
Stronger Definitions for

Anonymous Electronic Cash

Mårten Trolin
marten@nada.kth.se

Royal Institute of Technology (KTH), Stockholm, Sweden

Abstract We investigate definitions of security for previously proposed
schemes and point out that they can be strengthened so that the bank
does need to be trusted to the same extent. We give experiment-based
definitions for our stronger notion and show that they imply security in
the framework for Universal Composability. Finally we propose a scheme
secure under our definitions in the common reference string (CRS) model
under the assumption that trapdoor permutations exist.

1 Introduction

Electronic payments is an interesting cryptographic task. The concept was in-
troduced by Chaum et al. [11]. As was common at the time, the claimed security
properties were not defined in a precise way. Many schemes for anonymous elec-
tronic followed [7,13,27,24,21,20,19,8],

In the recent years, several papers have focused on giving precise security
definitions for tasks such as group signatures [2,3] and ring signatures [4]. In this
paper we suggest definitions of security of schemes for electronic cash. In addition
to experiment based definitions we construct an ideal functionality for electronic
cash and show that security in the experiment setting implies simulation-based
security in the framework for universal composability [9] using the ideal func-
tionality.

We construct a scheme using general methods, which is secure in our model
in the common reference string (CRS) model. The scheme is not intended for
practical use, but it is rather a proof of concept.

We point out that the definitions current schemes do not rule out a corrupt
bank cheating a user. The scenario is that the bank claims a user has withdrawn
a coin, but the user denies this. We argue that the protocol should include a
mechanism to solve such an issue. Our definitions address this issue by requiring
a proof a withdrawal also from the bank.

2 Notation and Definitions

We write [a, b] to denote the set {x ∈ Z | a ≤ x ≤ b}, and we let [b] = [1, b].
We say that an element is chosen “randomly” instead of the more cumbersome

“independently and uniformly at random”. By r ←R S we mean that r is chosen
randomly in S. Throughout the paper, κ denotes the security parameter. A
function ε : N → R

+ is said to be negligible if for each c > 0 there exists a
κ0 ∈ N such that ε(κ) < κ−c for κ0 < κ ∈ N. We say that a function f : N→ R

+

is non-negligible whenever it is not negligible.

We write ∅ to denote both the empty set and the empty string, and we let
⊥ be a special symbol. All adversaries in this paper are modeled as polynomial
time Turing machines with non-uniform auxiliary advice string. We denote the
set of such adversaries by PPT∗.

Informally a family of functions is called a family of trapdoor permutations
if the permutation is hard to invert unless a trapdoor is known, in which case it
can be efficiently inverted. The precise definition is given in Appendix A.

3 Protocol Definitions and Security Model

Here we give definitions for a scheme for electronic cash as well as for its security.

While some security properties are obvious and dealt with from the very first
scheme, others are more subtle. Naturally a scheme must not allow for a user to
forge coins, and a double-spender must be detected. The schemes [8,28] require
that a corrupt bank cannot accuse an honest user of double-spending, whereas
this requirement is not explicit in, e.g., [19,18]. However, to our knowledge, no
scheme discusses the possibility of a corrupt bank falsely claiming that an honest
user has withdrawn a coin, or rejecting a deposition from a merchant of a legally
spent coin. The tendency seem to be to, apart from anonymity, protect the
interests of the bank rather than those of the user.

We give definitions requiring that the bank be able to prove withdrawals.
Thus, after executing the withdrawal protocol, the output of the bank should be
a proof of withdrawal and the output of the user should be a valid coin. However,
the neither part should be able to benefit by aborting the protocol prematurely.
While there exist protocols that release information piece by piece, so called fair
exchange [5], they are either based on gradual release of information and thus
not very practical, or require the presence of a third trusted party. Since we
would like definitions that can be instantiated with a practical protocol, we use
a different approach. After the execution, the bank receives a withdrawal proof,
and the user receives a coin secret key. The honest bank would send the proof to
the user, who can use it as a coin. Should the bank fail to do this, the user can
challenge the transaction and require the bank to prove that a coin has indeed
been withdrawn. Since the proof can be used a coin, the scheme is fair also from
the point of view of the user.

We require that spent coins be publicly verifiable to avoid the possibility of
the bank rejecting a deposition and to ensure that a merchant cannot deny having
received a payment. In particular the bank can verify a spent coin. Therefore
there is no need for an interactive deposition protocol. The merchant simply
hands the spent coin to the bank.

2

The merchants do not have a secret key in our setting. Instead the receiving
merchant’s identity mid is encoded in the spent coin together with a transaction
identifier tid. Thus the merchant’s consent is not necessary in order to spend a
coin. We use this approach to make the definitions cleaner. In practice, a user
would require some sort of contract before handing the merchant a coin, but we
feel this is best handled outside of the protocol. In standard banking systems it is
indeed possible to wire money without the recipient’s approval, although it is not
very sensible to do so. Since there is no secret for the merchant and the resulting
spent coin is publicly verifiable, the spending protocol is non-interactive.

We assume the existence of a PKI, i.e., given a public key there exists a
method to obtain the identity of the holder of the key. We also assume the
existence of secure and authenticated communication. We do not explicitly define
a protocol to register a user. If the protocol requires some secret information to
be passed from the bank to the user, this can be done in the withdrawal protocol.
Therefore there is no loss of generality in this.

Here we discuss payment schemes containing all basic properties, but there
are many possible extensions. Examples of such alternate definitions include the
presence of a trusted third party which can identify coins, even when they have
not been double-spent. Such schemes are called fair. Another extension is the
possibility to transfer a coin between users in several steps before it is deposited
at the bank, and divisible coins. We leave it as an open problem to adjust the
definitions to handle also such cases.

3.1 Participants

The participants are the bank B, merchantsMi, and users Ui.

3.2 Algorithms and Protocols

We now define the algorithms and the protocols that a scheme for electronic cash
consists of. For non-interactive algorithms the definitions are straight-forward.
We define two-party protocols as a pair of algorithms, where each participant
executes one algorithm. The algorithms take as input a message, a state, and the
private input of the party. On startup of a protocol the initiating party executes
the algorithm with ∅ as message. Each algorithm outputs a pair (msg, state),
where msg is handed as message to the other party’s algorithm, and state is
passed as input by the executing party the next round. When a party’s algorithm
outputs p = ⊥ the protocol is finished, and the final value of each party’s state

is parsed as private output. The transcript of a protocol is defined as the list of
messages exchanged.

The below algorithm illustrates the execution between two parties using al-
gorithms A and B with private input skA, skB, respectively.

Note that the only protocol we use involve exactly two parties.
There is an algorithm for creating a bank key pair and a user key pair. After

the user has generated its key, it is inserted into the PKI and hence tied to the
user’s identity. Each merchant has an identity mid ∈ {0, 1}κ/2, but no secret key.

3

stateA ← skA

stateB ← skB

while (msgA 6= ⊥) ∧ (msgB 6= ⊥) do

(msgB, stateA)← A(msgA, stateA)
if msgB 6= ⊥ then

(msgA, stateB)← B(msgB , stateB)
end if

end while

return (stateA, stateB)

Algorithm Header 1 (Bank Key Generation BKg).
Interface: BKg(1κ), where κ is the security parameter.
Output: (bpk, bsk), where bpk is a bank public key and bsk is a bank secret key.

Algorithm Header 2 (User Key Generation UKg).
Interface: UKg(1κ), where κ is the security parameter.
Output: (upk, usk), where upk is a user public key and usk is a user secret key.

Protocol Header 1 (Coin Withdrawal, (UWithdraw, BWithdraw)).
Parties: Bank B, User U .
Private input of B: Bank public key bpk, bank secret key bsk.
Private input of U : Bank public key bpk, user public key upk, user secret key
usk.
Private output of B: Coin coin.
Private output of U : Coin secret key csk.

(UWithdraw, BWithdraw) is the protocol used when a user withdraws a coin.
The private input of the user is a user private key usk, a user public key upk,
and a bank public key bpk. The private input of the bank is a bank secret key
bsk and a bank public key bpk. The user’s private output is a coin secret key
csk used when spending the coin, whereas the bank’s output is interpreted as
a withdrawn coin (coin). Normally the bank would hand the withdrawn coin to
the user, but we do not address this in the protocol.

Algorithm Header 3 (Coin Spending Spend).
Interface: Spend(coin, upk, usk, csk, mid, tid, bpk), where coin is a coin, upk

is a user public key, usk is a user secret key, csk is a coin secret key, mid is a
merchant identity, tid ∈ {0, 1}κ/2 is a transaction identity, and bpk is a bank
public key.
Output: spentcoin, where spentcoin is a (publicly verifiable) spent coin.

VfDoubleSpent(spentcoin1, spentcoin2, bpk) returns the public key upk of the
double-spender if spentcoin1 and spentcoin2 are transcripts of two spendings of
the same coin. Otherwise it returns ⊥.

We require that the spent coins handed to VfDoubleSpent has been verified,
or the output of the algorithm is undefined. This requirement could be removed
by including (mid, tid) for each coin in the call, but this would make the interface
unnecessarily complex.

4

Algorithm Header 4 (Identifying a Double-Spender, VfDoubleSpent).
Interface: VfDoubleSpent(spentcoin1, spentcoin2, bpk), where the parameters
spentcoin1 and spentcoin2 are two spent coins and bpk is a bank public key.
Output: (upk), a (possibly empty) user public key.

In addition to the above, there are two algorithms which verify the valid-
ity of coins produced during withdrawal and spending, VfCoin(coin, upk, bpk),
VfSpentCoin(spentcoin, mid, tid, bpk), The algorithms output 1 if the proof is
valid with regards to the additional input parameters and 0 otherwise.

Algorithm Header 5 (Verifying a Withdrawal, VfCoin).
Interface: VfCoin(coin, upk, bpk), where coin is a withdrawn coin, upk a user
public key, and bpk a bank public key.
Output: b ∈ {0, 1}.

Algorithm Header 6 (Verifying a Spent Coin, VfSpentCoin).
Interface: VfSpentCoin(spentcoin, tid, mid, bpk), where spentcoin is a spent coin,
tid ∈ {0, 1}κ/2 is a transaction identity, mid is a merchant identity, and bpk is a
bank public key.
Output: b ∈ {0, 1}.

3.3 Correctness

By correctness we mean that the scheme works as expected when all parti-
cipants are honest. Proving correctness is often straight-forward, and this prop-
erty is sometimes not stated explicitly. Here we define correctness for a scheme
as defined above.

Experiment 1 (Correctness, Expcorrect
EC (κ)).

(bpk, bsk)← BKg(1κ)
(upk, usk)← UKg(1κ)
(coin, csk)←Withdraw(bpk, bsk, usk)
if VfCoin(coin, upk, bpk) = 0 then

return 0
end if

mid←R {0, 1}κ/2

tid←R {0, 1}κ/2

spentcoin← Spend(usk, coin, csk, mid, tid, bpk)
if VfSpentCoin(spentcoin, mid, bpk) = 0 then

return 0
end if

return 1

Definition 1 (Correctness). A scheme for electronic cash EC is correct if
Pr[Expcorrect

EC (κ) = 0] is negligible as a function of κ.

5

Detection of double-spenders is not included in the definition of correctness.
This may seem strange at first, but as we will see later the definition of unforge-
ability implies that double-spenders are detected. Another way to see it is that
correctness only stipulates how the protocol works with honest parties, and an
honest party does not double-spend.

An alternative definition of correctness is that no polynomial-time machine
can find input that makes the correctness experiment fail. Correctness by such
a definition would clearly imply correctness in our definition.

3.4 Security

We describe four experiments, or games, to define security for a scheme for
electronic cash.

In each experiment the adversary has access to a number of oracles defined
below. They operate on the following global parameters.

– U contain all public keys inserted into the PKI.
– C contain the public keys of corrupt users. Obviously C is a subset of U.
– (upki, uski) is the public and private key of the ith honest user.
– l is the number of coins withdrawn from the bank using the withdrawal

oracle.
– dsi is the number of double-spendings that has been made on behalf of user

upki using the spend oracle HonestSpend. It is initialized to 0.
– CSKi is the set of coin keys for user upki produced when the withdrawal

oracle is used. For a new user it is initiated as the empty set.

HonestUKg(1κ) calls UKg(1κ) to generate a key pair (upk, usk). The public key
upk is inserted into the PKI. The key pair (upk, usk) is stored in the key list.
The public key upk is returned.

CorruptUKg(upk) inserts the key upk into the PKI and into the set C.
HonestUWithdraw(i, j, msg) lets the adversary interact in the withdrawal pro-

tocol with user i in session j. More precisely, if session j has not been in-
stantiated, i.e., statej is not defined, then statej ← (upki, uski, bpk). Then a
call is made to UWithdraw(msg, statej) with output (msg′, statej). The mes-
sage msg′ is returned, and statej is stored. After the session has finished,
statej is parsed as a coin secret key cskj and stored. The key set for user i
is updated CSKi ← CSKi ∪ {cskj}.

HonestBWithdraw(j, msg) lets the adversary interact in the withdrawal protocol
with the bank in session j. More precisely, if session j has not been instanti-
ated, i.e., statej is not defined, then statej ← (bpk, bsk). Then a call is made
to BWithdraw(msg, statej) with output (msg′, statej). The message msg′ is
returned, and statej is stored. After the session has finished, statej is parsed
as a coin coin and returned. Each time a coin is returned the counter l is
incremented.

HonestSpend(i, j, coin, mid, tid) first checks if cskj /∈ CSKi and returns ⊥ if this
is the case. Then it checks if (i, coin) has been stored and sets dsi ← dsi + 1
if this is the case. Then it stores (i, coin), calls Spend(coin, upki, uski, cskj ,
mid, tid, bpk), and returns the output.

6

It can be noted that the construction of the HonestSpend oracle prevents the
adversary from using it to double-spend a coin.

We let QO be the set of queries to oracle O and we let RO be the set of
responses.

Concurrency The adversary is given oracle access to the withdrawal protocol
without any restrictions on how to access it. Therefore the scheme must be secure
also under concurrent use to pass our definitions.

Unforgeability The property of unforgeability informally says that one cannot
create valid coins by other means than withdrawing them from the bank. A
little more precisely it says that if a coalition of users spend more than they
have legally withdrawn, then at least one of them will get caught as a double-
spender. Recall that l is the number of withdrawn coins using the withdrawal
oracle. Unforgeability corresponds to the property balance of [8].

Experiment 2 (Unforgeability, Exp
unforge
EC,A (κ)).

(bpk, bsk)← BKg(1κ)
(spentcoin1, . . . , spentcoink)← ACorruptUKg(·),HonestBWithdraw(·,·)(bpk)
if k ≤ l then

return 0
end if

if ∃i ∈ [k] : VfCoin(spentcoini, bpk) = 0 then

return 0
end if

if ∃(i, j) ∈ [k]2 : VfDoubleSpent(spentcoini, spentcoinj , bpk) ∈ C then

return 0
end if

return 1

The advantage of the adversary is defined as

Adv
unforge
EC,A (κ) = Pr[Exp

unforge
EC,A (κ) = 1] .

Definition 2 (Unforgeability). A scheme for electronic cash EC has unforge-

ability if for any A ∈ PPT the advantage Adv
unforge
EC,A (κ) is negligible as a function

of κ.

Non-Frameability A potential problem could be that a coalition of users and
possibly the bank could accuse an honest user of double-spending. We say that
a scheme has non-frameability if it is infeasible to frame an honest user in such
a way.

In the experiment below, the parameter ds is the number of double-spending
that has performed using the spending oracle HonestSpend, and the DS is the
set of (indices of) double-spent coins. The adversary wins if it creates more

7

double-spendings than ds, the number of double-spendings the adversary has
made using the spending oracle. Intuitively this means that a user can only be
accused of the actual number of double-spending she has performed.

Non-frameability corresponds to strong exculpability of [8]. The weak variant
would guarantee that a user that has never double-spent cannot be accused of
double-spending, but it would not prevent a double-spending user from being
set up for additional double-spendings. Which variant to prefer is a matter of
taste. One could argue that a user that double-spends has already breached her
part of the contract, and the protocol should not protect her anymore. On the
other hand, a double-spending could occur due to a technical malfunction rather
than intentional misconduct, and in such a case it would be unreasonable for the
protocol to allow an adversary to create additional double-spendings on behalf
of the user.

Since not even the bank should be able to frame a user, we allow the bank
key to be chosen in an adversial way.

Experiment 3 (Non-Frameability, Expnon−frame
EC,A (κ)).

(bpk, state)← A(setup, 1κ)
(spentcoini, tidi, midi)

k
i=1 ←

AHonestUKg(1κ),HonestUWithdraw(·,·,·),HonestSpend(·,·,·,·)(guess, state)
if ∃i : VfSpentCoin(spentcoini, tidi, midi1, bpk) = 0 then

return 0
end if

DS ← {i : ∃j > i : VfDoubleSpent(spentcoini, spentcoinj , bpk) ∈ U}
if |DS| > ds then

return 1
else

return 0
end if

The advantage of the adversary is defined as

Advnon−frame
EC,A (κ) = Pr[Expnon−frame

EC,A (κ) = 1] .

Definition 3 (Non-Frameability). A scheme for electronic cash EC has non-
frameability if for any A ∈ PPT the advantage Advnon−frame

EC,A (κ) is negligible as
a function of κ.

Anonymity A scheme for electronic cash is anonymous if it is infeasible for
any player, including the bank, to decide the identity of a spender. We define
anonymity in a very strong sense, namely that not even knowing the private
key of the spender helps revealing the identity of the user. We cannot, however,
give the adversary the coin secret keys, since in such a case the adversary could
double-spend the coin and reveal the identity. For the same reason the adversary
may not use the HonestSpend oracle to double-spend one of the challenge coins.

In the experiment we let the adversary choose the bank public key and use
oracles to create users and withdraw coins before it selects two coins, one of

8

which will be spent as the challenge. Together with the challenge spentcoin the
adversary is given the private keys of all users. This corresponds to the scenario
where the private key of a user is exposed. The privacy of the user should be
kept also in such a case.

If the keys were given to the adversary in the first stage, it could withdraw
coins itself using the protocol, and it would trivially win the experiment by
double-spending the challenge coins.

Experiment 4 (Anonymity, Expanon−b
EC,A (κ)).

(bpk, state)← A(setup, 1κ)
(i0, i1, mid, tid)←

AHonestUKg(1κ),HonestUWithdraw(·,·,·),HonestSpend(·,·,·,·)(choose, state)
spentcoin← Spend(coinib

, uskib
, cskib

, mid, tid, bpk)

d← AHonestSpend(·,·,·,·)(guess, state, spentcoin, (uski)
|U|
i=1)

if ∃mid, tid : ({coini0 , i0, mid, tid), (coini1 , i1, mid, tid)}∩QHonestSpend 6= ∅ then

return 0
end if

if d = b then

return 1
else

return 0
end if

The advantage of the adversary is defined as

Advanon
EC,A(κ) = |Pr[Expanon−0

EC,A (κ) = 1]− Pr[Expanon−1
EC,A (κ) = 1]| .

Definition 4 (Anonymity). A scheme for electronic cash EC has anonymity
if for any A ∈ PPT the advantage Advanon

EC,A(κ) is negligible as a function of κ.

Exculpability Exculpability states that the bank should not be able to create
proofs of withdrawal, i.e., coins, which the user cannot spend.

Experiment 5 (Exculpability, Exp
exculp
EC,A (κ)).

(bpk, state)← A(setup, 1κ)
(coin, i, mid, tid)←

AHonestUKg(1κ),HonestUWithdraw(·,·,·),HonestSpend(·,·,·,·,·)(guess, state)
if VfCoin(coin, upki, bpk) = 0 then

return 0
end if

if ∃csk ∈ CSKi : Spend(coin, upki, uski, csk, mid, tid, bpk) 6= ⊥ then

return 0
end if

return 1

The advantage of the adversary is defined as

Adv
exculp
EC,A (κ) = Pr[Exp

exculp
EC,A (κ) = 1] .

9

Definition 5 (Exculpability). A scheme for electronic cash EC has exculpab-

ility if for any A ∈ PPT the advantage Adv
exculp
EC,A (κ) is negligible as a function

of κ.

Finally we make the following definition.

Definition 6 (Secure Scheme for Electronic Cash). A scheme for elec-
tronic cash is secure if it has unforgeability, non-frameability, anonymity, and
exculpability.

3.5 Comparison to Group Signatures

Electronic cash resembles group signatures in many ways. When compared to
[17,3], certain similarities and differences can be identified.

Unforgeability Our definition of unforgeability resembles the misidentification
attack of [17] and traceability of [3].

Non-Frameability Non-frameability is similar of both group signature defin-
itions in that it requires that a user cannot be framed even if the complete
system conspires against her. Although the adversary is given the secret keys
of the group manager in [17,3], our definition is stronger, since we allow the
adversary to construct the key itself.

Anonymity Anonymity of a group signature is different than that of a spent
coin, since the opening key can always be used to open group signature. This is
reflected in the experiments, which otherwise are quite similar.

Exculpability The exculpability property is not defined for any group signature
scheme to our knowledge. The corresponding property would be that a group
manager cannot falsely claim that it has included a certain member into the
group. A scenario where this might pose a problem is if group members are
allowed to download certain information and there is a price to join the group.
Group signatures do not address the potential issue when a member claims that
the group manager has not issued him a key.

4 Security in the Framework for Universal Composability

We now consider the relation between experiment-based security of a scheme
for electronic cash as defined above and security in the framework for universal
composability (UC) [9]. We describe an ideal functionality, discuss why it cap-
tures the notion of anonymous electronic cash, and show that a scheme that is
secure according to Definition 6 also securely realizes the ideal functionality.

10

The ideal anonymous electronic cash functionality FAnonEC running with
parties B, U = {U1,U2, . . . ,Uk} is given in Figure 1. The ideal adversary S
corrupts a subset of the users and possibly the bank. We let C be the set of
corrupted parties.

We do not differentiate between users and merchants. In fact, any party
(except for the bank B) can act both as a merchant and as a user. In addition
we assume every user is uniquely identified with an identifier mid ∈ {0, 1}κ/2.

The ideal functionality stores the following values.

Tcoins is the table of coins that the bank has issued.
cc is the number of coins that have been withdrawn by corrupt users. It is

initialized to 0.
Tspent−coins contains the coins that have been honestly spent.
Tcorrupt−coins holds the coins that have been verified to be correct, but which

the bank has not issued.
Tunres is a list of unordered pairs of spent coins that have been spent by corrupts

parties, but for which it has still not been decided whether they should be
considered double-spendings or not.

Tnot−double are the coin pairs that have been determined not to be double-
spendings.

Tdouble are the coin pairs that have been determined to be double-spendings.

4.1 About the Functionality

Let us discuss why FAnonEC captures what one would expect from a secure
scheme for anonymous electronic cash.

Withdrawal For an honest user, the coin is created as in the protocol to ensure
correct distribution. The coin is stored in the table for withdrawn coins Tcoins

and returned to the bank. For a corrupt user, the bank engages in the withdrawal
protocol (via the simulator). If the result is indeed a coin, then it is stored in the
coins table and the counter for coins withdrawn by corrupt users is incremented.

Coin Verification Coins are deemed valid when the protocols says so. This
may seem overly simplified, but since the Spend algorithms requires valid coins
to be spendable, this covers what one would expect from a valid coin. By the
correctness of EC, honestly withdrawn coins always pass the verification.

Spending Before a coin can be spent, it is verified that it is valid and the
spender owns the coin. If so, then a spent coin is created by creating a new user,
withdraw a coin and spend it. Thus the spent coin has no information about
the owner to ensure anonymity. The coin is stored in the table for spent coins
Tspent−coins.

11

Functionality 1 (Anonymous Electronic Cash).

1. Wait for the message (S ,Keys, (bpk, bsk), (upki, uski)
k
i=1) where uski = ⊥ if

Ui ∈ C and bsk = ⊥ if B ∈ C. Store (bpk, bsk) and (upki, uski).
2. Then handle incoming messages as follows.

– Withdraw. Upon reception of (B, AccWithdrawal,Ui) act as follows.

• If Ui /∈ C, then compute (coin, csk) ← Withdraw(bpk, bsk, uski).
Store (Ui, coin, csk) in Tcoins. Then hand ((B, Coin, Ui, coin), (S ,
AccWithdrawal, Ui)) to CI .

• If Ui ∈ C, then hand (S ,AccWithdrawal,Ui) to CI . Upon reception of
response (S ,Coin,Ui, coin), store (Ui, coin,⊥) in Tcoins. Set cc← cc+1.
Hand (B, Coin,Ui, coin) to CI .

– Verify Coin. Upon reception of (P, VfCoin, coin,Ui), set b ←
VfCoin(coin, bpk, upki) and hand (P, VfCoin, coin,Ui, b) to CI .

– Spend. Upon reception of (Ui, Spend, coin, mid, tid), execute (·, VfCoin,
coin, Ui). If the result is 0, then hand (Ui, Spend, coin, mid, tid, ⊥) to CI .
Otherwise compute (usk, upk) ← UKg(1κ), (coin′, csk′) ← Withdraw(bpk,
bsk, usk), spentcoin← Spend(coin, usk, csk, mid, tid, bpk). Store (Ui, coin,
mid, tid, spentcoin) in Tspent−coins.

– Verify Spent Coin. Upon reception of (P , VfSpentCoin, spentcoin, mid,
tid) proceed as follows.
• If B ∈ C, then set b← VfSpentCoin(spentcoin, mid, tid, bpk).
• If (·, mid, tid, spentcoin) has been stored in Tspent−coins, then set b← 1.
• If (·, coin, mid, tid, spentcoin) /∈ Tspent−coins, then do as follows.
∗ If there exists Uj ∈ C such that (Uj , coin,⊥) ∈ Tcoins, then

set b ← VfSpentCoin(spentcoin, mid, tid, bpk). If b = 1,
then store (Uj , mid, tid, spentcoin) in Tcorrupt−coins and add
{spentcoin, spentcoin′} to Tunres for each spentcoin′ such that
(·, ·, ·, spentcoin′) ∈ Tcorrupt−coins.

∗ If no such user exists, then set b← 0.
Hand (P, VfSpentCoin, spentcoin, mid, tid, b) to CI .

– Verify Double-Spending. Upon reception of (P, VfDblSpent,
spentcoin1, spentcoin2), proceed as follows.

• If (Uj , coin, mid, tid, spentcoin1) and (Uj , coin, mid′, tid′, spentcoin2) for
(mid, tid) 6= (mid′, tid′) exist in Tspent−coins, then set U ← Uj .

• If (Uj , {spentcoin1, spentcoin2}) ∈ Tdouble, then let U ← Uj .
• If {spentcoin1, spentcoin2} ∈ Tnot−double, then let U ← ⊥.
• Otherwise set upk ← VfDoubleSpent(spentcoin1, spentcoin2, bpk). Set
Uj such that upkj = upk unless upk = ⊥.
∗ If Uj ∈ C, then insert (Uj , {spentcoin1, spentcoin2}) into Tdouble

and remove {spentcoin1, spentcoin2} from Tunres.
∗ If Uj /∈ C and |Tcorrupt−coins| − cc − |Tdouble| = |Tunres|, then let
Uj ←R C, insert (Uj , {spentcoin1, spentcoin2}) into Tdouble and
remove {spentcoin1, spentcoin2} from Tunres.

∗ Otherwise let Uj ← ⊥, insert {spentcoin1, spentcoin2} into
Tnot−double and remove {spentcoin1, spentcoin2} from Tunres.

Hand (P, VfDblSpent, spentcoin1, spentcoin2,Uj) to CI .

Figure 1. The definition of FAnonEC.

12

Verification of Spent Coin If the bank is honest and the coin exists in the
table for spent coins, then it is valid. If it does not exist in the table, it may still
be valid, but only if it has been spent by a corrupt party and would implicate
a corrupt party if double-spent. This is handled by including the spent coin in
the list of potential double-spending by corrupt parties.

If the bank is corrupt, then any coin deemed valid by the protocol is accepted.

Identification of Double-Spenders The algorithm is constructed so that it
may only point out an honest user if it has actually double-spent a coin by
sending a Spend command twice for the same coin.

The algorithm also ensures that if more coins are spent than withdrawn by
corrupt parties, then a double-spender will be revealed. If the two coins have been
spent by corrupt parties, then they may only be cleared from double-spending if
there are enough potential double-spendings to cover the surplus of spent coins
against withdrawn coins. As a special case a double-spending is never required
to be exposed if the corrupt parties have not spent more coin than they have
withdrawn.

4.2 On the Possibility of Simplifying the Functionality

The functionality FAnonEC is rather complex, and it is natural question to ask
whether it could be simplified. Let us consider how double-spenders are identi-
fied. Let Z be an environment proceeding as follows:

– Z runs with one corrupt user U1.
– U1 withdraws three coins.
– U1 spends four times, creating spentcoin1, spentcoin2, spentcoin3, spentcoin4.
– Z lets a player check the five coin-pairs (spentcoin1, spentcoin2), (spentcoin1,

spentcoin3), (spentcoin2, spentcoin3), (spentcoin2, spentcoin4), (spentcoin3,
spentcoin4) for double-spendings.

There is a consistent scenario where none of these are double-spendings,
namely if (spentcoin1, spentcoin4) form a double-spending. Therefore the func-
tionality should not force any of the checks to reveal U1. As a matter of fact,
once these combinations have been checked, further queries must return con-
sistent answers, hence the need for the table Tnot−double. However, if the pair
(spentcoin1, spentcoin4) is checked, it must be deemed a double-spending with a
corrupt user as double-spender. Also in this case, a table Tdouble must be used
to ensure further queries are answered in the same way.

As the above example shows, the functionality needs to be complex to handle
double-spendings correctly, and it seems hard to make it considerably simpler.

4.3 The Real Protocol πAnonEC

We describe how the protocol πAnonEC is built from the algorithms of the scheme.

13

The Bank

The bank B generates (bpk, bsk)← BKg(1κ) and broadcasts bpk. Then it waits
for a message (Keys, upki) for every user Ui. Incoming messages are handled as
follows:

– Upon reception of (AccWithdrawal,Ui), the bank engages in the withdrawal
protocol with Ui. After the protocol has terminated, it outputs (Coin, Ui,
coin).

Users

The user Ui generates (upki, uski)← UKg(1κ) and broadcasts upki. Then it waits
for a message (Keys, upkj) for every user Uj and (Keys, bpk) from B. Incoming
messages are handled as follows:

– When challenged in the withdrawal protocol, run it according to the al-
gorthm UWithdraw. After the protocol has terminated, store the output cskj .

– Upon reception of (Spend, coin, mid, tid), set spentcoin ← Spend(upki, uski,
cskj , mid, tid, bpk) for the corresponding coin secret key cskj . Output (Spend,
coin, mid, tid, spentcoin).

All Parties

Incoming messages are handled as follows:

– Upon reception of the message (VfCoin, coin, Uj), set b← VfCoin(coin, upkj ,
bpk) and return (VfCoin, coin, Uj , b).

– Upon reception of the message (VfSpentCoin, spentcoin, mid, tid), set b ←
VfSpentCoin(spentcoin, mid, tid, bpk) and return (VfSpentCoin, spentcoin,
mid, tid, b).

– Upon reception of the message (VfDblSpent, spentcoin1, spentcoin2), set
upk ← VfDoubleSpent(spentcoin1, spentcoin2, bpk). If upk = ⊥, then re-
turn (VfDblSpent, spentcoin1, spentcoin2, ⊥). Otherwise let Uj be such that
upkj = upk, and return (VfDblSpent, spentcoin1, spentcoin2, Uj)

4.4 Proof of Security

Theorem 1. Let EC = (BKg, UKg, UWithdraw, BWithdraw, VfCoin, Spend,
VfSpentCoin, VfDoubleSpent) be a secure scheme for anonymous electronic cash.
Then πAnonEC securely realizes FAnonEC.

Proof. Defining the Hybrids. We prove the theorem with a hybrid argument. We
build a polynomial-size chain of protocols π0, π1, . . . , πt such that π0 = FAnonEC

and πt = πAnonEC. Then we show that if there exists an adversary A which can
distinguish between πt and πt+1 for some t, then A can be used to break one of
the underlying assumptions.

1. We define πt
1 to be πt−1

1 with the difference that the tth call to Spend pro-
duces a spent coin according to the protocol rather than using a dummy user
as in the functionality.

14

2. We define πt
2 to be πt−1

2 with the difference that the tth call to Spend there
is no call to VfCoin before the spent coin is constructed.

3. Let π0
3 = πm

2 , and define πt
3 to be πt−1

3 with the difference that the tth call
to VfSpentCoin is executed according to the protocol rather than to the
functionality.

4. Let π0
4 = πm

3 , and define πt
4 to be πt−1

4 with the difference that the tth
call to VfDblSpent is executed according to the protocol rather than to the
functionality.

Building the Simulator. By assumption Z distinguishes between FAnonEC and
πAnonEC for any ideal adversary. In particular it distinguishes between the two
protocols for the adversary defined as follows.

For each player Pi that the real-world adversary A corrupts, the ideal ad-
versary S corrupts the corresponding dummy player P̃i. When a corrupted
dummy player P̃i receives a message m from Z, the simulator S lets Z ′ send m
to Pi. When a corrupted Pi outputs a message m to Z ′, then S instructs the
corrupted P̃i to output m to Z. This corresponds to Pi being linked directly to
Z.

The simulated real-world adversary A is connected to Z, i.e., when Z sends
m to S, Z ′ hands m to A, and when A outputs m to Z ′, S hands m to Z.
All non-corrupted players are simulated honestly. The corrupted players run
according to their respective protocols.

When all parties have broadcasted their keys, S inspects the internal state
of honest parties and intercepts the broadcast of corrupt parties to construct
(bpk, bsk) and (upki, uski)

k
i=1 where bsk = ⊥ and uski = ⊥ only if B and Ui,

respectively, is corrupt. It hands (FAnonEC, Keys, (bpk, bsk), (upki, uski)
k
i=1) to

CI .
When S receives the message (AccWithdrawal,Ui), it instructs Z ′ to send

(AccWithdrawal,Ui) to B. If Ui ∈ C, then on output (Coin,Ui, coin) from B, S
hands (FAnonEC, Coin,Ui, coin) to CI . All other functions are local and need not
be simulated for A.

We now handle the cases when Z distinguishes between πt
i and πt+1

i for
i = 1, 2, 3, 4.

1. Assume Z can distinguish between πt
1 and πt+1

1 with non-negligible prob-
ability. Then we construct A′ breaking the anonymity of EC as follows. A′

simulates the protocol to Z by using its HonestUKg to set up keys for honest
users, interact with HonestBWithdraw to simulate withdrawals, and use the
HonestSpend oracles to construct coins. Let the (t + 1)th Spend request be
on behalf of user Ui for data (mid, tid). When executing Experiment 4, A′

requests a spent coin by either Ui or a user Uj , which has never before spent
a coin. The challenge coin spentcoin is returned on the Spend request.
If the challenge coin is by Ui, then A′ has run πt+1

1 , and if the coin is by
Uj , then the protocol simulated is πt

1. Since, by assumption Z can distin-
guish between the two, it wins the anonymity experiment with non-negligible
probability.

15

2. Assume Z can distinguish between πt
2 and πt+1

2 with non-negligible probab-
ility.

We construct A′ breaking the exculpability property of EC by running in
Experiment 5 and simulating the protocol for Z. A′ uses its oracles to create
keys for the users, withdraw coins, and create spent coins. Since Z can
distinguish between πt

2 and πt+1
2 , the coin to be spent in call t + 1 does not

pass the VfCoin, but can still be spent. Then A′ outputs this coin in the
guess phase of the experiment. Since the coin cannot be spent, A′ wins the
experiment with non-negligible probability.

3. Assume Z can distinguish between πt
3 and πt+1

3 with non-negligible probab-
ility. We can assume B /∈ C, since otherwise VfSpentCoin is run identically
in the protocol and the functionality. By the correctness of EC, a coin issued
by the bank and honestly spent is always accepted.

By the construction of the functionality, a spentcoin created by corrupt user
will be detected as a double-spending if more coins are spent than has been
withdrawn. Therefore Z can distinguish between the protocol and the func-
tionality only if the tth call to Spend will be revealed as a double-spending
by the functionality but not by the protocol.

We use Z to break the unforgeability of EC as follows. We construct A′

running in Experiment 2. The keys of the users are created honestly and
then “registered” using the CorruptUKg oracle. Withdrawals are simulated by
interacting with the HonestBWithdraw oracle. When asked to output forged
coins, it outputs Tcorrupt−coins. By the assumption, the table contains more
coins than have been withdrawn, thus breaking the unforgeability property
of EC.

4. Assume Z can distinguish between πt
4 and πt+1

4 with non-negligible probab-
ility.

For double-spendings that point out a corrupt user as double-spender, the
protocol and the functionality are identical. Therefore Z, if able to distin-
guish between the functionality and the protocol, has found (spentcoin1,
spentcoin2) such that the functionality does not consider them a double-
spending, but the protocol points out an honest party as double-spender.

We let A′ interact in Experiment 3 and simulate the protocol for Z as follows.
The bank keys are constructed honestly and the keys of the honest users are
created using the HonestUKg oracle. Withdrawals are performed by interact-
ing with the HonestUWithdraw oracle, and spent coins are constructed with
the HonestSpend oracle. By construction of the functionality, Z has found
(spentcoin1, spentcoin2) such that they were not both constructed using the
Spend, but still form a double-spending. Using this pair, we can construct
A′ running in Experiment 3 breaking the non-frameability of EC.

As shown, for each hybrid pair we can construct an adversary breaking a
security assumption of EC. Therefore it follows that if EC is secure, then the
theorem follows.

16

5 A Construction

In this section we describe a secure scheme for electronic cash based on general
methods. We first define the primitives, then we give the algorithms, and finally
we prove that our scheme is secure according to our definitions.

5.1 Primitives

Our construction uses a signature scheme, a commitment scheme, and simula-
tion sound non-interactive zero-knowledge proofs of knowledge (NIZK). Here we
briefly describe these notions, and refer to Appendix A for precise definitions of
these well-known concepts.

Digital Signatures A signature scheme SS = (Kg, Sig, Vf) is correct if for
(pk, sk) generated by Kg and any message m it holds that Vfpk(m, Sigsk(m)) = 1.
SS is secure against chosen-message attacks, CMA-secure [16], if it is infeasible
to produce valid message-signature pair for any message, even if the adversary
has access to a signing oracle Sigsk(·).

Commitment Schemes A commitment scheme COM = (Commit, Reveal) for
messages of length κ is secure if a commitment is both hiding and binding, i.e.,
that the adversary gains any useful information about the committed value from
(c, r)Commit(m), and that given (c, r) it is infeasible to find (m′, r′) 6= (c, r) such
that Reveal(c, m′, r′) = 1.

Non-interactive Proofs of Knowledge We use non-interactive zero-know-
ledge proofs of knowledge, or NIZKs, in our construction. Given a language
L ∈ NP with witness relation R and x ∈ L, a NIZK (P, V) enables a prover P
to prove to a verifier V that she knows a witness w such that (x, w) ∈ R.

A proof system is said to be zero-knowledge if there exists a simulator which
produces proofs indistinguishable from real proofs, and the condition for it to
be called non-interactive should be obvious. A NIZK is complete if for any
(x, w) ∈ R it holds that V (x, P (x, w)) = 1 and sound if for any algorithm A
the probability that V (x, π) = 1 and x /∈ L is negligible, where (x, π) ← A(ξ).
A NIZK is a proof of knowledge (NIZK-PK) if there exists an extractor which,
if allowed to choose the CRS, can extract a witness.

In the experiments we give the adversary access to oracles which sometimes
produce simulated proofs. Potentially this could help the adversary in producing
false proofs. The stronger notion of simulation sound NIZKs requires that no
adversary can break the soundness even if given access to a simulator.

It has been shown [23,25] that a simulation sound NIZK exists for any NP-
relation if trapdoor permutations exist. Combined with the standard method of
[1] it can be turned into a NIZK-PK under the assumption that dense encryption
schemes exist [1,26]. We detail the construction in Appendix A.

17

We need NIZKs for languages on the form L = {x ∈ Im(f)}. Here the
obvious witness relation is R = {(x, w) : f(w) = x}. For such a relation we use
the notation NIZK(ω : f(ω) = x) to denote a NIZK. We use Greek letters to
denote variables in the witness, i.e., known only to the prover, and Latin letters
for variables known both to the prover and to the verifier. We denote the verifier
by Vf. It will be clear from context for which relation the proof is.

5.2 The Protocol

Here we give the definitions for algorithms and protocols that form a scheme for
electronic cash in the CRS-model. We begin by giving an informal description.
In order to identify double-spenders, we use Ferguson’s [13] trick of letting each
coin contain a line y = ax + upk, such that the coordinate of its intersection
with the y-axis coincides with the identity upk of the owner. When spending
the coin, one point on the line is revealed. Thus one spending of a coin gives no
information about its owner, whereas the identity can be computed from two
spendings of the same coin.

When withdrawing a coin, the user randomly selects the slope a. It computes
a commitment ã of a and a commitment â of ã with associated randomness ra

and rã.

a //

��
@

@

@

@

@

@

@

@

ã //

A

A

A

A

A

A

A

A

â

ra rã

A two-step commitment b̂ of the user public key upk is also computed. Then
â, b̂ is sent to the bank and signed, and when a coin is spent, ã is revealed
together with a proof of knowledge that it is correctly formed. Intuitively this
gives anonymity, since ã, b̃ cannot be linked to â, b̂. It also assures that double-
spenders are detected, since it is infeasible to open â, b̂ in more than one way. It
can be noted that the signing mechanism is similar to the blind signature scheme
found by Fischlin [14].

We let SS = (Kg, Sig, Vf) be a CMA-secure signature scheme and we let
COM = (Commit, Reveal) be a binding and hiding commitment scheme. Such
signature schemes and commitment schemes exist if one-way functions exist
[22,15], and thus certainly if trapdoor permutations exist.

We use NIZKs for two different relations in the withdrawal and the spending
protocols. The NIZKs work in the common reference string model. We will denote
the reference string ξ. Each NIZK needs its own CRS, so we divide ξ into two
parts so that ξ = ξ0||ξ1 such that both ξ0 and ξ1 are long enough. We let
S(setup, 1κ) create both ξ0 and ξ1, store the two secrets in simstate, and return
ξ0||ξ1. Now S can simulate and extract proofs for both relations.

We start with the key generation algorithms. Key generation for the bank
consists of generating a key for the signature scheme. The key for the user is
created by drawing a value at random and computing a commitment to the value.

18

The private key is the random value and coin tosses used in the commitment,
and the public key is the commitment. As noted above, we do not include user
registration at the bank as part of the protocol.

Definition 7 (BKg(1κ)).

(bpk, bsk)← Kg(1κ)

Definition 8 (UKg(1κ)).

t←R {0, 1}κ

(upk, rt)← Commit(t)
usk← (t, rt)
return (upk, usk)

Merchant registration is straight-forward. Since our protocol does not use a
merchant secret key, registration simply consists of handing the merchant iden-
tity to the bank, which registers the merchant.

The coin withdrawal protocol is a two-round protocol with the following
steps.

1. The user draws a value a at random and commits to a in two steps, i.e., it
computes a commitment ã to a, and a commitment â to ã. In the same way
it computes a two-step commitment b̂ to its public key upk. It also constructs
a proof πU of knowledge of a a and coin tosses used in the commitments. It
hands â, b̂ and πU to the bank and stores a together with the coin tosses as
the coin secret key csk.

2. The bank verifies that the user is allowed to withdraw a coin and that the
proof of knowledge is valid. It then signs the user’s public key concatenated
with (â, b̂). The coin consists of the signature, â,b̂, the user’s public key upk,
and the proof πU .

More precisely, the withdrawal protocols consists of the following two al-
gorithms.

Definition 9 (UWithdraw(msg, state)).

Parse state as (upk, usk).
a←R {0, 1}κ

(ã, ra)← Commit(a)
(â, rã)← Commit(ã)
(b̃, rupk)← Commit(upk)

(b̂, rb̃)← Commit(b̃)

πU ← NIZK(α, ρα, α̃, ρα̃, τ, ρτ , ρupk, β̃, ρβ̃ :
Reveal(ã, α, rα) = 1 ∧ Reveal(â, α̃, ρα̃) = 1 ∧ Reveal(upk, τ, ρτ) = 1∧

Reveal(β̃, upk, ρupk) = 1 ∧ Reveal(b̂, β̃, ρβ̃) = 1)

return ((a, ã, ra, rã, b̃, rupk, rb̃), (upk, â, b̂, πU))

Definition 10 (BWithdraw(msg, state)).

Parse state as (bsk).

19

Parse msg as (upk, â, b̂, πU).
Quit if user with public key upk is not allowed to withdraw a coin.
if Vf(πU) = 1 then

return (reject, ∅)
end if

s←R Sigbsk(upk, â, b̂)

coin← (s, â, b̂, upk, πU)
return (coin, ∅)

We also need to be able to verify whether or not a coin has been withdrawn by
a certain user by verifying the coin’s signature and the user’s proof of knowledge.

Definition 11 (VfCoin(coin, upk, bpk)).

Parse coin as (s, â, b̂, upk, πU).

return Vfbpk((upk, â, b̂), s) ∧ Vf(πU)

To spend a coin the user first checks that the coin is valid. Then it lets (x, y)
be a point on the line y = ax + upk, where a is the coin secret key and upk

the public key of the user. The point x is chosen as the concatenation of the
transaction identity and the merchant identity. The user reveals the values ã
and b̃. The spent coin consists of (p, x, y), and a proof of knowledge of a and
upk such that (x, y) is indeed a point on the line and of a bank signature on

(upk, â, b̂) as well as of coin tosses such that â is a commitment of ã and b̂ of b̃.

Definition 12 (Spend(coin, usk, csk, mid, tid, bpk)).

Parse coin as (s, â, û, upk, πU)
Parse usk as (t, rt)
Parse csk as (a, ã, ra, rã, b̃, rupk, rb̃)

if (Vfbpk((upk, â, b̂), s) = 0) ∨ (Reveal(ã, a, ra) = 0) ∨ (Reveal(â, ã, rã) = 0) ∨

(Reveal(upk, t, rt) = 0)∨ (Reveal(b̃, upk, rupk) = 0)∨ (Reveal(b̂, b̃, rb̃) = 0) then

return ⊥
end if

x← mid||tid
y ← ax + upk

π ← NIZK(ι, α, ρα, α̂, ρã, ρupk, ˆbeta, ρb̃, σ, τ, ρτ :

y = αx + ι ∧ Reveal(ã, α, ρα) = 1 ∧ Reveal(α̂, ã, ρã) = 1 ∧ Reveal(b̃, ι, ρupk)∧

Reveal(β̂, b̃, ρb̃) = 1 ∧ Vfbpk((ι, α̃, β̃), σ) = 1 ∧ Reveal(ι, ρτ , τ) = 1)

spentcoin← (ã, b̃, x, y, π)
return spentcoin

Verification of a spent coin is straight-forward:

Definition 13 (VfSpentCoin(spentcoin,tid,mid,bpk)).

Parse spentcoin as (ã, b̃, x, y, π).
if x 6= mid||tid then

return 0

20

end if

return Vf(π)

Finally we give the algorithm to identify a double-spender. A coin is double-
spent if the value b appears twice with different values of x. Finding the double-
spender is then simply a task of solving the two equations for upk.

Definition 14 (VfDoubleSpent(spentcoin1, spentcoin2, bpk)).

Parse spentcoin1 as (ã1, b̃1, x1, y1, π1).
Parse spentcoin2 as (ã2, b̃2, x2, y2, π2).
if ((ã1, b̃1) 6= (ã2, b̃2)) ∨ (x1 = x2) then

return ⊥
end if

upk← x1y2−x2y1

x1−x2

return upk

6 Proof of Security

In this section we prove the following theorem about the scheme EC = (BKg,
UKg, UWithdraw, BWithdraw, VfCoin, Spend, VfSpentCoin, VfDoubleSpent) as
defined in Section 5.

Theorem 2. The scheme for electronic cash EC is correct and secure in the
common reference string model if there exists a family of trapdoor permutations.

From Theorem 1 this implies the following, where FCRS in the common
reference string functionality.

Theorem 3. The protocol πAnonEC using algorithms as defined in Section 5
securely realizes FAnonEC in the FCRS-hybrid model if there exists a family of
trapdoor permutations.

We prove the theorem by showing the five properties. Each lemma holds in
the CRS-model under the assumption that a family of trapdoor permutations
exists, although this is not stated explicitly.

Lemma 1 (Correctness). The scheme EC is correct.

Proof. Follows by the construction of the algorithms.

Lemma 2 (Unforgeability). The scheme EC has unforgeability.

Proof. Let A be an adversary that is successful in Experiment 2 with non-
negligible probability. We show how to use A to construct either a machine Acma

breaking the CMA-security of the signature scheme SS = (Kg, Sig, Vf), a ma-
chine Abinding breaking the binding property of the commitment scheme COM,
or a machine Asim−sound attacking the simulation soundness of the NIZK-PK.

Acma is given a public key pk for the signature scheme as input. The CRS is
created using the simulator (ξ, simstate) ← S(setup, 1κ). As in the experiment

21

for CMA security, Acma has access to a signature oracle. It passes pk as para-
meter bpk to A. The BWithdraw oracle is run honestly, except that the signature
Sigbsk(·) is produced by calling the signature oracle.

Let k be the number of spentcoin produced by A. Recall A has made l with-
drawals using its oracle. This implies Acma has made l calls to the CMA oracle.
For each spentcoini = (ãi, b̃i, xi, yi, πi), Acma calls S(extract, (âi, b̂i, xi, yi),

πi, ξ, simstate) to extract (among other parameters) σi, ι, α̂, β̂, ρβ such that

Vfbpk((ι, α̂, β̂), σ) = 1. We now have the following different cases:

1. Signatures on more than l distinct messages are extracted. In this case Acma

is successful in breaking the CMA-security of SS.
2. At least one proof πi cannot be extracted. In this case Asim−sound uses πi to

break the extractable simulation soundness of the NIZK-PK.
3. All proofs can be extracted, but two proofs yield signatures on the same

message (ι, α̂, β̂). Since no double-spending is detected, all (α̃, β̃) are distinct.
Hence there are two commitments with associated randomness (α̃i, ρi) and
(α̃j , ρj) such that Reveal(α̂, α̃i, ρi) = Reveal(α̂, α̃j , ρj) = 1. Using these values
Abinding breaks the binding property of the commitment scheme COM.

Thus we have shown that an adversary which breaks unforgeability can be
used to either break the CMA security of SS, the extractable simulation sound-
ness of the NIZK-PK, or break the binding property of COM. Hence EC has
unforgeability.

Lemma 3 (Non-Frameability). The scheme EC has non-frameability.

Proof. Let A be an adversary that succeeds in Experiment 3 with non-negligible
probability. We show how to use A to construct either a machine Asecrecy break-
ing the secrecy property of the commitment scheme COM, a machine Abinding

breaking the binding property, or a machine Aext−sim−sound, which breaks the
extractable simulation soundness of the NIZK-PK.

The machine Asecrecy takes part in Experiment 7. It creates a CRS using the
simulator (ξ, simstate)← S(setup, 1κ). It randomly draws two message msg0 and
msg1 which it returns to its experiment, receiving a challenge commitment c. Let
the polynomial p(κ) be an upper bound on the number of calls to HonestUKg

by A. Since A runs in polynomial time, there exists such a polynomial. Asecrecy

randomly selects t ∈ [p(κ)]. Intuitively Asecrecy guesses that A will frame user
Ut. All queries to HonestUKg are executed honestly except for query t, to which
Asecrecy response c.

When A queries HonestUWithdraw or HonestSpend for a user different from
Ut, the query is answered honestly. For Ut, the NIZK-PK is constructed by
invoking the simulator S(simulate, ·, ξ, simstate).

A outputs a list of coins (spentcoini)
k
i=1. Let spentcoini, spentcoinj be coins

such that VfDoubleSpent(spentcoini, spentcoinj , bpk) /∈ C and at least one coin
has not been produced by HonestSpend. Since A outputs more double-spent coins
than was created by HonestSpend, such a pair of coins exists by the pigeon-hole
principle. Let spentcoini = (ãi, b̃i, xi, yi, πi) and spentcoinj = (ãj , b̃j, xj , yj, πj).

22

By the assumption that they form a double-spending, we have that (ãi, b̃i) =
(ãj , b̃j) and xi 6= xi. With probability 1/p(κ), i.e., non-negligible, it holds that
VfDoubleSpent(spentcoini, spentcoinj , bpk) = upkt. From now on, we will assume
that this is the case.

From πi and πi the machine A tries to extract ā, r̄a, ¯upk, r̄upk such that

Reveal(ã, ā, r̄a) = 1 and Reveal(b̃, ¯upk, r̄upk) = 1. We now have the following
cases and subcases:

1. None of the proofs were created by the simulator.

(a) At least one extraction fails. In such case we can construct a machine
Aext−sim−sound using A and breaking the extractable simulation sound-
ness of the NIZK-PK as follows. Aext−sim−sound takes part in Experi-
ment 13. When A asks for a NIZK-PK, Aext−sim−sound uses its simulation
oracle. The un-extractable NIZK-PK of A is output by Aext−sim−sound,
which wins the extractable simulation soundness experiment with non-
negligible probability.

(b) Both extractions succeed but return (āi, r̄
(i)
a , ¯upki, r̄

(i)
upk) 6= (āj , r̄

(j)
a , ¯upkj ,

r̄
(j)
upk). In such a case the extracted values can be used by the machine

Abinding to break the binding property of COM.
(c) Both extractions succeed and return consistent values. Since the NIZK-

PK also proves that yl = axl + upk, it follows that ¯upk = upk. By
extracting τ, ρτ such that Reveal(upk, τ, ρτ) = 1, the machine Asecrecy

breaks the secrecy of COM with non-negligible probability.

2. One proof was created by the simulator. Without loss of generality we assume

that the simulator created πj , and let aj , r
(j)
a , upkj , r

(j)
upk be the values used

when responding to the oracle query.

(a) The extraction of the proof πi fails. If this is the case, then Aext−sim−sound

proceeds as in Step 1a to break the simulation soundness of the NIZK-
PK.

(b) The extraction of πi succeeds but yields (āi, r̄
(i)
a , ¯upki, r̄

(i)
upk) 6= (aj , r

(j)
a ,

upkj , r
(j)
upk). Then, as in Step 1b, the binding property of COM is broken.

(c) The extraction πi succeeds and gives consistent values. Then, as in Step
1c, the secrecy of COM is broken.

3. Both proofs were created by the simulator. Since, by assumption, at least
one coin was not created by an oracle query, this cannot happen.

We have shown that if A breaks the non-frameability property, then at least
one of the machines Asecrecy, Abinding, and Aext−sim−sound is successful with non-
negligible probability. Since this breaks the assumption, the scheme EC has non-
frameability.

Lemma 4 (Anonymity). The scheme EC has anonymity.

Proof. Assume A wins in the anonymity experiment 4 with non-negligible prob-
ability. We show how to construct either Asecrecy breaking the secrecy of the

23

commitment scheme COM or a machine Aad−ind breaking the adaptive indistin-
guishability of the NIZK-PK.

We define two variants of the scheme EC. We let EC′ be EC with the modi-
fication that the CRS is created by the simulator for the NIZK-PK in Spend,
(ξ, simstate)← S(setup, 1κ) and the NIZK-PK is generated by the simulator, and
we let EC′′ be EC′ with the difference that the commitment scheme of UWithdraw

used to produce ã is replaced by a commitment scheme with perfect secrecy.
Since a spentcoin in EC′′ contains no information about the spender of a

coin, the advantage of A when attacking EC′′ is 0. We now have the following
two cases.

1. The advantage of A when attacking EC′ is non-negligible. We show how
to use A to construct Asecrecy which successfully attacks the secrecy of the
commitment scheme COM. Asecrecy takes part in Experiment 7. All calls
to HonestUKg and HonestSpend are answered honestly. When A outputs
(i0, i1, mid, tid), Asecrecy outputs (upki0 , upki1) to its experiment, receiving a
commitment c in response. Then Asecrecy uses c as ã when creating the chal-
lenge spentcoin and constructs the rest of the coin honestly. (Since EC′ only
uses simulated NIZK-PKs, not knowing the message of c is not a problem.)
A outputs a bit d, which Asecrecy outputs in its experiment.
From the construction it follows that Asecrecy is successful when A is, and
hence breaks the secrecy of COM with non-negligible probability.

2. The advantage of A when attacking EC′ is negligible. In such case we can
use A to construct Aad−ind breaking the adaptive indistinguishability of the
NIZK-PK. Aad−ind takes part in Experiment 10 and 11 while executing Ex-
periment 4 for A. All parts of the experiment are executed honestly, except
that NIZK-PKs are created by using the oracle. If A is successful, Aad−ind

responds that it is interacting with Experiment 10, and otherwise that it is
interacting with Experiment 11. Since A is successful only when NIZK-PKs
are genuine, Aad−ind has a non-negligible advantage.

We have shown that a machine breaking the anonymity of EC can be made
into a machine either breaking the secrecy of the commitment scheme or a ma-
chine breaking the adaptive indistinguishability of the proof system. Since such
machines contradicts the assumptions, we conclude that EC has anonymity.

Lemma 5 (Exculpability). The scheme EC has exculpability.

Proof. Let A be an adversary which wins in Experiment 5 with non-negligible
probability. We use A to construct either a machine Asecrecy breaking the secrecy
property of the commitment scheme COM, Abinding breaking the binding prop-
erty of the COM, a machine Aext−sim−sound breaking the simulation soundness of
the NIZK-PK, or a machine Aad−ind breaking the adaptive indistinguishability
of the NIZK-PK.

We define the scheme EC′ being equal to EC with the difference that the CRS
is setup using the simulator (ξ, simstate) ← S(setup, 1κ) and the NIZK-PK of
UWithdraw is created using the simulator.

24

First assume A has negligible probability of breaking the exculpability prop-
erty of EC′. Then we can use A to construct Aad−ind in the following way. Aad−ind

takes part in Experiment 10 or 11. It invokes A, answering all queries honestly
except that the NIZK-PK is created using its oracle. Hence, if Aad−ind is run in
Experiment 10, it will run EC for A, but if it is run in Experiment 11, it will
run EC′. If A is successful, then Aad−ind returns 0, and otherwise it returns 1.
From the construction of Aad−ind it follows that it breaks the adaptive indistin-
guishability of the NIZK-PK.

Now assume A has non-negligible probability in winning the exculpability
experiment against EC′. Then there are two possiblities.

1. The NIZK-PK πU of coin output by A has been constructed by the simulator.
This implies that πU was created by HonestUWithdraw for a certain user and
coin secret key uski, cski. Hence the coin can be spent using uski, cski.

2. The NIZK-PK πU of coin output by A has not been constructed by the
simulator. In this case we can construct Asecrecy breaking the secrecy of the
commitment scheme as follows. The p(κ) be an upper bound on the num-
ber of calls to HonestUKg. Since A is polynomial, such a bound exists. Let
t ←R [p(κ)]. Informally Asecrecy guesses that A will frame Ut. Asecrecy ran-
domly chooses τ0, τ1. It answers queries honestly, except that when asked to
generate the public key for Ut, it returns the challenge commitment c created
by its experiment.
With probability 1/p(κ) A produces a coin that can be verified to belong to
Ut. Assume this is the case. Then Asecrecy uses the extractor to extact τ, rτ

such that Reveal(upkt, τ, rτ) = 1. We now have three cases.
(a) There exists d such that τd = τ . Then Asecrecy returns d hence breaks the

secrecy of the commitment scheme COM
(b) No such d exists. Then two openings of commitment upkt has been found,

violating the binding property of COM.
(c) The extraction fails, breaking the extractable simulation soundness prop-

erty of the NIZK-PK.

We can conclude that a machine breaking the exculpability property of EC
implies a machine breaking one of the assumptions. Therefore EC has exculpab-
ility.

7 Conclusions

We have given definitions of security that are stronger than what has previously
been suggested. We also show that the requirements are realistic by giving a
scheme fulfilling them under the assumption of existence of a family of trapdoor
permutations.

It remains an open problem to construct a practical scheme which is secure
in our sense under some well-established number-theoretical assumptions.

We would like to thank Johan Håstad for helpful discussions and Douglas
Wikström for pointing out the similarities to [14].

25

References

1. Giuseppe Persiano A. De Santis. Zero-knowledge proofs of knowledge without inter-
action (extended abstract). In 33rd IEEE Symposium on Foundations of Computer

Science – FOCS, pages 427–436. IEEE Computer Society Press, 1992.

2. M. Bellare, D. Micciancio, and B. Warinschi. Foundations of group signatures:
Formal definitions, simplified requirements, and a construction based on general
assumptions. In Advances in Cryptology – EUROCRYPT 2003, volume 2656 of
Lecture Notes in Computer Science, pages 614–629. Springer Verlag, 2003.

3. M. Bellare, H. Shi, and C. Zhang. Foundations of group signatures: The case of
dynamic groups. In RSA Conference 2005, Cryptographers’ Track 2005, volume
3376 of Lecture Notes in Computer Science, pages 136–153. Springer Verlag, 2005.
Full version at http://eprint.iacr.org/2004/077.

4. A. Bender, J. Katz, and R. Morselli. Ring signatures: Stronger definitions, and
constructions without random oracles. In Theory of Cryptography Conference –

TCC 2006, volume 3876 of Lecture Notes in Computer Science, pages 60 – 79.
Springer Verlag, 2006. Full version at http://eprint.iacr.org/2005/304.

5. M. Blum. How to exchange (secret) keys. ACM Transactions on Computer Systems

– TOCS, 1(2):175–193, 1983.

6. M. Blum, P. Feldman, and S. Micali. Non-interactive zero-knowledge and its ap-
plications. In 20th ACM Symposium on the Theory of Computing – STOC, pages
103–118. ACM Press, 1988.

7. S. Brands. Untraceable off-line cash in wallets with observers. In Advances in

Cryptology – CRYPTO’93, volume 773 of Lecture Notes in Computer Science,
pages 302–318. Springer Verlag, 1994.

8. J. Camenisch, S. Hohenberger, and A. Lysyanskaya. Compact e-cash. In Advances

in Cryptology – EUROCRYPT 2005, volume 3494 of Lecture Notes in Computer

Science, pages 302–321. Springer Verlag, 2005. Full version at http://eprint.

iacr.org/2005/060.

9. R. Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In 42nd IEEE Symposium on Foundations of Computer Science – FOCS.
IEEE Computer Society Press, 2001. Full version at http://eprint.iacr.org/

2000/067.

10. M. Chase and A. Lysyanskaya. On signatures of knowledge. Cryptology ePrint
Archive, Report 2006/184, 2006. http://eprint.iacr.org/2006/184.

11. D. Chaum, A. Fiat, and M. Naor. Untraceable electronic cash. In Advances in

Cryptology – CRYPTO’88, volume 403 of Lecture Notes in Computer Science,
pages 319–327. Springer Verlag, 1990.

12. U. Feige, D. Lapidot, and A. Shamir. Multiple non-interactive zero-knowledge
proofs under general assumptions. SIAM Journal on Computing, 29(1):1–28, 1999.

13. N.T. Ferguson. Single term off-line coins. In Advances in Cryptology – EURO-

CRYPT’93, volume 765 of Lecture Notes in Computer Science, pages 318–328.
Springer Verlag, 1993.

14. M. Fischlin. Round-optimal composable blind signatures in the common reference
string model. In Advances in Cryptology – CRYPTO2006, volume 4117 of Lecture

Notes in Computer Science, pages 60–77. Springer Verlag, 2006.

15. O. Goldreich and L. A. Levin. A hard-core predicate for all one-way functions. In
21st ACM Symposium on the Theory of Computing – STOC, pages 25–32. ACM
Press, 1989.

26

16. S. Goldwasser, S. Micali, and R. Rivest. A digital signature scheme secure against
adaptive chosen-message attacks. SIAM Journal on Computing, 17(2):281–308,
1988.

17. A. Kiayias and M. Yung. Efficient secure group signatures with dynamic joins
and keeping anonymity against group managers. In Mycrypt 2005, volume 3715 of
Lecture Notes in Computer Science, pages 151–170. Springer Verlag, 2005.

18. M. Liskov and S. Micali. Amortized e-cash. In Financial Cryptography 2001,
volume 2339 of Lecture Notes in Computer Science, pages 1–20. Springer Verlag,
2001.

19. T. Nakanishi, M. Shiota, and Y. Sugiyama. An efficient online electronic cash with
unlinkable exact payments. In Information Security Conference – ISC 2004, volume
3225 of Lecture Notes in Computer Science, pages 367–378. Springer Verlag, 2004.

20. T. Nakanishi and Y. Sugiyama. Unlinkable divisible electronic cash. In Information

Security Workshop – ISW 2000, volume 1975 of Lecture Notes in Computer Science,
pages 121–134. Springer Verlag, 2000.

21. T. Okamoto and K. Ohta. Universal electronic cash. In Advances in Cryptology –

CRYPTO’91, volume 576 of Lecture Notes in Computer Science, pages 324–337.
Springer Verlag, 1992.

22. J. Rompel. One-way functions are necessary and sufficient for secure signatures.
In 22nd ACM Symposium on the Theory of Computing – STOC, pages 387–394.
ACM Press, 1990.

23. A. Sahai. Non-malleable non-interactive zero-knowledge and adaptive chosen-
ciphertext security. In 40th IEEE Symposium on Foundations of Computer Science

– FOCS, pages 543–553. IEEE Computer Society Press, 1999.
24. T. Sander and A. Ta-Shma. Auditable, anonymous electronic cash. In Advances

in Cryptology – CRYPTO’99, volume 1666 of Lecture Notes in Computer Science,
pages 555–572. Springer Verlag, 1999.

25. A. De Santis, G. Di Crescenzo, R. Ostrovsky, G. Persiano, and A. Sahai. Ro-
bust non-interactive zero knowledge. In Advances in Cryptology – CRYPTO 2001,
volume 2139 of Lecture Notes in Computer Science, pages 566–598. Springer Ver-
lag, 2001.

26. A. De Santis, G. Di Crescenzo, and G. Persiano. Necessary and sufficient assump-
tions for non-interactive zero-knowledge proofs of knowledge for all np relations. In
27th International Colloquium on Automata, Languages and Programming – IC-

ALP, volume 1853 of Lecture Notes in Computer Science, pages 451–462. Springer
Verlag, 2000.

27. V. Varadharajan, K.Q. Nguyen, and Y. Mu. On the design of efficient RSA-based
off-line electronic cash schemes. Theoretical Computer Science, 226:173–184, 1999.

28. V. Wei. More compact e-cash with efficient coin tracing. Cryptology ePrint
Archive, Report 2005/411, 2005. http://eprint.iacr.org/2005/411.

A Definitions

A.1 Trapdoor Permutations

Definition 15 (Trapdoor Permutation Family). A trapdoor permutation
family is a tuple of probabilistic polynomial time Turing machines F = (Gen,
Eval, Invert) such that:

1. Gen(1κ) outputs a pair (f, f−1) such that f is a permutation of {0, 1}κ.

27

2. Eval(1κ, f, x) is a deterministic algorithm which on input f , where (f, f−1) ∈
Gen(1κ), and x ∈ {0, 1}κ outputs y = f(x).

3. Invert(1κ, f−1, y) is a deterministic algorithm which on input f−1, where
(f, f−1) ∈ Gen(1κ), and y ∈ {0, 1}κ outputs some x = f−1(y).

4. For all κ, (f, f−1) ∈ Gen(1κ), and x ∈ {0, 1}κ we have f−1f(x) = x.

5. For all adversaries A ∈ PPT∗, the following is negligible

Pr[(f, f−1)← Gen(1κ), x← {0, 1}κ, A(f, f(x)) = f−1(y)] .

A.2 Signature Schemes

A signature scheme SS = (Kg, Sig, Vf) is secure against chosen-message attacks,
CMA-secure [16], if it is infeasible to produce valid message-signature pair for any
message, even if the adversary has access to a signing oracle Sigsk(·). Formally
we use the following experiment for the definition

Experiment 6 (CMA, Expcma
SS,A(κ)).

(pk, sk)← Kg(κ)
(m, σ)← ASigsk(·)(pk)
return Vfpk(m, s) = 1

The advantage of the adversary is defined as

Advcma
SS,A(κ) = Pr[Expcma

SS,A(κ) = 1] .

A signature scheme SS is CMA-secure if Advcma
SS,A(κ) is negligible for all poly-

nomial-time adversaries A.

A.3 Commitment Schemes

A (non-interactive) commitment scheme COM = (Commit, Reveal) consists of
two algorithms, the commitment algorithm and the reveal algorithm. The com-
mitment algorithm takes as input a message msg ∈ {0, 1}κ and outputs a pair
(c, r). The reveal algorithm takes a commitment c, a message msg, and the secret
r and determines whether or not c is a commitment to msg under commitment
secret r.

The following two experiments defines secrecy and binding of a commitment
scheme.

Experiment 7 (Secrecy, Exp
secrecy−b
COM,A (κ)).

(msg0, msg1, state)← A(choose, 1κ)
(c, r)← Commit(msgb)
d← A(guess, c, state)
return d

28

The advantage of an adversary A is

Adv
secrecy
COM,A(κ) = |Pr[Exp

secrecy−0
COM,A (κ) = 1]− Pr[Exp

secrecy−1
COM,A (κ) = 1]| .

The commitment scheme COM has secrecy if Adv
secrecy
COM,A(κ) is negligible for

any polynomial-time adversary A.

Experiment 8 (Binding, Exp
binding
COM,A(κ)).

(c, r0, msg0, r1, msg1)← A(guess)
if (Reveal(c, msg0, r0) = Reveal(c, msg1, r1) = 1) ∧ (msg0 6= msg1) then

return 1
else

return 0
end if

The advantage of an adversary A is

Adv
binding
COM,A(κ) = Pr[Exp

binding
COM,A(κ) = 1] .

The commitment scheme COM is binding if Adv
binding
COM,A(κ) is negligible for any

polynomial-time adversary A.
One could give stronger definitions, but in our case the above experiments

suffice. As an example, they do not rule out the existence of an adversary which,
after seeing one commitment, creates another commitment to the same value,
which can be opened after the first commitment has been opened.

It is known that secret and binding commitment schemes exist if there exists
a family of one-way permutations [15]. The construction even gives a perfectly
binding scheme, i.e., even an unbounded adversary cannot decommit to more
than one value.

A.4 Indistinguishable Encryption Schemes

Informally an encryption scheme CS = (Kg, E, D) is called indistinguishable if
it is infeasible to distinguish between the encryptions of two plaintexts of the
same length. The experiment below formalizes this assumption.

Experiment 9 (Indistinguishability, Expind−b
CS,A (κ)).

(msg0, msg1, state)← A(choose, 1κ)
c← E(msgb)
d← A(guess, c, state)
return d

The advantage of an adversary A is

Advind
CS,A(κ) = |Pr[Expind−0

CS,A (κ) = 1]− Pr[Expind−1
CS,A (κ) = 1]| .

The encryption scheme CS is indistinguishable if Advind
COM,A(κ) is negligible for

any polynomial-time adversary A.

29

The notion of indistinguishability is equivalent to the well-known definition
of semantic security, which informally says that no information about the plain-
text can be efficiently computed from the cipher-text. We use the terms “indis-
tinguishable encryption scheme” and “semantically secure encryption scheme”
interchangeably in this text.

A.5 Proofs of Knowledge

Non-interactive zero-knowledge proofs (NIZK) were introduced by Blum, Feld-
man, and Micali [6]. Several works have since refined and extended the notion in
various ways. Following [2] we employ the definition of adaptive zero-knowledge
for NIZK introduced by Feige, Lapidot, and Shamir [12] and we use the notion of
simulation soundness introduced by Sahai [23]. The notion of simulation sound-
ness is strengthened by De Santis et al. [25]. In contrast to [2], the NIZK we use
must be adaptive zero-knowledge for polynomially many statements, and not
only for a single statement. The requirement on simulation soundness is in fact
unchanged compared with [2], i.e. single statement simulation soundness suffices.

Definition 16 (NIPS). A triple (p(κ), P, V) is an efficient adaptive non-inter-
active proof system (NIPS) for a language L ∈ NP with witness relation R if
p(κ) is a polynomial and P and V are probabilistic polynomial time machines
such that

1. Completeness. (x, w) ∈ R and ξ ∈ {0, 1}p(κ) implies V (x, P (x, w, ξ), ξ) = 1.
2. Soundness. For all computable functions A, Prξ∈{0,1}p(κ) [A(ξ) = (x, π)∧x 6∈

L ∧ V (x, π, ξ) = 1] is negligible in κ.

We suppress p in our notation of a NIPS and simply write (P, V).
Loosely speaking a non-interactive zero-knowledge proof system is a NIPS,

which is also zero-knowledge, but there are several flavors of zero-knowledge. We
need a NIZK which is adaptive zero-knowledge (for a single statement) in the
sense of Feige, Lapidot, and Shamir [12].

Experiment 10 (Adaptive Indistinguishability, Expad−ind−0
(P,V,S),A(κ)).

ξ ←R {0, 1}f(κ)

(state, x, w)← A(setup, ξ)
while (x, w) ∈ R do

(state, x, w)← A(choose, P (x, w, ξ))
end while

return A(guess, state)

Experiment 11 (Adaptive Indistinguishability, Expad−ind−1
(P,V,S),A(κ)).

(ξ, simstate)← S(1κ)
(state, x, w)← A(setup, ξ)
while (x, w) ∈ R do

(state, x, w)← A(choose, S(x, ξ))

30

end while

return A(guess, state)

The advantage in the experiment is defined

Advad−ind
(P,V,S),A(κ) = |Pr[Expad−ind−0

(P,V,S),A(κ) = 1]− Pr[Expad−ind−1
(P,V,S),A(κ) = 1]|

and the notion of adaptive zero-knowledge is given below.

Definition 17 (Adaptive Zero-Knowledge (cf. [12])). A NIPS (P, V) is
adaptive zero-knowledge (NIZK) if there exists a polynomial time Turing ma-
chine S such that Adv

ad−ind
(P,V,S),A(κ) is negligible for all A ∈ A.

In cryptographic proofs one often performs hypothetic experiments where the
adversary is run with simulated NIZKs. If the experiment simulates NIZKs to
the adversary, the adversary could potentially gain the power to compute valid
proofs of false statements. For a simulation sound NIZK this is not possible.

Experiment 12 (Simulation Soundness, Expsim−sound
(P,V,S),A(κ) (cf. [25])).

(ξ, simstate)← S(setup, 1κ)
(x, π)← AS(simulate,·,ξ,simstate)(guess, ξ)
if (π /∈ RS) ∧ (x /∈ L) ∧ (V (x, π, ξ) = 1) then

return 1
else

return 0
end if

Definition 18 (Simulation Soundness (cf. [23,25])). A NIZK (P, V) with
polynomial time simulator S for a language L is unbounded simulation sound if

Advsim−sound
(P,V,S),A(κ) = Expsim−sound

(P,V,S),A(κ)

is negligible for all A ∈ A.

De Santis et al. [25] extend the results in [12] and [23] and prove the following
result.

Theorem 4. If there exists a family of trapdoor permutations, then there exists
a simulation sound NIZK for any language in NP in the CRS-model.

In the this paper we abbreviate “efficient non-interactive adaptive zero-knowledge
unbounded simulation sound proof” by NIZK.

It is important to note that the above definitions do not require that it is
possible to extract the witness, i.e., they are not proofs of knowledge. To our
knowledge, there are no results on the existence of simulation-sound proofs of
knowledge, although signatures of knowledge [10] are similar.

One must be careful when defining the experiment for extractability. As for
simulation-soundness, we want to give the adversary the ability to request sim-
ulated proofs for theorems of its choice, and if it outputs a valid proof, the

31

extractor should be able to extract a witness. In the original definitions of NIZK
proofs of knowledge [1,25], soundness and validity, i.e., the requirement on ex-
tractability, are two separate properties. Such a definition would be hard to
use when designing protocols. In a protocol, we need to produce a single CRS
which is used both for simulation and for extraction. Therefore it makes sense
to combine the two properties in a single experiment.

Experiment 13 (Extractable Simulation Soundness, Expext−sim−sound
(P,V,S),A (κ)

(cf. [25])).

(ξ, simstate)← S(setup, 1κ)
(x, π)← AS(simulate,·,ξ,simstate)(guess, ξ)
w ← S(extract, x, π, ξ, simstate)
if (π /∈ RS) ∧ ((x, w) /∈ R) ∧ (V (x, π, ξ) = 1) then

return 1
else

return 0
end if

Definition 19 (Extractable Simulation Soundness). A NIZK (P, V) with
polynomial time simulator S for a language L is unbounded extractable simula-
tion sound if

Advext−sim−sound
(P,V,S),A (κ) = Expext−sim−sound

(P,V,S),A (κ)

is negligible for all A ∈ A.

We now give a construction of an extractable simulation sound proof system
based on an unbounded simulation sound proof system. The idea behind the
construction is the same as for [1] which is also used in [10], namely to encrypt
the witness using a semantically secure encryption scheme where the public key
is derived from the common reference string. Extraction is performed by letting
the extractor choose the CRS in such a way that it knows the private key.

Let L be a language with witness relation R, i.e., x ∈ L exactly when there
exists w such that (x, w) ∈ R. We define a proof system (P, V) with simulator
S and prove that it is an unbounded simulation sound zero-knowledge proof of
knowledge. Note that S plays the role both of the simulator and the extractor.

In all the below experiments, we let the common reference string ξ consist
of two parts, ξ0 and ξ1. We let pk be the public key defined by ξ0 for the
encryption scheme CS = (Kg, E, Dec), and let sk be the corresponding secret
key . We also let L′ = {(x, c) | x ∈ L ∧ (x, Dsk(c)) ∈ R with witness relation
R′ = {((x, c), (w, r)) | (x, w) ∈ R ∧ Epk,r(w) = c}. Let (P ′, V ′) be a unbounded
simulation sound proof system for L′, and let S′ be its simulator. .

Definition 20 (Prover P (x, w)).

(c, r)← Epk(w)
π′ ← P ′((x, c), (w, r), ξ1)
π ← (c, π′)
return π

32

Definition 21 (Verifier P (x, π)).

Parse π as (c, π′)
return V ′((x, c), π′, ξ1)

Definition 22 (Simulator S(tag, params)).

if tag = setup then

Parse params as 1κ

(pk, sk)← Kg(1κ)
ξ0 ← pk

(ξ1, simstate′)← S′(setup, 1κ)
simstate← (sk, simstate)
ξ ← (ξ0, ξ1)
return (ξ, simstate)

else if tag = simulate then

Parse params as (x, ξ, simstate)
Parse simstate as (sk, simstate′)
c← Epk(0)
π′ ← S′(simulate, (x, c), ξ1, simstate′)
π ← (c, π′)
return π

else if tag = extract then

Parse params as (π, x, ξ, simstate)
Parse simstate as (sk, simstate′)
Parse π as (c, π′)
w ← Dsk(c)
return w

else

return ⊥
end if

We now prove the following theorem.

Theorem 5. The proof system (P, V) is an unbounded simulation-sound non-
interactive zero-knowledge proof of knowledge for the language L with witness
relation R.

Proof. We prove, in order, the properties adaptive indistinguishability and ex-
tractable simulation-soundness.

Adaptive Indistinguishability Assume (P, V) is not adaptively indistin-
guishable. Let A be an adversary such that Advad−ind

(P,V,S),A(κ) is non-negligible.
We will use A to construct Aad−ind, breaking either the adaptive indistinguishab-
ility of (P ′, V ′), or Asem−sec, breaking the semantic security of CS. Consider the
proof system (P̃ , Ṽ), which is identical to (P, V) except that instead of output-
ting (c, π′), the prover outputs (Epk(0), π′). If A wins the indistinguishability
experiment in this case with non-negligible probability, then Aad−ind can use A
by prepending Epk(0) to each query and distinguish between interaction with P ′

and the simulator.

33

If A does not win with non-negligible probability against (P̃ , Ṽ), then it
can be used by Asem−sec in the following way. Asem−sec chooses a theorem and
a witness (x, w) ∈ R and requests and encryption c of either w or 0. It runs
Expad−ind−0

(P,V,S),A(κ) and Expad−ind−1
(P,V,S),A(κ) which the modification that P returns

(c, π′) instead of (Epk(w), π′). If A is able to distinguish between the experiments,
then Asem−sec concludes that it received an encryption of w, and otherwise that
in received an encryption of 0.

Since, by assumption, (P ′, V ′) has adaptive indistinguishability and CS is
semantically secure, the existence of either Aad−ind or Asem−sec with the above
properties is a contradiction. Hence (P, V) has adaptive indistinguishability.

Extractable Simulation-Soundness Assume (P, V) does not have ex-
tractable simulation-soundness, and let A be an adversary which wins in Ex-
periment 13 with non-negligible probability. We describe how to construct an
adversary Asim−sound which breaks the simulation soundness of (P ′, V ′).

Asim−sound runs A in Experiment 13, while taking part in Experiment 12 itself.
It answers queries to S by algorithm in Definition 22, using its oracle S′ where
necessary. When A outputs (x, π) on the call A(guess, ξ), Asim−sound parses π as
(c, π′) and outputs ((x, c), π′) on its call Asim−sound(guess, ξ). If w← Dsk(c) is not
a witness of x, then (x, c) /∈ L′. Thus Asim−sound wins in its experiment exactly
when A wins. Thus Asim−sound breaks the simulation-soundness of (P ′, V ′), which
is a contradiction. We conclude that (P, V) is extractable simulation sound.

In this paper we write NIZK-PK for unbounded simulation sound non-inter-
active zero-knowledge proof of knowledge.

34

