
Resettable Zero Knowledge in the Bare
Public-Key Model under Standard Assumption

Yi Deng, Dongdai Lin
The state key laboratory of information security, Institute of software,

Chinese Academy of sciences, Beijing, 100080, China

Email: {ydeng,ddlin}@is.iscas.ac.cn

Abstract

In this paper we resolve an open problem regarding resettable zero knowl-
edge in the bare public-key (BPK for short) model: Does there exist constant
round resettable zero knowledge argument with concurrent soundness for
NP in BPK model without assuming sub-exponential hardness? We give a
positive answer to this question by presenting such a protocol for any lan-
guage inNP in the bare public-key model assuming only collision-resistant
hash functions against polynomial-time adversaries.
Key Words. Resettable Zero Knowledge, Concurrent Soundness, Bare Public-
Key Model, Resettably sound Zero Knowledge.

1 Introduction
Zero knowledge (ZK for short) proof, a proof that reveals nothing but the valid-
ity of the assertion, is put forward in the seminal paper of Goldwasser, Micali
and Rackoff [15]. Since its introduction, especially after the generality demon-
strated in [14], ZK proofs have become a fundamental tools in design of some
cryptographic protocols. To study the effect of executing ZK proofs in some re-
alistic and asynchronous networks like the Internetin which Many instances of
the same zero knowledge protocol may be executed concurrently, Dwork et al.
[12]introduced the concept of concurrent zero knowledge. Though the concur-
rent zero knowledge protocols have wide applications, unfortunately, they requires

1

logarithmic rounds for languages outside BPP in the plain model for the black-
box case [5] and therefore are of round inefficiency. In the Common Reference
String model, Damgaard [6] showed that 3-round concurrent zero-knowledge can
be achieved efficiently. Surprisingly, using non-black-box technique, Barak [1]
constructed a constant round non-black-box bounded concurrent zero knowledge
protocol which however is very inefficient.

Motivated by the application in which the prover (such as the user of a smart
card) may encounter resetting attack, Canetti et al. [4] introduced the notion of re-
settable zero knowledge (rZK for short). An rZK formalizes security in a scenario
in which the verifier is allowed to reset the prover in the middle of proof to any
previous stage. Obviously the notion of resettable zero knowledge is stronger than
that of concurrent zero knowledge and therefore we can not construct a constant
round black-box rZK protocol in the plain model for non-trivial languages. To
get constant round rZK, the work [4] also introduced a very attracting model, the
bare public-key model(BPK). In this model, Each verifier deposits a public key
pk in a public file and stores the associated secret key sk before any interaction
with the prover begins. Note that no protocol needs to be run to publish sk, and
no authority needs to check any property of pk. Consequently the BPK model is
considered as a very weak set-up assumption compared to previously models such
as common reference model and IPK model.

However, as Micali and Reyzin [18] pointed out, the notion of soundness in
this model is more subtle. There are four distinct notions of soundness: one time,
sequential, concurrent and resettable soundness, each of which implies the previ-
ous one. Moreover they also pointed out that there is NO black-box rZK satisfy-
ing resettable soundness for non-trivial language and the original rZK arguments
in the BPK model of [4] does not seem to be concurrently sound. The first 4-
round(optimal) rZK argument with concurrent soundness in the bare public-key
model was proposed by Di Crescenzo et al. in [10].

All above rZK arguments need some cryptographic primitives secure against
sub-exponential time adversaries,which is not a general assumption in cryptog-
raphy. Using non-black-box techniques, Barak et al. obtained a constant-round
rZK argument of knowledge assuming only collision-free hash functions secure
against supperpolynomial-time algorithms1, but their protocol enjoys only se-
quential soundness.

Our results. In this paper we present the first constant-round rZK argument with
1using idea from[3], this results also holds under standard assumptions that there exist hash

functions that are collision-resistent against all polynomial-time adversaries.

2

concurrent soundness in BPK model for NP under the standard assumptions that
there exist hash functions collision-resistant against polynomial time adversaries.
We note that our protocol is a argument of knowledge and therefore the non-
black-box technique is inherently used, and indeed we use the resettably-sound
non-black-box zero knowledge argument [2] as a building block in which the ver-
ifier proves that a challenge is the one he committed to in a previous step. The
key observation that enables the analysis of concurrent soundness is that it is not
necessary in the proof of concurrent soundness to simulate all the concurrent exe-
cution of the underlying resettably-sound zero knowledge argument: we just need
to simulate only one execution among all concurrent executions of the resettably-
sound zero knowledge argument.

2 Preliminaries
In this section we recall some definitions and tools that will be used later.

In the following we say that function f(n) is negligible if for every polynomial
q(n) there exists an N such that for all n ≥ N , f(n) ≤ 1/q(n). We denote by
δ ←R ∆ the process of picking a random element δ from ∆.

The BPK Model.The bare public-key model(BPK model)assumes that:

• A public file F that is a collection of records, each containing a verifier’s
public key, is available to the prover.

• An (honest)prover P is an interactive deterministic polynomial-time algo-
rithm that is given as inputs a secret parameter 1n, a n-bit string x ∈ L, an
auxiliary input y, a public file F and a random tape r.

• An (honest) verifier V is an interactive deterministic polynomial-time algo-
rithm that works in two stages. In stage one, on input a security parameter
1n and a random tape w, V generates a key pair (pk, sk) and stores pk in
the file F . In stage two, on input sk, an n-bit string x and an random string
w, V performs the interactive protocol with a prover, and outputs ”accept
x” or ”reject x”.

Definition 2.1 We say that the protocol < P, V > is complete for a language L
in NP , if for all n-bit string x ∈ L and any witness y such that (x, y) ∈ RL, here
RL is the relation induced by L, the probability that V interacting with P on input
y, outputs ”reject x” is negligible in n.

3

Malicious provers and Its attacks in the BPK model. Let s be a positive
polynomial and P ∗ be a probabilistic polynomial-time algorithm on input 1n.

P ∗ is a s-concurrent malicious prover if on input a public key pk of V , per-
forms at most s interactive protocols as following: 1) if P ∗ is already running i−1
interactive protocols 1 ≤ i− 1 ≤ s, it can output a special message ”Starting xi,”
to start a new protocol with V on the new statement xi; 2) At any point it can
output a message for any of its interactive protocols, then immediately receives
the verifier’s response and continues.

A concurrent attack of a s-concurrent malicious prover P ∗ is executed in this
way: 1) V runs on input 1n and a random string and then obtains the key pair
(pk, sk); 2) P ∗ runs on input 1n and pk. Whenever P ∗ starts a new protocol
choosing a statement, V is run on inputs the new statement, a new random string
and sk.

Definition 2.2 < P, V > satisfies concurrent soundness for a language L if for all
positive polynomials s, for all s-concurrent malicious prover P ∗, the probability
that in an execution of concurrent attack, V ever outputs ”accept x” for x /∈ L is
negligible in n.

The notion of resettable zero-knowledge was first introduced in [4]. The no-
tion gives a verifier the ability to rewind the prover to a previous state (after
rewinding the prover uses the same random bits), and the malicious verifier can
generate an arbitrary file F with several entries, each of them contains a public key
generated by the malicious verifier. We refer readers to that paper for intuition of
the notion. Here we just give the definition.

Definition 2.3 An interactive argument system < P, V > in the BPK model is
black-box resettable zero-knowledge if there exists a probabilistic polynomial-
time algorithm S such that for any probabilistic polynomial-time algorithm V ∗,
for any polynomials s, t, for any xi ∈ L, the length of xi is n, i = 1, ..., s(n), V ∗

runs in at most t steps and the following two distributions are indistinguishable:

1. the view of V ∗ that generates F with s(n) entries and interacts (even con-
currently) a polynomial number of times with each P (xi, yi, j, rk, F) where
yi is a witness for xi ∈ L, rk is a random tape and j is the identity of the
session being executed at present for 1 ≤ i, j, k ≤ s(n);

2. the output of S interacting with on input x1, ...xs(n).

4

Σ-protocols A protocol < P, V > is said to be Σ-protocol for a relation R if it is
of 3-move form and satisfies following conditions:

1. Completeness: for all (x, y) ∈ R, if P has the witness y and follows the
protocol, the verifier always accepts.

2. Special soundness: Let (a, e, z) be the three messages exchanged by prover
P and verifier V . From any statement x and any pair of accepting transcripts
(a, e, z) and (a, e′, z′) where e 6= e′, one can efficiently compute y such that
(x, y) ∈ R.

3. Special honest-verifier ZK: There exists a polynomial simulator M , which
on input x and a random e outputs an accepting transcript of form (a, e, z)
with the same probability distribution as a transcript between the honest P ,
V on input x.

Many known efficient protocols, such as those in [16] and [?], are Σ-protocols.
Furthermore, there is a Σ-protocol for the language of Hamiltonian Graphs [1],
assuming that one-way permutation families exists; if the commitment scheme
used by the protocol in [1] is implemented using the scheme in [19] from any
pseudo-random generator family, then the assumption can be reduced to the exis-
tence of one-way function families, at the cost of adding one preliminary message
from the verifier. Note that adding one message does not have any influence on
the property of Σ-protocols: assuming the new protocol is of form (f, a, e, z),
given the challenge e, it is easy to indistinguishably generate the real transcript
of form (f, a, e, z); given two accepting transcripts (f, a, e, z) and (f, a, e′, z′),
where e 6= e′, we can extract a witness easily. We can claim that any language
in NP admits a 4-round Σ-protocol under the existence of any one-way function
family (or under an appropriate number-theoretic assumption), or a Σ-protocol
under the existence of any one-way permutation family. Though the following
OR-proof refers only to 3-round Σ-protocol, readers should keep in mind that the
way to construct the OR-proof is also applied to 4-round Σ-protocol.

Interestingly, Σ-protocols can be composed to proving the OR of atomic state-
ments, as shown in [8, 7]. Specifically, given two protocols Σ0,Σ1 for two rela-
tionships R0, R1, respectively, we can construct a ΣOR-protocol for the following
relationship efficiently: ROR = ((x0, x1), y) : (x0, y) ∈ R0or(x1, y) ∈ R1, as fol-
lows. Let (xb, y) ∈ Rb and y is the private input of P . P computes ab according
the protocol Σb using (xb, y). P chooses e1−b and feeds the simulator M guar-
anteed by Σ1−b with e1−b, x1−b, runs it and gets the output (a1−b, e1−b, z1−b). P

5

sends ab, a1−b to V in first step. In second step, V picks e ←R Zq and sends it
to P . Last, P sets eb = e ⊕ e1−b, and computes the last message zb to the chal-
lenge eb using xb, y as witness according the protocol Σb. P sends eb, e1−b, zb)
and e1−b, z1−b to V . V checks e = eb ⊕ e1−b, and the two transcripts (ab, eb, zb)
and (a1−b, e1−b, z1−b) are accepting. The resulting protocol turns out to be witness
indistinguishable: the verifier can not tell which witness the prover used from a
transcript of a session.

In our rZK argument, the verifier uses a 3-round Witness Indistinguishable
Proof of Knowledge to prove knowledge of one of the two secret keys associating
with his public key. As required in [11], we need a partial-witness-independence
property from above proof of knowledge: the message sent at its first round should
have distribution independent from any witness for the statement to be proved. We
can obtain such a protocol using [22] [8].

Commitment scheme. A commitment scheme is a two-phase (committing phase
and opening phase) two-party (a sender S and a receiver R)protocol which has
following properties: 1) hiding: two commitments (here we view a commitment as
a variable indexed by the value that the sender committed to) are computationally
distinguishable for every probabilistic polynomial-time (possibly malicious) R∗;
2) Binding: after sent the commitment to a value m, any probabilistic polynomial-
time (possibly malicious) sender S∗ cannot open this commitment to another value
m′ 6= m except with negligible probability. Under the assumption of existence of
any one-way function families (using the scheme from [19] and the result from
[17]) or under number-theoretic assumptions (e.g., the scheme from [?]), we can
construct a schemes in which the first phase consists of 2 messages. Assuming
the existence of one-way permutation families, a well-known non-interactive (in
committing phase) construction of a commitment scheme (see, e.g. [13]) can be
given.

A statistically-binding commitment scheme (with computational hiding) is a
commitment scheme except with a stronger requirement on binding property: for
all powerful sender S∗ (without running time restriction), it cannot open a valid
commitment to two different values except with exponentially small probability.
We refer readers to [13] for the details for constructing statistically-binding com-
mitments.

A perfect-hiding commitment scheme (with computational binding) is the one
except with a stronger requirement on hiding property: the distribution of the
commitments is indistinguishable for all powerful receiver R∗. As far as we know,
all perfect-hinding commitment scheme requires interaction in the committing

6

phase.

Definition 2.4 [13]. Let d, r : N → N . we say that

{fs : {0, 1}d(|s|) → {0, 1}r(|s|)}s∈{0,1}∗

is an pseudorandom function ensemble if the following two conditions hold:

1. 1. Efficient evaluation: There exists a polynomial-time algorithm that on
input s and x ∈ 0, 1d(|s|) returns fs(x);

2. 2. Pseudorandomness: for every probabilistic polynomial-time oracle ma-
chine M , every polynomial p(·), and all sufficient large n′s,

|[Pr[MFn(1n) = 1]− Pr[MHn(1n) = 1]| < 1/p(n)

where Fn is a random variable uniformly distributed over the multi-set
{fs}s∈{0,1}n , and Hn is uniformly distributed among all functions mapping
d(n)-bit-long strings to r(n)-bit-long strings.

3 A Simple Observation on Resettably-sound Zero
Knowledge Arguments

resettably-sound zero knowledge argument is a zero knowledge argument with
stronger soundness: for all probabilistic polynomial-time prover P ∗, even P ∗ is
allowed to reset the verifier V to previous state (after resetting the verifier V uses
the same random tape), the probability that P ∗ make V accept a false statement
x /∈ L is negligible.

In [2] Barak et al. transform a constant round public-coin zero knowledge ar-
gument < P, V > for a NP language L into a resettably-sound zero knowledge
argument < P, W > for L 2as follows: equip W with a collection of pseudoran-
dom functions, and then let W emulate V except that it generate the current round
message by applying a pseudorandom function to the transcript so far.

2In fact, Barak show how to transform a constant round public-coin argument for a relation RL

associated with the language L into a resettably-sound zero knowledge argument for RL. How-
ever, we do not require the resettably-sound zero knowledge argument is a argument of knowledge
when it is used as a building block in our main construction.

7

We will use a resettably-sound zero knowledge argument as a building block in
which the verifier proves to the prover that a challenge is the one that he have com-
mitted to in previous stage. To prove our protocol showed in next section enjoys
concurrent soundness, we will use the simulator associated with the resettably-
sound zero knowledge argument to prove a false statement. The key observation
that enables the analysis of concurrent soundness is that it is not necessary in
the proof of concurrent soundness to simulate all the concurrent execution of the
underlying resettably-sound zero knowledge argument: we just need to simulate
only one execution among all concurrent executions of the resettably-sound zero
knowledge argument. We call this property one-many simulatability. We note
that Pass and Rosen [21] made a similar observation (in a different context) that
enables the analysis of concurrent non-malleability of their commitment scheme.

Now we recall the Barak’s constant round public-coin zero knowledge argu-
ment [1], and show this protocol satisfies one-many simulatability, and then so
does the resettably-sound zero knowledge argument transformed from it.

Informally, Barak’s protocol for a NP language L consists of two subproto-
col: a general protocol and a WI universal argument. An real execution of the
general protocol generates an instance that is unlikely in some properly defined
language, and in the WI universal argument the prover proves that the statement
x ∈ L or the instance generated above is in the properly defined language. Let
n be security parameter and {Hn}n∈N be a collection of hash functions where a
hash function h ∈ Hn maps {0, 1}∗ to {0, 1}n, and let C be a statistically bind-
ing commitment scheme. We define a language Λ as follows. We say a triplet
(h, c, r) ∈ Hn × {o, 1}n × {o, 1}n is in Λ, if there exist a program Π and a string
s ∈ {0, 1}poly(n) such that z = C(h(Π), s) and Π(z) = r within superpolynomial
time (i.e., nω(1)).

The Barak’s Protocol [1])
Common input: an instance x ∈ L (|x| = n)
Prover’s private input: the witness w such that (x,w) ∈ RL

V → P : Send h ←R Hn;
P → V : Pick s ←R {0, 1}poly(n) and Send c = C(h(03n, s);
V → P : Send r ←R {0, 1}n;
P ⇔ V : A WI universal argument in which P proves x ∈ L or (h, c, r) ∈ Λ.

Fact 1. The Barak’s protocol enjoys one-many simulatability. That is, For every
malicious probabilistic polynomial time algorithm V ∗ that interacts with (arbi-
trary) polynomial s copies of P on true statements {xi}, 1 ≤ i ≤ s, and for every

8

j ∈ {1, 2, ..., s}, there exists a probabilistic polynomial time algorithm S, takes
V ∗ and all witness but the one for xj , such that the output of S(V ∗, {(xi, wi)}1≤i≤s,i 6=j, xj)
(where (xi, wi) ∈ RL) and the view of V ∗ are indistinguishable.

We can construct a simulator S = (Sreal, Sj) as follows: Sreal, taking as in-
puts {(xi, wi)}1≤i≤s, does exactly what the honest provers do on these statements
and outputs the transcript of all but the jth sessions (in jth session xj ∈ L is to be
proven), Sj acts the same as the simulator associated with Barak’s protocol in the
session in which xj ∈ L is to be proven, except that when Sj is required to send
a commitment value (the second round message in Barak’s protocol), it commit
to the hash value of the joint residual code of V ∗ and Sreal at this point instead of
committing to the hash value of the residual code of V ∗, at the end of jth session
Sj outputs the jth transcript. We note that the output of Sreal is identical to the
real interaction. For Sj , we can use the same analysis of the simulator associated
with Barak’s protocol to prove the output of Sj is indistinguishable from the real
view of V ∗ in the jth session. Therefore, the simulator S satisfies our requirement.
We sometimes call S a one-many simulator.

When we transform a constant round public-coin zero knowledge argument
into a resettably-sound zero knowledge argument, the transformation itself does
not influence the simulatability (zero knowledge) of the latter argument because
the zero knowledge requirement does not refer to the honest verifier (as pointed
out in [2]). Thus, the same simulator described above can be used to simulate one
execution among all concurrent executions of the resettably-sound zero knowl-
edge argument. So we have

Fact 2. All resettably-sound zero knowledge argument transformed from Barak’s
protocol enjoy one-many simulatability.

4 rZK Argument with Concurrent Soundness for
NP in the BPK model Under Standard Assump-
tion

In this section we present a constant-round rZK argument with concurrent sound-
ness in the BPK model for allNP language without assuming any subexponential
hardness.

For the sake of readability, we give some intuition before describe the protocol
formally.

9

We construct the argument in the following way: build a concurrent zero
knowledge argument with concurrent soundness and then transform this argument
to a resettable zero knowledge argument with concurrent soundness. Concurrent
zero knowledge with concurrent was first presented in [11] under standard as-
sumption (without using ”complexity leveraging”). For the sake of simplifica-
tion, we modify the flawed construction presented in [23] to get a correct con-
current zero knowledge argument with concurrent soundness. Considering the
following two-phase argument in BPK model: Let n be the security parameter,
and f be a one way function that maps {0, 1}κ(n) to {0, 1}n for some function
κ : N → N. The verifier chooses two random numbers x0, x1 ∈ {0, 1}κ(n),
computes y0 = f(x0), y1 = f(x1) then publishes y0, y1 as he public key and
keep x0 or x1 secret. In phase one of the argument, the verifier proves to the
prover that he knows one of x0, x1 using a partial-witness-independently Witness
Indistinguishable Proof of Knowledge. In phase two, the prover give a witness
indistinguishable argument of knowledge that the statement to be proven is true
or he knows one of x0, x1. Note that in phase one we use proof of knowledge
while in phase two we use argument of knowledge, this means in phase two we
restrict the prover to be a probabilistic polynomial-time algorithm, and therefore
our whole protocol is an argument (not a proof).

Unfortunately, as pointed out in [11], the above two-phase argument does NOT
enjoy concurrent soundness. In fact, when the malicious prover interacts with a
verifier concurrently, he may decide a deliberate schedule so that he can learn
how to prove that he knows one of x0, x1 from the proof given by the verifier in
phase one. However, we can use the same technique in [11] in spirit to fix the
flaw: in phase two, the prover uses a commitment scheme3COM1 to compute a
commitments to a random strings s, c = COM1(s, r) (r is a random string needed
in the commitment scheme), and then the prover prove that the statement to be
proven is true or he committed to one of x0, x1 (i.e s equals x0, or s equals x1).
We can prove that the modified argument is concurrent zero knowledge argument
with concurrent soundness using technique similar to that in [11].

Given the above (modified) concurrent zero knowledge argument with concur-
rent soundness, we can transform it to resettable zero knowledge argument with
concurrent soundness in this way: 1) using a statistically-binding commitment
scheme COM0, the verifier computes a commitment ce = COM0(e, re) (re is a

3In contrast to [11], we proved that computational binding commitment scheme suffices to
achieve concurrent soundness. In fact, the statistically binding commitment scheme in [11] could
also be replaced with computational binding one without violating the concurrent soundness.

10

random string needed in the scheme) to a random string e in the phase one, and
then he sends e (note that the verifier does not send re, namely, it does not open
the commitment ce) as the second message (i.e the challenge) for the witness in-
distinguishable argument of knowledge used in the phase two and prove that e is
the string he committed to in the first phase using resettably sound zero knowl-
edge argument; 2)equipping the prover with a pseudorandom function, whenever
the random bits is needed in a execution, the prover applied the pseudorandom
function to what he have seen so far to generate random bits.

To prove the resulting argument enjoys concurrent soundness, we need to send
a false challenge in phase 2 and simulate the malicious prover’s view. The diffi-
culty of the simulation lies in that the malicious prover interacts with the verifier
in a interleaving way, and we do not know how to construct a constant round re-
settably sound argument with concurrent zero knowledge so far. However, we
note that it is not necessary for the proof of concurrent soundness to simulate all
the concurrent execution of the underlying resettably-sound zero knowledge ar-
gument, instead, we just need to simulate only one execution (i.e., the session that
the malicious prover cheats the verifier) among all concurrent executions of the
resettably-sound zero knowledge argument.

The Protocol (rZK argument with concurrent soundness in BPK model)
Let {prfr : {0, 1}∗ → {0, 1}d(n)}r∈{0,1}n be a pseudorandom function en-

sembles, where d is a polynomial function, COM0 be a statistically-binding com-
mitment scheme, and let COM1 be a general commitment scheme (can be either
statistically-binding or computational-binding). Without loss of generality, we as-
sume both the preimage size of the one-way function f and the message size of
COM1 equal n.

Common input: the public file F , n-bit string x ∈ L, an index i that specifies
the i-th entry pki = (f, y0, y1) (f is a one-way function) of F .

P ’s Private input: a witness w for x ∈ L, and a fixed random string (r1, r2) ∈
{0, 1}2n.

V ’s Private input: a secret key α (α=x0 or x1).

Phase 1:V Proves Knowledge of α and Sends a Committed Challenge to P .

1. V and P runs the 3-round partial-witness-independently witness indistin-
guishable protocol (ΣOR-protocol) Πv in which V prove knowledge of α
that is one of the two preimages of y0 and y1. the randomness bits used by
P equals r1;

11

2. V computes ce = COM0(e, re) for a random e (re is a random string needed
in the scheme), and sends ce to P .

Phase 2: P Proves x ∈ L.

1. P checks the transcript of Πv is accepting. if so, go to the following step.

2. P chooses a random string s, |s| = n, and compute c = COM1(s, rs) by
picking a randomness rs; P forms a new relation R′={(x, y0, y1, c, w

′) |
(x,w′) ∈ RL∨(w′ = (w′′, rw′′)∧y0 = f(w′′)∧c = COM1(w

′′, rw′′))∨(w′ =
(w′′, rw′′) ∧ y1 = f(w′′) ∧ c = COM1(w

′′, rw′′)))}; P invokes the 3-
round witness indistinguishable argument of knowledge (ΣOR-protocol) Πp

in which P prove knowledge of w′ such that (x, y0, y1, c; w
′) ∈ R′, com-

putes and sends the first message a of Πp.
All randomness bits used in this step is obtained by applying the pseudo-
random function prfr2 to what P have seen so far, including the common
inputs, the private inputs and all messages sent by both parties so far.

3. V sends e to P , and execute a resettably sound zero knowledge argument
with P in which V proves to P that ∃ re s.t. ce = COM0(e, re). Note that
the subprotocol will costs several (constant) rounds. Again, the randomness
used by P is generated by applying the pseudorandom function prfr2 to
what P have seen so far.

4. P checks the transcript of resettably sound zero knowledge argument is
accepting. if so, P computes the last message z of Πp and sends it to V .

5. V accepts if only if (a, e, z) is accepting transcript of Πp.

Theorem 1. Let L be a language in NP , If there exists hash functions
collision-resistant against any polynomial time adversary, then there exists a con-
stant round rZK argument with concurrent soundness for L in BPK model.

Remark on complexity assumption. We prove this theorem by showing
the protocol described above is a rZK argument with concurrent soundness. In-
deed, our protocol requires collision-resistant hash functions and one-way per-
mutations, this is because the 3-round Σ-protocol (therefore ΣOR-protocol) for
NP assumes one-way permutations and the resettably sound zero knowledge

12

argument assumes collision-resistant hash functions. However, we can build 4-
round Σ-protocol (therefore ΣOR-protocol) for NP assuming existence of one-
way functions by adding one message (see also discussions on Σ-protocol in sec-
tion 2), and our security analysis can be also applied to this variant. We also note
that collision-resistant hash functions implies one-way functions which suffices to
build statistically-binding commitment scheme (therefore computational-binding
scheme), thus, if we proved our protocol is a rZK argument with concurrent sound-
ness, then we get theorem 1. Here we adopt the 3-round ΣOR-protocol just for the
sake of simplicity.

Proof. Completeness. Straightforward.
Resettable (black-box) resettable Zero Knowledge. The analysis is very

similar to the analysis presented in [4, 10]. Here we omit the tedious proof and just
provide some intuition. As usual, we can construct a simulator Sim that extracts
all secret keys corresponding to those public keys registered by the malicious ver-
ifier from Πv and then uses them as witness in executions of Πp, and Sim can
complete the simulation in expected polynomial time. We first note that when a
malicious verifier resets a an honest prover, it can not send two different challenge
for a fixed commitment sent in Phase 1 to the latter because of statistically-binding
property of COM0 and resettable soundness of the underlying sub-protocol used
by the verifier to prove the challenge matches the value it has committed to in
Phase 1. To prove the property of rZK, we need to show that the output of Sim
is indistinguishable form the real interactions. However, in the execution of Πp,
the statement proved (i.e. (x, y0, y1, c)) by Sim and the one proved by a honest
prover may be different (note that it is very unlikely for the simulator and the
honest prover to generate the same commitment c), so the claim that the output
of Sim is indistinguishable form the real interactions does not follow from the
witness indistinguishability of Πp directly. For this problem, We can construct a
non-uniform hybrid simulator to overcome this difficulty: the non-uniform hybrid
simulator taking as inputs all these secret keys and all the witnesses of statements
in interactions, which computes commitments exactly as Sim does but executes
Πp using the same witness of the statement used by the honest prover. It is easy
to see that the output of the hybrid simulator is indistinguishable from both the
transcripts of real interactions (because of the computational-hiding property of
COM1) and the output of Sim (because of the witness indistinguishability of Πp),
therefore, we proved the the output of Sim is indistinguishable form the real in-
teractions.

Concurrent Soundness. Proof proceeds by contradiction. The techniques

13

used here is similar to but different from that in [11].
Assume that the protocol does not satisfy the concurrent soundness property,

thus there is a s-concurrently malicious prover P ∗, concurrently interacting with
V , makes the verifier accept a false statement xj /∈ L in jth session with non-
negligible probability p.

We now construct an algorithm B that takes the code (with randomness hard-
wired in)of P ∗ and breaks the one-wayness of f with non-negligible probability.

B runs as follows. On input the challenge f, y (i.e given description of one-
way function, B finds x such that y = f(x)), B randomly chooses α ∈ {0, 1}n,
b ∈ {0, 1}, and guess a session number j ∈ {1, ..., s}(guess a session in which
P ∗ will cheat the verifier successfully on a false statement xj . Note that the event
that this guess is correct happens with probability 1/s), then B registers pk =
(f, y0, y1) as the public key, where yb = f(α), y1−b = y.

We write B = (Breal, Bj) without loss of generality. B interacts with P ∗ as
honest verifier (note that B knows the secret key sk = α corresponding the public
key pk) for all but jth session. Specifically, B employs the following rewinding
strategy:

1. B acts as the honest verifier in the first time. That is, it completes Πv using
α as secret key, and commits to e, ce = COM0(e, re) in phase 1 then runs
resettably sound ZK argument in Phase 2 using e, re as the witness. In
particular, B uses Bj to play the role of verifier in the jth session, and uses
Breal to play the role of verifier in all other sessions. At the end of jth
session, B get an accepting transcript (a, e, z) of Πp;

2. Bj rewind P ∗ to the point of beginning of step 3 in Phase 2 in jth session,
it chooses a random string e′ 6= e and simulates the underlying resettably
sound ZK argument in the same way showed in section 3: it commits to the
hash value of the joint residual code of P ∗ and Breal in the second round
of the resettably sound ZK argument (note this subprotocol is transformed
from Barak’s protocol) and uses them as the witness to complete the proof
for the following false statement: ∃ re s.t. ce = COM0(e

′, re). If this
rewinding incurs some other rewinds on other sessions, Breal always acts as
an honest verifier, that is, it does not change the challenges that he commit-
ted to in Phase 1. When B get another accepting transcript (a, e′, z′) of Πp

at step 5 in Phase 2, it halts and outputs the two accepting transcript (a, e, z)
and (a, e′, z′), otherwise, B plays step 3 in jth session again.

Though the rewinding requires Bj simulates the P ∗’s view on a false statement

14

(in section 3, the one-many simulation requires all statement is true)in jth session,
however the simulation can be executes successfully and is indistinguishable from
real interaction, and we can prove this using the same technique showed in the
analysis of resettable zero knowledge property. We also note that if the simulation
is successful, B gets another accepting transcript of Πp with probability negligibly
close to p. Since p is non-negligible, B will obtain two accepting transcript of Πp

with different challenges in expected polynomial time.
Now assume we extract an witness w′ from the two different accepting tran-

scripts of Πp such that (x, y0, y1, c, w
′) ∈ R′, furthermore, the witness w′ must

satisfy w′ = (w′′, rw′′) and yb = f(w′′) or y1−b = f(w′′) because xj /∈ L. If
y1−b = f(w′′), we breaks the one-way assumption of f , otherwise(i.e., w′′ satis-
fies yb = f(w′′), in this case, w′′ = α = xb, that is the secret key we knows),
we fails. Next we claim B succeed in breaking the one-way assumption of f with
non-negligible probability.

Assume otherwise, except with a negligible probability, B fails. This means if
B always uses the witness xb to execute Πv during the above extraction, B always
obtains two accepting transcript of Πp in jth session in which it extracts xb. Let
k be the number of sessions executed before the end of session j. It is clear that
B using k times the preimage of yb (i.e., α) we always extract α, and B using
k times the preimage of y1−b we always extract the preimage of y1−b. Thus, by
hybrid argument, there must be l ∈ {1, ..., k} such that using the preimage of yb

for first l− 1 times and the preimage of y1−b for last k− l times, B will extract the
preimage that is the same one used in execution of Πv in lth session. We consider
two cases: the execution of Πv in lth session has been completed before or after
step 2 in Phase 2 in jth session.

In case that the execution of Πv in lth session has been completed before step
2 in Phase 2 in the jth session, if B outputs the preimage that is the same one used
in execution of Πv in lth session with probability negligibly close to 1, we can use
this session to break the property of witness indistinguishability of Πv because
during the extraction we do not rewinds the lth session. This is impossible.

In case the execution of Πv in lth session completed after the step 2 in Phase
2 in the jth session and the rewinding on jth session results in rewinding on exe-
cution of Πv in lth session (if this is not the case, we have showed it is impossible
in the first case), if B outputs the preimage that is the same one used in execu-
tion of Πv in lth session with probability negligibly close to 1, We can construct a
non-uniform algorithm B’ to break the computational binding of the commitment
scheme COM1.

The non-uniform algorithm B’ takes as auxiliary input (yb, y1−b, xb, x1−b) (with

15

input both secret keys) and interacts with P ∗ under the public key (yb, y1−b). It
performs the following extraction:

1. Simulation: acts exactly as the B. Without loss of generality, let B’ uses x0

as witness in the lth execution of Πv (i.e. the execution of Πv in lth session),
and B’ obtains a accepting transcript (a, e0, z0) of Πp in the jth session.

2. Rewinding Game 0: B’ rewinds to the point of beginning of step 2 in Phase 2
in jth session and replays this round by sending another random challenge
e′ 6= e until he gets another accepting transcript a, e′0, z

′
0 of Πp using the

same rewinding strategy of B and it uses x0 as witness in the lth execution
of Πv which nested in the jth session.

3. Rewinding Game 1: repeats Rewinding Game 1 twice and obtains two ac-
cepting transcript (a, e1, z1) and (a, e′1, z

′
1) of Πp, but B’ uses x1 as witness

in the lth execution of Πv during this game. Note that we assume the lth
execution of Πv completed after the step 2 in Phase 2 in the jth session,
so at step 2 in Phase 2 P ∗ has seen at most the message in lth session (the
first message of the protocol Πv in lth session), and note that the Πv is
partial-witness-independent (so we can decide to use which witness at the
last (third) step of Πv in lth session) Σ-protocol, so B’ can choose different
witness to complete the lth execution of Πv after P ∗ sent the first message
a (the message in step 2 of Phase 2) of Πp in the jth session.

Note that first message a sent by P ∗ in the jth session contains a commitment c
and this message a (therefore c) remains unchanged during these games. Clearly,
with non-negligible probability, B’ will output two valid witness w′

0 = (w0
′′, rw0

′′)
and w′

1 = (w1
′′, rw1

′′) from the above two games such that the following holds:
y0 = f(w0

′′) (i.e. w0
′′ = x0), y1 = f(w1

′′) (i.e. w1
′′ = x1), c = COM1(w0

′′, rw0
′′)

and c = COM1(w1
′′, rw1

′′). This contradicts the computational-binding property
of the scheme COM1.

In sum, we proved that for every case, it is impossible for B to output the same
preimage that is used in execution of Πv in lth session with probability negligibly
close to 1, then the assumption that B fails except with a negligible probability
is false, and this implies B succeeds in breaking the one-wayness of f with non-
negligible probability. In another words, if the one-way assumption on f holds,
it is infeasible for P ∗ to cheat an honest verifier in concurrent settings with non-
negligible probability. 2

16

Acknowledgments. The first author thanks Giovanni Di Crescenzo and Ivan Vis-
conti for many helpful discussions and classifications.

References
[1] B. Barak. How to go beyond the black-box simulation barrier. In Proc. of

IEEE FOCS 2001, pp.106-115.

[2] B. Barak, O. Goldreich, S. Goldwasser, Y. Lindell. Resettably sound Zero
Knowledge and its Applications. In Proc. of IEEE FOCS 2001, pp. 116-
125.

[3] B. Barak, O. Goldreich. Universal Arguments and Their Applications. In
Proc. of IEEE CCC 2002, pp. 194-203.

[4] R. Canetti, O. Goldreich, S. Goldwasser, S. Micali. Resettable Zero Knowl-
edge. In Proc. of ACM STOC 2000.

[5] R. Canetti, J. Kilian, E. Petrank and A. Rosen. Concurrent Zero-Knowledge
requires Ω(logn) rounds. In Proc. of ACM STOC 2001, pp.570-579.

[6] I. Damgard. Efficient Concurrent Zero-Knowledge in the Auxiliary String
Model. In Advances in Cryptology-EUROCYPT 2000, Springer LNCS
1807, pp.174-187.

[7] R. Cramer, I. Damgård, and B. Schoenmakers. Proofs of Partial Knowl-
edge and Simplified Design of Witness Hiding Protocols. In Advances in
Cryptology-CRYPTO’94, Springer Verlag LNCS 839, pp.174-187, 1994

[8] A. De Santis, G. Di Crescenzo, G. Persiano, M. Yung. On Monotone For-
maula Close of SZK. In Proc. of IEEE FOCS 1994.

[9] G. Di Crescenzo, R. Ostrovsky. On Concurrent Zero Knowledge with Pre-
processing. In Advances in Cryptology-Crypto 1999, Spriger LNCS1666,
pp. 485-502.

[10] G. Di Crescenzo, Giuseppe Persiano, Ivan Visconti. Constant Round Re-
settable Zero Knowledge with Concurrent Soundness in the Bare Public-
Key Model. In Advances of Cryptology-Crypto’04, Springer LNCS3152,
pp.237-253

17

[11] G. Di Crescenzo, Ivan Visconti. Concurrent Zero Knowledge in the Public-
Key Model. In Proc. of ICALP 2005, Springer LNCS3580, pp.816-827.

[12] C. Dwork, M. Naor and A. Sahai. Concurrent Zero-Knowledge. In Proc. of
ACM STOC 1998, pp.409-418.

[13] O. Goldreich. Foundation of Cryptography-Basic Tools. Cambridge Uni-
versity Press, 2001.

[14] O. Goldreich, S. Micali and A. Wigderson. Proofs that yield nothing but
their validity or All languages in NP have zero-knowledge proof systems.
J. ACM, 38(3), pp.691-729, 1991.

[15] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of
interactive proof systems. SIAM. J. Computing, 18(1):186-208, February
1989.

[16] L. C. Guillou and J.-J. Quisquater. A practical zero-knowledge protocol fit-
ted to security microprocessors minimizing both transmission and memery.
In Advance in Cryptology-EUROCRYPT’88, Springer LNCS 330, pp.123-
128, 1988.

[17] J. Hastad, R. Impagliazzo, L. A. Levin, M. Luby. A Pseudorandom
Generator from Any One-Way Functions. SIAM Journal on Computing
28(4):1364-1396, 1999.

[18] S. Micali, L. Reyzin. Soundness in the Public-Key Model. In Advances in
Cryptology-Crypto’01, Springer LNCS2139, pp.542-565.

[19] M. Naor. Bit Commitment using Pseudorandomness. Journal of Cryptology
4(2): 151-158, 1991.

[20] M. Naor, R. Ostrovsky, R. Venkatesan, M. Yung: Perfect Zero-Knowledge
Arguments for NP Using Any One-Way Permutation. Journal of 11(2): 87-
108 (1998)

[21] R. Pass, A. Rosen: Concurrent Non-Malleable Commitments. In Proc. of
IEEE FOCS 2005, pp.563-572, 2005

[22] C. P. Schnorr. Efficient Signature Generation for Smart Cards. Journal of
Cryptology, 4(3): 239-252, 1991.

18

[23] Y. Zhao. Concurrent/Resettable Zero Knowledge with Concurrent Sound-
ness in the Bare Public-Key Model and its Applications. Cryptology ePrint
Archive, Report 2003/265.

19

