
The Probability Advantages of Two Linear

Expressions in Symmetric Ciphers

Haina Zhang ∗ Shaohui Wang † Xiaoyun Wang ‡

Abstract

In this paper, we prove the probability advantages of two linear
expressions which are summarized from the ABC stream cipher sub-
mitted to ECRPYT Estream Project. Two linear expressions with
probability advantages reflect the linear correlations among Modular
Addition equations. Corresponding to each linear expression and its
advantage, a large amount of weak keys are derived under which all the
ABC main keys can be retrieved successively. The first linear expres-
sion is a generic bit linear correlation between two Modular Addition
equations. The second is a linear correlation of bit carries derived from
three Modular Addition equations and the linear equation of LFSR in
ABC.

It is remarked that the second is found by Wu and Preneel, and
has been used to find 296 weak keys. In the cryptanalysis of ABC, Wu
and Preneel only utilized its estimated probability advantage which is
concluded by experimental data, and they did not give its strict proof.

Modular Addition and XOR operations are widely used in designing
symmetric ciphers. We believe that these types of linear expressions
with probability advantages not only can be used to analyze some other
symmetric ciphers, but also are important criteria in designing secure
symmetric ciphers.

Key Words. Cryptanalysis, probability advantage, Modular Addi-
tion, ABC stream cipher.

∗Shandong University, China. Email:hnzhang@math.sdu.edu.cn.
†Shandong University, China. Email:shwang@math.sdu.edu.cn.
‡Shandong University and Tsinghua University, China. Email:xywang@sdu.edu.cn.

1

1 Introduction

For a secure cryptographic algorithm, there should not exist any mathe-
matic rule with substantial probability advantage. For example, among the
ciphertexts and the transmitting data, there should be no statistical prop-
erty or no algebraic expression whose probability is high enough to result
in an attack faster than the brute force attack. The probability advantage
means the probability bias between the real probability and 1

2 .
In the view of cryptanalysis history, cryptanalysis techniques based on

the probability advantage are the most important not only in designing
the provable security cryptosystems, but also in analyzing the security of
symmetric ciphers.

Most provable security cryptosystems employ a similar proof model based
on probability advantage. One type of earlier provable security cryptosys-
tems is the random generator models proposed by Yao [12], Goldwasser,
Micali[6] etc, and another type is zero-knowledge schemes [5]. These cryp-
tosystems adopt a common probabilistic proof model based on the indistin-
guishable advantage, i.e. all the ciphertexts and the transmitting data only
have an indistinguishable advantage for their statistical properties, other-
wise, an adversary can find an available attack to solve the hard mathematic
problem on which the cryptosystems are constructed. Here indistinguisha-
bility usually means polynomial time indistinguishability.

In symmetric cipher cryptanalysis, cryptanalysts try to find the prob-
ability advantages of some related statistical properties and algebraic ex-
pressions. For example, the correlation attack and the linear syndrome
method are two important analysis methods on stream ciphers respectively
developed by two groups, Meier and Staffelbach [10], Zeng and Huang[13].
The two methods are based on the probability advantage of some linear
expressions extracted from LFSRs. The differential attack of block ciphers
is formalized by Biham and Shamir [4], which fully utilizes the probability
advantage of some special differential. Another important attack in block
ciphers is linear cryptanalysis [9] which uses the probability advantages of
some linear equations with plaintext bits, ciphertext bits and key bits.

In this paper, we prove the probability advantages of two linear expres-
sions by analyzing a synchronous stream cipher ABC which is an ECRYPT
candidate for stream cipher standard. ABC is designed by Anashin, Bog-
danov, Kizhvatov and Kumar, and has two versions. The first version ABC
v1 [1] had been withdrawn because of the attacks proposed in [3, 7, 8]. The
second version ABC v2 [2] adopted a longer LFSR to avoid of the attack.
There is no substantial attack until the weak key attack by Wu and Preneel

2

in Feb 2006 [11].
In [11], Wu and Preneel found a linear expression which has a substantial

probability advantage by considering the LFSR equation and the bit carries
of three Modular Addition equations. In the cryptanalysis of ABC, Wu and
Preneel utilized its estimated probability advantage which is concluded by
experimental data, but they did not give its strict proof.

In this paper, we present the strict theoretical proof for the probability
advantages of two linear expressions, one of which is presented in [11],
another is a generic bit linear expression coming from two Modular Addition
equations. Each linear expression can be used to find a large number of weak
keys under which all the ABC main keys can be retrieved successively.

Modular Addition and XOR operations are popular in cryptography,
especially in designing block ciphers, stream ciphers and hash functions.
We believe that these linear expressions with probability advantages can
not only be used to analyze some other symmetric ciphers, but also are
important criteria in designing secure symmetric ciphers.

The paper is organized as follows: In section 2, a brief description of
the ABC v2 is introduced. In section 3, a generic linear expression that
has a probability advantage is shown. Section 4 gives the strict proof for
the Wu-Preneel linear expression and expands it to the general constrained
linear expression. Section 5 concludes the paper.

2 A Brief Description of ABC v2

ABC is a synchronous stream cipher optimized for software applications. It
uses a 128-bit key and a 128−bit IV and claims a security of 2128. Through-
out this paper the symbols ⊕,�,�, ≫, + are respectively used for 32−bit
XOR, right shift, left shift, right rotation and addition modulo 232.

ABC consists of three components:

1. Component A is a linear transformation of the 128−bit LFSR, and its
characteristic polynomial is f(x) = x(x127 + x63 + 1). The internal
state is represented by Z = (z3, z2, z1, z0), zi ∈ GF (232), 0 ≤ i < 4.
At each clock, the LFSR is updated as follows:

Temp← z2 ⊕ (z1 << 31)⊕ (z0 >> 1)

z0 ← z1, z1 ← z2, z2 ← z3, z3 ← Temp.

3

2. Component B is the following single cycle T-function where d0, d1,
d2 ∈ GF (232) represent 32-bit key and IV dependent words.

B(x) = ((x⊕ d0) + d1)⊕ d2 (mod 232)

where d0 ≡ 0, d2 ≡ 0, d1 ≡ 1 (mod 4).

3. Component C is a mapping from GF (232) to GF (232) which involves
key dependent constant 32-bit words e, ei (0 ≤ i < 32). δi(x) is the i-
th bit selection function that determines the i-th bit of a 32-bit integer
number, and the least significant bit is 0-bit.

C(x) = ((e +
31∑
i=0

eiδi(x)) mod 232) >>> 16

e31 ≡ 216(mod 217)

The key stream generation of ABC v2 involves the three components,
the output key stream word is y = z0 + C(x), y ∈ GF (232).

3 One Generic Linear Expression in Modular Ad-
dition Equations

In order to strengthen the avalanche of symmetric ciphers, cryptographers
often adopt the mixture operations. In many ciphers, Modular Addition
operation and XOR operation are often used alternatively. ABC is such
a stream cipher that the two consist of the main operations. In order to
retrieve the state of LFSR bit by bit, we need to find some XOR linear
expressions related to LFSR which have probability bias. According to the
equation y = z0+C(x), it is necessary to employ some linear expressions on y
and z0, and especially, to search for the linear expression with a substantial
advantage corresponding to special C(x) which will results in weak keys.
These types of linear expressions are extracted from the Modular Addition
equations. So, we first discuss a generic linear expression without constraint
conditions.

Definition 1. Denote y as n-bit integer(n>0), then F (y, m) is defined as
follows:

F (y, m) =
m−1⊕
i=0

δi(y)

4

where 1 ≤ m ≤ n.
Clearly, F (y, m) is the XOR of m consecutive m bits of y.

Theorem 1. Denote y, c and x as n-bit (n>0) integers, suppose y =
c + x (mod 2n). Denote pm = Pr(F (y, m + 1) = F (c,m + 1)⊕F (x,m + 1)),
m = 0, 1, 2, Then

pm =
1
2

+
1

21+bm+1
2

c
.

Proof. Suppose x1 = x (mod 2m+1), c1 = c (mod 2m+1). We divide the
pair (c1, x1) into 4 cases:

SC(m) is the number of the pairs (c1, x1) that satisfy F (y, m + 1) =
F (c1,m + 1) ⊕ F (x1,m + 1) with the bit carry to m + 1-th bit(take count
from 0), i.e.

SC(m) = |{(c1, x1)|F (y, m+1) = F (c1,m+1)⊕F (x1,m+1), c1+x1 ≥ 2m+1}|

Similarly,

SM(m) = |{(c1, x1)|F (y, m+1) = F (c1,m+1)⊕F (x1,m+1), c1+x1 < 2m+1}|

DC(m) = |{(c1, x1)|F (y, m+1) 6= F (c1,m+1)⊕F (x1,m+1), c1+x1 ≥ 2m+1}|

DM(m) = |{(c1, x1)|F (y, m+1) 6= F (c1,m+1)⊕F (x1,m+1), c1+x1 < 2m+1}|

Clearly,

SC(m) + SM(m) + DC(m) + DM(m) = 22(m+1) (1)

Each number has a recursion, and four recursions are dependent. We
only show the recursion about SM(m).

If the m-th bit of (x, c) is (0,1) or (1,0), then SM(m) = 2SM(m− 1). If
the m-th bit of (x, c) is (0,0), then SM(m) = SM(m− 1)+DC(m− 1). So,

SM(m) = 3SM(m− 1) + DC(m− 1) (2)

By the same way, other 3 recursive equations hold.

DM(m) = 3DM(m− 1) + SC(m− 1) (3)
SC(m) = SM(m− 1) + 3DC(m− 1) (4)
DC(m) = DM(m− 1) + 3SC(m− 1) (5)

5

From (2) and (4), we get

SM(m) + SC(m) = 4(SM(m− 1) + DC(m− 1)) (6)

By (1) and (2) + (5), we get

SM(m) + DC(m) = 2(SM(m− 1) + SC(m− 1)) + 22m (7)

From (6) and (7), we can obtain the recursive relation of SM(m) +
SC(m):

SM(m) + SC(m) = 4× 22(m−1) + 8(SM(m− 2) + SC(m− 2)) (8)

It is easy to know SM(0) + SC(0) = 4, SM(1) + SC(1) = 12.
When m = 2k, k = 0, 1, 2, . . ., SM(2k) + SC(2k) = 23k+1(2k + 1)
When m = 2k+1, k = 0, 1, 2, . . ., SM(2k+1)+SC(2k+1) = 23k+2(2k+1+

1)
So

p2k =
23k+1(2k + 1)

22(2k+1)
=

1
2

+
1

2k+1
,

p2k+1 =
23k+2(2k+1 + 1)

22(2k+2)
=

1
2

+
1

2k+2
.

i.e.

pm =
1
2

+
1

21+bm+1
2

c
.

End proof.
By Theorem 1, we can prove the following 3 corollaries.

Corollary 1. Suppose qm = Pr(δm(y) = δm(c) ⊕ δm(x)), m = 0, 1, 2, . . .,
then

qm =
1
2

+
1

2m+1
.

Proof. It is obviously that q0 = p0 = 1. For m > 0, we denote A, B, C, D
respectively as:

A = F (x,m)⊕ δm(x)⊕ F (c,m)⊕ δm(c),
B = F (y, m)⊕ δm(y),
C = F (x, m)⊕ F (c,m),
D = F (y, m).

6

If A = B , C = D or A 6= B , C 6= D, then δm(y) = δm(c) ⊕ δm(x).
From Theorem 1, we know that,

Pr(A = B) = pm, P r(C = D) = pm−1,

P r(A 6= B) = 1− pm, P r(C 6= D) = 1− pm−1.

So,

qm = pmpm−1 + (1− pm)(1− pm−1) =
1
2

+
1

2m+1
.

Corollary 2. Denote ai, bi, ci as three random and independent n-bit (n>0)
integers, ci,n = δn(ai + bi), 1 ≤ i ≤ 3. Then

Pr(c1,n ⊕ c2,n ⊕ c3,n = 0) =
1
2

+ 2−3n−1. (9)

Proof: From Corollary 1, it is obvious that

Pr(ci,n = 0) =
1
2

+
1

2n+1
, 1 ≤ i ≤ 3.

Using the Piling-up Lemma:

Pr(c1,n ⊕ c2,n ⊕ c3,n = 0) =
1
2

+
1
2
· 23 · (1

2n+1
)3 =

1
2

+ 2−3n−1.

Corollary 3. Suppose y = c+x, (y, c and xarethreek−bit(n > 0)integers,
k = 1, 2, . . ., then

Pr(y < 2k) =
1
2

+
1

2k+1
.

The corollary implies that the sum of two k-bit positive integers that
has no bit carry in position k + 1 causes a bias 1

2k+1 .

Remark. Corollaries 1-3 can be proved by other methods, and corollary 2
is also mentioned in [11].

Applying Theorem 1 directly to ABC v2, we can get a similar linear
expression with advantage. Provided that the output key stream sequence
is yt = ct + zt

0 at time t, the following probability advantage holds.

Pr(F (yt,m) = F (ct,m)⊕ F (zt
0,m)) =

1
2

+
1

21+bm+1
2

c
.

7

Utilizing the above probability advantages with m = 1, 2, 3 and some
properties of C(x), we can get at least 295 weak keys for ABC v2 under
which all the ABC v2 keys can be retrieved successively with computation
complexity 265 and data complexity 254 key stream words. The details of
the cryptanalysis on weak keys is omitted because of page limit.

4 Constrained Linear Expressions in Modular Ad-
dition Equation

Recently, Wu and Preneel found another constrained linear expression among
three Modular Addition equations in which the constrained conditions are
XOR equations. The linear expression can be used to find 296 weak keys
under which all other ABC v2 keys can be retrieved more efficiently. The
linear expression in [11] has a probability advantage convergence when the
bit position n (1 ≤ n ≤ 32) become higher, but the statistical advantage is
estimated by the experimental data. In this section, we will give the strict
mathematic proof. In addition, we also expand the linear expression to
many other constrained linear expressions which may be useful in analyzing
other symmetric ciphers.

4.1 Constrained Linear Expression by Wu and Preneel

In order to conveniently describe the constrained linear expressions and our
proof, we formalize a conditional probability notation in [11].

Definition 2. Let ai, bi, ci(1 ≤ i ≤ 3) as three random n-bit (n>0) integers,
the constraint A is a3 = a1 ⊕ a2. We define the probability that event B
occurs under condition A as:

PrA(B) = Pr(B|A)

About ci,n = δn(ci), there is the following lemma in [11].
Lemma 1. Denote a, b as two random independent n-bit integers, cn =
δn(a + b), an−1 = δn−1(a), bn−1 = δn−1(b). Then cn = (an−1 ◦ bn−1) ⊕
((an−1 ⊕ bn−1) ◦ cn−1).

In the following, we will prove that, PrA(c1,n ⊕ c2,n ⊕ c3,n = 0) has a
recursion with variable n, and changes with different constraint conditions.
Wu and Preneel estimated that the statistical probability is about 0.5714.

Theorem 2. Denote ai, bi, ci(1 ≤ i ≤ 3) as three random n-bit (n>0)

8

integers. If ci,n = δn(ai + bi), a1 ⊕ a2 = a3, then

PrA(c1,n ⊕ c2,n ⊕ c3,n = 0) =
4
7

+
3
7
× 1

8n
(10)

Proof. From Lemma 1, we can obtain three expressions.

c1,n = (a1,n−1 ◦ b1,n−1)⊕ ((a1,n−1 ⊕ b1,n−1) ◦ c1,n−1), (11)
c2,n = (a2,n−1 ◦ b2,n−1)⊕ ((a2,n−1 ⊕ b2,n−1) ◦ c2,n−1), (12)
c3,n = (a3,n−1 ◦ b3,n−1)⊕ ((a3,n−1 ⊕ b3,n−1) ◦ c3,n−1). (13)

So,

c1,n ⊕ c2,n ⊕ c3,n = Φ⊕ ((a1,n−1 ⊕ b1,n−1) ◦ c1,n−1)
⊕((a2,n−1 ⊕ b2,n−1) ◦ c2,n−1)
⊕(a3,n−1 ⊕ b3,n−1) ◦ c3,n−1).

Here Φ = (a1,n ◦ b1,n)⊕ (a2,n ◦ b2,n)⊕ (a3,n ◦ b3,n).
Because a1⊕a2 = a3, there are total 32 states for (a1,n−1, a2,n−1, b1,n−1, b2,n−1, b3,n−1).

Let α = (a1,n−1 ⊕ b1,n−1, a2,n−1 ⊕ b2,n−1, a3,n−1 ⊕ b3,n−1). We divide 32
states into 3 cases according to the value of α, and each case has the same
probability. Before we discuss the probabilities for 3 cases, we denote

∆n = PrA(c1,n ⊕ c2,n ⊕ c3,n = 0)

4n(α) = PrA(c1,n ⊕ c2,n ⊕ c3,n = 0| ∧ α).

1. If α = (0, 0, 0), then b1,n−1 = a1,n−1, b2,n−1 = a2,n−1, b3,n−1 = a1,n−1⊕
a2,n−1, Φ = 0, and c1,n ⊕ c2,n ⊕ c3,n = 0. Because a1,n−1 and a2,n−1

are independent, so

4n(α) =
22

32
=

1
8

2. If α = (1, 0, 0), then b1,n−1 = a1,n−1 ⊕ 1, b2,n−1 = a2,n−1, b3,n−1 =
a1,n−1 ⊕ a2,n−1, Φ = a1,n−1, and c1,n ⊕ c2,n ⊕ c3,n = a1,n−1 ⊕ c1,n−1.

Note that a1,n−1 and a2,n−1 are independent, and c1,n⊕ c2,n⊕ c3,n = 0
if and only if c1,n−1 = a1,n−1, so

4n(α) =
1
16

9

Table 1: The Experimental Data of ∆n − 1
2 in [3]

n Probability advantage Full space Tested space
1 0.125 25 25

2 0.078125 210 210

3 0.072265625 215 215

4 0.071533203125 220 220

5 0.071441650390625 225 225

6 0.071430206298828125 230 230

7 0.071428775787353515625 235 235

8 0.071428596973419189453125 240 240

16 0.071424152 280 232

32 0.071434624 2160 232

Similarly, we can easily prove that, if α = (0, 0, 1), (0, 1, 0), (0, 1, 1),
(1, 0, 1) or (1, 1, 0), the same probability holds.

4n(α) =
2
32

=
1
16

.

3. If α = (1, 1, 1), then b1,n−1 = a1,n−1 ⊕ 1, b2,n−1 = a2,n−1 ⊕ 1, b3,n−1 =
a1,n−1⊕ a2,n−1⊕ 1, and c1,n⊕ c2,n⊕ c3,n = c1,n−1⊕ c2,n−1⊕ c3,n−1. So
the following recursion holds.

4n(α) =
1
8
4n−1

Summing up the above discussions, we obtain the recursion:

4n =
1
8

+
1
16
× 6 +

1
8
4n−1 =

1
2

+
1
8
4n−1 .

From 41 = 5
8 , we get the equation:

4n =
4
7

+
3
7
× 1

8n
.

End Proof.
The correctness of the experimental probabilities in Table 1 can be ver-

ified by our probability formula.

Theorem 3. Provided that ai, bi, ci are random n-bit (n≥2) integers, ci,n =

10

δn(ai + bi), hi,n = δn−1(ai) ⊕ δn−2(ai), i = 1, 2, 3, and a3 = a1 ⊕ a2. If
hi,n = 0, i = 1, 2 or 3, then

PrA(c1,n ⊕ c2,n ⊕ c3,n = 0|(hi,n = 0)) =
277
448

+
3
7
× 1

8n
. (14)

Proof. Let ∆n(h1,n) = PrA(c1,n⊕c2,n⊕c3,n = 0|(hi,n = 0)). We only prove
the following probability holds.

∆n(h1,n) =
277
448

+
3
7
× 1

8n
.

By iterating recursions (11), (12), and (13) twice, we get the following
equation:

c1,n ⊕ c2,n ⊕ c3,n = Ψ
3⊕

i=1

((ai,n−1 ⊕ bi,n−1) ◦ (ai,n−2 ⊕ bi,n−2) ◦ ci,n−2)

Ψ =
3⊕

i=1

(ai,n−1 ◦ bi,n−1)⊕ ((ai,n−1 ⊕ bi,n−1) ◦ ai,n−2 ◦ bi,n−2)

There are total 4 × 1024 states (a1,n−1, a1,n−2, a2,n−1, a2,n−2, a3,n−1,
a3,n−2, b1,n−1, b1,n−2, b2,n−1, b2,n−2, b3,n−1, b3,n−2). By consideration of
a3 = a1 ⊕ a2, and h1,n = 0, there are 512 states left, and 9 independent
variables.

Let xi1 = ai,n−1 ⊕ bi,n−1, xi2 = ai,n−2 ⊕ bi,n−2, xi = xi1 ◦ xi2 = (ai,n−1 ⊕
bi,n−1) ◦ (ai,n−2 ⊕ bi,n−2), i = 1, 2, 3. We divide 512 states into 4 cases
according to α = (x1, x2, x3), and each case has the same probability.

1. If α = (1, 1, 1), then a1,n−1 = b1,n−1 ⊕ 1, a1,n−2 = b1,n−2 ⊕ 1, a2,n−1 =
b2,n−1⊕1, a2,n−2 = b2,n−2⊕1, a3,n−1 = b3,n−1⊕1, a3,n−2 = b3,n−2⊕1.
So, only 8 states left. For each case, we can easily show that Ψ = 0,
and c1,n ⊕ c2,n ⊕ c3,n = c1,n−2 ⊕ c2,n−2 ⊕ c3,n−2. So

∆n(h1,n ∧ α) =
23

512
∆n−2 =

1
64

∆n−2

2. If α = (0, 0, 0), ∆n(h1,n ∧ α) = 168
512 .

Denote β = (x11, x21, x31), γ = (x21, x22, x32). We divide all the states
with α = (0, 0, 0) into 8 sets:

11

(a) If β = (0, 0, 0), γ = (∗, ∗, ∗), ′∗′ represents a random bit, there
are 6 independent variables left, so there are 26 = 64 states.

(b) If β = (0, 0, 1), γ = (∗, ∗, 0), there are 32 states.

(c) If β = (0, 1, 0), γ = (∗, 0, ∗), there are 32 states.

(d) If β = (1, 0, 0), γ = (0, ∗, ∗), there are 32 states.

(e) If β = (0, 1, 1), γ = (∗, 0, 0), there are 16 states.

(f) If β = (1, 1, 0), γ = (0, 0, ∗), there are 16 states.

(g) If β = (1, 0, 1), γ = (0, ∗, 0), there are 16 states.

(h) If β = (1, 1, 1),γ = (0, 0, 0), there are 8 sets.

Therefore, there are total 64 + 3× 32 + 3× 16 + 8 = 216 states when
α = (0, 0, 0), and only 168 states result in c1,n ⊕ c2,n ⊕ c3,n = 0. So,
∆n(h1,n ∧ α) = 168

512 .

3. If α = (0, 0, 1), (0, 1, 0), or (1, 0, 0), ∆n(h1,n ∧ α) = 36
512 .

4. If α = (0, 1, 1), (1, 0, 1) or (1, 1, 0), ∆n(h1,n ∧ α) = 12
512 .

Summing up the above 4 cases, we get the recursion

∆n(h1,n ∧ α) =
168
512

+
36
512
× 3 +

12
512
× 3 +

1
64

∆n−2 =
277
448

+
3
7
· 1
8n

.

For h2,n, h3,n, the same conclusion holds.
End proof.

Theorem 4. Provided that ai, bi, ci(1 ≤ i ≤ 3) as three random n-bit
(n≥2) integers, ci,n = δn(ai + bi), a1 ⊕ a2 = a3, hi,n = δn−1(ai) ⊕ δn−2(ai).
If c1,n ⊕ c2,n ⊕ c3,n = 0, then

PrA(hi,n = 0|c1,n ⊕ c2,n ⊕ c3,n = 0) =
Sn

2∆n
=

277× 23n + 3× 26

23n+9 + 3× 27
(15)

Here 1 ≤ i ≤ 3.

Proof. The event H denotes {hi,n = δn−1(ai) ⊕ δn−2(ai) = 0}, event C is
{c1,n ⊕ c2,n ⊕ c3,n = 0}.

By the formula of conditional probability, we can get

PrA(CH) = PrA(C|H)PrA(H) = PrA(H|C)PrA(C).

12

Table 2: The Experimental Data of PrA(H|C)− 1
2 in [3]

n Probability advantage Full space Tested space
2 0.04054054054 28 28

3 0.04095563140 213 213

4 0.04100811619 218 218

5 0.04101468625 223 223

6 0.04101550765 228 228

7 0.04101561033 233 233

16 0.04103037 278 232

From Theorem 2, PrA(C) = ∆n, and from Theorem 3, PrA(C|H) =
∆hi,n. It is obvious that PrA(H) = 1

2 .

PrA(H|C) =
∆hi,n

2∆n
=

3× 26 + 277× 23n

3× 27 + 23n+9
(1 ≤ i ≤ 3, n ≥ 2)

The experimental data for PrA(H|C) by Wu and Preneel is listed in
Table 2. It is easy to verify the correctness of the experimental data by our
formula.

Utilizing the probability advantages in Theorem 2, 3, and 4, Wu and
Preneel found another 296 weak keys. A weak key is distinguished with 213

key stream words and 213.5 operations by the probability advantage:

Pr(yt,16 ⊕ yt+63,16 ⊕ yt+127,16 = 0)− 1
2
≈ 0.0714.

After identifying the weak key, Wu and Preneel employed the estimated
probability in Theorem 3 and 4 to retrieve the internal state of LFSR by
the Fast Correlation Attack. Then, the coefficients of Component B and C
is easy to be achieved.

4.2 The Generic Constrained Linear Expressions

The expression can be expanded to the following generic linear expressions.
Provided that there are s Modular Addition equations and t constraints:

ci,n = δn(ai + bi), i = 0, 1, 2, ..., s− 1

Fj = Fj(a1, a2, ..., ak, b1, b2, ..., bk) = 0, j = 0, 1, 2, .., t− 1

13

Fj , j = 0, 1, .., t − 1 are boolean functions. Discussing the probabilities
of these linear expressions will be important for analyzing many existing
symmetric ciphers.

Pr((c1,n ⊕ . . .⊕ cs,n = 0)|(F1 = 0) ∧ (F2 = 0) ∧ (. . .) ∧ (Ft = 0)).

For example, if s = 3, t = 2, and F0 = F (a1, a2, a3, b1, b2, b3) = a1⊕a2⊕
a3, F1 = F (a1, a2, a3, b1, b2, b3) = b1 ⊕ b2 ⊕ b3, the probability for the linear
expression (17) is:

4n =
5
8

+
1
8
4n−1

It is obvious that 41 = 5
8 , so,

Pr((c1,n ⊕ . . .⊕ cs,n = 0)|(F1 = 0) ∧ (F2 = 0)) =
5
7
− 5

7
× 1

8n
. (16)

Comparing the probabilities in (9), (10), (14), (15) and (16), the ad-
vantage of (9) in the random situation is not enough to analyze ABC v2,
and the (10), (14) and (15) have the substantial advantage to search for
the keys. Probability (16) can become larger with another more condition.
So, we can discuss many other linear expressions with different constraint
conditions have some surprising change in probability. This phenomena is
alluring in cryptanalysis. We believe that these kinds of linear expressions
are helpful to analyze some other symmetric ciphers.

5 Conclusion

In this paper, we discuss two linear expressions in Modular Addition Equa-
tions which have probability advantages, and the two linear expressions can
be expanded to many other general linear expressions which may be appli-
cable to analyze some other symmetric ciphers. Corresponding to different
constraint conditions, these linear expressions may have surprising proba-
bility advantages which leak important information about the ciphers.

References

[1] V. Anashin, A. Bogdanov, I. Kizhvatov, S. Kumar, ABC: A new fast
flexible stream cipher, ECRYPT Stream Cipher Project Report 2005/001,
http://www.ecrypt.eu.org/stream, 2005.

14

[2] V. Anashin, A. Bogdanov, I. Kizhvatov, S. Kumar, ABC: A new fast flexible
stream cipher, Version 2, http://crypto.rsuh.ru/papers/abc-spec-v2.pdf, 2005.

[3] C. Berbain, H. Gilbert, Cryptanalysis of ABC, eSTREAM, ECRYPT Stream
Cipher Project, Report 2005/048, http://www.ecrypt.eu.org/stream, 2005.

[4] E. Biham, A. Shamir, Differetial cryptanalysis of DES-like cryptosystems, J.
of Cryptology, 4(1):3-72, 1991.

[5] S. Goldwasser, S. Micali, C.Rackoff, The Knowledge Complexity of Interactive
Proof-Systems, SIAM Journal on Comput., Vol. 18, No. 1, 1989.

[6] S. Goldwasser, S. Micali, Probabilistic Enryption and How to Play Mental
Poker Keeping Secret All Partial Information, 14th ACM STOC, pp. 365-377,
1982.

[7] S. Khazaei, Divide and conquer attack on ABC stream cipher.
eSTREAM, ECRYPT Stream Cipher Project, Report 2005/052,
http://www.ecrypt.eu.org/stream, 2005.

[8] S. Khazaei, M. Kiaei, Distinguishing attack on the-ABC v.1 and v.2. eS-
TREAM, ECRYPT Stream Cipher Project, Report 2005/061, 2005.

[9] M. Mastsui, Linear cryptanalysis method for DES cipher, Advances in
Cryptology-EUROCRYPT’93, Springer-Verlag, pp.12-16, 1994.

[10] W. Meier and O. Staffelbach, Fast Correlation Attacks on Stream Ciphers,
Journal of Cryptology 1(3), pp. 159-176, 1989.

[11] H. J. Wu, B. Preneel, Cryptanalysis of ABC v2,
http://www.ecrypt.eu.org/stream/abc.html, Feb of 2006.

[12] A. C. Yao, Theroy and Applications of Trapdoor Functions, In Proc. of the
23th Annu. IEEE Symp. on Foundations of Computer Science, pp. 80–91,
1982.

[13] K. Zeng, H. Huang, On the linear syndrome method in cryptanalysis, Ad-
vances in Cryptology-EUROCRYPT’88,Berlin: Springer-Verlag, pp.469-478,
1990.

[14] K. Zeng, C. H. Yang, T. R. N. Rao. An improved linear syndrome algorithm
in cryptanalysis with application, Advances in Cryptology-EUROCRYPT’90,
Springer-Verlag, 34-47, 1991.

15

