
Factoring Class Polynomials over the Genus Field

Marcel Martin
m.martin@ellipsa.net

November 23, 2006

Abstract

Aimed at computer scientists, this how to describes a method (with detailed algorithms) that
allows to compute the factors of a class polynomial over the genus field. Though we only
consider polynomials having real factors over the genus field, it is not difficult to adapt the
method so that it works when these factors are complex.

Keywords: complex multiplication, genus field, class polynomial, factoring.

Introduction 2
Step 1: Factoring the discriminant 5
Step 2: The basis 7
Step 3: List of primitive reduced forms 9
Step 4: Weighting the genera 12
Step 5: The sign matrix 17
Step 6: Floating point approximations of the Qi(x)’s 20
Step 7: The coefficient matrix 21
Step 8: Working over Z/p fields 23
Conclusion / Acknowledgments 27
References 28

1

Introduction

Primality proving... Cryptography... As soon as we want to build an elliptic curve with a known
order over a Z/p field using the so-called complex multiplication, we have to find a root of a class
polynomial. Depending on the degree of this polynomial (and on the size of p), this operation
might be very lengthy. More concretely, suppose we have to find a root of H−12932920(x) (the
degree of this polynomial is 832). Suppose now we can compute a factor of degree 13 more
quickly than we can compute the whole polynomial H−D(x) itself... Of course, it would make
the task easier. But how to do that?

Let h(−D) and g(−D), denoted h and g in the sequel, be the class number and the genus number
associated with a negative fundamental discriminant −D. The class number h is the number of
primitive reduced forms (a, b, c) of discriminant −D = b2 − 4ac. The genus number g is the
number of genera associated with −D (see, for instance, [3, pp. 221–230] or [4, pp. 53–63]).

Our goal is to build the factors of a class polynomial H−D(x) [1] (when, of course, these factors
exist, i.e., when g > 1 [2]) over a compositum of quadratic fields called the genus field. The genus
field, denoted GK in the sequel, is a field extension of K = Q(

√
−D) [3]. More precisely, we

want to obtain

H−D(x) =
g−1∏
i=0

Qi(x)

with Qi(x) =
1
g

h
g
−1∑

j=0

(
g−1∑
k=0

Si,k Bk Mk,j

)
xj + x

h
g (1)

where S is a sign matrix (its coefficients are ±1), B is a basis and M is a coefficient matrix (each
of its column vectors consists of the coefficients of an integer of GK multiplied by g). Note that
the matrix S and the basis B could be merged into a single matrix equal to S ∗ Diag(B). They
are not mainly for computational convenience: not only does the representation used minimize the
memory needed to store the values, but B is not the same over Z/p as it is over C whereas S is
the same for both cases.

Let HK be the splitting field of H−D(x) [4]. H−D(x) ∈ Z[x] being monic and irreducible, GK

being a subfield of HK such that [HK : GK] = h/g, not only the factorization (1) exists when
g > 1 but the Qi(x)’s are conjugate polynomials over GK , i.e., the g coefficients of degree j of
the Qi(x)’s are the g conjugates of an integer of GK .

Before going further, let us see the purpose of the sign matrix S with a small (and artificial)
example.
Let L = Q(

√
2,
√

3). L is a field extension of Q containing all the numbers of the form u = a +
b
√

2+c
√

3+d
√

6 with a, b, c, d ∈ Q. By definition, the Galois group Gal(L/Q) consists of all the
field automorphisms σ :L→ L that fix Q, i.e., such that σ(q) = q for any q ∈ Q. L being a Galois

1In the sequel, H−D(x) is used to denote any class polynomial, i.e., not the Hilbert ones only.
2If g = 1, there is a single factor, H−D(x) itself.
3The field GK is the maximal unramified extension of K which is an Abelian extension of Q.
4The field HK , called the Hilbert class field of K, is the maximal unramified Abelian extension of K.

2

extension (because L is the splitting field of the separable polynomial (x2−2)(x2−3) ∈ Q[x] [5]),
there are exactly [L : Q] = 4 such automorphisms:

σ0, the identity map on L,
σ1, that takes

√
2 to −

√
2 and that fixes

√
3,

σ2, that takes
√

3 to −
√

3 and that fixes
√

2,
σ3, equal to σ1◦ σ2.

With these σk’s, we can compute the conjugates of u. We get [6]

σ0(u) = a + b
√

2 + c
√

3 + d
√

6,

σ1(u) = a− b
√

2 + c
√

3− d
√

6,

σ2(u) = a + b
√

2− c
√

3− d
√

6,

σ3(u) = a− b
√

2− c
√

3 + d
√

6.

In a matrix form, with u = (a, b, c, d), i.e., with u expressed with respect to the basis B′ =
(1,
√

2,
√

3,
√

6), the previous equalities can be written
σ0(u)
σ1(u)
σ2(u)
σ3(u)

 =


+ + + +
+ − + −
+ + − −
+ − − +

 ∗


1 0 0 0
0
√

2 0 0
0 0

√
3 0

0 0 0
√

6

 ∗


a
b
c
d

 .

Clearly, the line vectors of the sign matrix, let us call it S′, consist of all the conjugates of the
number (1, 1, 1, 1) expressed with respect to the basis B′. Though the representation depends on
the basis used, these lines represent the field automorphisms of L/Q [7] and they allow to compute
any of the conjugates of any number (a, b, c, d) ∈ L, expressed with respect to B′, simply by doing
dot products. For instance, with v = (1,−2, 3,−4),

σ2(v) = (+,+,−,−)× (1,−2, 3,−4) = (1,−2,−3, 4).

In the equation (1), the matrix S represents the field automorphisms of GK/K [8] exactly like S′

represents the ones of L/Q. Being given w = (a0, . . . , ag−1), a number of GK expressed with
respect to the basis B, the matrix S allows to get all of the conjugates of w.

As numeric examples, all along the eight steps, we will use the data obtained with −D = −2184
for which we have h = 24 and g = 8.

5A polynomial is separable if it has distinct roots.
6Instead of σ(x), mathematicians often make use of σx or even of xσ .
7In fact, the line vectors of S′, with the dot product operation, are a group isomorphic to Gal(L/Q) (we obviously

have S′
σi
× S′

σj
= S′

σi◦σj
for any σi, σj ∈ Gal(L/Q)).

8 It should be noted that Gal(GK/K) is not a subset (let alone a subgroup) of Gal(HK/K). As a matter of
fact, Gal(HK/GK) being a normal subgroup of Gal(HK/K), Gal(GK/K) is isomorphic to the quotient group
Gal(HK/K)/Gal(HK/GK) or, equivalently, to GalK(H−D(x))/GalGK (Qi(x)).

3

Notation

Z – the (rational) integers.

Q – the rational numbers.

R – the real numbers.

C – the complex numbers.

⊕ denotes the xor (bitwise exclusive or) operator.
For instance, 5⊕ 9 = 12, i.e., 0101⊕ 1001 = 1100 with a binary representation.

∼= means “is isomorphic to”.

(ai) denotes the tuple (a0, . . . , ai, . . .).

(ai)N denotes the tuple (a0, . . . , aN−1).

× denotes the dot product operator.
For instance, (ai)N × (bi)N = (ai ∗ bi)N .

4

Step 1: Factoring the discriminant

A negative discriminant −D is fundamental if D is a positive integer not divisible by the square
of an odd prime and if D ≡ 3 (mod 4) or D ≡ 4, 8 (mod 16).

First of all, we have to compute a small table F containing all the prime factors, possibly signed,
of −D. For this operation −1 is regarded as a prime factor. Though this is not the way it is
implemented, the factorization is simple: for all q’s that are odd prime factors of D, we put
q∗ = (−1)(q−1)/2 q in F , then we divide −D by the product of all the q∗ ’s and the remaining
even factor, if any, is divided by 4 and added to F .

For computational convenience, the first part of F , denoted F− in the sequel, contains the negative
factors in decreasing order (this part is never empty); the second part contains the positive factors
in increasing order.

Algorithm 1.1 (Factoring the discriminant)
input

D, absolute value of a fundamental discriminant (small integer)
outputs

F , array of factors (small integers)
g, genus number associated with −D (small integer)

begin
i← 0
j ← 0
if (D mod 16) = 4 then

F0 ← −1
i← 1
D ← D/4

elseif (D mod 32) = 8 then
F0 ← −2
i← 1
D ← D/8

elseif (D mod 32) = 24 then
T0 ← 2 // T is a temporary table
j ← 1
D ← D/8

endif
while D > 1 do // here D is a square-free product of odd primes

p← smallest prime factor of D
D ← D/p
if (p mod 4) = 3 then

Fi ← −p
i← i + 1

else
Tj ← p

5

j ← j + 1
endif

endwhile
for k from 0 to j − 1 do Fi+k ← Tk // append T to F
g ← 2i+j−1

end

With −D = −2184, we have −D = −8 ∗ −3 ∗ −7 ∗ 13, so we get F = (−2,−3,−7, 13) and
g = 8.

Using F , we can describe the genus field of K = Q(
√
−2184) = Q(

√
−546) as an extension of

Q, GK = Q(
√
−2,
√
−3,
√
−7,
√

13), as well as an extension of K, GK = K(
√
−3,
√
−7,
√

13).
In the latter case, there are several possible descriptions. In the sequel, we implicitly make use of
GK = K(

√
6,
√

14,
√

13) (the real extensions allow us to build a basis B, for GK/K, that has no
imaginary parts).

6

Step 2: The basis

In order to express the integers of GK as tuples of coefficients, we need a basis. For our purposes,
this basis consists of the square roots of the g possible positive products

∏Size(F)−1
i=0 F ei

i where
the ei exponents are in {0, 1}.

The possible values of the exponents suggest to use the binary representation of a small integer
to code them. In the algorithm 2.1, we use the local variable x. Since we only want the positive
products, we don’t take in account the values of x such that x mod 2Size(F−) has an odd Hamming
weight. With −D = −2184, we have F = (−2,−3,−7, 13), so, for instance, the integer x =
1011 represents the product F 1

0 ∗ F 1
1 ∗ F 0

2 ∗ F 1
3 = −2 ∗ −3 ∗ 1 ∗ 13 = 78.

Algorithm 2.1 (Computing the basis)
inputs

F , factors of −D (array of small integers)
g, genus number of −D (small integer)

output
A, dot square of the basis (array[g] of small integers)

begin
A0 ← 1
i← 1
for j from 2 to g + g − 1 do // j = 0 is done, j = 1 is useless

if the bit parity of (j mod 2Size(F−)) is even then
Ai ← 1
x← j
k ← 0
while x > 0 do

if odd(x) then Ai ← Ai ∗ Fk endif
x← x/2
k ← k + 1

endwhile
i← i + 1

endif
endfor

end

With F = (−2,−3,−7, 13), we get A = (1, 6, 14, 21, 13, 78, 182, 273) and the basis is B =
(1,
√

6,
√

14,
√

21,
√

13,
√

78,
√

182,
√

273).

It is not difficult to see that, with the composition law ⊗ defined as

Ai ⊗Aj =
Ai ∗Aj

gcd(Ai, Aj)2
, (2)

the set of the Ak values is a group isomorphic to (Z/2Z)t with t = log2(g). Moreover, due
to the one-to-one correspondence between the Ak’s and the exponents used to build them (these

7

exponents, with the ⊕ operation, are a subgroup of (Z/2Z)t+1 isomorphic to (Z/2Z)t), A is
ordered such that

Ai ⊗Aj = Ai⊕ j . (3)

Since Ai ∗Aj = (Ai ⊗Aj) ∗ gcd(Ai, Aj)2 and since D ≡ 0 (mod Ak), the equality (3) implies

Jacobi(Ai ∗Aj , n) = Jacobi(Ai⊕ j , n) (4)

for any n such that n > 1 and gcd(n, 2D) = 1.

Note that we could build A using the field description GK = K(
√

6,
√

14,
√

13) as a seed. First,
we would set A1 = 6, A2 = 14 and A4 = 13 (i.e., we would set all the A2i’s), then we would
use (3) in order to compute the other Ak’s. In the algorithm 2.1, we made use of the exponent
trick because, from a computational point of view, this is more efficient (especially when working
over Z/p fields as we will have to do at Step 8) but both methods are equivalent.

There are many ways to compute the bit parity of a small integer (as required by the algorithm 2.1).
In the software Primo [9] [10], we make use of the following assembler routine

function ParityEven(N: Longword):Boolean;

assembler; register; nostackframe;
asm

mov edx, eax // edx := N

shr eax, 16

xor eax, edx

xor al, ah

setpe al // the result is returned in al

end;

9Primo was the first ECPP implementation that built class polynomials (and factored them over the genus field) on
the fly.

8

Step 3: List of primitive reduced forms

A binary quadratic form is a polynomial ax2 + bxy + cy2 ∈ Z[x, y] denoted (a, b, c) for short. Its
discriminant is −D = b2 − 4ac.
A form is primitive if gcd(a, b, c) = 1. When its discriminant is negative, a form is positive defi-
nite if a > 0 and c > 0 and it is reduced if |b| ≤ a ≤ c and if b ≥ 0 whenever a = c or a = |b|.
The set of the h positive definite, primitive and reduced binary quadratic forms of negative dis-
criminant −D, with a law called composition of forms (see [2, pp. 247–249]) and denoted ◦, is a
commutative group called the class group and denoted C(−D) in the sequel. The principal form
is the identity element of C(−D). A form is ambiguous if it is its own inverse. The ambiguous
forms are of the types (a, 0, c), (a, a, c) or (a, b, a).

The algorithm 3.1 fills up a list L with (h + g)/2 positive definite, primitive and reduced forms
(a, b, c) of discriminant −D. There are g forms of L that are ambiguous. Since we only store
a form (a, b, c) and not its inverse (a,−b, c), the remaining (h − g)/2 forms are half of all the
non-ambiguous forms.

Algorithm 3.1 (Generating the forms)
input

D, absolute value of a fundamental discriminant (small integer)
outputs

g, genus number (small integer)
h, class number (small integer)
L, list of primitive reduced forms (a, b, c) (small integers)

b2 − 4ac = −D for each Li

begin
bmax←

⌊√
D/3

⌋
b← D mod 2
i← 0
if b = 0 then

q ← D/4
a← 1
s← 1
repeat

if (q mod a) = 0 then
Li ← (a, 0, q/a)
i← i + 1

endif
s← s + a
a← a + 1
s← s + a // s = a2

until s > q
b← 2

endif

9

g ← i
while b ≤ bmax do

a← b
s← a ∗ a
q ← (s + D) / 4
repeat

if (q mod a) = 0 then
c← q/a
Li ← (a, b, c)
i← i + 1
if (a = b) or (a = c) then g ← g + 1 endif

endif
s← s + a
a← a + 1
s← s + a // s = a2

until s > q
b← b + 2

endwhile
h← i + i− g

end

With −D = −2184, we obtain h = 24, g = 8, and the list of the table 1.

(a, b, c)
L0 (1, 0, 546)
L1 (2, 0, 273)
L2 (3, 0, 182)
L3 (6, 0, 91)
L4 (7, 0, 78)
L5 (13, 0, 42)
L6 (14, 0, 39)
L7 (21, 0, 26)
L8 (5, 4, 110)
L9 (10, 4, 55)
L10 (11, 4, 50)
L11 (22, 4, 25)
L12 (15, 6, 37)
L13 (17, 14, 35)
L14 (19, 18, 33)
L15 (23, 22, 29)

Table 1: List of forms

In our example, the ambiguous forms are all located at the beginning of the list L. This is not
always the case with other discriminants. The produced lists being sorted on b, ambiguous forms

10

of the kind a = b or a = c, if any, might be located anywhere.

Remark. To generate the primitive reduced forms one can also make use of the algorithm pro-
posed in [7, §A.13.2] but note that, instead of fundamental discriminants −D, they make use of
“reduced” discriminants −d that are equal to either −D or −D/4. The forms their algorithm pro-
duces are not always the same than the ones produced by the algorithm 3.1. With P1363 forms,
the discriminant −d is equal to b2 − ac, not to b2 − 4ac.
It is easy to get one value knowing the other one:
• if ((d mod 4) = 1) or ((d mod 4) = 2) then D ← d ∗ 4 else D ← d endif
• if (D mod 4) = 0 then d← D/4 else d← D endif

11

Step 4: Weighting the genera

An integer n is represented by a form (a, b, c) if ax2 + bxy + cy2 = n for some integers (x, y).
A genus is a set of forms. The principal genus, denoted G0(−D) (or simply G0), is the genus
containing the principal form. G0 is a subgroup of the class group C(−D) constituted of all the
“squares” (a, b, c) ◦ (a, b, c). The other genera are cosets of G0.
GK/K being an unramified and Abelian extension, the Artin symbol ((GK/K)/n), where n

is a fractional ideal of OK [10] prime to 2D, is an element of Gal(GK/K). Denoted ϕ in the
sequel, this symbol uniquely identifies the genus of a form and it can be represented with a tuple
of Size(F) signs (see [1, §4.2.2]) describing its action on the elements of GK .

For each form (a, b, c) of the list L, we compute an integer n such that n > 1, gcd(n, 2D) = 1
and n is represented by the form. With non-ambiguous forms, we compute n only for (a, b, c)
since n is also represented by (a,−b, c) [11]. Then we compute ϕ(a,b,c)

∼= (Jacobi(Fi, n)) and we
give it a weight w such that 0 ≤ w < g.

Algorithm 4.1 (Weighting the genera)
inputs

F , factors of −D (array of small integers)
g, genus number of −D (small integer)
h, class number of −D (small integer)
L, list of (h + g)/2 primitive reduced forms (3-tuples of small integers)

output
W , weights (array[(h + g)/2] of small integers)

begin
for i from 0 to (h + g) / 2− 1 do

n← integer such that n > 1, gcd(n, 2D) = 1 and n represented by Li

Wi ← 0
for j from Size(F)− 1 downto Size(F−) do

Wi ←Wi ∗ 2
if Jacobi(Fj , n) < 0 then Wi ←Wi + 1 endif

endfor
if Size(F−) > 1 then

u← Jacobi(F0, n)
for j from Size(F−)− 1 downto 1 do

Wi ←Wi ∗ 2
if Jacobi(Fj , n) 6= u then Wi ←Wi + 1 endif

endfor
endif

endfor
end

10Maximal order of K, OK =

(
Z[
√
−D/2], if D ≡ 0 (mod 4)

Z[(1 +
√
−D)/2], otherwise

.

11If n is represented by (a, b, c) with (x, y), it is represented by (a,−b, c) with (x,−y) or (−x, y).

12

In order to obtain the ϕ tuples, by using the Kronecker symbol (see [2, pp. 28–30] for a description
of this symbol) instead of the Jacobi symbol in the algorithm 4.1, we could avoid to compute the
integers n represented by the forms since, for any i such that 0 ≤ i < Size(F),

ϕ(a,b,c), Fi
=



Kronecker(Fi, a), if


((Fi = −1) and (a is odd))
or
(a 6= 0 (mod Fi))

Kronecker(Fi, c), if


((Fi = −1) and (c is odd))
or
(c 6= 0 (mod Fi))

.

The form (a, b, c) being primitive, if Fi = −1, a and c cannot be both even, and, if Fi 6= −1, a
and c cannot be both divisible by Fi.

(a,b,c) (x,y) n J(-2,n) J(-3,n) J(-7,n) J(13,n) weight
L0 (1, 0, 546) (1, 1) 547 + + + + 0
L1 (2, 0, 273) (1, 1) 275 + − + − 5
L2 (3, 0, 182) (1, 1) 185 + − − + 3
L3 (6, 0, 91) (1, 1) 97 + + − − 6
L4 (7, 0, 78) (1, 1) 85 − + + − 7
L5 (13, 0, 42) (1, 1) 55 − + − + 1
L6 (14, 0, 39) (1, 1) 53 − − + + 2
L7 (21, 0, 26) (1, 1) 47 − − − − 4
L8 (5, 4, 110) (1, 0) 5 − − − − 4
L9 (10, 4, 55) (0, 1) 55 − + − + 1
L10 (11, 4, 50) (1, 0) 11 + − + − 5
L11 (22, 4, 25) (0, 1) 25 + + + + 0
L12 (15, 6, 37) (0, 1) 37 − + + − 7
L13 (17, 14, 35) (1, 0) 17 + − − + 3
L14 (19, 18, 33) (1, 0) 19 + + − − 6
L15 (23, 22, 29) (1, 0) 23 − − + + 2

Table 2: List of weighted forms

With F = (−2,−3,−7, 13), the algorithm 4.1 produces the values reported in the table 2. In this
table, we see that each genus (the forms having the same weight w are in the same genus) contains
exactly one ambiguous form. This is not always the case with other discriminants. In fact, there
is one ambiguous form in each genus if and only if h/g is odd (see [11, p. 44]).

The table 3 shows how the genera are weighted. In the table 2, the first Jacobi symbol column,
which is always associated with F0, is combined (dot product) with all other columns associated
with negative Fi’s. If, for some discriminant, only F0 is negative, then the first column is simply
ignored. Doing so, the J(∗, n)’s of the table 3 header are always (Jacobi(A2i , n)) with the A2i’s
computed at Step 2. Then we replace the value x of each cell by (1− x)/2 and we get the binary

13

expressions of the weights. More concisely, we define the weight w of each genus as being

w =
log2(g)−1⊕

i=0

(
1− Jacobi(A2i , n)

2
∗ 2i

)
. (5)

J(6,n) J(14,n) J(13,n) bit #0 bit #1 bit #2 weight
+ + + 0 0 0 0
− + − 1 0 1 5
− − + 1 1 0 3
+ − − 0 1 1 6
− − − 1 1 1 7
− + + 1 0 0 1
+ − + 0 1 0 2
+ + − 0 0 1 4

Table 3: Weights

It is clear that we can simplify the algorithm 4.1 by computing directly the Jacobi symbol values
with the A2i’s rather than with the Fi’s. Note that, in that case, we can no more make use of the
Kronecker symbol as explained above (even with a primitive form (a, b, c), (gcd(A2i , a) 6= 1) and
(gcd(A2i , c) 6= 1) may simultaneously occur).

Algorithm 4.2 (Weighting the genera)
inputs

A, “squared” basis (array[g] of small integers)
g, genus number of −D (small integer)
h, class number of −D (small integer)
L, list of (h + g)/2 primitive reduced forms (3-tuples of small integers)

output
W , weights (array[(h + g)/2] of small integers)

begin
for i from 0 to (h + g) / 2− 1 do

n← integer such that n > 1, gcd(n, 2D) = 1 and n represented by Li

j ← g
Wi ← 0
while j > 1 do

j ← j/2
Wi ←Wi ∗ 2 + 1− Jacobi(Aj , n)

endwhile
Wi ←Wi/2

endfor
end

14

Let Gw be the genus of weight w and let Nw be any n such that gcd(n, 2D) = 1, n > 1 and n is
represented by any form of Gw. For instance, using the table 2, N3 could be equal to 185 or to 17
(as a matter of fact, Nw represents an equivalence class containing an infinity of values).

Using Nw, let us rewrite (5) as

w =
log2(g)−1⊕

i=0

(
1− Jacobi(A2i , Nw)

2
∗ 2i

)
. (6)

We get

Jacobi(A2i , N2j) =

{
−1, if i = j

+1, if i 6= j
, (7)

Jacobi(Ai, Nm ∗Nn) = Jacobi(Ai, Nm⊕n) (8)

and
Jacobi(Ai, Nj) = Jacobi(Aj , Ni). (9)

(6)⇒ (7)
It is sufficient to replace w by 2j in (6). All the terms of the right hand side should be equal to 0
except the one for which i = j.

(6)⇒ (8)
One can use the fact that (6) induces the group isomorphism ϕi ◦ ϕj = ϕi⊕ j (each ϕ being
indexed with its associated weight) [12]. Since ϕm

∼= (Jacobi(Fi, Nm))0≤i<s with s = Size(F),
it comes

(ϕm ◦ ϕn = ϕm⊕n)⇒
((Jacobi(Fi, Nm))s × (Jacobi(Fi, Nn))s = (Jacobi(Fi, Nm⊕n))s)⇒
((Jacobi(Fi, Nm) ∗ Jacobi(Fi, Nn))s = (Jacobi(Fi, Nm⊕n))s)⇒
((Jacobi(Fi, Nm ∗Nn))s = (Jacobi(Fi, Nm⊕n))s).

Now, Ai being either equal to 1 or to the product of some Fi’s ...

(6)⇒ (9)
Let Ji,k be equal to Jacobi(A2k , Ni) (for instance, in the table 3, (J5,0, J5,1, J5,2) = (−,+,−))
and let us rewrite (6) as

i =
log2(g)−1⊕

k=0

(
2k ∗ (1− Ji,k)/2

)
.

12Using the representation with tuple of signs, one can easily show that, with the dot product operation, the ϕ’s
are a group isomorphic to (Z/2Z)t with t = log2(g). Though each of the g different ϕ’s has t + 1 signs, the
product of the signs of any ϕ is always equal to + (because the product of the Fi’s is equal to −D or to −D/4 and
Jacobi(−D, Nw) = 1 for any w).

15

Since A0 = 1, we obviously have A2k∗α = Aα
2k whenever α ∈ {0, 1}. Using this, as well as the

previous equality and the equality (4), we get

Jacobi(Ai, Nj) = Jacobi
(
A⊕log2(g)−1

k=0 (2k∗(1−Ji,k)/2)
, Nj

)
=

log2(g)−1∏
k=0

Jacobi
(
A2k∗(1−Ji,k)/2, Nj

)

=
log2(g)−1∏

k=0

Jacobi
(
A

(1−Ji,k)/2

2k , Nj

)

=
log2(g)−1∏

k=0

Jacobi (A2k , Nj)
(1−Ji,k)/2

=
log2(g)−1∏

k=0

J
(1−Ji,k)/2
j,k

and, since α(1−β)/2 = β(1−α)/2 always holds with (α, β) ∈ {±1}2, the result follows.

Remark. With any form fi ∈ Gi and any form fj ∈ Gj , the composed form (fi ◦ fj) is in Gi⊕ j

(because ϕi ◦ ϕj = ϕi⊕ j).

16

Step 5: The sign matrix

Let u = (1, 1, . . . , 1) be an integer of GK expressed with respect to the basis B. As said in the
Introduction, the line vectors of the matrix S are equal to the conjugates of u, i.e., they are equal
to {ϕw(u)}0≤w<g (recall that ϕw is an element of Gal(GK/K)).

ϕw being the map that sends
√

Fi to Jacobi(Fi, Nw) ∗
√

Fi for all i ∈ 0..Size(F)− 1, we know
its action on any

√
Ak. It comes

ϕw(u) = (Jacobi(A0, Nw), Jacobi(A1, Nw), . . . , Jacobi(Ag−1, Nw)).

Clearly, due to (9), (Sw = ϕw(u)) ⇒ (S is symmetric). So, building S is straightforward. We
set the table 4 using our example −D = −2184. The most left column of the table contains the
weights w. The four next columns reproduce the ϕw tuples obtained at Step 4. Except for A0 = 1,
the sign matrix (the 8 ∗ 8 matrix on the right of the table) was obtained by means of dot products.
For instance, the column A5 = 78 = −2 ∗ −3 ∗ 13 is simply the product of the columns −2, −3
and 13.

w −2 −3 −7 13 1 6 14 21 13 78 182 273
0 + + + + + + + + + + + +
1 − + − + + − + − + − + −
2 − − + + + + − − + + − −
3 + − − + + − − + + − − +
4 − − − − + + + + − − − −
5 + − + − + − + − − + − +
6 + + − − + + − − − − + +
7 − + + − + − − + − + + −

Table 4: Sign matrix

The sign matrix has an important property: g ∗ S−1 = tS (the transposed of S).
1. Since the lines of S represent the conjugates of u = (1, 1, . . . , 1) in GK , their sum is equal to
Trace(u)GK/K = (g, 0, . . . , 0).
2. Jacobi(Ai ∗Aj , Nk) = Jacobi(Ai⊕ j , Nk) (see Step 2).
So, if ci,j is a cell of tS ∗ S, we have

ci,j =
g−1∑
k=0

tSi,k ∗ Sk,j =
g−1∑
k=0

Sk,i ∗ Sk,j =
g−1∑
k=0

Jacobi(Ai ∗Aj , Nk)

=
g−1∑
k=0

Jacobi(Ai⊕ j , Nk) =

{
g, if i = j

0, if i 6= j
.

Thus tS ∗ S = g ∗ Ig.

The interesting consequence of the previous equality is that we have no matrix to inverse. The
inverse we will use at Step 7 is given for free.

17

At this point, we could build S using the ϕ tuples as explained above but we can do a little better.
With our orderings on the weights and on the Ak’s, the sign matrix we get is particularly nice: in
more to be symmetric, it depends only on g and it can be recursively built for any g starting with
S(1) = (+) for g = 1.

In order to prove the previous claim, it is sufficient to show that, with 0 ≤ i < 2k and 0 ≤ j < 2k,
we always have Si, j+2k = Si+2k, j = Si, j and Si+2k, j+2k = −Si, j for any k ≥ 0.

Identifying Sr, s with Jacobi(As, Nr) and using the equations (4) and (8), it comes

• Sr, s⊕ t = Jacobi(As⊕ t, Nr) = Jacobi(As ∗At, Nr) = Sr, s ∗ Sr, t,
• Sr⊕ s, t = Jacobi(At, Nr⊕ s) = Jacobi(At, Nr ∗Ns) = Sr, t ∗ Ss, t.

Since (0 ≤ a < 2b) ⇒ (a =
⊕b−1

n=0(αn ∗ 2n) with αn ∈ {0, 1}) (αb−1 . . . α1α0 is simply the
binary representation of a), using the equations (4), (7) and (8), we get

• Si, 2k = Jacobi(A2k , Ni) =
∏k−1

n=0 Jacobi(A2k , Nαn∗2n) = 1,
• S2k, j = Jacobi(Aj , N2k) =

∏k−1
n=0 Jacobi(Aαn∗2n , N2k) = 1,

• S2k, 2k = Jacobi(A2k , N2k) = −1.

Now, since (0 ≤ a < 2b)⇒ (a + 2b = a⊕ 2b), with the previous results, we finally get

• Si, j+2k = Si, j ∗ Si, 2k = Si, j ,
• Si+2k, j = Si, j ∗ S2k, j = Si, j ,
• Si+2k, j+2k = Si, j ∗ Si, 2k ∗ S2k, j ∗ S2k, 2k = −Si, j .

So, assuming the table A is built as explained at Step 2 and assuming the genera are weighted as
indicated at Step 4, for any discriminant −D, the sign matrix can be built with

S(2m) =
(

S(m) S(m)

S(m) −S(m)

)
and S(1) = (+).

Since we are interested in S(8) (for −D = −2184), here it is

S(8) =
(

S(4) S(4)

S(4) −S(4)

)
=


S(2) S(2) S(2) S(2)

S(2) −S(2) S(2) −S(2)

S(2) S(2) −S(2) −S(2)

S(2) −S(2) −S(2) S(2)

 =



+ + + + + + + +
+ − + − + − + −
+ + − − + + − −
+ − − + + − − +
+ + + + − − − −
+ − + − − + − +
+ + − − − − + +
+ − − + − + + −


Of course, the obtained matrix is equal to the sign matrix of the table 4.

18

Algorithm 5.1 (Computing the sign matrix)
input

g, genus number (small integer)
output

S, sign matrix (array[g,g] of small integers (±1))
begin

S0,0 ← 1
k ← 1
while k < g do

for i from 0 to k − 1 do
for j from 0 to k − 1 do

Si+k, j ← Si, j

Si, j+k ← Si, j

Si+k, j+k ← −Si, j

endfor
endfor
k ← k ∗ 2

endwhile
end

Note that Si, j = (−1)W (i,j) where W (i, j) is the Hamming weight of (i∧j) [13]. It is not difficult
to show it since, with 0 ≤ i < 2k and 0 ≤ j < 2k, we always have
• W (i + 2k, j) = W (i, j + 2k) = W (i, j),
• W (i + 2k, j + 2k) = W (i, j) + 1.

13The symbol ∧ indicates the bitwise and operator.

19

Step 6: Floating point approximations of the Qi(x)’s

In order to compute a class polynomial, the best known method consists in computing floating
point approximations of its roots and to use them to build the polynomial (see [5, §8] for a compa-
rison between different methods). Though it is impossible to know in advance the exact precision
required, there are rules to overestimate it. For the class invariants described in [7, §A.13.3] (these
invariants are based on the Weber functions f, f1 and f2), we use the rules proposed in [8, §4].

Li (a,b,c) Associated root
L0 (1, 0, 546) +33012526.575181343490717679407 . . .

...

L11 (22,±4, 25) +0.078563664817619751654349053359 . . .
±0.53094269739398157019503618033 . . . i

...

Table 5: Roots

We compute the roots associated with all the forms of the list L. Then, we build g polyno-
mials Tk(x), of degree h/g, by regrouping the roots according to the genus of their associa-
ted forms. These polynomials, that always have real coefficients [14], are stored in an array
T [0..g − 1, 0..h/g − 1]. We don’t store the leading coefficients of the polynomials since they
are always equal to 1. In the array T , the line vector T [k, . . .] contains the coefficients of the
polynomial built with the roots associated with the forms of Gk. For instance, with−D = −2184,
using the roots associated with the three forms of G0 (see Table 5), we get

T0(x) = T0,0 + T0,1 x + T0,2 x2 + x3

where

T0,0 = −9509997.6729469079588896213936 . . .
T0,1 = +5187170.4333430205234837861004 . . .
T0,2 = −33012526.732308673125957182715 . . .

Note that the choice of Gi to get the roots of Ti(x) is somewhat arbitrary. The use of the sign
matrix S, as it is described at Step 5, implies that we have to associate the sequences

(Gi, Gi⊕1, . . . , Gi⊕(g−1)) 7→ (T0(x), T1(x), . . . , Tg−1(x)) [15]

for some i ∈ 0..g − 1. But we can take any i. The g possible choices lead to g different permuta-
tions of the Tk(x)’s, i.e., to g different matrices M in the equation (1). For instance, if G0 7→ T0(x)
leads to M (0) then Gk 7→ T0(x) (or, equivalently, G0 7→ Tk(x)) leads to M (k) = Diag(Sk)∗M (0),
where Diag(Sk) is the diagonal matrix built with the (k+1)-th line vector of S (this line represents
the field automorphism ϕk with which we have Qk(x) = ϕk(Q0(x))).

14Assuming that, like here, we use a class invariant such that two conjugate roots are associated with two forms
belonging to a same genus. With, for instance, the double η invariants of A. Enge and R. Schertz [6], this is not always
the case.

15This is a consequence of both Galois Theory and Class Field Theory.

20

Step 7: The coefficient matrix

When expressed with respect to a basis B as computed at Step 2, the integers of GK have coeffi-
cients [16] that are not in Z but in (1

g)Z, so we can write them as 1
g

∑g−1
i=0 aiBi where the ai’s are

in Z. It is the reason why there is a 1
g factor in the equation (1). The column vectors of M are

coefficients of integers of GK multiplied by g so that they are integers and not fractions.

Identifying the coefficients (except the leading ones) of the factors Qi(x) with the array T com-
puted at Step 6, let us rewrite the equation (1) in a matrix form. It comes

1
g
∗ S ∗ Diag(B) ∗M = T

1
g
∗M = Diag(B)−1 ∗ S−1 ∗ T

M = Diag(B)−1 ∗ tS ∗ T (using g ∗ S−1 = tS)

and, since we are working with floating point approximations and not with exact values, we finally
get

Mi,j = Round

(
1
Bi

g−1∑
k=0

Sk,i Tk,j

)

Algorithm 7.1 (Computing the matrix M)
inputs

C, basis over C (inversed, i.e., Ci = 1/
√

Ai) (array[g] of big reals)
g, genus number (small integer)
h, class number (small integer)
S, sign matrix (array[g,g] of small integers (±1))
T , matrix computed at Step 6 (array[g,h/g] of big reals)

output
M , coefficient matrix (array[g,h/g] of big integers)

begin
for i from 0 to g − 1 do

for j from 0 to h/g − 1 do
x← T0, j // we know that S0, i = 1
for k from 1 to g − 1 do x← x + Sk, i ∗ Tk, j endfor
Mi, j ← Round(x ∗ Ci)

endfor
endfor

end

Of course, all the operations with the floating point numbers x and Ci’s should be done using the
precision found at Step 6.

16The Qi(x) polynomials having real coefficients, we only need the real integers of GK , so, since the basis B has
no imaginary parts, the coefficients of these integers are in K ∩ R, i.e., they are real.

21

With our example, −D = −2184, we get a matrix M equal to

−9509688 5187192 −33012360
−3882456 2117808 −13477368
−2541664 1386432 −8823008
−2075184 1131936 −7203888
−2637584 1438560 −9155984
−1076832 587328 −3737952
−704952 384496 −2447064
−575568 313920 −1998000


Here, even if we did not multiply (implicitly) the coefficients by g, they would have been integers
since they are all divisible by g = 8 but this is not always the case with other discriminants.

At this point, we have all we need in order to express the Qi(x)’s of (1). For instance

Q4(x) =
1
8

2∑
j=0

(
7∑

k=0

S4,k Bk Mk,j

)
xj + x3

= Q4,0 + Q4,1 x + Q4,2 x2 + x3

where

Q4,0 =− 1188711− 485307
√

6− 317708
√

14− 259398
√

21

+ 329698
√

13 + 134604
√

78 + 88119
√

182 + 71946
√

273

Q4,1 = + 648399 + 264728
√

6 + 173304
√

14 + 141492
√

21

− 179820
√

13− 73416
√

78− 48062
√

182− 39240
√

273

Q4,2 =− 4126545− 1684671
√

6− 1102876
√

14− 900486
√

21

+ 1144498
√

13 + 467244
√

78 + 305883
√

182 + 249750
√

273

Remark. The Qi(x) polynomials being conjugate over GK , to quickly get any coefficient Qk,j

from Qi,j (expressed as tuples of coefficients with respect to the basis B), it is sufficient to make
the dot products Qi,j×Si×Sk where Sn is the (n+1)-th line vector of the matrix S. In fact, due to
the ordering we are using since the beginning, we can also compute it with Qk,j = Qi,j × Si⊕ k.
For instance,

Q3,0 = Q4,0 × S7

= Q4,0 × (+,−,−,+,−,+,+,−)
= (−1188711, 485307, 317708,−259398,−329698, 134604, 88119,−71946)

and, finally,

Q3,0 =− 1188711 + 485307
√

6 + 317708
√

14− 259398
√

21

− 329698
√

13 + 134604
√

78 + 88119
√

182− 71946
√

273.

22

Step 8: Working over Z/p fields

The factorization (1) is also valid over any Z/p field assuming p is a prime such that gcd(p, 2D) =
1 and 4p = x2 + Dy2 for some (x, y) ∈ Z2.
In the sequel, we will use the prime p = 14184462 + 2184 ∗ 8092832

4 = 358099677116323 to go on
with our example −D = −2184.

Computing the basis over Z/p is not as straightforward as computing it over C. Due to the way
we compute it, we have to count the number of negative factors, except F0, used for each Bi and
to apply the rule

√
−1 ∗

√
−1 = −1 in order to select the right root.

Algorithm 8.1 (Computing the basis over Z/p)
input

F , factors of −D (array of small integers)
g, genus number of −D (small integer)
p, odd prime such that 4p = x2 + Dy2 for some (x, y) ∈ Z2 (big integer)

output
B, basis over Z/p (array[g] of big integers)

begin
for i from 0 to Size(F)− 1 do

Ri ← Sqrt(Fi) mod p // any of the 2 possible roots is ok
endfor
B0 ← 1
i← 1
for j from 2 to g + g − 1 do

if the bit parity of (j mod 2Size(F−)) is even then
Bi ← 1
x← j
k ← 0
n← 0
while x > 0 do

if odd(x) then
Bi ← (Bi ∗Rk) mod p
// count the negative factors but F0

if (k > 0) and (k < Size(F−)) then n← n + 1 endif
endif
x← x/2
k ← k + 1

endwhile
if odd(n/2) then Bi ← p−Bi endif // “negate” the root
i← i + 1

endif
endfor

end

23

With −D = −2184 and p = 358099677116323, we obtain the basis
B0 = 1
B1 = 138579447850272
B2 = 195858486873162
B3 = 206988590703680
B4 = 345798145618681
B5 = 203082986192536
B6 = 316722244248718
B7 = 289064347795142

At Step 7, we implicitly multiplied the coefficients of the matrix M by g. We can now cancel this
operation, done in order to get integers and not fractions, by dividing the coefficients of the basis
by g modulo p. We divide the coefficients of the basis and not the ones of the matrix M simply
because there is generally less work to do (the basis and the matrix contain respectively g and h
coefficients and we always have g ≤ h).

Algorithm 8.2 (Dividing the basis by g modulo p)
inputs

B, basis over Z/p (array[g] of big integers)
g, genus number of −D (small integer)
p, odd prime (big integer)

output
B, basis over Z/p divided by g modulo p (array[g] of big integers)

begin
k ← g
while k > 1 do

for i from 0 to g − 1 do
if odd(Bi) then Bi ← Bi + p endif
Bi ← Bi/2

endfor
k ← k/2

endwhile
end

With −D = −2184 and p = 358099677116323, we obtain
B0 = 223812298197702
B1 = 17322430981284
B2 = 114007230138226
B3 = 25873573837960
B4 = 267037066400037
B5 = 25385373274067
B6 = 308165038368332
B7 = 304707801311635

24

At last!

Algorithm 8.3 (Computing one factor of H−D(x) over Z/p)
inputs

B, basis over Z/p divided by g modulo p (array of big integers)
g, genus number of −D (small integer)
h, class number of −D (small integer)
i, index of the wished factor (small integer in 0..g − 1)
M , coefficient matrix (array[g,h/g] of big integers)
p, odd prime such that 4p = x2 + Dy2 for some (x, y) ∈ Z2 (big integer)
S, sign matrix (array[g,g] of small integers (±1))

output
Q, polynomial of degree h/g, factor of H−D(x) over Z/p

begin
Qh/g ← 1
for j from 0 to h/g − 1 do

Qj ← B0 ∗M0, j // we know that Si, 0 = 1
for k from 1 to g − 1 do Qj ← Qj + Si, k ∗Bk ∗Mk, j endfor
Qj ← Qj mod p

endfor
end

Called with i running through 0..7, the algorithm 8.3 produces the following Qi(x) polynomials
modulo p

Q0(x) = x3 + 349411664140631 x2 + 236118815942277 x + 121688504601529
Q1(x) = x3 + 168320784679033 x2 + 99689071127264 x + 274269421593516
Q2(x) = x3 + 280369563518210 x2 + 206498150577522 x + 114371282890567
Q3(x) = x3 + 43259257063184 x2 + 213239562466426 x + 19424900783462
Q4(x) = x3 + 142239847045079 x2 + 70353977608422 x + 104800940627475
Q5(x) = x3 + 337091300899581 x2 + 128594135500790 x + 251124699723139
Q6(x) = x3 + 221712819911823 x2 + 91086453164646 x + 217088197522536
Q7(x) = x3 + 248093115311714 x2 + 28718870148814 x + 329630751213380

And each of these 8 polynomials is a factor, over Z/p, of

H−2184(x) = x24 − 33012360 x23 − 5499066444 x22 − 38191097592 x21

−860945475774 x20 + 2860345968552 x19 + 7390791596004 x18

+18071068156632 x17 + 49152082910703 x16 + 73526500711728 x15

+80616276081768 x14 + 104922626382288 x13 + 137712813694364 x12

+104922626382288x11 + 80616276081768 x10 + 73526500711728 x9

+49152082910703 x8 + 18071068156632 x7 + 7390791596004 x6

+2860345968552x5 − 860945475774 x4 − 38191097592 x3

−5499066444 x2 − 33012360 x + 1

25

Of course, when only one factor of H−D(x) is needed (for instance, in the context of an ECPP
implementation), by merging the algorithms 7.1 and 8.3, we compute and make use of the coeffi-
cients of the matrix M without storing them. Note that, when g > h/g, it is better to divide by g
not the basis but the coefficients (up to the degree h/g − 1) of the returned polynomial.

Algorithm 8.4 (Computing a factor of H−D(x) over Z/p without matrix M)
inputs

B, basis over Z/p divided by g modulo p (array of big integers)
C, basis over C (inversed, i.e., Ci = 1/

√
Ai) (array of big reals)

g, genus number of −D (small integer)
h, class number of −D (small integer)
p, odd prime such that 4p = x2 + Dy2 for some (x, y) ∈ Z2 (big integer)
S, sign matrix (array[g,g] of small integers (±1))
T , matrix computed at Step 6 (array[g,h/g] of big reals)

output
Q, polynomial of degree h/g, factor of H−D(x) over Z/p

begin
Qh/g ← 1
for j from 0 to h/g − 1 do

Qj ← 0
for i from 0 to g − 1 do

x← T0, j // we know that S0, i = 1
for k from 1 to g − 1 do x← x + Sk, i ∗ Tk, j endfor
Qj ← Qj + Bi ∗ Round(x ∗ Ci)

endfor
Qj ← Qj mod p

endfor
end

26

Conclusion

We have detailed a method that is not difficult to implement and that works well in practice [17].
This method can be seen as an extension, working when h ≥ g [18], of the method of D. Bernardi
as it is presented in [9, §6.2.3].

The only other method (that works when h ≥ g) we are aware of is the one proposed by A. Atkin
and F. Morain in [1, §7.3]. Having never implemented it, the only thing we can say is that it seems
a little more complicated than the one we have presented. According to the authors, one has to
solve a generic system of order g (this is a linear system).

Acknowledgments

We are grateful to Michael Scott for his helpful comments on a preliminary version of this how to.

First publication (draft 0.1) February 20, 2006
Copyright c© 2006, Marcel Martin

17Our ECPP implementation, the software Primo [10], makes use of it since now five years.
18The method of D. Bernardi only works when h = g, i.e., it only works with 56 discriminants (counting the ones

such that g > 1) called Euler numbers or idoneal numbers (numeri idonei).

27

References

[1] A. O. L. ATKIN, F. MORAIN, Elliptic curves and primality proving, in Math. Comp. 61,
203, July 1993, pp. 29-68.
http://www.lix.polytechnique.fr/˜morain/Articles/ecpp.ps.gz

[2] H. COHEN, A Course in Computational Algebraic Number Theory. Graduate Texts in
Mathematics, 3rd ed., Springer 1996.

[3] H. COHN, Advanced Number Theory, Dover Publications Inc., New York, 1980.

[4] D. COX, Primes of the form x2 + ny2, John Wiley & Sons, Inc., 1989.

[5] A. ENGE, The complexity of class polynomial computations via floating point approxi-
mations, Preprint, 2006.
http://www.lix.polytechnique.fr/Labo/Andreas.Enge/vorabdrucke/class.pdf

[6] A. ENGE, R. SCHERTZ, Constructing elliptic curves over finite fields using double eta-
quotients, in Journal de la Théorie des Nombres de Bordeaux #16, pp. 555-568, 2004.
http://almira.math.u-bordeaux.fr/jtnb/2004-3/pages555-568.pdf

[7] IEEE P1363 / D8 (Draft version 8). Standard Specifications for Public Key Cryptography.
Annex A (informative). Number-Theoretic Background.
http://www.informatik.tu-darmstadt.de/TI/Veroeffentlichung/Artikel/

Kryptographie/PublicKeyAllgemein/

[8] E. KONSTANTINOU, Y. STAMATIOU, C. ZAROLIAGIS, On the Use of Weber Polyno-
mials in Elliptic Curve Cryptography in Public Key Infrastructure: First European PKI
Workshop, Research and Applications - EuroPKI 2004, LNCS 3093, Springer, pp. 335–349,
2004.
http://students.ceid.upatras.gr/˜konstane/papers/europki2004-weber-poly.

pdf

[9] F. MORAIN, Implementation of the Atkin-Goldwasser-Kilian Primality Testing Algo-
rithm, RR #911, INRIA, October 1988.
http://www.lix.polytechnique.fr/Labo/Francois.Morain/Articles/INRIA-RR911.

ps.gz

[10] Primo - ECPP implementation.
http://www.ellipsa.net/

[11] J. ROBERTSON, Computing in Quadratic Orders, 2006.
http://hometown.aol.com/jpr2718/

28

http://www.lix.polytechnique.fr/~morain/Articles/ecpp.ps.gz
http://www.lix.polytechnique.fr/Labo/Andreas.Enge/vorabdrucke/class.pdf
http://almira.math.u-bordeaux.fr/jtnb/2004-3/pages555-568.pdf
http://www.informatik.tu-darmstadt.de/TI/Veroeffentlichung/Artikel/Kryptographie/PublicKeyAllgemein/
http://www.informatik.tu-darmstadt.de/TI/Veroeffentlichung/Artikel/Kryptographie/PublicKeyAllgemein/
http://students.ceid.upatras.gr/~konstane/papers/europki2004-weber-poly.pdf
http://students.ceid.upatras.gr/~konstane/papers/europki2004-weber-poly.pdf
http://www.lix.polytechnique.fr/Labo/Francois.Morain/Articles/INRIA-RR911.ps.gz
http://www.lix.polytechnique.fr/Labo/Francois.Morain/Articles/INRIA-RR911.ps.gz
http://www.ellipsa.net/
http://hometown.aol.com/jpr2718/

