROVABLE SECURITY”. II 13

5.3. Use different elliptic curves or the same one? Let us look at
universal versus existential private key recovery in the case of elliptic curve
cryptography (ECC). Suppose that each user chooses an elliptic curve E
over a finite field Fq, a subgroup of E(Fq) whose order is a k-bit prime p,
a basepoint P in the subgroup, and a secret key x mod p; the public key
is Q = xP . Let P denote the elliptic curve discrete logarithm problem
(ECDLP), that is, the problem of recovering the secret key x from the
public information. Let Pm denote the problem whose input is an m-tuple
of ECDLP inputs with distinct orders p of the subgroups and whose output
is any one of the m discrete logarithms. Once again, it seems intuitively clear
that Pm is as hard as P, although it is very unlikely that a tight reduction
from P to Pm could be found.

In contrast, suppose that everyone uses the same elliptic curve group, and
only the private/public key pairs (x, Q) differ. In that case ECC provably

enjoys the property of tight equivalence of existential and universal private
key recovery. The reason is that the ECDLP on a fixed group is “self-
reducible.” That means that, given an instance we want to solve, we can
easily create an m-tuple of distinct random instances such that the solution
to any one of them gives us the solution to the problem we wanted to solve.
Namely, given an input Q, we randomly choose m distinct integers yi modulo
p and set Qi = yiQ. A Pm-oracle will solve one of the ECDLP instances
with input Qi. Once we know its discrete log xi, we immediately find x =
y−1

i xi mod p. This shows that for the ECDLP on a fixed curve the universal
private key recovery problem P reduces (tightly) to the existential private
key recovery problem Pm.

Thus, if we want a cryptosystem with the provable security property of
tight equivalence of existential and universal private key recovery, then we
should not only choose ECC in preference to RSA, but also insist that all
users work with the same elliptic curve group.

Needless to say, we are not suggesting that this would be a good reason
to choose one type of cryptography over another. On the contrary, what
this example shows is that it is sometimes foolish to use the existence or
absence of a tight reductionist security argument as a guide to determine
which version of a cryptosystem is preferable.

Remark 3. We should also recall the problematic history of attempts to
construct cryptosystems whose security is based on a problem for which
the average cases and the hardest cases are provably equivalent.10 This was
finally done by Ajtai and Dwork [2] in 1997. However, the following year
Nguyen and Stern [30] found an attack that recovers the secret key in the
Ajtai–Dwork system unless parameters are chosen that are too large to be
practical (see also [31]).

10Discrete-log-based systems do not have this property because the underlying problem
is self-reducible only after the group has been fixed; there is clearly no way to reduce one
instance to another when the groups have different orders.

14 NEAL KOBLITZ AND ALFRED J. MENEZES

6. Pseudorandom Bit Generators

A pseudorandom bit generator G is a function — actually, a family of
functions parameterized by n and M � n — that takes as input a random
sequence of n bits (called the “seed”) and outputs a sequence of M bits that
appear to be random. More precisely, G is said to be asymptotically secure

in the sense of indistinguishability if there is no polynomial time statistical
test that can distinguish (by a non-negligible margin) between its output
and random output. An alternative and at first glance weaker notion of
security is that of the “next bit” test: that there is no value of j for which
there exists a polynomial time algorithm that, given the first j− 1 bits, can
predict the j-th bit with greater than 1

2 +ε chance of success (where ε is non-
negligible as a function of n). A theorem of Yao (see [26], pp. 170-171) shows
that these two notions of security are equivalent. However, that theorem is
non-tight in the sense that ε-tolerance for the next bit test corresponds only
to (Mε)-tolerance for indistinguishability.

If one wants to analyze the security of a pseudorandom bit generator more
concretely, one has to use a more precise definition than the asymptotic one.
Thus, for given values of n and M , G is said to be (T, ε)-secure in the sense

of indistinguishability if there is no algorithm (statistical test) with running
time bounded by T such that the probability of a “yes” answer in response
to the output of G and the probability of a “yes” answer in response to a
truly random sequence of M bits differ in absolute value by at least ε. The
relation between indistinguishability and the next bit test is that we have
to know that our generator is (T, ε/M)-secure in the next bit sense in order
to conclude that it is (T, ε)-secure in the sense of indistinguishability.

6.1. The Blum–Blum–Shub generator. Let N be an n-bit product of
two large primes that are each ≡ 3 (mod 4) (such an N is called a “Blum
integer”), and choose a (small) integer j. The Blum–Blum–Shub (BBS)
pseudorandom bit generator G takes a random x mod N and produces
M = jk bits as follows. Let x0 = x, and for i = 1, . . . , k let11

xi = min{x2
i−1 mod N, N − (x2

i−1 mod N)}.
Then the output of G consists of the j least significant bits of xi, i = 1, . . . , k.

Obviously, the larger j is, the faster G generates M bits. However, the
possibility of distinguishing the generated sequence from a truly random
sequence becomes greater as j grows. In [41] and [3] it was proved that
j = O(log log N) bits can be securely extracted in each iteration, under the
assumption that factoring is intractable.

This asymptotic result was used to justify recommended values of j. For
example, in 1994 the Internet Engineering Task Force [21] made the following
recommendation (in this and the following quote the modulus is denoted by
n rather than N):

11The original generator described in [9] has j = 1 and xi = x2

i−1 mod N .

ANOTHER LOOK AT “PROVABLE SECURITY”. II 15

Currently the generator which has the strongest public proof
of strength is called the Blum Blum Shub generator... If
you use no more than the log2(log2(si)) low order bits, then
predicting any additional bits from a sequence generated in
this manner is provable [sic] as hard as factoring n.

This recommendation has been repeated more recently, for example, in the
book by Young and Yung ([43], p. 68):

The Blum–Blum–Shub PRBG is also regarded as being se-
cure when the log2(log2(n)) least significant bits...are used
(instead of just the least significant bit). So, when n is a
768-bit composite, the 9 least significant bits can be used in
the pseudorandom bit stream.

Let us compare this recommendation with the best security bounds that
are known. In what follows we set

L(n) ≈ 2.8 · 10−3 exp
(

1.9229(n ln 2)1/3(ln(n ln 2))2/3
)

,

which is the heuristic expected running time for the number field sieve to
factor a random n-bit Blum integer (here the constant 2.8 · 10−3, which is
taken from [40], was obtained from the reported running time for factoring a
512-bit integer), and we assume that no algorithm can factor such an integer
in expected time less than L(n).

For the j = 1 version of Blum–Blum–Shub the best concrete security
result (for large n) is due to Fischlin and Schnorr [22], who showed that the
BBS generator is (T, ε)-secure in the sense of indistinguishability if

(1) T ≤ L(n)(ε/M)2

6n log n
− 27n(ε/M)−2 log(8n(ε/M)−1)

log n
,

hub PRBG is also regarded as being secure when the log2(log2(n)) least
significant bits...are used (instead of just the least significant bit). So, when
n is a 768-bit composite, the 9 least significant bits can be used in the
pseudorandom bit stream.

For j > 1 the Fischlin–Schnorr inequality (1) was generalized by Sidorenko
and Schoenmakers [40], who showed that the BBS generator is (T, ε)-secure
if

(2) T ≤ L(n)

36n(log n)δ−2
− 22j+9nδ−4,

where δ = (2j − 1)−1(ε/M). For large n this is an improvement over the
inequality

(3) T ≤ L(n)(ε/M)8

24j+27n3
,

which is what follows from the security proof in [3].
Returning to the parameters recommended in [21] and [43], we take n =

768 and j = 9. Suppose we further take M = 107 and ε = 0.01. According

16 NEAL KOBLITZ AND ALFRED J. MENEZES

to inequality (2), the BBS generator is secure against an adversary whose
time is bounded by −2192. (Yes, that’s a negative sign!) In this case we get
a “better” result from inequality (3), which bounds the adversary’s time by
2−264. (Yes, that’s a negative exponent!) These less-than-reassuring security
guarantees are not improved much by changing M and ε. For example, if
M = 215 and ε = 0.5, we get T ≤ −2136 and T ≤ 2−134 from (2) and (3),
respectively. Thus, depending on whether we use (2) or (3), the adversary’s
running time is bounded either by a negative number or by 10−40 clock
cycles!

Nor does the recommendation in [21] and [43] fare well for larger values
of n. In Table 1, the first column lists some values of n; the second column
gives L(n) to the nearest power of 2 (this is the bound on the adversary’s
running time that would result from a tight reduction); the third column
gives the corresponding right-hand side of inequality (2); and the fourth
column gives the right-hand side of (3). Here we are taking j = blog nc,
M = 107, and ε = 0.01.

n L(n) Bound from (2) Bound from (3)

1024 278 −2199 2−258

2048 2108 −2206 2−235

3072 2130 −2206 2−215

7680 2195 −2213 2−158

15360 2261 −2220 2−99

Table 1. The BBS generator: bounds on the adversary’s
running time with j = blog nc.

Thus, the asymptotic result in [3, 41], which seemed to guarantee that we
could securely extract j = blog nc bits in each iteration, does not seem to
deliver in practice what it promises in theory.

Suppose that we retreat from the idea of getting j = blog nc bits from
each iteration, and instead use the BBS generator to give just j = 1 bit
per iteration. Now the security guarantees given by the inequalities (1) and
(3) are better, but not by as much as one might hope. Table 2 gives the
corresponding right-hand sides of (1) (in the third column) and (3) (in the
fourth column) for j = 1, M = 107, and ε = 0.01.

The cross-over point at which the Fischlin–Schorr inequality starts to
give a meaningful security guarantee is about n = 5000 (for which the right-
hand side of (1) is roughly 284). Unfortunately, it is not very efficient to have
to perform a 5000-bit modular squaring for each bit of the pseudorandom
sequence.

Remark 4. The recommended value j = log(log N) in [21] and [43] was
obtained by taking the asymptotic result j = O(log(log N)) and setting the

ANOTHER LOOK AT “PROVABLE SECURITY”. II 17

n L(n) Bound from (1) Bound from (3)

1024 278 −279 2−222

2048 2108 −280 2−194

3072 2130 −280 2−175

7680 2195 2115 2−114

15360 2261 2181 2−51

Table 2. The BBS generator: bounds on the adversary’s
running time with j = 1.

implied constant C in the big-O equal to 1. The choice C = 1 is arbitrary.
In many asymptotic results in number theory the implicit constant is much
greater, so with equal justification one might decide to take C = 100. It
is amusing to note that if one did that with 1000-bit N , one would get a
completely insecure BBS generator. Since j = 100 log(log N) = 1000, one
would be using all the bits of xi. From the output an attacker could easily
determine N (by setting N1 = x2 ± x2

1, Ni = gcd(Ni−1, xi+1 ± x2
i), so that

Ni = N for i ≥ i0 for quite small i0), after which the sequence would be
deterministic for the attacker.

6.2. The Gennaro generator. Let p be an n-bit prime of the form 2q +1
with q prime, and let c be an integer such that c � log n. Let g be a
generating element of F

∗
p. The Gennaro pseudorandom bit generator G takes

a random x mod p − 1 and produces M = (n − c − 1)k bits as follows (see

[23]). Let x 7→ x̃ be the function on n-bit integers x =
∑n−1

l=0 sl2
l given by

x̃ = s0 +
∑n−1

l=n−c sl2
l. Let x0 = x, and for i = 1, . . . , k let xi = gx̃i−1 mod p.

Then the output of G consists of the 2nd through (n − c)-th bits of xi,
i = 1, . . . , k (these are the bits that are ignored in x̃i).

In comparison with the BBS generator, each iteration of the exponenti-
ation xi = gx̃i−1 mod p takes longer than modular squaring. However, one
gets many more bits each time. For example, with the parameters n = 1024
and c = 160 that are recommended in [24] each iteration gives 863 bits.

In [24], Howgrave-Graham, Dyer, and Gennaro compare the Gennaro
generator (with n = 1024 and c = 160) with a SHA-1 based pseudorandom
bit generator (namely, the ANSI X9.17 generator) that lacks a proof of
security:

...SHA-1 based pseudorandom number generation is still con-
siderably faster than the one based on discrete logarithms.
However, the difference, a factor of less than 4 on this hard-
ware, may be considered not too high a price to pay by some
who wish to have a “provably secure,” rather than a “seem-
ingly secure” (i.e., one that has withstood cryptographic at-
tack thus far) system for pseudorandom number generation.

18 NEAL KOBLITZ AND ALFRED J. MENEZES

The proof of security for the Gennaro generator is given in §4 of [23].
Interestingly, Gennaro uses the next bit test rather than the indistinguisha-
bility criterion to derive his results. However, it is the latter criterion rather
than the next bit test that is the widely accepted notion of security of a
pseudorandom bit generator. As mentioned above, to pass from the next
bit test to indistinguishability, one must replace ε by ε/M in the inequalities.
One finds [39] that Gennaro’s proof then gives the following inequality for
the adversary’s time:

(4) T ≤ L(n)(n− c)3

16c(ln c)(M/ε)3
.

For n = 1024, c = 160, M = 107, and ε = 0.01, the right-hand side of (4)
is 18. Thus, the security guarantees that come with the Gennaro generator
are not a whole lot more reassuring than the ones in §6.1.

We conclude this section by repeating the comment we made in §5.5 of
[27]:

Unfortunately, this type of analysis [incorporating the mea-
sure of non-tightness into recommendations for parameter
sizes] is generally missing from papers that argue for a new
protocol on the basis of a “proof” of its security. Typically,
authors of such papers trumpet the advantage that their pro-
tocol has over competing ones that lack a proof of security
(or that have a proof of security only in the random oracle
model), then give a non-tight reductionist argument, and at
the end give key-length recommendations that would make
sense if their proof had been tight. They fail to inform the
potential users of their protocol of the true security level that
is guaranteed by the “proof” if, say, a 1024-bit prime is used.
It seems to us that cryptographers should be consistent. If
one really believes that reductionist security arguments are
very important, then one should give recommendations for
parameter sizes based on an honest analysis of the security
argument, even if it means admitting that efficiency must be
sacrificed.

7. Short Signatures

In the early days of provable security work, researchers were content to
give asymptotic results with polynomial-time reductions. In recent years,
they have increasingly recognized the importance of detailed analyses of
their reductions that allow them to state their results in terms of specified
bounds, probabilities, and running times.

But regrettably, they often fail to follow through with interpretations in
practical terms of the formulas and bounds in their lemmas and theorems.
As a result, even the best researchers sometimes publish results that, when

ANOTHER LOOK AT “PROVABLE SECURITY”. II 19

analyzed in a concrete manner, turn out to be meaningless in practice. In
this section we give an example of this.

First we recall that when analyzing the security of a signature scheme
against chosen-message attack in the random oracle model, one always has
two different types of oracle queries — signature queries and hash function
queries — each with a corresponding bound on the number of queries that an
attacker can make.12 In practice, since signature queries require a response
from the target of the attack, to some extent they can be limited. So it
is reasonable to suppose that the bound qs is of the order of a million or
a billion. In contrast, a query to the hash oracle corresponds in practice
to simply evaluating a publicly available function. There is no justification
for supposing that an attacker’s hash queries will be limited in number by
anything other than her total running time. Thus, to be safe one should
think of qh as being 280, or at the very least 250.

We now give an overview of three signature schemes proposed by Boneh-
Lynn-Shacham [12] and Boneh-Boyen [11]. All three use bilinear pairings
to obtain short signatures whose security against chosen-message attack is
supported by reductionist arguments. Let k denote the security parameter;
in practice, usually k ≈ 80. For efficient implementation it is generally
assumed that the group order q is approximately 22k, which is large enough
to prevent squareroot attacks on the discrete log problem.

In the Boneh-Lynn-Shacham (BLS) signature scheme the signatures then
have length only about 2k. In [12] this scheme is shown to be secure against
chosen-message attack in the random oracle model if the Computational
Diffie-Hellman problem is hard.

In [11] Boneh and Boyen propose two alternatives to the BLS scheme.
The first one (referred to below as the “BB signature scheme”) has roughly
twice the signature length of BLS, namely, 4k, but it can be proven se-
cure against chosen-message attack without using the random oracle model,
assuming that the so-called Strong Diffie-Hellman problem (SDH) is in-
tractable. The second signature scheme proposed in the paper (the “BB
hash-signature scheme”) is a variant of the first one in which the message
must be hashed. Its proof of security uses the random oracle assumption.
Like the BLS scheme, the BB hash-signature scheme has signature length
roughly 2k rather than 4k; moreover, it has the advantage over BLS that
verification is roughly twice as fast.

The proofs in [11] are clear and readable, in part because the authors
introduce a simplified version of the BB scheme (the “basic” BB scheme)
in order to formulate an auxiliary lemma (Lemma 1) that is used to prove
the security of both the full BB scheme (without random oracles) and the
BB hash-signature scheme (with random oracles). What concerns us is the
second of these results (Theorem 2).

12We shall continue to use the notation qs and qh for these bounds, even though we are
also using q to denote the prime group order. We apologize to the reader for our over-use
of the letter q.

20 NEAL KOBLITZ AND ALFRED J. MENEZES

We now describe our reason for doubting the value of that result. We
shall give Lemma 1 and Theorem 2 of [11] in a slightly simplified form
where we omit mention of the probabilities ε and ε′, which are not relevant
to our discussion. The underlying hard problem SDH for both BB schemes
is parameterized by an integer that we shall denote q′s.

Lemma 1. Suppose that q′s-SDH cannot be solved in time less than t′. Then
the basic signature scheme is secure against a weak chosen-message attack by
an existential forger whose signature queries are bounded by q′′s and whose
running time is bounded by t′′, provided that

q′′s < q′s and t′′ ≤ t′ −Θ(q′s
2
T),

where T is the maximum time for a group exponentiation.

Theorem 2. Suppose that the basic signature scheme referred to in Lemma 1
is existentially unforgeable under a weak chosen-message attack with bounds
q′′s and t′′. Then the corresponding hash-signature scheme is secure in the
random oracle model against an adaptive chosen-message attack by an exis-
tential forger whose signature queries are bounded by qs, whose hash queries
are bounded by qh, and whose running time is bounded by t, provided that

qs + qh < q′′s and t ≤ t′′ − o(t′′).

Casual readers are likely to view this theorem as a fairly precise and
definitive security guarantee, especially since the authors comment: “Note
that the security reduction in Theorem 2 is tight... Proofs of signature
schemes in the random oracle model are often far less tight.” Readers are
not likely to go to the trouble of comparing the statement of the theorem
with that of Lemma 1, particularly since in [11] several pages of text separate
the lemma from the theorem. But such a comparison must be made if we
want to avoid ending up in the embarrassing situation of the previous section
(see Tables 1 and 2), where the adversary’s running time was bounded by a
negative number.

If we put the two statements side by side and compare them, we see that
in order for the bound on the adversary’s running time to be a positive
number it is necessary that

q2
h < t′ ≈ 2k,

where k is the security parameter. In practice, this means that we need
qh � 240.13 Thus, there is no security guarantee at all for the hash-signature
scheme in Theorem 2 unless one assumes that the adversary is severely
limited in the number of hash values she can obtain.

The conclusion of all this is not, of course, that the signature scheme
in Theorem 2 of [11] is necessarily insecure, but rather that the provable

13If we had a 160-bit group order and took qh = 250, then Theorem 2 and Lemma 1
would give us the bound t ≤ −2100 for the adversary’s running time.

ANOTHER LOOK AT “PROVABLE SECURITY”. II 21

security result for it has no meaning if parameters are chosen for efficient
implementation.

8. The Paillier–Vergnaud results for Schnorr signatures

In [32] Paillier and Vergnaud prove that it is unlikely that a reduction —
more precisely, an “algebraic” reduction — can be found from the Discrete
Logarithm Problem (DLP) to forging Schnorr signatures. After describing
this result and its proof, we compare it with various positive results that
suggest equivalence between forgery of Schnorr-type signatures and the DLP.

8.1. Schnorr signatures. We first recall the Schnorr signature scheme [35].

Schnorr key generation. Let q be a large prime, and let p be a prime such
that p ≡ 1 (mod q). Let g be a generator of the cyclic subgroup G of order
q in F

∗
p. Let H be a hash function that takes values in the interval [1, q− 1].

Each user Alice constructs her keys by selecting a random integer x in the
interval [1, q − 1] and computing y = gx mod p. Alice’s public key is y; her
private key is x.

Schnorr signature generation. To sign a message m, Alice must do the fol-
lowing:

(1) Select a random integer k in the interval [1, q − 1].
(2) Compute r = gk mod p, and set h = H(m, r).
(3) Set s = k + hx mod q.

The signature for the message is the pair of integers (h, s).

Schnorr signature verification. To verify Alice’s signature (h, s) on a mes-
sage m, Bob must do the following:

(1) Obtain an authenticated copy of Alice’s public key y.
(2) Verify that h and s are integers in the interval [0, q − 1].
(3) Compute u = gsy−h mod p and v = H(m, u).
(4) Accept the signature if and only if v = h.

8.2. Paillier–Vergnaud. Before giving the Paillier–Vergnaud result, we
need some preliminaries. First, suppose that we have a group G gener-
ated by g. By the “discrete log” of y ∈ G we mean a solution x to the
equation gx = y. In [32] the “one-more DLP” problem, denoted n-DLP, is
defined as follows.

n-DLP. Given r0, r1, . . . , rn ∈ G and a discrete log oracle DL(·) that can
be called upon n times, find the discrete logs of all n + 1 elements ri.

Second, by an “algebraic” reduction R from the DLP to forgery, Paillier
and Vergnaud mean a reduction that is able to perform group operations
but is not able to use special features of the way that group elements are
represented. In addition, they suppose that the choices made while carrying
out R are accessible to whomever is running the reduction algorithm (in the

22 NEAL KOBLITZ AND ALFRED J. MENEZES

proof below this is the n-DLP solver). With these definitions, they prove
the following result.

Theorem. Suppose that G is a group of order q generated by g. Suppose
that R is an algebraic reduction from the DLP to universal forgery with
key-only attack that makes n calls to the forger. Then n-DLP is easy.

Proof. Let r0, r1, . . . , rn ∈ G be an instance of n-DLP. We are required to
find all n + 1 discrete logs, and we can call upon the oracle DL(·) n times.
The reduction R will find the discrete logarithm of any element if it is given
a forger that will break n different instances (chosen by R) of the Schnorr
signature scheme. We ask R to find the discrete log of r0. Then n times
the reduction algorithm produces a Schnorr public key yi and a message mi.
Each time we simulate the forger by choosing r = ri, computing the hash
value hi = H(mi, ri), and then setting si equal to the discrete log of riy

hi

i ,
which we determine from the oracle:

si = DL(riy
hi

i).

We send (hi, si), which is a valid signature for mi with public key yi, to R.
Finally, R outputs the discrete log x0 of r0.

In order to compute the public key yi, R must have performed group
operations starting with the only two group elements that it was given,
namely, g and r0. Thus, for some integer values αi and βi that are accessible

to us, we have yi = gαirβi

0 . Once we learn x0 (which is the output of R), we
can compute

xi = si − hi(αi + x0βi) mod q,

which is the discrete logarithm of ri, i = 1, . . . , n. We now know the discrete
logs of all the n + 1 values r0, . . . , rn. This completes the proof.

Paillier and Vergnaud proved similar results for other signature schemes
based on the DLP, such as DSA and ECDSA. In the latter cases they had to
modify the n-DLP slightly: the discrete log oracle is able to give the queried
discrete logs to different bases gi.

Intuitively, the “one-more DLP” problem seems to be equivalent to the
DLP, even though there is an obvious reduction in just one direction. Thus,
the Paillier–Vergnaud results can be paraphrased as follows: A reduction

from the DLP to forgery is unlikely unless the DLP is easy. In this sense
the above theorem has the same flavor as the result of Boneh and Venkate-
san [13] discussed in §2. As in that case, one possible interpretation of
Paillier–Vergnaud is that there might be a security weakness in Schnorr-type
signatures. Indeed, that interpretation is suggested by the title “Discrete-
log-based signatures may not be equivalent to discrete log” and by the claim
in the Introduction that “our work disproves that Schnorr, ElGamal, DSA,
GQ, etc. are maximally secure.”14

14Paillier and Vergnaud do acknowledge, however, that their work leads to “no actual
attack or weakness of either of these signature schemes.”

ANOTHER LOOK AT “PROVABLE SECURITY”. II 23

On the other hand, as in §2, an alternative explanation is that their work
gives a further illustration of the limitations of reduction arguments. It is in-
structive to compare the negative result of Paillier–Vergnaud concerning the
existence of reductions with the following two positive reductionist security
results for Schnorr-type signature schemes.

8.3. Random oracle reductions. Reductionist security claim. In the
Schnorr signature scheme, if the hash function is modeled by a random
oracle, then the DLP reduces to universal forgery.

Argument. Suppose that the adversary can forge a signature for m. After
it gets h = H(m, r), suppose that it is suddenly given a second hash function
H ′. Since a hash function has no special properties that the forger can
take advantage of, whatever method it used will work equally well with H
replaced by H ′. In other words, we are using the random oracle model for
the hash function. So the forger uses h′ = H ′(m, r) as well as h = H(m, r)
and produces two valid signatures (h, s) and (h′, s′) for m, with the same r
but with h′ 6= h. Note that the value of k is the same in both cases, since
r is the same. By subtracting the two values s ≡ k + xh and s′ ≡ k + xh′

(mod q) and then dividing by h′ − h, one can use the forger’s output to
immediately find the discrete log x.15

The above argument is imprecise. Strictly speaking, we should allow for
the possibility that a forger gets H(m, r) for several different values of r and
signs only one of them. In that case we guess which value will be signed, and
run the forger program several times with random guesses until our guess
is correct. We described a rigorous argument (for a stronger version of the
above claim) in §5 of [27], and full details can be found in [33, 34].

Note that the need to run the forger many times leads to a non-tight re-
duction. In [34] it is shown that it suffices to call on the forger approximately
qh times, where qh is a bound on the number of hash function queries. In [32]
Paillier and Vergnaud prove that, roughly speaking, an algebraic reduction
in the random oracle model cannot be tighter than

√
qh. Much as Coron

did in the case of RSA signatures, Paillier and Vergnaud establish a lower
bound on tightness of the reduction.

What do we make of the circumstance that, apparently, no tight reduc-
tion from the DLP to forgery is possible in the random oracle model, and no
reduction at all is likely in a standard model? As usual, several interpreta-
tions are possible. Perhaps this shows that reductions in the random oracle
model are dangerous, because they lead to security results that cannot be
achieved in a standard model. On the other hand, perhaps we can conclude
that the random oracle model should be used, because it can often come
closer to achieving what our intuition suggests should be possible. And
what about the non-tightness? Should we ignore it, or should we adjust our
recommendations for key sizes so that we have, say, 80 bits of security after
taking into account the non-tightness factor?

15Note that one does not need to know k.

24 NEAL KOBLITZ AND ALFRED J. MENEZES

8.4. Brown’s result for ECDSA. Finally, we discuss another positive re-
sult that concerns ECDSA. We shall state without proof an informal version
of a theorem of D. Brown [14, 15].

Theorem. Suppose that the elliptic curve is modeled by a generic group.
Then the problem of finding a collision for the hash function reduces to
forgery of ECDSA signatures.

Brown’s theorem falls outside the framework of the results in [32]. It is
a reduction not from the DLP to forgery, but rather from collision finding
to forgery. And it is a tight reduction. By making the generic group as-
sumption, one is essentially assuming that the DLP is hard (see [36]). If the
hash function is collision-resistant, then the assumed hardness of the DLP
(more precisely, the generic group assumption) implies hardness of forgery.
However, in [14] there is no reduction from the DLP to forgery.

Both Brown and Paillier–Vergnaud make similar assumptions about the
group. The latter authors implicitly assume that n-DLP is hard, and they
assume that a reduction uses the group in a “generic way,” that is, computes
group operations without exploiting any special features of the encodings of
group elements. Similarly, Brown assumes that the elliptic curve group is
for all practical purposes like a generic group, and, in particular, the DLP
is hard.

But their conclusions are opposite one another. Paillier and Vergnaud
prove that no reduction is possible in the standard model, and no tight
reduction is possible in the random oracle model. Brown gives a tight re-
duction — of a different sort than the ones considered in [32] — which proves
security of ECDSA subject to his assumptions.

So is forgery of Schnorr-type signatures equivalent to the DLP? The best
answer we can give is to quote a famous statement by a recent American
president: it all depends on what the definition of “is” is.16

9. Conclusions

In his 1998 survey article “Why chosen ciphertext security matters” [37],
Shoup explained the rationale for attaching great importance to reductionist
security arguments:

This is the preferred approach of modern, mathematical cryp-
tography. Here, one shows with mathematical rigor that any
attacker that can break the cryptosystem can be transformed
into an efficient program to solve the underlying well-studied
problem (e.g., factoring large numbers) that is widely be-
lieved to be very hard. Turning this logic around: if the

16The context was an explanation of his earlier statement that “there is no sexual
relationship with Ms. Lewinsky.” A statement to the effect that “there is no relationship
of equivalence between the DLP and forgery of discrete-log-based signatures” is, in our
judgment, equally implausible.

ANOTHER LOOK AT “PROVABLE SECURITY”. II 25

“hardness assumption” is correct as presumed, the cryptosys-
tem is secure. This approach is about the best we can do.
If we can prove security in this way, then we essentially rule
out all possible shortcuts, even ones we have not yet even

imagined. The only way to attack the cryptosystem is a
full-frontal attack on the underlying hard problem. Period.
(p. 15; emphasis in original)

Later in [37] Shoup concluded: “Practical cryptosystems that are provably
secure are available, and there is very little excuse for not using them.” One
of the two systems whose use he advocated because they had proofs of
security was RSA-OAEP [7].

Unfortunately, history has not been kind to the bold opinion quoted above
about the reliability of provable security results. In 2001, Shoup himself [38]
found a flaw in the purported proof of security of general OAEP by Bellare
and Rogaway. The same year, Manger [29] mounted a successful chosen-
ciphertext attack on RSA-OAEP. Interestingly, it was not the flaw in the
Bellare–Rogaway proof (which was later patched for RSA-OAEP) that made
Manger’s attack possible. Rather, Manger found a shortcut that was “not
yet even imagined” in 1998, when Shoup wrote his survey.

It is often difficult to determine what meaning, if any, a reductionist se-
curity argument has for practical cryptography. In recent years, researchers
have become more aware of the importance of concrete analysis of their re-
ductions. But while they often take great pains to prove precise inequalities,
they rarely make any effort to explain what their mathematically precise se-
curity results actually mean in practice.

For example, in [1] the authors construct a certain type of password-based
key exchange system and give proofs of security in the random oracle model
based on hardness of the computational Diffie–Hellman (CDH) problem.
Here is the (slightly edited) text of their basic result (Corollary 1 of Theorem
1, pp. 201-202 of [1]) that establishes the relation between the “advantage”
of an adversary in breaking their SPAKE1 protocol and the advantage of an
adversary in solving the CDH:

Corollary 1. Let G be a represent group of order p, and
let D be a uniformly distributed dictionary of size |D|. Let
SPAKE1 be the above password-based encrypted key ex-
change protocol associated with these primitives. Then for
any numbers t, qstart, qA

send, qB
send, qH , qexe,

Advake
SPAKE,D(t, qstart, q

A
send, q

B
send, qH , qexe)

≤ 2 ·

qA
send + qB

send

|D| + 6

√

214

|D|2 AdvCDH
G (t′) +

215q4
H

|D|2p

+2 ·
(

(qexe + qsend)
2

2p
+ qHAdvCDH

G (t + 2qexeτ + 3τ)

)

,

26 NEAL KOBLITZ AND ALFRED J. MENEZES

where qH represents the number of queries to the H oracle;
qexe represents the number of queries to the Execute oracle;
qstart and qA

send represent the number of queries to the Send

oracle with respect to the initiator A; qB
send represents the

number of queries to the Send oracle with respect to the
responder B; qsend = qA

send +qB
send+qstart; t′ = 4t+O((qstart +

qH)τ); and τ is the time to compute one exponentiation in
G.

The paper [1] includes a proof of this bewildering and rather intimidating
inequality. But the paper gives no indication of what meaning, if any, it
would have in practice. The reader who might want to use the protocol
and would like to find parameters that satisfy security guarantees and at
the same time allow a reasonably efficient implementation is left to fend for
herself.

In the provable security literature the hapless reader is increasingly likely
to encounter complicated inequalities involving more than half a dozen vari-
ables. (For other examples, see Theorem 5 in [28] and Theorems 2 and 3
in [4].) The practical significance of these inequalities is almost never ex-
plained. Indeed, one has to wonder what the purpose is of publishing them
in such an elaborate, undigested form, with no interpretation given. What-
ever the authors’ intent might have been, there can be little doubt that the
effect is not to enlighten their readers, but only to mesmerize them.

* * *

Embarking on a study of the field of “provable security,” before long
one begins to feel that one has entered a realm that could only have been
imagined by Lewis Carroll, and that the Alice of cryptographic fame has
merged with the heroine of Carroll’s books:

Alice felt dreadfully puzzled. The Hatter’s remark seemed to
her to have no sort of meaning in it, and yet it was certainly
English. (Alice’s Adventures in Wonderland and Through the

Looking-Glass, London: Oxford Univ. Press, 1971, p. 62.)

The Dormouse proclaims that his random bit generator is provably secure
against an adversary whose computational power is bounded by a negative
number. The Mad Hatter responds that he has a generator that is provably
secure against an adversary whose computational resources are bounded by
10−40 clock cycles. The White Knight is heralded for blazing new trails,
but upon further examination one notices that he’s riding backwards. The
Program Committee is made up of Red Queens screaming “Off with their
heads!” whenever authors submit a paper with no provable security theorem.

Lewis Carroll’s Alice wakes up at the end of the book and realizes that it
has all been just a dream. For the cryptographic Alice, however, the return
to the real world might not be so easy.

ANOTHER LOOK AT “PROVABLE SECURITY”. II 27

Acknowledgments

We would like to thank Andrey Sidorenko for his valuable comments on
pseudorandom bit generators and Bart Preneel for answering our queries
about the provable security of MAC algorithms. We also wish to thank Ian
Blake and Dan Brown for reading and commenting on earlier drafts of the
paper. Needless to say, all the opinions expressed in this article are the sole
responsibility of the authors.

References

[1] M. Abdalla and D. Pointcheval, Simple password-based encrypted key exchange pro-
tocols, Topics in Cryptology – CT-RSA 2005, LNCS 3376, Springer-Verlag, 2005,
pp. 191-208.

[2] M. Ajtai and C. Dwork, A public-key cryptosystem with worst-case/average-case
equivalence, Proc. 29th Symp. Theory of Computing, A.C.M., 1997, pp. 284-293.

[3] W. Alexi, B. Chor, O. Goldreich, and C. P. Schnorr, RSA and Rabin functions:
Certain parts are as hard as the whole, SIAM J. Computing, 17 (1988), pp. 194-209.

[4] P. Barreto, B. Libert, N. McCullagh, and J.-J. Quisquater, Efficient and provably-
secure identity-based signatures and signcryption from bilinear maps, Advances in
Cryptology – Asiacrypt 2005, LNCS 3788, Springer-Verlag, 2005, pp. 515-532.

[5] M. Bellare, Practice-oriented provable-security, Proc. First International Workshop
on Information Security (ISW ’97), LNCS 1396, Springer-Verlag, 1998, pp. 221-231.

[6] M. Bellare and P. Rogaway, Random oracles are practical: a paradigm for designing
efficient protocols, Proc. First Annual Conf. Computer and Communications Security,
ACM, 1993, pp. 62-73.

[7] M. Bellare and P. Rogaway, Optimal asymmetric encryption — how to encrypt with
RSA, Advances in Cryptology – Eurocrypt ’94, LNCS 950, Springer-Verlag, 1994,
pp. 92-111.

[8] S. Blackburn and K. Paterson, Cryptanalysis of a message authentication code due to
Cary and Venkatesan, Fast Software Encryption 2004, LNCS 3017, Springer-Verlag,
2004, pp. 446-453.

[9] L. Blum, M. Blum, and M. Shub, A simple unpredictable pseudo-random number
generator, SIAM J. Computing, 15 (1986), pp. 364-383.

[10] M. Blum and S. Micali, How to generate cryptographically strong sequences of
pseudo-random bits, SIAM J. Computing, 13 (1984), pp. 850-864.

[11] D. Boneh and X. Boyen, Short signatures without random oracles, Advances in Cryp-
tology – Eurocrypt 2004, LNCS 3027, Springer-Verlag, 2004, pp. 56-73.

[12] D. Boneh, B. Lynn, and H. Shacham, Short signatures from the Weil pairing, Ad-
vances in Cryptology – Asiacrypt 2001, LNCS 2248, Springer-Verlag, 2001, pp. 514-
532.

[13] D. Boneh and R. Venkatesan, Breaking RSA may not be equivalent to factoring,
Advances in Cryptology – Eurocrypt ’98, LNCS 1233, Springer-Verlag, 1998, pp. 59-
71.

[14] D. Brown, Generic groups, collision resistance, and ECDSA, Designs, Codes and
Cryptography, 35 (2005), pp. 119-152.

[15] D. Brown, On the provable security of ECDSA, in I. Blake, G. Seroussi, and N. Smart,
eds., Advances in Elliptic Curve Cryptography, Cambridge University Press, 2005,
pp. 21-40.

[16] D. Brown, Breaking RSA may be as difficult as factoring, http://eprint.iacr.org/
2005/380

[17] D. Brown, unpublished communication, February 2006.

28 NEAL KOBLITZ AND ALFRED J. MENEZES

[18] M. Cary and R. Venkatesan, A message authentication code based on unimodular
matrix groups, Advances in Cryptology – Crypto 2003, LNCS 2729, Springer-Verlag,
2003, pp. 500-512.

[19] J.-S. Coron, On the exact security of full domain hash, Advances in Cryptology –
Crypto 2000, LNCS 1880, Springer-Verlag, 2000, pp. 229-235.

[20] J.-S. Coron, Optimal security proofs for PSS and other signature schemes, Advances
in Cryptology – Eurocrypt 2002, LNCS 2332, Springer-Verlag, 2002, pp. 272-287.

[21] D. Eastlake, S. Crocker, and J. Schiller, RFC 1750 – Randomness Recommendations
for Security, available from http://www.ietf.org/rfc/rfc1750.txt

[22] R. Fischlin and C. P. Schnorr, Stronger security proofs for RSA and Rabin bits,
J. Cryptology, 13 (2000), pp. 221-244.

[23] R. Gennaro, An improved pseudo-random generator based on the discrete log prob-
lem, J. Cryptology, 18 (2005), pp. 91-110.

[24] N. Howgrave-Graham, J. Dyer, and R. Gennaro, Pseudo-random number generation
on the IBM 4758 Secure Crypto Coprocessor, Workshop on Cryptographic Hardware
and Embedded Systems (CHES 2001), LNCS 2162, Springer-Verlag, 2001, pp. 93-102.

[25] J. Katz and N. Wang, Efficiency improvements for signature schemes with tight se-
curity reductions, 10th ACM Conf. Computer and Communications Security, 2003,
pp. 155-164.

[26] D. Knuth, Seminumerical Algorithms, vol. 2 of Art of Computer Programming, 3rd
ed., Addison-Wesley, 1997.

[27] N. Koblitz and A. Menezes, Another look at “provable security,” to appear in J. Cryp-
tology; available from http://eprint.iacr.org/2004/152.

[28] P. Mackenzie and S. Patel, Hard bits of the discrete log with applications to password
authentication, Topics in Cryptology – CT-RSA 2005, LNCS 3376, Springer-Verlag,
2005, pp. 209-226.

[29] J. Manger, A chosen ciphertext attack on RSA Optimal Asymmetric Encryption
Padding (OAEP) as standardized in PKCS #1 v2.0, Advances in Cryptology – Crypto
2001, LNCS 2139, Springer-Verlag, 2001, pp. 230-238.

[30] P. Q. Nguyen and J. Stern, Cryptanalysis of the Ajtai–Dwork cryptosystem, Advances
in Cryptology – Crypto ’98, LNCS 1462, Springer-Verlag, 1998, pp. 223-242.

[31] P. Q. Nguyen and J. Stern, The two faces of lattices in cryptology, Cryptography and
Lattices – Proc. CALC 2001, LNCS 2146, Springer-Verlag, 2001, pp. 146-180.

[32] P. Paillier and D. Vergnaud, Discrete-log-based signatures may not be equivalent to
discrete log, Advances in Cryptology – Asiacrypt 2005, LNCS 3788, Springer-Verlag,
2005, pp. 1-20.

[33] D. Pointcheval and J. Stern, Security proofs for signature schemes, Advances in Cryp-
tology – Eurocrypt ’96, LNCS 1070, Springer-Verlag, 1996, pp. 387-398.

[34] D. Pointcheval and J. Stern, Security arguments for digital signatures and blind
signatures, J. Cryptology, 13 (2000), pp. 361-396.

[35] C. P. Schnorr, Efficient signature generation for smart cards, J. Cryptology, 4 (1991),
pp. 161-174.

[36] V. Shoup, Lower bounds for discrete logarithms and related problems, Advances in
Cryptology – Eurocrypt ’97, LNCS 1233, Springer-Verlag, 1997, pp. 256-266.

[37] V. Shoup, Why chosen ciphertext security matters, IBM Research Report RZ 3076
(#93122) 23/11/1998.

[38] V. Shoup, OAEP reconsidered, Advances in Cryptology – Crypto 2001, LNCS 2139,
Springer-Verlag, 2001, pp. 239-259.

[39] A. Sidorenko, unpublished communication, March 2006.
[40] A. Sidorenko and B. Schoenmakers, Concrete security of the Blum–Blum–Shub pseu-

dorandom generator, Cryptography and Coding 2005, LNCS 3796, Springer-Verlag,
2005, pp. 355-375.

ANOTHER LOOK AT “PROVABLE SECURITY”. II 29

[41] U. V. Vazirani and V. V. Vazirani, Efficient and secure pseudo-random number gen-
eration, Proc. IEEE 25th Annual Symp. Foundations of Computer Science, 1984,
pp. 458-463.

[42] A. Yao, Theory and applications of trapdoor functions, Proc. IEEE 23rd Annual
Symp. Foundations of Computer Science, 1982, pp. 80-91.

[43] A. Young and M. Yung, Malicious Cryptography: Exposing Cryptovirology, Wiley,
2004.

Department of Mathematics, Box 354350, University of Washington, Seat-

tle, WA 98195 U.S.A.

E-mail address: koblitz@math.washington.edu

Department of Combinatorics & Optimization, University of Waterloo, Wa-

terloo, Ontario N2L 3G1 Canada

E-mail address: ajmeneze@uwaterloo.ca

