
RFID Security: Tradeoffs between Security and
Efficiency

Ivan Damg̊ard and Michael Østergaard Pedersen

Dept. of Computer Science, University of Aarhus

Abstract. Recently, Juels and Weis defined strong privacy for RFID
tags. We add to this definition a completeness and a soundness require-
ment, i.e., a reader should accept valid tags and only such tags. For the
case where tags hold independent keys, we prove a conjecture by Juels
and Weis, namely in a strongly private and sound RFID system using
only symmetric cryptography, a reader must access virtually all keys in
the system when reading a tag. It was already known from work by
Molnar et al. that when keys are dependent, the reader only needs to
access a logarithmic number of keys, but at a cost in terms of privacy:
for that system, strong privacy is lost if an adversary corrupts only a sin-
gle tag. We propose protocols offering a new range of tradeoffs between
security and efficiency. For instance the number of keys accessed by a
reader to read a tag can be significantly smaller than the number of tags
while retaining security, as long as we assume suitable limitations on the
adversary.

1 Introduction

RFID tags are small wireless devices that react to electromagnetic fields; they
can emit some prestored information and can also in some cases do a limited
amount of computation. RFID technology holds great promise in many scenarios,
but can also lead to serious privacy problems, for instance because it becomes
possible to track the behavior and whereabouts of humans carrying tagged items.

Several research works have proposed protocols for addressing the privacy
problem in RFID systems. However, until recently, not much work has addressed
formal definitions of security for RFID systems. In [3], Juels and Weis propose a
definition of what they call “strong privacy” (based on earlier work by Avoine[1]).
Strong privacy is indeed a strong notion, primarily because the adversary is given
a lot of power: he can corrupt any number of tags and read their contents, and
he can eavesdrop and schedule the tag/reader communication any way he wants.
In independent work, Burmester et al.[2] propose a security definition based on
Canetti’s Universal Composability framework.

The work of Juels and Weis only addresses privacy, that is, making sure that
the communication of a tag does not allow an external adversary to determine
the identity of the tag. Of course, another natural requirement is that a reader
should be able to determine whether the tag it reads is valid - and not fabricated
by an adversary, for instance. Indeed, if this was not required, tags could just



return random information all the time. This would trivially be private, but
would of course lead to a useless system.

In this paper, we propose a simple extension to the strong privacy definition
so one can require also completeness and soundness, with the intuitive meaning
that the reader accepts valid tags and only valid tags. More specifically, sound-
ness in the weakest sense means that we assume the adversary cannot corrupt
tags, and when the reader accepts an instance of the read protocol, an (uncor-
rupted) tag has been involved in that instance at some point. So in this weak
flavor, it is not required that the reader knows which tag it has been talking to.
We also suggest a stronger version where corruptions are allowed and the reader
must output the identity of the (honest) tag that was involved.

Juels and Weis suggest a system that satisfies their definition. In this scheme,
each tag is given an independently chosen key, and the reader must search ex-
haustively through all keys every time a tag is read. This of course does not scale
well, but Juels and Weis conjecture that this is, in a certain sense, unavoidable:
in strongly private systems that use only symmetric cryptography, the reader
must access all, or at least a large fraction of the keys in the system. Here, we
prove this conjecture, for the case where tags have independent keys. We need
to assume that the system is complete and sound, but this is a very natural
requirement and is necessary anyway to exclude ”pathological” cases, such as
when tags send only random information.

The limitation to schemes with independent keys is not surprising. It follows
from work by Molnar et al[4] that when dependent keys are allowed, we can have
a system where the reader only needs to look at a logarithmic (in the number of
tags) number of keys. This comes at the price that strong privacy only holds if
the adversary is “radio-only”, i.e., he does not corrupt any tags. If the adversary
corrupts even a single tag, strong privacy is is lost. This does not mean that all
privacy is lost in practice in the system of Molnar et al. – the definition of strong
privacy gives a lot of power to the adversary that he may not have in practice.
But still, it is natural to ask if we can get strong privacy with a larger number
of corruptions without going back to systems where the reader does exhaustive
search over all keys.

In this paper, we first argue that for a wide range of RFID systems, there
has to be a tradeoff between the efficiency of the reader and the resources we
can allow the adversary to have. We then propose a class of protocols offering a
new range of tradeoffs between security and efficiency. For instance, the number
of keys accessed by a reader to read a tag can be significantly smaller than the
number of tags while retaining security, as long as we assume suitable limitations
on the adversary.

2 Model and Definition

Juels and Weis[3] define strong privacy for RFID systems using the following
model: the system consists of tags Ti, i = 1..n and a reader R, we assume there
is only one, for simplicity.



Tags can receive SetKey messages which will cause the tag to reveal its
secret key, the caller may then send a new key to the tag. This can be used to
inititalize the system and also models an attacker corrupting a tag to learns its
key. A tag may receive a (TagInit, sid) message (where sid is a session id),
which is used in the start of a session. The tag will forget any previous value
of sid, so a tag may only run a single session at a time. Finally, the tag may
respond to a protocol message ci, called a challenge in [3], by a response ri. A
protocol may consist of several rounds of challenges and responses.

A Reader may receive ReaderInit messages, causing it to generate a fresh
session identifier sid and a first protocol message c0 to be sent to a tag. It may
also receive pairs of form (sid, ri). It will then return either a new message ci+1

to be sent to the tag or Accept or Reject. In [3], a reader, if it returns Accept, is
not required to say which tag it thinks it has been talking to. We assume here
that it may also return the id of a tag. The reader keeps an internal log of all
challenges and responses for each session id that is active, and decides based on
this whether to accept or reject. A reader may be involved in several sessions
simultaneously, but its behavior in a session only depends on messages it receives
in that session and the fixed key material it holds.

We allow the adversary A to schedule all messages as it wants, and generate
its own messages. The adversary is parameterized as follows: r is the number of
ReaderInit messages it generates, s is the number of computational steps, t is
the number of TagInit messages it generates. Finally, k is a cryptographic se-
curity parameter. Juels and Weis do not treat the number of TagInit messages,
i.e., the number of corrupted tags, as a seperate parameter, but simply say it
is has to be at most n − 2. As we shall see, however, the number of corrupted
tags is a very important parameter, so we will define u to be the number of tags
corrupted by the adversary.

The system is initially setup by running a probabilistic key generation algo-
rithm Gen(1k) which produces a set of keys key1, ..., keyn to be assigned to the
tags. Of course, A does not know these keys initially.

Setting S = Gen,R, {Ti}, strong privacy is defined via an experiment called
Exppriv

A,S [k, n, r, s, t]. Here, we run the system where the adversary may corrupt
tags, initiate sessions, etc., this ends by the adversary selecting two uncorrupted
tags, called T ∗0 , T ∗1 . He is then given oracle access to T ∗b where b is a random
bit. He may now again corrupt other tags and initiate sessions, and must finally
guess the value of b. However, we have to assume that in this last phase, when
the adversary starts a session with the reader, he only learns whether the reader
outputs accept or reject and not the identity found by the reader. Otherwise, he
could just let the reader identify T ∗b . The system is said to be (r, s, t)-private if
the adversary’s advantage over 1/2 in guessing b is negligible as a function of k.
We propose here to define also (r, s, t, u)-privacy, which is the same, except that
the adversary may only corrupt at most u tags.

In the following, it will often be cumbersome and unnecessarily complicated
to specify s, the number of computational steps, exactly. We will often replace s



by a poly(k), meaning that the statement involved holds for any adversary that
is polynomial time in k.

It is natural to expect a system as described here to also have the properties
that valid tags are accepted, and the adversary cannot impersonate a tag unless
he corrupts it. This aspect was not treated in [3] (but was also not the main goal
there). We propose to define this as follows:

Completeness Assume that at the end of session sid the internal state of the
reader for that session contains pairs (cj , rj) where all r′js were generated by
an honest tag in correct order. Completeness means that the reader outputs
Accept with probability 1 for any such session.

Strong Soundness Consider the following experiment
similar to the privacy experiment of Juels and Weis. We start with the same
setup phase, and then the experiment is as follows:

Expstrongsound
A,S [k,n,r,s,t,u]:

The adversary may do the following in any order:

1. Make ReaderInit calls, without exceeding r overall calls.
2. Make TagInit calls, without exceeding t overall calls.
3. Make SetKey calls without exceeding u calls. Tags that receive a SetKey
call, are marked as corrupted.
4. Communicate and compute, without exceeding s overall steps

let Efail be the event that occurs if the reader at some point outputs
(Accept, i) where Ti is not corrupted, yet the reader’s internal entry for ses-
sion sid only contains pairs (cj , rj) where rj was not sent by Ti as a response
to cj , i.e., Ti has not been involved in the session. We say that the system
provides strong (r, s, t, u)-soundness if the probability that Efail occurs is
negligible.

Weak Soundness Weak (r, s, t)-soundness is defined by the same experiment
as above, except that the reader now only has to output Accept or Reject
at the end of a session, the adversary is not allowed to corrupt tags, and the
error event Efail is now defined to be that the reader outputs Accept, and
yet no tag has been involved in the session.

3 Independent Keys

As mentioned earlier, our goal in this section is to prove the speculation by
Juels and Weis: in any strongly private, complete and sound RFID system, the
reader must access a key for every tag, or at least a large fraction of them,
when reading a tag. This can only be expected to hold, however, when keys for
different tags are independently chosen, and the system only uses symmetric
cryptography. If public-key cryptography was allowed, a tag could basically first
encrypt its identity under the reader’s public key, and then show possession of
the corresponding secret.



However, to prove something, we need to formalize the constraints on the
system. For the independence of keys, this is easy, we simply assume that each
tag Ti gets a key Ki chosen independently from all other keys by a key generation
algorithm Gi, i.e., Ki ← Gi(1k) where k is the security parameter. As for the
constraint that “symmetric crypto and nothing else is used”, we will give the
system access to a pseudorandom function, ψ·(·), and we will assume that every
key Ki in the system is used only as a key to this function, i.e., tag Ti or reader
use ψKi(·) as a black box. This means that we can equivalently give tags and
reader oracle access to ψKi(·) for any key they need to use.

Now, to model that the pseudorandom function is the only cryptographic
resource used, we will use a standard technique, namely replace the oracle access
to the resource by access to an ideal information theoretically secure resource,
and require that the resulting system is secure against an unlimited adversary.
The point here is that if the system uses some other form of cryptography, this
can now be broken, so in this way we force the system to rely only on the target
resource.

Concretely, in our case, we replace the calls to the pseudorandom function
ψKi

(·) by calls to a random oracle RKi
, so we have a set of independent oracles

indexed by the keys in the system. These oracles can be accessed in the same
way as the keys in real life, i.e., RKi

can be accessed by Ti and the reader, but
not by the adversary, unless he corrupts Ti.

The requirement now is that when using these oracles, the system remains
complete, sound and strongly private against an unlimited adversary. For short,
we say that the system is secure in the independent oracle model. Note that the
hash-lock systems that were shown to be strongly private in [3] are indeed secure
in the independent oracles model.

The first lemma summarizes the rather obvious intuition that if keys are
independent, a reader cannot determine if it is talking to a valid tag unless it
accesses the key for that tag. More formally:

Lemma 1. Consider an RFID system that is complete, weakly (1, poly(k), 0)-
sound, and uses independent keys. Consider a session between reader and a
tag where the adversary does not modify the traffic. In any such session, the
algorithm executed by the reader when reading a tag Ti will access Ki, except
with negligible probability.

Proof. We consider all probabilities as taken over the choice of keys and the
random coins used by tag and reader in the session. Let E be the event that
the reader does not access RKi . By completeness, the reader should accept with
probability 1, so the probability that the reader accepts and E occurs equals
Pr(E). Assume for contradiction that Pr(E) is non-negligible. Then an adver-
sary could fabricate his own tag T ′i with a key K ′

i generated by Gi, and start
a session between this tag and the reader, while simply following the protocol.
Now by independence of keys, as long as E occurs, conversations with T ′i and
Ti are perfectly indistinguishable. Hence, the reader accepts with probability at
least Pr(E), which contradicts weak soundness.



Of course, if we replace the pseudorandom functions by oracles, i.e., we go to
the independent oracle model, the lemma is still true, if not, this would contradict
pseudorandomness of the functions.

The next theorem uses the observation that in the independent oracle model,
the only difference between the honest reader and an adversary is that the reader
has access to all oracles, while the adversary initially does not. He can, however,
corrupt tags and get access to (some of) the oracles. He can therefore potentially
run the same algorithm that the reader uses when reading a tag.

Theorem 1. Assume an RFID system is complete and weakly (1, poly(k), 0)-
sound. Such a system cannot have strong (0, poly(k), 1, n − 2)-privacy in the
independent oracle model, if the reader algorithm accesses at most αn of the
oracles, for a constant α < 1/2.

Proof. We describe an adversary that will break strong privacy for any system
that is complete and weakly sound and where only αn oracles are accessed.
The adversary picks uniformly a pair of tags Ti, Tj , and uses these two as the
challenge pair (T ∗0 , T ∗1 ) from the strong privacy definition. It then gets oracle
access to T ∗b , where b = 0 or 1 and should try to guess which of the two it is
talking to. To do this, it executes the read protocol with T ∗b , and while doing
so, it emulates the reader’s algorithm. Whenever the reader algorithm wants to
access an oracle RKt , the adversary corrupts Tt, this gives access to key Kt and
therefore in our model access to RKt . This goes on until the reader algorithm
wants to access RKt

where t = i or j. In this case the adversary outputs 0 if
t = i and 1 otherwise and then stops.

To analyse the probability that this adversary has success, suppose, for in-
stance, that b = 0. Since our adversary follows the protocol when talking to T ∗b ,
we can apply Lemma1 to conclude that the reader will access RKi when talking
to T ∗b with probability essentially 1. On the other hand, the probability that it
will not access RKj

is greater than 1 − α because only αn oracles are accessed
(one of which is RKi

), and given i, j is uniform over all values different from i.
It follows that the adversary’s guess is correct with probability 1− α which is a
constant greater than 1/2 and hence we contradict strong privacy.

4 Correlated Keys

We have shown in the previous section that if we want strong privacy, the reader
has to access least half of the keys in the worst case. This does obviously not
scale very well, so we investigate how much privacy and soundness we will loose
if we allow the keys to be correlated.

It was already known from the work of Molnar et al.[4] that using correlated
keys, one can obtain the property that the reader only needs to access a logarith-
mic number of keys. Unfortunately, this comes at the price that strong privacy
is lost already if the adversary corrupts a single tag. This is due to the fact that
the system works with a pair of keys (K0,K1), where half the tags hold K0, the
other half hold K1 - as well as many other keys, arranged in a tree structure,



which is not important here, however. Corrupting a single tag tells the adversary
one of the keys, say K0. The protocol is such that one can easily extract from
the responses tags give, a part that is computed only from K0 or K1. This gives
the adversary a way to compute from the responses of an uncorrupted tag which
of the two keys it holds. Since half the tags hold K0, it is not hard to find two
tags holding different keys, and clearly using two such tags as the target in the
privacy experiment, the adversary can identify with certainty which tag he talks
to.

Of course, this attack is based on the adversary’s ability to choose himself
which tags he wants to be challenged on. This is part of the model, but on the
other hand the adversary may not be in such a strong position in real life, so
the above does not mean that all privacy is lost in practice in the system of
Molnar et al. But still, it is natural to ask if we can get strong privacy with a
larger number of corruptions without going back to systems where the reader
does exhaustive search over all keys.

First, it is useful to observe that in the kind of systems we look at here, some
tradeoff between efficiency of the reader and privacy is unavoidable: suppose the
key generation algorithm works by generating independently a number of keys,
and then assigning to each tag a subset of these keys. The systems we propose
below, as well as the systems proposed by Molnar et al., and by Juels and Weis
are all of this type.

Let K be one of the keys used. We will say that K is efficiently decidable if
there is an efficient algorithm that when given K and a session between a tag
T and the reader can decide whether T holds K or not. For instance, it may
be that the tag, if indeed it holds K, computes a particular part of its response
only from K. One can then from K compute what the tag should say if it knows
K and compare to what it actually said. In the systems from [3, 4], all keys are
efficiently decidable.

An efficiently decidable key can be used by the reader towards identifying
the tag it is reading, because it can tell whether the tag is in the set of tags
that know K or in the complement. However, such a key can also be used by the
adversary, who may learn K by corrupting a tag, and can now also distinguish
tags that know K from those who do not. Clearly, if the adversary can locate
two tags, of which one holds K and the other doesn’t, then he can break strong
privacy. Let p(K) be the number of tags that hold the key K. The case where
p(K) = n/2 is the case where the reader gets maximal information from knowing
K, namely one bit of information on the identity of the tag. Unfortunately, this
is also the optimal case for the adversary, since a constant number of interactions
with tags will be sufficient to locate two target tags that can be used to break
the privacy.

One may treat this problem either by letting every part of the tag response
depend on several keys, or make sure that p(K) is small for every efficiently
decidable key K. Both approaches make life harder for the adversary as well as
for the reader. We give here an example of the second approach.



Our construction depends on two parameter, v, c. Typically, v will be quite
large, say v = d

√
ne for a large system, while c may be something small, say

constant or logarithmic in n. We will assume that we have a pseudorandom
function φ·(·). It is straightforward to construct such functions from a crypto-
graphic hash function by simply hashing the key together with the input, this is
provably secure in the random oracle model. Other constructions based on ,e.g.,
AES are also be possible.

The key generation involves generating c lists of keys to the pseudorandom
function φ,

Kj = (kj
1, k

j
2, ..., k

j
v)

for j = 1..c.
We assign to each tag Ti a random string stri = (si,1, ..., si,c) ∈ Zc

v, c keys
(k1

si,1
, ..., kc

si,c
), and a key ki that is unique to Ti. The probability that two tags

will be assigned the same string is at most n2/vc, we assume v, c are chosen such
that this is negligible. Let nT , nR be nonces. Then the protocol between the tag
Ti and reader is:

1. Ti ←− R: nR

2. Ri ←− T : nT , φksi,j
(nT , nR), for j = 1, .., c, and φki(nT , nR). The intuition

is that the first c values allow the reader to identify the tag, while the final
value proves the identity of the tag.

For the j’th pseudorandom function value received, j = 1..c, the reader
searches through the t keys in Kj and checks if one of these will generate the
value received. If this is not the case, reject and stop. Otherwise note the index
of the key. The indices noted form a string (s1, .., sc). If this string matches the
string assigned to some tag Ti, and the final pseudorandom value received is
equal to φki

(nT , nR), output (accept, i). Else output reject.
To show security of the system, we first go to the independent oracles model,

i.e., we replace each call to φ using key k by a call to a random oracle Ok, using
independent oracles for different keys. The adversary can only call an oracle Ok

if he corrupts a tag that holds k.
It is straightforward to see that if we model the hashfunction used in the

proposed construction by a random oracle, then an adversary playing the privacy
or soundness game is exactly working in the oracle model just described. We will
therefore analyze the system in this model.

Lemma 2. In both the privacy and soundness games, the adversary’s access to
initiate sessions with the reader can be simulated without access to the reader.
The simulation is perfect, except with probability negligible in k.

Proof. In any session, the reader defines a nonce nR, the message that is returned
must consist of a nonce nT and c+ 1 values r1, ..., rc, s. Since the reader checks
these values against oracle outputs generated from the fresh input nR, nT , each
of the c + 1 values must have been generated by calling one of the oracles in
the system on this input. If not, the adversary already knows the reader will



reject except with negligible probability – we assume that oracle answers are
sufficiently long so they cannot be guessed except with negligible probability .
We can therefore assign oracle identities to the c+ 1 values according to which
oracle generated the value. Let these be k1, ..., kc, k

′. If the call to oracle Ok′

was made by an uncorrupted tag, this has to be because that tag received nR as
a challenge and produced a correct answer for nonces nR, nT . If the adversary
forwards this to the reader, it will accept. If he has replaced any of the first c
values with other oracle responses, the reader will reject, except with negligible
probability.

The only remaining possibility is that it was the adversary who called Ok′ .
This means he must have corrupted the tag Ti giving access to this oracle, and
so he also has access to to the other c oracles that this tag possesses. Therefore,
having generated the message sent to the reader, he can check whether this is a
correct response from Ti. If this is not the case, he knows the reader will reject.
Otherwise, the reader will output (accept, i).

This lemma essentially already implies soundness This is because a session
where the reader outputs (accept, i), but tag Ti did not participate, must be
a session where the adversary called the oracle generating the last part of the
tag-message. But the argument in the Lemma says that, except with negligible
probability, this can only happen if the tag was corrupted – in which case this
does not allow the adversary to win the soundness game.

The following lemma turns out to be essential:

Lemma 3. Let M be the set of oracles that the adversary gains access to during
the privacy or soundness game. Let E be the event that the following condition
is satisfied after the game: the adversary has started at least one session with
some uncorrupted tag T , and one of the oracles assigned to T is in M . In the
privacy game, by convention, the adversary selecting the two target tags counts
as starting a session with both tags. The probability that E occurs is at most

ctu

v
+

ctu

v − u

Proof. Suppose we are at some point in the game where E has not occurred yet.
This means that for all uncorrupted tags the adversary has talked to, he knows
that they only have oracles he has no access to, but due to the randomness of
the oracles, he has no information on their identity.

The adversary may now start a session with a new tag he did not talk to
before, or corrupt a tag. For each of these moves, we bound the probability that
E will occur after the move:

Start new session: Since the adversary has not previously talked to the tag Ti,
given what he knows, stri is uniform. We can therefore model what goes on
as follows: look at one of the c positions in stri, and let x ∈ Zt be the number
in this position. Now, x is uniform over v possibilities, and the adversary has
success, if x happens to be one of the ≤ u values corresponding to oracles
he can access. So the adversary has succes in one position with probability



at most u/v, and therefore has success in any position with probability at
most cu

v
Corrupt new tag: For the previously uncorrupted tag Ti, consider again x,

the number at some position in stri. Then given what the adversary knows,
before he corrupts Ti, x is uniform over at least v − u possibilities, if the
adversary talked to Ti before, he knows x does not match any of the ≤ u
possibilities he knows from already corrupted tags. The adversary hopes x
will hit one of the ≤ t possibilities for tags he talked to, so the probability
of success is at most t/(v − u) for one position and ct

v−u for all positions.

Finally, since there are at most t respectively u steps that could cause the first
respectively second kind of event, the lemma follows.

It is straightforward to see that if the event E does not occur in either
the privacy or the soundness experiment, then the adversary cannot win. For
soundness this follows from the remarks after Lemma2. For privacy, it is clear
that if E did not occur, the adversary has no information on which keys are
held by the target tags and hence he cannot distinguish between them at all. In
summary, we have

Theorem 2. For the RFID system described above, we have that if the hash
function used in the construction is modeled by a random oracle, then the sys-
tem is (poly(k), poly(k), poly(k), n)-strongly sound, and (r, ploy(k), t, u)-private,
if parameters are chosen such that

ctu

v
+

ctu

v − u
+ negl(k)

is negligible, where negl(k) is a negligible function of k (which enters because of
the reduction in Lemma 2).

The interest in this result is that it shows a possibility for new tradeoffs
between security and efficiency for very large systems, where the adversary can
be expected to only corrupt or talk to a number of the tags that is very small
compared to the total number of tags in the system. This means we can choose
parameters such that r, t, u << v << n, but still n << vc. This will make the
probability in the theorem be small, and yet the total number of keys in the
system is cv which is can be much smaller than n, and each tag only has to hold
c keys.

We emphasize that this is only a preliminary result, and numeric examples
do not give very favorable results. However, the analysis is rather pessimistic
and not very precise.

One characteristic thing about this result, however, is that the reader does
work proportional to v, whereas the adversary’s probability of breaking privacy
is proportional to 1/v. If we want the reader to do work that is not proportional
to n but is much smaller, we believe a tradeoff of this type cannot be avoided
without going to a completely different type of system using public-key, for
instance – although the precise result can probably be improved.



Note that although the total number of keys in the system is greater than
n, this does not mean the reader has to store this many keys – they can be
generated pseudorandomly from a single key when they are needed.

References

1. Avoine: Adversarial Model for Radio Frequency identification, the Eprint archive,
www.iacr.org.

2. Burmester, van Le and de Medeiros: Provable Ubiquitous Systems: Universally
Composable RFID Authentication protocols, the Eprint archive, www.iacr.org.

3. Juels and Weis: Defining Strong Privacy for RFID, the Eprint archive,
www.iacr.org.

4. Molnar, Soppera and Wagner: A Scalable, Delegatable Pseudonym Protocol En-
abling Ownership Transfer of RFID tags, the Eprint archive, www.iacr.org.


