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Abstract. Starting with Shoup’s seminal paper [24], the generic group
model has been an important tool in reductionist security arguments.
After an informal explanation of this model and Shoup’s theorem, we
discuss the danger of flaws in proofs. We next describe an ontological
difference between the generic group assumption and the random oracle
model for hash functions. We then examine some criticisms that have
been leveled at the generic group model and raise some questions of our
own.

1. Introduction

In many cryptographic settings, systems based on elliptic curves are more
efficient than those based on either the ring of integers modulo an RSA-
modulus N or the multiplicative group of a finite field. The main reason is
that in the latter cases there are subexponential-time index calculus algo-
rithms that solve the underlying hard problems, whereas no subexponential-
time algorithms are known for the discrete logarithm problem on a (suitably
chosen) elliptic curve. Moreover, for the most part1 the best available algo-
rithms are ones that have nothing to do with the specific structure of the
elliptic curve group, but rather would work with essentially the same run-
ning time on any group. Such algorithms are said to be “generic.” It was
noticed that the two best generic algorithms — Shanks’ “baby-step/giant-
step” and Pollard’s rho — each require time roughly O(

√
q), where q is the

order of the largest prime-order subgroup.2 The question naturally arose:
Could there be faster generic algorithms?

In 1997, Shoup [24] answered this question in the negative. To do this he
introduced the notion of the “generic group model” (a somewhat different
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1By grouping together a point with its negative on an elliptic curve, one can speed up

generic algorithms by a factor of
√

2; and if the curve is defined over a small subextension,
one can get a slightly greater speed-up by grouping together points that are conjugate
over the subextension. In certain very special cases one has algorithms for the elliptic
curve discrete logarithm that are substantially faster than generic algorithms. These
cases include supersingular elliptic curves and elliptic curves for which an efficient Weil
descent can be constructed.

2Normally the elliptic curves used in cryptography are chosen to have a subgroup of
prime order of the same order of magnitude as the order of the whole group, and the
cryptosystem uses that subgroup.
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version of this concept was introduced earlier by Nechaev [19]). We shall
give a sketch of his proof in §2. The idea of the generic group model is to
give a precise definition of what it means to have an algorithm that does
not make use of any special features of the group.

For simplicity suppose that the multiplicatively-written group G is cyclic
of prime order q. Such a group is isomorphic to the additive group Z/qZ,
and for any non-identity element g ∈ G an explicit isomorphism from Z/qZ

to G can be efficiently constructed by sending i to gi. Namely, whatever
formulas we have for the group operation can be used in conjunction with
some version of repeated-squaring in order to exponentiate in polynomial
time. The discrete logarithm problem in G to the base g is the problem of
inverting the exponentiation i 7→ gi.

In the generic group model one supposes that instead of formulas for the
group operation we have an “oracle” that for any i will give us an “encoding”
σ(i). In addition, if we have two encodings σ(i) and σ(j) (but we do not
necessarily know i or j), then the oracle will give us σ(i±j) = σ(i)σ(j)±1. By
repeatedly querying the oracle, we can also efficiently determine σ(ri+sj) =
σ(i)rσ(j)s for any integers 0 ≤ r, s < q. Without loss of generality we may
suppose that we’re allowed to ask for the value σ(ri + sj) in a single query.
Thus, the oracle will tell us either the encoding of an integer i, 0 ≤ i < q,
or else the element σ(i)rσ(j)s for 0 ≤ r, s < q of our choice. However, the
oracle reveals no other information. The way to ensure this is to stipulate
that the oracle’s encodings are randomly selected elements from some set of
bitstrings. The only condition on the oracle’s responses is that if the same
group element is queried a second time, it must respond with the same
encoding.

2. Shoup’s Theorem

Here is a more precise (but informal) description of how a generic group
oracle works. The input to the oracle is of one of two types:

Type 1: an integer i, 0 ≤ i < q. In this case the oracle outputs an encoding
σ(i) and keeps a record of it. If the integer i has already been queried, then
the same σ(i) is returned as before; otherwise, the oracle chooses a random
value for σ(i) that is different from all the earlier values it chose.

Type 2: a 4-tuple r, s, σ(i), σ(j), where 0 ≤ r, s < q and σ(i) and
σ(j) are outputs from earlier queries.3 In this case the oracle must give the
encoding of the linear combination ri + sj mod q. (The oracle can of course
determine i and j from its records, which list the pairs (i, σ(i)) from all the
previous queries.) If the oracle already returned a value for σ(ri+sj mod q)
earlier, then the same value is returned again; otherwise, the oracle chooses
a random value for σ(ri+sj mod q) that is different from the earlier random
values and keeps a record of it.

3The person who queries the oracle may or may not know i or j. The earlier queries
may have been made by other parties.
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Following the exposition in [28], we now give a sketch of the proof of
Shoup’s theorem, which says that the discrete logarithm problem (DLP)
in a generic group of order q cannot be solved in expected time less than
O(
√

q).
The input to the DLP is a generator σ1, which without loss of generality

we may suppose to be σ(1), and a second element σ2 = σ(x). We have
to determine x. The only information that we can obtain is the oracle’s
responses to queries of the above two types. The k-th such response will be
a value of the form σ(rk + skx), where we know rk and sk, but not x. Since
these values are random, they will have no relation to one another until we
query a linear combination rk + skx that happens to be equal modulo q to
an earlier r` + s`x. As soon as such a collision occurs, we can immediately
solve for x (unless sk ≡ s` (mod q), in which case the pairs (rk, sk) and
(r`, s`) are identical mod q). Namely, if σ(rk + skx) = σ(r` + s`x), it follows
that rk + skx ≡ r` + s`x (mod q), and so

x ≡ −rk − r`

sk − s`
(mod q).

Conversely, if two queries with pairs (rk, sk) and (r`, s`) that are distinct
mod q lead to a solution, then x must have the value given above. This
means that after t queries there are at most

(

t
2

)

possible values of x that

would be found. Thus, there is insignificant probability of success until
(

t
2

)

is of order q, in other words, until t is approximately
√

q.

3. The Danger of Flaws in Proofs

Ever since Shoup [25] discovered a subtle but crucial flaw in the Bellare-
Rogaway proof [3] of security of their Optimal Asymmetric Encryption
Padding (OAEP), researchers have been painfully aware of the danger of
flaws in reductionist security arguments. It is possible for a “proof of secu-
rity” to be accepted by the research community and influence cryptographic
practice for many years before it is found to be fallacious. Stern, Pointcheval,
Malone-Lee, and Smart [27] comment:

Methods from provable security, developed over the last twenty
years, have been recently extensively used to support emerg-
ing standards. However, the fact that proofs also need time
to be validated through public discussion was somehow over-
looked. This became clear when Shoup found that there was
a gap in the widely believed security proof of OAEP against
adaptive chosen-ciphertext attacks.... the use of provable
security is more subtle than it appears, and flaws in secu-
rity proofs themselves might have a devastating effect on the
trustworthiness of cryptography.

We should not be surprised if proofs using the generic group model turn
out to be as susceptible to flaws as other types of reductionist security
arguments. In this section we discuss one such case.
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3.1. RSA-S1. We start by describing RSA-S1 [16], which is a method for
an untrusted server to assist an RSA signer with the exponentiation y =
xd mod N . Here d is the secret exponent, and (in the simplest version of
RSA signatures) x is the hash-value of the message and y is the signature.
In RSA-S1 the signer once and for all chooses a vector d = (d1, . . . , dm) of
positive integers and a vector f = (f1, . . . , fm) of 0’s and 1’s, such that f has
Hamming weight k and

∑

fi=1 di ≡ d (mod ϕ(N)). Here d is public and f

is secret (but for simplicity we may as well suppose that k is public). When
the signer wants to compute xd mod N , the server sends her the m values
xdi mod N , after which the signer computes xd =

∏

fi=1 xdi mod N .
We consider passive attacks that require only one round of the protocol.

For several years after RSA-S1 was introduced, the best was the following
meet-in-the-middle attack [21, 20]. For simplicity suppose that k and m are
even. First choose a random subset S ⊂ {1, 2, . . . , m} consisting of m/2
indices; let S′ denote the complement of S. For all possible subsets T ⊂ S
of cardinality k/2 and all possible subsets T ′ ⊂ S′ of cardinality k/2 the

adversary computes
∏

i∈T xdi mod N and y
(
∏

i∈T ′ xdi

)−1
mod N , and sorts

and compares these two sets. As soon as a collision occurs, the adversary
finds d =

∑

i∈T∪T ′ di modulo the order of x. It is not hard to compute the

expected running time of this algorithm, which is roughly
√

(

m
k

)

— that is,

the squareroot of the number of possible choices of the secret vector f .

3.2. Proof of security. A decade after RSA-S1 was introduced, Merkle
and Werchner [17] gave a reductionist security argument for it in Nechaev’s
version of the generic group model. They assumed that RSA itself is secure,
i.e., that N is suitably chosen so that index calculus methods for factoring N
are not feasible. They noted that the attack described above is generic — no
special properties of the group G = (Z/NZ)∗ are used. The situation is then
analogous to DSA (see §4 below), where Fp is assumed to have been chosen
large enough to preclude the use of index calculus, and so an adversary is
stuck with generic DLP algorithms in the order-q subgroup.

Notice that an adversary who wants to find the secret exponent d from x
and y is trying to solve a discrete log problem in the group G = (Z/NZ)∗.
The group is not of prime order — and in fact the adversary doesn’t know
its order ϕ(N) — but otherwise we’re in a setting similar to that in §§1-2.
It might seem that an approach very similar to Shoup’s technique in [24]
should work here as well.

On p. 102 of [17] the authors define a generic attack on RSA-S1 by essen-
tially generalizing and abstracting the attack described above. They then
argue — much as Shoup did — that the only way the adversary can succeed

is to obtain a collision, and this is expected to take O
(
√

(

m
k

)

)

steps.

3.3. The flaw. However, within a few years after publication of [17] suc-
cessful attacks had been mounted against RSA-S1, most dramatically by
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Nguyen and Shparlinski [20], who showed that in the case of low public ex-
ponent e one can use lattice basis methods to break RSA-S1 in one round
with a passive attack.

How is it possible for a “provably secure” system to be so insecure?
Clearly an explanation is needed. The lesson Nguyen and Shparlinski draw
is that “our result throws doubt on the real significance of security proofs
in the generic model, at least for server-aided RSA protocols.” We don’t
believe that that’s the right conclusion. The problem is not with the generic
group model, but rather with the proof itself, which contains a blatant flaw.

In [17] the proof assumes that any adversary must approach his task as a
DLP problem and use some collision-finding method, as was done in Shoup’s
proof. The authors failed to notice that, alternatively, the attacker can work
directly with the subset-sum problem

∑

fi=1 edi ≡ ed ≡ 1 (mod ϕ(N)).

It’s a little tricky, because ϕ(N) is secret. But under certain conditions
(including small e), Nguyen and Shparlinski show how to deal with that by
introducing a new variable which takes small values.

The attacker in [20] does not even need to know the group elements x, y;
nor does he need to call upon the group operation oracle. But the attack is
certainly generic, since it uses no special properties of the group G.

The fallacy in [17] was to ignore the fact that the attacker has not only the
input to a DLP, but also the input to a subset-sum problem. It is striking
that the Merkle–Werchner definition of a generic attack on RSA-S1 neglects
even to include the public exponent e in the input, although obviously the
attacker knows this information. Indeed, the type of attack described in
that definition does not make use of the public exponent. However, a proof
of security is fallacious if it assumes that an attacker will be ignorant of or
unable to use part of the public key. As in the case of OAEP, we again see
how risky it is to put confidence in a “proof” of security simply on the basis
of its initial acceptance by referees and conference attendees.

4. Contrast with the Random Oracle Model

Because the random oracle model has been around longer [2] and has been
used far more extensively than the generic group model, cryptographers tend
to be more familiar with it. For this reason, when introducing the generic
group model, authors often compare it to the random oracle model, and
state or imply that they are very similar (e.g., see p. 241 of [28] and p. 74 of
[26]). This is not quite correct. In reality, the two models relate to real-world
cryptography in very different ways.

On the one hand, although the random oracle model is an idealization of
a hash function, it is a realistic one in the following strong sense. Let h(x)
be a concrete hash function. Suppose that we supply a sequence of inputs
x1, x2, . . . to two black boxes, one of which computes the hash function
values h(xi) and the other of which outputs random values ri. If h is a good
hash function, then unless we actually compute a hash value we should



6 NEAL KOBLITZ AND ALFRED J. MENEZES

not be able to guess (with greater than a 50% chance of being correct)
which of the two sequences is the h(xi) and which is the ri. No amount of
statistical or number-theoretic testing will help us distinguish between the
hash function and a random function. Of course, an algorithm for the hash
function is publicly known, so we can distinguish between the two sequences
by computing one of the values h(xi). But nothing short of that is of any
help. Thus, it is reasonable to think of a well-constructed real-world hash
function as a deterministic function that is essentially indistinguishable from
a random function.

In contrast, the generic group model is not a literal description of any
of the groups used in real-world cryptography. For instance, encodings of
elements in general are easy to distinguish from random strings without even
applying the group operation. Here are some examples:

(1) The identity element has a very special encoding. For the multi-
plicative group of a finite field it is 1, and for an elliptic curve in
Weierstrass form it is (0, 1, 0) (in projective coordinates).

(2) In the DSA group, which consists of elements x of F
∗
p of order q

(where q is a prime divisor of p−1), all group elements are quadratic
residues mod p, and so can be distinguished from a random string
without even using mod-p group operations (since one can evaluate
(

x
p

)

using quadratic reciprocity). Similarly, the x-coordinates of

points on an elliptic curve with equation y2 = f(x) over Fp all satisfy

the relation
(

f(x)
p

)

= 1.

(3) On an elliptic curve with equation y2 = f(x), a point and its inverse
under the group law both have the same x-coordinate.

(4) The DSA group is a subgroup of a group (namely F
∗
p) that has a

large subset of “small” elements (namely {1, 2, . . . , [√p]}) for which
the group operation on the encodings of two elements is given by
ordinary integer multiplication.

When the generic group model is applied to a concrete cryptosystem,
such as DSA or ECDSA, one is claiming that the model is an accurate
reflection of the actual group being used only when someone is trying to

solve a problem related to discrete logarithms (such as variants of the Diffie-
Hellman problem). The generic group model is merely a convenient way
to formally guarantee that the group has no special structure or property
that would be of use in solving this problem. If the encodings have special
features that lead to algorithms for the problem, the claim is that these
algorithms are no faster than the algorithms that don’t use such features.
For example, the DLP in the DSA group can be solved using index calculus
algorithms in the larger group F

∗
p (see (4) above). However, in practice one

chooses p large enough compared to q so that these algorithms are slower
than

√
q and so enjoy no advantage over generic algorithms.
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It is also important to note that when the generic group model is used
to prove a result about the security of a cryptosystem that is based on a
concrete group, no claim is being made about the group’s generic behavior
in situations that are unrelated to the result being proved. For example,
suppose that we have a protocol with the unusual property that it can
somehow be misused if there is a way to find two group elements that give
the same input at a certain stage of the protocol. If this input is the x-
coordinate of a point on an elliptic curve, then obviously we’re in trouble
(see (3) above). That, however, has nothing to do with the question of
whether or not the generic group assumption is valid for the elliptic curve in
proofs of security against an attacker who isn’t helped by having two points
with the same x-coordinate.

5. Dubious Critiques

In this section we discuss some criticisms of the generic group model or
its uses that do not hold up well under close examination.

5.1. Fischlin’s pitfalls. In [13] Fischlin discussed what he called “pitfalls”
in using the generic group model in security reductions. His most important
example related to the Schnorr signature scheme [22], which had just been
proved secure in the generic group model by Schnorr and Jakobsson [23].

We first recall the signature scheme [22].

Schnorr key generation. Let q be a large prime, and let p be a prime such
that p ≡ 1 (mod q). Let g be a generator of the cyclic subgroup G of order
q in F

∗
p. Let H be a hash function that takes values in the interval [0, q− 1].

Each user Alice constructs her keys by selecting a random integer x in the
interval [1, q − 1] and computing y = gx mod p. Alice’s public key is y; her
private key is x.

Schnorr signature generation. To sign a message m, Alice must do the fol-
lowing:

(1) Select a random integer k in the interval [1, q − 1].
(2) Compute r = gk mod p, and set h = H(m, r).
(3) Set s = k + hx mod q.

The signature for the message is the pair of integers (h, s).

Schnorr signature verification. To verify Alice’s signature (h, s) on a mes-
sage m, Bob must do the following:

(1) Obtain an authenticated copy of Alice’s public key y.
(2) Verify that h and s are integers in the interval [0, q − 1].
(3) Compute u = gsy−h mod p and v = H(m, u).
(4) Accept the signature if and only if v = h.
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Fischlin shows that, if the hash function is modified in a certain way (with-
out losing collision-resistance), one can obtain a scheme that is susceptible to
forgery. He defines a new hash function H depending not only on m and r,
but also on the group parameters and the public key: h = H(p, q, g, y, m, r).
Here is Fischlin’s definition (slightly simplified). For most m and r, the hash

value h is defined to be equal to H1(m, r)+ q−1
2 , where H1 is a hash function

that takes values in [1, (q − 1)/2] rather than in [1, q − 1]. If a certain very
unusual relation holds, however, then h is defined to be H1(m1), where we
split m into two parts m = m1m2 with m2 consisting of the last [log2 p]
bits of m; here m2 is interpreted as an element of F

∗
p. The condition under

which H(p, q, g, y, m, r) = H1(m1) is that r = gy−H1(m1) mod p and also
m2 = gr mod p.

Fischlin comments that if H1 is collision-resistant, then so is the new hash
function (for fixed p, q, g, y and varying m, r). But an adversary can easily

forge a signature. He picks m1 at random, sets r = gy−H1(m1) mod p and
m2 = gr mod p. Setting h = H1(m1), he obtains the valid signature (h, 1)
for the message m.

As Fischlin points out, in the proof in [23] using the generic group model
the hash function cannot query the group-operation oracle, and so the above
construction does not contradict the result in [23]. Moreover, no real-world
hash function would ever incorporate operations in the group G in its defi-
nition. It is standard cryptographic practice not to intermingle ingredients
from different primitives that are used in a protocol. Indeed, it is well known
that if one intermingles two parts of a protocol that are individually secure,
the result might be insecure. (For a discussion of a similar issue in the con-
text of hybrid-encryption schemes, see §6 of [15], where the uninstantiable
random-oracle-model scheme in [1] is critiqued.) Thus, Fischlin’s construc-
tion does not point to any “pitfall” in the generic group model. Rather, it
serves as a useful reminder of the dangers that lurk in pathological construc-
tions that violate standard cryptographic practice.

We next discuss an even more peculiar construction used in an attempt
to find a weakness in the generic group model.

5.2. Dent’s weaknesses. In [12] Dent carries over to the generic group
model the type of argument that Canetti, Goldreich and Halevi [9, 10] used
in their attempt to undermine the random oracle model. We argued in §6 of
[15] that the extremely contrived constructions in [9, 10] and similar papers
do not in fact give any reason to lose confidence in the random oracle model.
By the same token, if we examine the construction in [12], we see that it in
no way shows a “weakness” in the generic group model.

The main content of [12] is contained in §5.2, where the construction is
given. Since that subsection is preceded by several pages of formalism that
are difficult to read, many potential readers are likely to be deterred from
examining the argument. This is unfortunate. In reality, the construction
is in essence a simple one.
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Dent modifies a signature scheme S that is secure against chosen-message
attack in the generic group model to get a new signature scheme S ′ that
is still secure in the generic group model but is insecure with any concrete
group. Stripped of the formalism in [12], here is a rough (but reasonably
accurate) description of his procedure. Let σ1, σ2, . . . be an enumeration of
all efficiently computable encoding algorithms for families of cyclic groups.
(This set is enumerable, because the set of all computer programs is enu-
merable.) If a message m consists of an integer j followed by the steps in
the computation of σq

j (j) (where σq
j is an encoding of a cyclic group of order

q), and if σq
j (j) is equal to σ(j), where σ is the encoding used in S, then the

S′-signature is the S-signature with the secret key appended. If m is not
of this form, then the S ′-signature is the S-signature without the secret key
appended. In the generic group model, where σ is a random encoding given
by an oracle, for any j there is negligible probability that σq

j (j) = σ(j).

But with any concrete group with encoding σq
j , the chosen-message attacker

need only ask Alice to sign a message consisting of j and the steps in the
computation of σq

j (j), and Alice foolishly sends him her secret key.
The notion of a signature scheme in which the signer includes her secret

key in the signature for certain types of messages is bizarre, to say the
least. A contrived argument of the sort in [9, 10] and [12] has no relation to
cryptographic practice and is not of much value in understanding the subtle
strengths and weaknesses of an important concept such as the generic group
model (or the random oracle model). Rather, constructions of the type
described in the last paragraph tend to diminish the credibility of theoretical
cryptography, with the unfortunate result that many people in government
and industry take a skeptical view of theory.

5.3. The Stern–Pointcheval–Malone-Lee–Smart flaw. We next ana-
lyze the criticism in [27] of D. Brown’s security proof for the elliptic curve
digital signature algorithm (ECDSA) in the generic group model [6, 7]. First
we describe the ECDSA.

ECDSA key generation. E is an elliptic curve defined over Fp, and P is a
point of prime order q in E(Fp); these are system-wide parameters. For
simplicity, we shall suppose that p is a prime, although the construction can
easily be adapted to a prime power p as well. Each user Alice constructs her
keys by selecting a random integer x in the interval [1, q−1] and computing
Q = xP . Alice’s public key is Q; her private key is x.

ECDSA signature generation. To sign a message having hash value h, 0 <
h < q, Alice must do the following:

(1) Select a random integer k in the interval [1, q − 1].
(2) Compute kP = (x1, y1) and set r = x1 mod q (where x1 is regarded

as an integer between 0 and p− 1). (Note: If r = 0, then go back to
Step 1 and select another k.)
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(3) Compute k−1 mod q and set s = k−1(h+xr) mod q. (Note: If s = 0,
then go back to Step 1.)

The signature for the message is the pair of integers (r, s).

ECDSA signature verification. To verify Alice’s signature (r, s) on a mes-
sage, Bob must do the following:

(1) Obtain an authenticated copy of Alice’s public key Q.
(2) Verify that r and s are integers in the interval [1, q−1], and compute

the hash value h of the message.
(3) Compute u1 = s−1h mod q and u2 = s−1r mod q.
(4) Compute u1P + u2Q = (x0, y0) and, regarding x0 as an integer

between 0 and p− 1, set v = x0 mod q.
(5) Accept the signature if and only if v = r.

Notice that if Alice generated her signature correctly, then u1P + u2Q =
(u1 + xu2)P = kP because k ≡ s−1(h + xr) (mod q), and so v = r.

ECDSA was first proposed in 1992 by Vanstone [29] as an elliptic curve
analogue of the Digital Signature Algorithm that had been proposed by
the National Institute of Standards and Technology. The most important
advantage that it has over DSA is the possibility of working over much
smaller fields Fp. Indeed, in ECDSA p is of the same order of magnitude as
q, whereas in DSA it has to be chosen much larger (because of the availability
of index calculus algorithms to find discrete logarithms in F

∗
p).

The main difference between DSA and ECDSA is that in Step 2 of DSA
signature generation r is defined as the least nonnegative residue modulo q
of the group element gk ∈ F

∗
p, where g is a fixed generator of the order-q

subgroup and gk is regarded as an integer in [1, p − 1] and then reduced
modulo q.

In [6] (see also [7]) Brown constructed a security reduction for ECDSA
that gave the following result: If the elliptic curve group can be modeled by

a generic group and if the hash function satisfies certain reasonable assump-

tions, then ECDSA is secure against chosen-message attack by an existential

forger. A central role in Brown’s proof was played by what he called the
“conversion function” r = f(kP ) that goes from a group element to an in-
teger mod q in Step 2 of signature generation. In the case of ECDSA this
function is “almost invertible” in the sense that, given an arbitrary inte-
ger r mod q, with nonnegligible probability one can efficiently find a point
whose x-coordinate (regarded as an integer in [0, p−1]) reduces to r modulo
q.4 The almost-invertibility property allowed him in essence to transfer the
intractability of the discrete log problem on a generic group to the set of
r-values.

Brown observed that his proof does not work for DSA because no one
knows any reasonable way to find an element in F

∗
p that has order q and

4One also has to know that the inversion algorithm finds points that are randomly
distributed as r varies.
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reduces modulo q to a given r. In other words, the DSA conversion function
r = f(gk) is apparently “one-way.” In the next section we shall discuss
possible interpretations of the curious circumstance that ECDSA enjoys a
“provable security” property that DSA apparently does not.

Brown’s result attracted attention because it was the first security re-
duction constructed for ECDSA itself, rather than for modified versions of
the signature scheme. Because ECDSA is recommended by many standards
bodies (IEEE, ISO, ANSI, NIST, etc.), it is important to look carefully at
Brown’s work.

In [27] the authors criticize Brown’s proof harshly. They found what they
claim to be a “flaw” in his use of the generic group model. The authors
of [27] point out that ECDSA has certain special properties that it would
not have if the elliptic curve were a generic group. They give two concrete
examples, both coming from the fact that on an elliptic curve given by a
Weierstrass equation the points P and −P have the same x-coordinate.

First of all, they observe that if (r, s) is a valid signature for a message
m, then so is (r, q − s), because in Steps 3 and 4 of signature verification
one obtains u1P + u2Q = (x0,−y0) if s is replaced by q − s.

In the second place, they show that, given two messages with hash values
h1 and h2, it is possible to choose one’s private key x in such a way that both
messages have the same signature. Namely, select random k and determine
r as in Step 2 of signature generation. Now choose x so that −xr is the
average of h1 and h2, that is, x = −(2r)−1(h1 + h2) mod q. Then (h1 +
xr) + (h2 + xr) ≡ 0 (mod q), and so the pair (r, s) with s = k−1(h1 + xr)
mod q will serve as a signature for both messages.

These two properties of ECDSA — which in [27] are called “malleability”
and “signature duplication,” respectively — have nothing to do with the
standard definition of forging a signature. Thus, the authors of [27] do not
claim that these properties contradict the conclusion of Brown’s theorem.
Nor do they claim that malleability or signature duplication cause problems
in any real-world use of ECDSA. Rather, they argue that Brown’s use of the
generic group model is flawed because the assumption that elliptic curves
are generic groups would also imply unmalleability (and presumably also
the impossibility of signature duplication).

This argument is based on a misunderstanding of the generic group as-
sumption that perhaps comes from regarding it as very similar to the random
oracle model for hash functions. In the latter case a hash function should
for all practical purposes appear to take random values. But when working
with a concrete group one should never think that it is in practice indis-
tinguishable from a generic group. As explained in §4, any such group will
fail certain easy randomness tests that a generic group would pass. It is not
surprising that contrived cryptographic properties, such as malleability and
signature duplication, can be found that highlight the difference between a
concrete group and a generic group. However, the authors of [27] have not
demonstrated any flaw in Brown’s work.
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6. Substantive Questions

We now raise some questions that we believe are more substantive than
the criticisms discussed in the previous section.

6.1. Weak implementations. As mentioned in the Introduction, one of
the attractions of elliptic curve cryptography (ECC) is that the group struc-
ture on elliptic curves in general is thought to have no special features that
could lead to efficient algorithms for finding discrete logarithms. Therefore,
it may seem reasonable to model the curve by a generic group when analyz-
ing the security of a system. However, such a statement must be used with
caution. For instance, if a supersingular elliptic curve is chosen, then the
discrete log problem can be solved in subexponential time, and the generic
group assumption is invalid.

Even if a ‘cryptographically strong’ elliptic curve E(Fp) is chosen, the
details of implementation can sometimes affect the validity of the generic
group model. Just as a poorly implemented hash function falls far short of its
idealization in the random oracle model, so also a careless implementation
of an ECC protocol is likely to have security weaknesses that should not
exist under the generic group assumption. We give two examples that are
due to Naccache–Smart–Stern [18] and Smart [26].

6.1.1. Projective coordinates. Suppose that a public key Q = xP is com-
puted from the secret integer x = xt2

t + · · · + x22
2 + x12 + x0 using the

standard left-to-right double-and-add method. Suppose also that in order
to improve efficiency of the computation points are computed and stored in
a form — for example, in Jacobian coordinates (X, Y, Z) — in which a point
has many different equivalent representations. If the point Q is made public
immediately after the computation — without first converting it to affine
coordinates or replacing (X, Y, Z) by a different (λ2X, λ3Y, λZ) — then an
attacker has a good chance of being able to learn the first few bits of x.

For example, as pointed out in [18], to find x0 the attacker need only
determine whether or not the Jacobian coordinates Q = (X, Y, Z) were
obtained as a result of the Jacobian coordinate doubling formulas. If one
tries to find Q′ = (X ′, Y ′, Z ′) such that Q′ = 2Q, then solving for Z ′ involves
taking a fourth root in the field Fp. Suppose, for instance, that p ≡ 1
(mod 4). Then only 25% of the nonzero elements of Fp have fourth roots. If
the attacker is unable to solve for Z ′, she guesses that x0 = 1, and if she is
able to take the fourth root, she guesses that x0 = 0. Then whenever x0 = 0
she always guesses correctly, and when x0 = 1 she is correct approximately
75% of the time.

In contrast, in a generic group the representation of an element is unique,
and it couldn’t possibly reveal whether or not the last step used to arrive at
the element was doubling of another element.

6.1.2. Malleable encryption. Suppose that an encryption scheme has the
property that a ciphertext c can easily be modified to get another valid
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encryption c′ of the same message. Such a system is obviously insecure
under chosen-ciphertext attack, because the attacker is allowed to ask the
decryption oracle for the decryption of any c′ 6= c.

Suppose, for instance, that we are using a generalized ElGamal system
of the following form. As usual, Q = xP is the public key, and x is the
secret key. Let fk(m) be a symmetric encryption function that depends on
a key k, and let V : E(Fp) −→ K be a publicly known function from the
points on the curve to the key-space of the symmetric encryption function.
To encrypt a message m, Bob chooses a random integer `, computes `P
and `Q, and sends the ciphertext c = (`P, fV (`Q)(m)). Alice decrypts by

computing x`P = `Q and hence the key V (`Q).5

As pointed out in [26], if one chooses a key derivation function V for
the symmetric system that depends only on the x-coordinate of the point,6

then one can get another valid encryption of m by simply replacing the
first component of the ciphertext c by −`P . In contrast, under the generic
group assumption, Smart shows that the ECIES system is secure against
chosen-ciphertext attack for arbitrary V .7

Smart’s example of malleable encryption serves as a reminder that the
key derivation function should be constructed carefully.

6.2. How to interpret security reductions? The questions to ask about
a security reduction in the generic group model are the same ones that should
be asked about any provable security result (see [15]): How should the result
be interpreted? What type of guarantee (if any) does it give us? Among the
various versions of a given type of cryptosystem, what security advantages
(or disadvantages) do the ones supported by reductionist security arguments
have compared to the versions for which no such provable security result is
known?

In the case of Brown’s theorem on ECDSA in [6], it is particularly inter-
esting to ask what one can conclude from the fact that his proof apparently
cannot be made to work for DSA. Our opinion is: not much.

Brown offers two explanations for this phenomenon. The first is that,
since the DSA conversion function r = f(gk) appears to be almost-bijective
and one-way (and therefore not almost-invertible), DSA is sufficiently dif-
ferent from ECDSA so that different methods would be required to prove

5This is a simplified version of the ECIES system analyzed in [26]. In ECIES, the
ciphertext also includes a message authentication code, which, however, is irrelevant to
our discussion.

6Here we are supposing that the curve is in Weierstrass form.
7If one wants to use a function V that depends only on a point’s x-coordinate, then

a trivial modification will fix this problem. Namely, define the first component of the
ciphertext to be just the x-coordinate of `P . After all, inclusion of the y-coordinate is
superfluous, and is equivalent to appending a random bit to the ciphertext. Any secure
encryption scheme will become insecure under chosen-ciphertext attack if one appends a
random bit to the ciphertext.
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the security of DSA. The second explanation is that this absence of almost-
invertibility might indicate an as yet undiscovered security weakness in DSA.
He writes:

Because an almost-invertible function is nearly an identity
function — indeed, the identity function is the best example
of an almost-invertible function — and an identity function
clearly cannot add complexity to the design of a protocol, an
almost-invertible function does not add any essential com-
plexity to a protocol. Thus DSA is more complicated than
ECDSA because its conversion function departs more from
being an identity function. An attack may lie hidden in this
complexity until proved otherwise.

This last speculative comment strikes us as implausible. It seems very un-
likely that the ability to recover kP from r = f(kP ) in ECDSA should make
a forger’s task more difficult. On the contrary, it is probably more likely that
the same feature that enables a researcher to construct a security reduction
might also enable an attacker in certain circumstances to construct a security
breach.

There are good reasons to use ECDSA rather than DSA. However, the
fact that Brown’s security reduction doesn’t carry over to DSA is not one
of them.

6.3. When are they really a step forward? When someone expresses
skepticism about the type of assurance one gets from a so-called “provable
security” result, a common response is: Well, it’s better than not having
anything. However, a new question arises in connection with protocols and
reductionist security arguments that are designed with the purpose of avoid-
ing the use of the random oracle assumption. Namely, is the new security
argument more or less reassuring than the one using the random oracle
model that it replaces? In particular, how does a security result based on
the generic group model compare with a security argument using the random
oracle model? We describe an example of such a result and the questions it
raises.

In [5] Boneh, Lynn, and Shacham constructed short signatures that they
showed to be secure in the random oracle model assuming intractability of
the Computational Diffie-Hellman (CDH) problem. Three years later Boneh
and Boyen [4] proposed a new variant of the signature scheme, which they
designed with the objective of obtaining a provable security result without
using the random oracle model. They paid a price for avoiding the random
oracle assumption. In the first place, a Boneh-Boyen signature is about
twice as long as a Boneh-Lynn-Shacham signature. In the second place, the
assumption about CDH is replaced by what Boneh and Boyen call the Strong
Diffie-Hellman (SDH) assumption, which has been much less extensively
studied than the CDH and is presumably a stronger assumption. In the third
place, in order “to gain some confidence” in the intractability of this possibly
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easier SDH problem, in §5 of [4] they use the generic group assumption to
derive a lower bound on its computational complexity.

The m-SDH problem in a group G of prime order q is the problem, given

group elements g, gx, gx2

, . . . , gxm

(where x is an unknown integer mod q),
of constructing a pair (c, h) such that hx+c = g (where c is a nonzero integer
mod q and h is a group element). The difficulty of this problem can be
shown to be less than or equal to that of the CDH problem (which requires
the construction of gxy given g, gx, and gy). In §5 of [4] the authors prove
that m-SDH in a generic group with a pairing cannot be solved in fewer
than (roughly)

√

q/m operations.
The group G that is used in the type of cryptosystem in [5] and [4] is called

a Gap Diffie-Hellman group [5]. It must have an efficiently computable bilin-
ear pairing e : G×G → GT .8 (See [14] for a detailed treatment of pairings.)
The existence of such a pairing implies that the Decision Diffie-Hellman
(DDH) problem (this is the problem, given g, gx, gy, and gz, of determining
whether or not z ≡ xy (mod q)) is efficiently solvable. Informally speaking,
the Gap Diffie-Hellman property means that computational problems such
as the DLP and CDH are much harder than the DDH — that is, in the
inequalities DDH≤ CDH≤ DLP the first is a strict inequality with a large
“gap” in difficulty.

The security of a pairing-based protocol rests on the hope that there’s a
big gap between the DDH and the problem underlying the protocol (and
that, in practice, there is no faster way to solve this underlying problem
than to solve the DLP in G (or in GT )). For the signature scheme in [4]
the underlying problem is m-SDH, where m is a bound on the number of
signature queries allowed in a chosen-message attack.

The question of a gap between Decision Diffie-Hellman and m-SDH is
subtle. It is not even strictly accurate to speak of a “gap” in the usual
sense, since in a general group we do not know that DDH ≤ m-SDH (in
other words, it is not known whether an oracle for m-SDH can be used to
efficiently solve DDH). While it may be reasonable to conjecture that m-
SDH is hard in the groups G that are used in pairing-based cryptography,
the fact that we know m-SDH≤CDH but do not even know m-SDH≥DDH
should give us pause.

It was because of the shakiness of the m-SDH assumption that the authors
of [4] felt the need to give a proof of security in the generic group model.
Thus, in order to avoid using the random oracle assumption, they had to
resort to the generic group assumption. This is not necessarily bad. How-
ever, as we discussed in §4, the random oracle assumption is a reasonably
accurate idealization of a concrete hash function. It is interesting that, in
order to avoid this assumption, the authors of [4] used a group model that is

8One can work in a more general setting with two groups G1 and G2 having a pairing
e : G1 × G2 → GT and an efficiently computable isomorphism from G2 to G1. For
simplicity, we are describing the special case G1 = G2. However, our remarks carry over
to the more general setting as well.



16 NEAL KOBLITZ AND ALFRED J. MENEZES

a much weaker reflection of reality than the hash function model that they
mistrusted.

Moreover, a more serious difficulty with the provable security result for
the signature scheme in [4] soon came to light. Note that the Boneh-Boyen

lower bound
√

q/m for the difficulty of m-SDH is weaker by a factor of
√

m
than the lower bound

√
q for the difficulty of CDH in the generic group

model. At first it seemed that the factor
√

m was not a cause for concern,
and that the true difficulty of the m-SDH problem was probably

√
q as in

the case of CDH. However, at Eurocrypt 2006 Cheon [11], using the same
attack that had been described earlier in a different setting by Brown and
Gallant [8], showed that m-SDH can be solved — and in fact the discrete

logarithm x can be found — in
√

q/m0 operations if m0 ≤ m divides q − 1

and m0 < q1/3.9

Thus, based on current knowledge, the true difficulty of the hard problem
underlying the signature scheme in [4] in general seems to be less than the
difficulty of the problem underlying the earlier scheme in [5]. So it turns
out that the price that Boneh and Boyen had to pay to dispense with the
random oracle model was steep indeed.

Finally, to end on an upbeat note, we observe that the Brown-Gallant-
Cheon attack actually attests to the power of the generic group model. After
all, using this model the lower bound that Boneh and Boyen were able to
obtain was

√

q/m, not
√

q. Thus, in this case the generic group model
was powerful enough to give a “warning” (that went unheeded) about the
likelihood of a

√
m-attack on the Strong Diffie-Hellman problem. In view

of all our cautionary comments in §4, we find it surprising that the generic
group model was capable of “predicting” the

√
m-attack. We would not

have expected this.
Both the random oracle and generic group models are idealizations —

mathematical abstractions that many people distrust and disparage because
they seem to poorly reflect the messy world of practical cryptography. Some
doubt that such theoretical constructs can be reliable and useful for real-
world cryptography. Yet both models have held up pretty well — sometimes,
as we have seen, better than we had a right to expect. As Eugene Wigner
[30] famously remarked, “...the enormous usefulness of mathematics in the
natural sciences is something bordering on the mysterious and...there is no
rational explanation for it.”

9To minimize the impact of the attack one could add to the protocol in [4] the condition
that q be of the form 2p1 +1 with p1 prime. However, in [11] an attack is also given when
q + 1, rather than q − 1, is divisible by m0. Thus, one would probably want to add the
condition that q be both of the form 2p1 + 1 and 12p2 − 1 with p1 and p2 prime. In
any case, it is important to note that the need for such a condition was not anticipated
when the protocol in [4] was proposed, and that no such condition is needed for the earlier
protocol in [5].
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7. Conclusion

Here is a summary of our conclusions that differ from those of earlier
authors:

(1) When we investigate how it was possible for the security proof of
RSA-S1 using the generic group assumption to be followed soon after
by a successful attack on RSA-S1, we see that the explanation is not
that there is something wrong with the generic group model, but
rather that the proof itself contained a fatal flaw.

(2) When the generic group model (or the random oracle model) fails
in a contrived setting that violates standard cryptographic practice,
that does not indicate any weakness in the model.

(3) The generic group model is more limited than the random oracle
model, in the sense that it is supposed to be an accurate reflection
of only one aspect of the concrete group, namely, absence of special
properties related to finding discrete logs.

(4) Just as a poorly implemented hash function falls far short of its
idealization in the random oracle model, so also a careless imple-
mentation of an ECC protocol is likely to have security weaknesses
that should not exist under the generic group assumption.

(5) Despite the claims in [27], no flaw has been found in D. Brown’s use
of the generic group model to study the security of ECDSA.

(6) The fact that Brown’s security result does not carry over to DSA or
to certain modified versions of ECDSA does not by itself imply that
ECDSA is more secure than those other variants.

(7) At present there is no good reason to prefer a variant of a proto-
col that is supported by a reductionist security argument using the
generic group assumption over a variant that is supported by an ar-
gument using the random oracle assumption. Moreover, if a protocol
based on the generic group assumption relies on a less widely stud-
ied version of the underlying hard problem than a similar protocol
based on the random oracle assumption, then there might well be a
loss of true real-world security in using the former rather than the
latter.

Finally, we wish to emphasize that security proofs in the generic group
model — or any security proofs for that matter — do not relieve us of
the obligation to examine the details of implementation very carefully for
pitfalls that are not anticipated in the model. Despite the current popularity
of formal reductionist security arguments, the need for old-fashioned testing,
practical analysis, and common sense is as great as ever.
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