
Malicious KGC Attack in Certificateless Cryptography

Man Ho Au1, Jing Chen2, Joseph K. Liu3, Yi Mu1, Duncan S. Wong2?, and Guomin Yang2

1 Centre for Information Security Research
School of Information Technology and Computer Science

University of Wollongong
Wollongong, Australia

{mhaa456,ymu}@uow.edu.au
2 Department of Computer Science

City University of Hong Kong
Hong Kong, China

{jingchen,duncan,csyanggm}@cs.cityu.edu.hk
3 Department of Computer Science

University of Bristol
Bristol, UK

liu@cs.bris.ac.uk

Abstract. Identity-based cryptosystems have an inherent key escrow issue, that is, the Key
Generation Center (KGC) always knows user secret key. Thus, if the KGC is malicious, it
can always impersonate the user. Certificateless cryptography, introduced by Al-Riyami and
Paterson in 2003, is intended to solve this problem. However, in all the previously proposed
certificateless schemes, it is always assumed that the malicious KGC starts launching attacks
(so-called Type II attacks) only after it has generated a master public/secret key pair honestly.
In this paper, we propose new security models that remove this assumption for both certificate-
less signature and encryption schemes. Under the new models, we show that some previously
proposed certificateless encryption/signature schemes still have the key escrow problem, while
some other schemes do not. We also give new proofs for the schemes in the latter case.

1 Introduction

Certificateless cryptography, introduced by Al-Riyami and Paterson in 2003 [1], is intended to solve
the key escrow problem which is inherent in identity-based (ID-based) cryptography [18,7], while at
the same time, eliminate the use of certificates as in the conventional Public Key Infrastructure (PKI),
which is generally considered to be costly to use and manage.

In a certificateless cryptosystem, a Key Generation Center (KGC) is involved in issuing user partial
key to user whose identity is assumed to be unique in the system. The user also independently generates
an additional user public/secret key pair. Cryptographic operations can then be performed successfully
only when both the user partial key and the user secret key are known. Knowing only one of them
should not be able to impersonate the user, that is, carrying out any cryptographic operations as the
user. There are two types of attacks that are generally considered in certificateless cryptography:

Type I - Key Replacement Attack. A third party tries to impersonate a user after compromising
the user secret key and/or replacing the user public key with some value chosen by the third party.
However, it does not know the user partial key.

Type II - Malicious KGC Attack. The KGC, who knows the partial key of a user, is malicious
and tries to impersonate the user. However, the KGC does not know the user secret key or being
able to replace the user public key.

? The author was supported by a grant from CityU (Project No. 7001844).

2 Man Ho Au, Jing Chen, Joseph K. Liu, Yi Mu, Duncan S. Wong, and Guomin Yang

A defense against Type II attacks is for solving the key escrow issue that is an inherent problem in
ID-based cryptography. That is, even if the KGC is malicious, the KGC should not be able to perform
any cryptographic operation as the user, provided that the KGC cannot replace the user public key or
find out the user secret key, but the KGC knows the user partial key. In addition to this, even though
we say that the KGC is malicious, we actually assume that the KGC is passive, in the sense that the
KGC would not actively replace the user public key (which would have been published on a bulletin
board in some real implementation) or corrupt the user secret key. For certificateless encryption as
example, the malicious KGC may passively eavesdrop the ciphertexts sent to a user and try to decrypt
them using its knowledge of the user partial key. In the rest of the paper, we refer to this KGC as
malicious-but-passive KGC.

Of course, if the malicious KGC is active, that is, the KGC not only knows the user partial key but
is also able to replace user public key or compromise user secret key, then the KGC is always able to
impersonate the user. This situation also happens in PKI. A malicious and active CA (Certification
Authority) can do similar damage to a user in PKI by generating a certificate on a contradictory
public key for impersonating the user. With this comparison in mind, for certificateless cryptography,
we target to alleviate damage caused by malicious-but-passive KGC rather than eliminate any trust
to the KGC.

Now if we take a look at all previously proposed certificateless encryption and signature schemes
and adversarial models [1,20,21,19,2,6,3,9,15,22,12,17,10], we will notice that all of them have an
implicit assumption that this malicious-but-passive KGC always generates its master public/secret
key pair honestly according to scheme specification. In other words, all of them assume that the KGC
is originally benign, but once after setting up its own key pair, it suddenly becomes malicious and
gets ready to impersonate users.

It seems to be more natural if we consider this malicious-but-passive KGC to have already been
malicious at the very beginning of the setup stage of the system. This KGC may generate its master
public/secret key pair maliciously so that it can launch the Type II attack more easily in the later stage
of the system. The KGC may even have already targeted a particular victim, say the president, when
choosing its master key pair. For example, in the Al-Riyami-Paterson certificateless encryption scheme
[1], we find that the KGC can have its master key pair specifically generated so that all the encrypted
messages for the president can also be decrypted by the KGC. This is because the KGC is able to
derive the user secret key generated by the president once after the president has published the user
public key (details are in Sec. 3 of this paper). In addition, this specifically generated master public
key is computationally indistinguishable from an honestly generated master public key. Therefore, it
is infeasible for the president to find out that he is the target of the Type II attack.

1.1 Our Results

In the example above, the KGC can find out the user secret key if the KGC maliciously generates its
master public key which is computationally indistinguishable from a key generated honestly according
to the master key generation specification of the underlying scheme. This means once we remove
the assumption that the KGC must generate its master key pair honestly, the key escrow problem
reappears in some of the previously proposed certificateless schemes.

In this paper, we propose to capture the malicious-but-passive KGC attacks by specifying extension
and new Type II adversarial models. The new models (one for certificateless encryption schemes and
another one for signature schemes) remove the assumption that the KGC must be benign during the
master key generation step and when performing user partial key generation. The models also allow
the KGC to choose a user to attack during the master key generation stage. We also adopt the notion of
simplifying the definition and strengthening the adversarial models of certificateless signature schemes
due to Hu, Wong, Zhang and Deng [14] to simplify the definition and strengthen the two adversarial
models for certificateless encryption schemes. Our simplified definition of certificateless encryption
schemes is composed of five algorithms, while all previous definitions require seven algorithms. The
unique feature of certificateless encryption is also maintained, that is, the partial key generation and

Malicious KGC Attack in Certificateless Cryptography 3

the user public/secret key pair generation can be carried out by the KGC and the user independently.
Our new adversarial models also allow the adversary to compromise the target user secret key in Type
I model and to replace non-target users’ public keys in Type II model. These capabilities are not
captured in previously proposed models for certificateless encryption schemes.

We show that the schemes proposed in [1] are vulnerable to malicious-but-passive KGC attacks
(i.e. Type II attack) in our new models. The same attack technique can also be applied to schemes in
[15,16] as they share the same key structure and generation procedures as that of [1]. On the other
side, we give new proofs for the generic certificateless signature scheme proposed by Hu, Wong, Zhang
and Deng [14] and the generic encryption scheme proposed by Libert and Quisquater in [17] to show
its security under our new models.

1.2 Related Work

Certificateless encryption schemes and signature schemes were first defined and proposed by Al-
Riyami and Paterson [1] in 2003. Each of the definitions for certificateless encryption and signature
schemes consists of seven algorithms. This definition approach has then been adopted by all others
[20,21,19,2,6,3,9,15,22,12,17,10] until a simplified definition for certificateless signature schemes was
proposed by Hu, Wong, Zhang and Deng in [14] this year4. Their definition consists of only five algo-
rithms and is shown to be more versatile than the previous one while maintaining the unique feature of
certificateless cryptography, that is, the user public/secret key pair can be generated independently by
the user even before obtaining the user partial key from the KGC. In Sec. 2, we adopt their approach
and give a five-algorithm definition for certificateless encryption schemes.

In [3], Baek et al. proposed a certificateless encryption scheme that fits in a slightly different model
that does not maintain the unique feature of certificateless cryptosystems. In their scheme, the user
has to obtain a partial public/private key pair first before being able to generate a user public key.
In this paper, we focus ourselves on constructing secure schemes which support the unique feature of
certificateless cryptography.

On the security of certificateless encryption schemes and signature schemes, various kinds of secu-
rity models have been defined. In [17,14,10], nice survey and discussions can be found and therefore,
we skip the details in this paper, and only emphasize that all the current security models have the
assumption that the KGC starts launching Type II attacks only after it has honestly generated a
master public/secret key pair. In Sec. 2, we propose new Type II adversarial models for capturing
malicious-but-passive KGC attacks that remove this assumption.

Paper organization. In Sec. 2, the simplified five-algorithm definition for certificateless signature
schemes of [14] is reviewed and by following the approach, a new five-algorithm certificateless en-
cryption scheme is defined. New security models for capturing malicious-but-passive KGC are also
proposed. In Sec. 3, malicious-but-passive KGC attacks against some previously proposed schemes
are described. In Sec. 4, the Hu-Wong-Zhang-Deng generic certificateless signature construction [14]
is reviewed. A new proof is given to show its security under our new security model. In Sec. 5, the
Libert-Quisquater generic certificateless encryption scheme [17] is also proven secure in our new cer-
tificateless encryption security model.

2 Definitions and Security Models

In this section, we first give the definitions of certificateless encryption and certificateless signature
schemes. Then, we propose security models for both types of the schemes. The models corresponding
to Type II attacks will capture those launched by the malicious-but-passive KGC.
4 Recently, Dent in [10] also mentioned that the Set-Secret-Value and Set-Public-Key algorithms in the original

seven-algorithm definition can be replaced with a single Set-User-Keys algorithm. The approach is the same
as one of the two simplifications proposed by Hu, Wong, Zhang and Deng in [14] and can reduce the number
of algorithms in the certificateless encryption definition to six.

4 Man Ho Au, Jing Chen, Joseph K. Liu, Yi Mu, Duncan S. Wong, and Guomin Yang

In the definitions, we adopt the notion introduced by Hu, Wong, Zhang and Deng in [14] for
defining schemes as sets of five algorithms rather than seven. As shown in [14], the new approach of
defining certificateless signature schemes is more versatile than the original seven-algorithm definition
[1,20,15], and still maintains the unique feature of certificateless signature schemes, that is, user
partial key generation and user key generation can be done independently by the KGC and the user,
respectively. In particular, a user with identity ID can generate a user public key denoted by upkID

even before the KGC generates a user partial key denoted by partial keyID for the user. In the
following, we apply their notion on defining a certificateless encryption scheme.

As the certificateless signature and certificateless encryption schemes are sharing the same set of
key generation algorithms, in the following, we first define these key generation algorithms, and then
define the specific algorithms for each of signature and encryption schemes.

A certificateless cryptosystem has three key generation algorithms: MasterKeyGen, PartialKeyGen,
UserKeyGen. All of them are polynomial-time and may be randomized.

1. MasterKeyGen (Master Key Generation): On input 1k where k ∈ N is a security parameter, it
generates a master public/secret key pair (mpk, msk).

2. PartialKeyGen (User Partial Key Generation): On input msk and user identity ID ∈ {0, 1}∗, it
generates a user partial key partial key.

3. UserKeyGen (User Key Generation): On input mpk and user identity ID, it generates a user
public/secret key pair (upk, usk).

A certificateless signature (CL-SIG) scheme has two additional polynomial-time algorithms:
CL-Sign and CL-Ver.

1. CL-Sign (Signature Generation): On input user secret key usk, user partial key partial key and
message m, it generates a signature σ.

2. CL-Ver (Signature Verification): On input mpk, user identity ID, user public key upk, message
m and signature σ, it returns 1 or 0 for accept or reject, respectively.

Both of them may be randomized but the second one is usually not, but for generality, we do not
mandate that the verification algorithm must be deterministic. Boneh and Franklin [8] described a
generic method for converting any ID-based encryption scheme into a standard signature scheme. The
transformed signature scheme has a randomized verification algorithm. When this standard signature
scheme is used in the construction of a CL-SIG scheme, for example, in the Hu-Wong-Zhang-Deng
generic CL-SIG construction, the CL-SIG verification algorithm will also be randomized.

Signature Correctness. For all k ∈ N, m ∈ {0, 1}∗, ID ∈ {0, 1}∗, we require that if (mpk, msk) ←
MasterKeyGen(1k), partial key ← PartialKeyGen(msk, ID), (upk, usk) ← UserKeyGen(mpk, ID), and
σ ← CL-Sign(usk, partial key,m), then CL-Ver(mpk, ID, upk, m, σ) = 1.

A certificateless encryption (CL-ENC) scheme has two polynomial-time algorithms in ad-
dition to the three key generation algorithms: CL-Encrypt and CL-Decrypt. Similar to the case of
signature schemes, both of these algorithms may be randomized but usually the second one is not.

1. CL-Encrypt: On input mpk, user identity ID, user public key upk, message m, it returns a
ciphertext c.

2. CL-Decrypt: On input user secret key usk, user partial key partial key and ciphertext c, it returns
a message m.

Cipher Correctness. For all k ∈ N, m ∈ {0, 1}∗, ID ∈ {0, 1}∗, if (mpk, msk) ← MasterKeyGen(1k),
partial key ← PartialKeyGen(msk, ID), (upk, usk) ← UserKeyGen(mpk, ID), then we require that
m← CL-Decrypt(usk, partial key,CL-Encrypt(mpk, ID, upk, m)).

Case of invalid input: For each of the algorithms above, we implicitly assume that there is
a domain for each of its inputs if it is not specified. An input is said to be valid if it falls in its

Malicious KGC Attack in Certificateless Cryptography 5

corresponding domain. For example, the domain of msk is defined by the set of all possible output
values of master secret key of MasterKeyGen for each given security parameter k ∈ N. Hence if any
of the inputs of an algorithm above is invalid, then the algorithm will output a symbol ⊥ indicating
that the execution of the algorithm is halted with failure.

In practice, the KGC (Key Generation Center) could be the one who performs MasterKeyGen and
PartialKeyGen. The master public key mpk will then be published and assumed that everyone in the
system has got a legitimate copy of it. The partial key is also assumed to be issued securely to the
intended user so that no one except the intended user can get the partial key. For each user in the
system, the user is supposed to be able to carry out UserKeyGen, and also CL-Sign and CL-Ver for
CL-SIG or CL-Encrypt and CL-Decrypt for CL-ENC. It is the user’s responsibility to forward the user
public key upk to the intended signature verifier(s)/encryptor(s) and announces the user’s identity.

In the rest of the paper, we denote the user partial key of a user with identity ID as partial keyID

and the user public/secret key pair as (upkID, uskID).

2.1 Adversarial Model for Certificateless Signature (CL-SIG)

There are two types of adversaries,AI andAII . AdversaryAI simulates attacks when the adversary (or
signature forger) compromises the user secret key usk or replaces the user public key upk. However,
AI is not given the master secret key msk nor getting access to the user partial key partial key.
Adversary AII simulates attacks when the adversary controls msk and partial key. But AII cannot
get access to usk nor replace upk. Different from [14] and all other old models [1,20,15], in our model,
AII controls the key generation of the KGC while in all the previous models, the adversary is not
allowed to do so. Informally, AI models a third party launching key replacement attack and AII

models attacks launched by a malicious-but-passive KGC.
There are five oracles which can be accessed by the adversaries according to the game specifi-

cations which will be given shortly. For simulating singing oracle, we assume that the game simula-
tor/challenger keeps a history of “query-answer” while interacting with adversaries. The five oracles
are:

1. CreateUser: On input an identity ID ∈ {0, 1}∗, if ID has already been created, nothing is to
be carried out. Otherwise, the oracle generates partial keyID ← PartialKeyGen(msk, ID) and
(upkID, uskID) ← UserKeyGen(mpk, ID). In this case, ID is said to be created. In both cases,
upkID is returned.

2. RevealPartialKey: On input an identity ID, it returns partial keyID if ID has been created.
Otherwise, a symbol ⊥ is returned.

3. RevealSecretKey: On input an identity ID, it returns the corresponding user secret key uskID if
ID has been created. Otherwise, a symbol ⊥ is returned.

4. ReplaceKey: On input an identity ID and a user public/secret key pair (upk∗, usk∗), the original
user public/secret key pair of ID is replaced with (upk∗, usk∗) if ID has been created. Otherwise,
no action will be taken.

5. Sign: On input an identity ID and a message m ∈ {0, 1}∗, the signing oracle proceeds in one of
the three cases below.
(a) A valid signature σ is returned if ID has been created but the pair (upkID, uskID) has not

been replaced. The signature σ is valid if CL-Ver(mpk, ID, upkID,m, σ) = accept.
(b) If ID has not been created, a symbol ⊥ is returned.
(c) If the pair (upkID, uskID) has been replaced with, say (upk∗, usk∗), then the oracle returns

σ ← CL-Sign(usk∗, partial keyID,m) if σ is valid. If σ is not valid, the oracle searches over the
“query-answer” list for a user secret key usk′ such that σ′ ← CL-Sign(usk′, partial keyID,m)
is valid, and returns σ′. However, if such a usk′ cannot be found, the oracle runs a special
“knowledge extractor” to obtain a valid signature and returns it to the adversary. Note that
the construction of knowledge extractor is specific to each CL-SIG scheme.

6 Man Ho Au, Jing Chen, Joseph K. Liu, Yi Mu, Duncan S. Wong, and Guomin Yang

Remark 1: When querying the oracle ReplaceKey, usk∗ can be an empty string. In this case, it means
that the user secret key is not provided. If usk∗ is an empty string and the original user secret key of
an identity ID is replaced with usk∗, then the empty string will be returned if the RevealSecretKey
oracle is queried on ID. Also note that even if usk∗ is not an empty string, it does not mean that usk∗

is the corresponding secret key of upk∗. Hence as mentioned, the signature generated by the signing
oracle Sign using usk∗ for case (c) may not be valid.

Remark 2: The definition of signing oracle above follows that original idea of the model for CL-ENC
in [1], that is, an adversary is expected to obtain valid decryption from a decryption oracle, even after
the corresponding user public key has been replaced. This means that the simulator of the model/game
should be able to correctly answer decryption queries for public keys where the corresponding secret
keys may not be known to the simulator. To do this, a scheme-specific knowledge extractor [1] will
be used by the game simulator to decrypt a requested ciphertext if the corresponding decryption key
cannot be found in the list of “query-answer”. In our signing oracle, case (c) above, we adopt this
idea.

Remark 3: We should also note that case (c) of the signing oracle is a very strong security requirement.
In addition, it is unclear how realistic this requirement is. As later adopted and argued by many
other researchers [20,14,22,6,9,10], the game simulator is not required to provide valid signatures or
correct decryption of ciphertexts (for CL-ENC schemes) after the corresponding user public key has
been replaced. Instead, they only require that valid signatures are generated or ciphertexts can be
decrypted if the user public key has been replaced while the corresponding user secret key has also
been supplied by the adversary. We recommend that if this strong security requirement is not needed,
one may use the signing oracle defined in [14] to replace the definition above.

We define two games, one for AI and the other one for AII . Each of the games will capture the
notion of existential unforgeability against chosen message attack in the sense of [13]. The game for
AI below is the same as the corresponding game defined in [14], except that the signing oracle is
specified differently.

Game Sign-I: Let SI be the game simulator/challenger and k ∈ N be a security parameter.
1. SI executes MasterKeyGen(1k) to get (mpk, msk).
2. SI runs AI on 1k and mpk. During the simulation, AI can make queries onto CreateUser,

RevealPartialKey, RevealSecretKey, ReplaceKey and Sign.
3. AI is to output (ID∗,m∗, σ∗).
AI wins if CL-Ver(mpk, ID∗, upkID∗ ,m∗, σ∗) = accept for some created ID∗ and the oracle Sign
has never been queried with (ID∗,m∗). One additional restriction is that AI has never queried
RevealPartialKey(ID∗) to get the user partial key partial keyID∗ .

A CL-SIG scheme is secure in Game Sign-I if for all probabilistic polynomial-time (PPT) algorithm
AI , it is negligible for AI to win the game. Note that AI may have queried RevealSecretKey(ID∗)
and got the user secret key uskID∗ or queried ReplaceKey(ID∗, ·, ·) and replaced the user public key
upkID∗ before generating a forgery (ID∗,m∗, σ∗).

The following game is for AII . It captures malicious-but-passive KGC attacks.

Game Sign-II: Let SII be the game simulator and k ∈ N be a security parameter. There are two
phases of interactions between SII and adversary AII .
Phase 1. SII executes AII on 1k and a special tag master-key-gen. AII returns a master public

key mpk. Note that AII is not allowed to query any oracle in this phase5.
Phase 2. This phase starts when SII invokes AII again with 1k but with another tag forge.

During the simulation, AII can make queries onto the oracles RevealSecretKey, ReplaceKey
and Sign as described above. AII can also make queries to CreateUser. However, the oracle is
changed as follows.

5 If the security analysis is done under the random oracle model [5], then the adversary is always allowed to
access the specified random oracles of the underlying scheme at any stage of the game.

Malicious KGC Attack in Certificateless Cryptography 7

CreateUser: On input an identity ID ∈ {0, 1}∗ and a user partial key partial keyID,
if ID has already been created, nothing is to be carried out. Otherwise, the oracle
generates (upkID, uskID) ← UserKeyGen(mpk, ID). In this case, ID is said to be
created. Also, SII associates partial keyID and (upkID, uskID) to ID. In both cases,
upkID is returned.

Note that oracle RevealPartialKey is not accessible. This oracle is no longer needed because all
the user partial keys are now generated by AII .
At the end of this phase, AII is to output a triple (ID∗,m∗, σ∗).

AII wins if CL-Ver(mpk, ID∗, upkID∗ ,m∗, σ∗) = accept for some created ID∗ and the oracle Sign
has never been queried with (ID∗,m∗). One additional restriction is that AII has never queried
RevealSecretKey(ID∗) to get the user secret key uskID∗ nor queried ReplaceKey(ID∗, ·, ·) to replace
the user public key upkID∗ .

A CL-SIG scheme is secure in Game Sign-II if for all PPT algorithm AII , it is negligible for AII to
win the game. Note that AII in the game above can not only generate master key pair maliciously,
but also generate user partial key maliciously.

2.2 Adversarial Model for Certificateless Encryption (CL-ENC)

Similar to the adversarial model for CL-SIG above, there are two types of adversaries, BI and BII .
Adversary BI models a third party launching key replacement attack and BII models attacks launched
by a malicious-but-passive KGC.

There are five oracles which can be accessed by the adversaries. They are CreateUser, RevealPar-
tialKey, RevealSecretKey, ReplaceKey and Decrypt. For simulating the decryption oracle Decrypt, we
assume that the game simulator keeps a history of “query-answer” while interacting with adversaries.
The first four oracles are defined in the same way as that in Sec. 2.1. Below is the definition of oracle
Decrypt.

Decrypt: On input an identity ID and a ciphertext c, the decryption oracle proceeds in one
of the three cases below.
1. A message m is returned if ID has been created while the pair (upkID, uskID) has not

been replaced. In this case, m← CL-Decrypt(uskID, partial keyID, c).
2. If ID has not been created, a symbol ⊥ is returned.
3. If the user public/secret key pair of ID has been replaced with, say (upk∗, usk∗), then the

oracle returns m← CL-Decrypt(usk∗, partial keyID, c) if m 6= ⊥. However, if m = ⊥, the
oracle searches over the “query-answer” list for a user secret key usk′ such that m′ 6= ⊥
where m′ ← CL-Decrypt(usk′, partial keyID, c), and returns m′. If such a usk′ cannot be
found, the oracle runs a special “knowledge extractor” to decrypt the ciphertext c and
returns the message to the adversary. Note that the construction of knowledge extractor
is specific to each CL-ENC scheme.

Again, as a remark similar to Remark 3 on page 6, if we do not require the simulator to correctly
answer a query to Decrypt oracle when the user secret key is not known, we should modify item 3 of
Decrypt oracle above accordingly.

Game Enc-I: Let CI be the game challenger/simulator and k ∈ N be a security parameter.
1. CI executes MasterKeyGen(1k) to get (mpk, msk).
2. CI runs adversary BI on 1k and mpk. During the simulation, BI can make queries onto Cre-

ateUser, RevealPartialKey, RevealSecretKey, ReplaceKey and Decrypt. At the end of this phase,
BI outputs two equal-length messages (M0,M1) and a target identity ID∗.

3. CI picks a bit b ∈ {0, 1} at random and gives a challenge ciphertext c∗ to BI where c∗ ←
CL-Encrypt(mpk, ID∗, upkID∗ ,Mb).

4. BI makes queries as in step 2. At the end of the game, BI outputs its guess b′ ∈ {0, 1}.

8 Man Ho Au, Jing Chen, Joseph K. Liu, Yi Mu, Duncan S. Wong, and Guomin Yang

BI wins if b′ = b. The restrictions are:
– BI has never queried RevealPartialKey(ID∗) to get the user partial key partial keyID∗ ; and
– BI has never queried Decrypt on the pair (ID∗, c∗).

A CL-ENC scheme is secure in Game Enc-I if for all probabilistic polynomial-time (PPT) algorithm
BI , it is negligible for BI to win the game.

Note that in Game Enc-I above, BI may have queried RevealSecretKey(ID∗) before any key
replacement queries made on ID∗. This adversarial capability has not been captured in any previous
Type II adversarial models for CL-ENC. In previous models, although the adversary corresponding
to BI is able to replace user public/secret key pairs, the adversary is not able to retrieve the ‘original’
user secret key generated by the honest user with identity ID∗.

Game Enc-II: Let CII be the game simulator and k ∈ N be a security parameter.
1. CII runs adversary BII on 1k and a special tag master-key-gen. BII returns a master public

key mpk. In this phase, BII is not allowed to query any oracle with one exception specified in
footnote 5 on page 6.

2. CII invokes BII again with 1k but with another tag choose. During the simulation, BII can
make queries onto the oracles RevealSecretKey, ReplaceKey and Decrypt as described above.
BII can also make queries to CreateUser as described in Game Sign-II. As in Game Sign-II,
oracle RevealPartialKey is not provided to the adversary as all the user partial keys are now
generated by the adversary. At the end of this phase, BII outputs two equal-length messages
(M0,M1) and a target identity ID∗.

3. CII picks a bit b ∈ {0, 1} at random and runs BII on input a challenge ciphertext c∗ and a tag
guess where c∗ ← CL-Encrypt(mpk, ID∗, upkID∗ ,Mb).

4. BII makes queries as in step 2. At the end of the game, BII outputs its guess b′ ∈ {0, 1}.
BII wins if b′ = b. The restrictions are:

– BII has never queried RevealSecretKey(ID∗) to get the user secret key uskID∗ ;
– BII has never queried ReplaceKey(ID∗, ·, ·) to replace the user public key upkID∗ ; and
– BII has never queried Decrypt on the pair (ID∗, c∗).

A CL-ENC scheme is secure in Game Enc-II if for all PPT algorithm BII , it is negligible for BII to
win the game.

In previous models corresponding to Game Enc-II, the adversary cannot replace the user public
key of any user in the system. In Game Enc-II above, we relax this restriction and allow the adversary
to access ReplaceKey as long as the user public key corresponding to ID∗ has never been replaced.

3 Malicious-but-passive KGC Attack

In [1], Al-Riyami and Paterson proposed a CL-ENC scheme and also a CL-SIG scheme. These schemes
share the same set of key generation algorithms, which we will show to be vulnerable to malicious-
but-passive KGC attack. In the following, we first review these schemes using the definitions in Sec. 2,
then we describe how the malicious-but-passive KGC attack works.

1. MasterKeyGen: On input 1k, choose a bilinear group pair (G1, G2) of prime order q with pairing
operation e : G1 × G1 → G2, where q is of k bits long. Choose a random generator g of G1.
Set the master secret key msk as s ∈R Z∗

q . Compute W = gs, and choose two hash functions
H1 : {0, 1}∗ → G1 and H2 : G2 → {0, 1}n, where n is the bit-length of message. The master
public key mpk is (G1, G2, e, g, W, H1,H2). For the signature scheme, an additional hash function
H3 : {0, 1}∗ ×G2 → Z∗

q is needed.
2. PartialKeyGen: On input s and user identity ID ∈ {0, 1}∗, compute QID = H1(ID) and output

user partial key partial keyID as DID = Qs
ID.

3. UserKeyGen: On input mpk and user identity ID, randomly select x ∈R Z∗
q , compute user secret

key uskID = Dx
ID, and set user public key upkID as (XID = gx, YID = W x).

Malicious KGC Attack in Certificateless Cryptography 9

In [1], a basic encryption system is first described, followed by a final system which possesses security
against chosen-ciphertext attack (CCA). The final system is obtained by transforming the basic one
using the Fujisaki-Okamoto conversion [11]. In the following, we only review their basic system since
the malicious-but-passive KGC attack to be described allows the KGC to compromise all the secret
information of a user, and therefore the attack can be applied directly to the final system.

– CL-Encrypt: On input mpk, user identity ID, user public key (XID, YID), message m ∈ {0, 1}n,
1. check that XID, YID ∈ G1 and the equality e(XID,W) = e(YID, g) holds, abort otherwise;
2. compute QID = H1(ID) and randomly choose r ∈R Z∗

q ; and
3. output the ciphertext c = 〈gr,m⊕H2(e(QID, YID)r)〉.

– CL-Decrypt: On input user secret key uskID = Dx
ID, user partial key partial keyID = DID and

ciphertext c = 〈U, V 〉, return a message m = V ⊕H2(e(uskID, U)).

– CL-Sign: On input user (with identity ID) secret key uskID = Dx
ID, user partial key DID, and

message m,
1. choose a random a ∈R Z∗

q , compute r = e(g, g)a;
2. compute v = H3(m, r) and U = (uskID)v

ga; and
3. output signature σ = 〈U, v〉.

– CL-Ver: On input mpk, identity ID, user public key (XID, YID), message m and signature σ,
1. Check that XID, YID ∈ G1 and the equality e(XID,W) = e(YID, g) hold, abort otherwise;
2. compute r = e(U, g)e(QID, YID)−v; and
3. check if v = H3(m, r) holds, output 1 for accept if yes and output 0 for reject otherwise.

Malicious-but-passive KGC Attack. We now show how a malicious-but-passive KGC can obtain
the user secret key of the victim user of the KGC’s choice. Also note that this attack is not captured
in the original security model in [1], but only in the models proposed in Sec. 2.

In order to obtain the user secret key of an arbitrarily chosen identity ID∗ (not necessarily to
be random), the KGC randomly chooses α ∈R Zq and computes g = H(ID∗)α. The rest follows the
original MasterKeyGen and PartialKeyGen.

Suppose the user public key published by the user with identity ID∗ is (XID∗ = gx∗ , YID∗ = gsx∗),
where x∗ ∈R Zq. From the user public key, the KGC can compute the user secret key by uskID∗ =
Y α−1

ID∗ . Since the user partial key is generated by the KGC, after obtaining the user secret key of the
victim, the KGC can then decrypt all the ciphertexts for or generate any signature on behalf of the
victim.

Several other certificateless cryptosystems [15,16], employing the same key structure as [1], are
also vulnerable to this attack.

4 Hu-Wong-Zhang-Deng Generic Certificateless Signature Scheme

In [14], Hu, Wong, Zhang and Deng proposed a generic CL-SIG construction (HWZD-CL-SIG scheme
for short), which is based on a standard signature scheme denoted by ΠSS = (SetupSS , SignSS , V erSS)
and an ID-based signature scheme denoted by ΠIBS = (SetupIBS ,ExtractIBS , SignIBS , V erIBS). The
HWZD-CL-SIG scheme is proven secure in the Type I and Type II games defined in [14] provided that
ΠSS is existentially unforgeable against chosen message attack (euf-cma) [13] and ΠIBS is existentially
unforgeable against chosen message and identity attack (euf-cma-ida) [4]. For detailed definitions of
ΠSS and ΠIBS , please refer to Appendix A.

If we replace the signing oracle defined in Sec. 2.1 with the signing oracle defined in [14], we can
see that our Game Sign-I (that is the Type I game) is identical to that in [14]. Hence HWZD-CL-
SIG scheme is secure in Game Sign-I provided that we use the signing oracle of [14]. Please refer
to Sec. 2.1 for more details on the difference between the signing oracle defined in Sec. 2.1 and the
signing oracle of [14]. On Type II game, different from that of [14], we also add the ingredient of
malicious-but-passive KGC attack in Game Sign-II. In the following, we review the HWZD-CL-SIG
scheme and show that it is secure in Game Sign-II provided that the signing oracle of [14] is used.

10 Man Ho Au, Jing Chen, Joseph K. Liu, Yi Mu, Duncan S. Wong, and Guomin Yang

(mpk, msk)←MasterKeyGen(1k)
Run (mpkIBS ,mskIBS)← SetupIBS(1k); and set mpk := mpkIBS and msk := mskIBS .

partial keyID ← PartialKeyGen(msk, ID)
Run uskIBS ← ExtractIBS(msk, ID); and set partial keyID := 〈uskIBS‖ID‖mpk〉.

(upkID, uskID)← UserKeyGen(mpk, ID)
Run (upkSS , uskSS)← SetupSS(1k); and set upkID := upkSS and uskID := 〈uskSS ‖ upkSS〉.

σ ← CL-Sign(uskID, partial keyID,m)
Run σSS ← SignSS(uskSS , m‖mpk‖ID‖upkSS); then
run σIBS ← SignIBS(uskIBS , m‖mpk‖ID‖upkSS‖σSS); and
set σ := 〈 σSS ‖ σIBS 〉.

1/0← CL-Ver(mpk, ID, upkID,m, σ)
Parse σ into 〈 σSS ‖ σIBS 〉;
run b1 ← V erIBS(mpk, ID, m‖mpk‖ID‖upkSS‖σSS , σIBS);
run b2 ← V erSS(upkSS , m‖mpk‖ID‖upkSS , σSS); and
set output to b1 ∧ b2.

Theorem 1. The HWZD-CL-SIG scheme is secure in Game Sign-II if the standard signature
scheme ΠSS is euf-cma secure and the signing oracle in Game Sign-II is replaced by the one defined
in [14].

Proof. We construct a PPT algorithm/forger SII which breaks the euf-cma security of the signature
scheme ΠSS by running AII and answering AII ’s queries as defined in Game Sign-II. Consider a
game for euf-cma [13] simulated by a simulator S ′. S ′ gives a challenge public key upk∗ to SII and
simulates a signing oracle with respect to upk∗. SII is to forge a message-signature pair such that the
signature is valid with respect to upk∗.

At the beginning of Game Sign-II, AII is executed and a master public key mpk is returned.
Note that AII may not run MasterKeyGen to get mpk. Below are the oracle simulations.

1. CreateUser: On input an identity ID and a user partial key partial keyID, SII executes SetupSS of
ΠSS to generate (upkSS , uskSS). SII returns upkSS as user public key upkID. SII also maintains
the restriction that each identity ID can only be created once. The above is carried out every
time when CreateUser is queried except one:

Suppose AII creates at most qc distinct identities. Among all the distinct identities, SII

randomly picks one, say the i-th query with identity ID∗, and answers the query with
upk∗, that is, SII sets upkID∗ := upk∗.

2. RevealSecretKey: If ID is not created, ⊥ is returned. Otherwise, if ID 6= ID∗, SII returns the
corresponding user secret key; if ID = ID∗, SII halts with failure.

3. ReplaceKey: If ID is not created, no action will be taken. Otherwise, if ID 6= ID∗, SII replaces its
copy of user public/secret key pair with the query inputs denoted by (upk∗, usk∗); if ID = ID∗,
SII halts with failure.

4. Sign: If ID 6= ID∗, SII executes CL-Sign according to the scheme specification. If ID = ID∗, SII

sets m′ := 〈 m ‖ mpk ‖ ID∗ ‖ upkID∗ 〉, queries the signing oracle of ΠSS with m′ to get σSS ,
and generates σIBS using SignIBS . Finally, 〈 σSS ‖ σIBS 〉 is returned.

When AII outputs a triple (ˆID, m̂, σ̂) where σ̂ = 〈 σ̂SS ‖ σ̂IBS 〉, SII outputs (m̂′, σ̂SS), where
m̂′ := 〈 m̂ ‖ mpk ‖ ˆID ‖ upk ˆID 〉. When AII halts, SII halts.

For the event that SII does not fail, we can see that the simulation is correct as all the operations
involving ΠIBS are carried out according to the scheme specification and the game specification, and
all the operations involving ΠSS are carried out accordingly as well provided that ID 6= ID∗. If ID∗ is
involved, the Sign query can still be performed correctly with the help of the signing oracle simulated
by S ′. In addition, the running time of SII is in polynomial of that of AII . If SII does not fail, all
queries simulated by SII will be indistinguishable from that of a real game.

If AII wins the game and ˆID = ID∗, this implies that oracle Sign has never been queried with
(ˆID, m̂). In addition, the corresponding user secret key of ID∗ is neither revealed via RevealSecretKey

Malicious KGC Attack in Certificateless Cryptography 11

nor replaced via ReplaceKey. Since ID∗ is randomly chosen among at most qc identities, the probability
that ˆID = ID∗ is at least 1/qc. Since the only case that the signing oracle simulated by S ′ may be
queried by SII is when simulating the Sign oracle. Without querying Sign with (ˆID, m̂), it is impossible
for SII to have queried the signing oracle simulated by S ′ with m′ where m′ is an encoding of the form
〈 m̂ ‖ mpk ‖ ˆID ‖ · · · 〉. Therefore, (m̂′, σ̂SS) must be a valid forgery with respect to the signature
scheme ΠSS under the public key upk∗. ut

5 Libert-Quisquater Generic Certificateless Encryption Scheme

Libert and Quisquater [17] proposed a generic CL-ENC construction that achieves security against
chosen ciphertext attack (CCA). The construction is based on conventional Public Key Encryption
(PKE) and ID-Based Encryption (IBE). In the following, we use ΠPKE = (KPKE , EPKE ,DPKE)
and ΠIBE = (SetupIBE ,ExtractIBE , EIBE ,DIBE) to denote a PKE scheme and an IBE scheme,
respectively. For their full definitions, please refer to Appendix A. We now review the Libert-Quisquater
generic CL-ENC scheme.

– MasterKeyGen: Run (mpkIBE ,mskIBE) ← SetupIBE(1k) and set master public/secret key pair
(mpk, msk) := (mpkIBE ,mskIBE).

– PartialKeyGen: Run uskIBE ← ExtractIBE(mskIBE , ID) and set partial keyID := uskIBE .
– UserKeyGen: Run (upkPKE , uskPKE)← KPKE(1k) and set (upkID, uskID) := (upkPKE , uskPKE).

The message space is defined as the message space of ΠPKE with respect to upkPKE . It is required
that the ciphertext space of ΠPKE with respect to upkPKE is a subset of the message space of
ΠIBE with respect to mpk.

– CL-Encrypt: To encrypt a message m under identity ID and upkID, the algorithm computes

C = EIBE
(
mpk, ID, EPKE(upkID,m)

)
– CL-Decrypt: To decrypt a ciphertext C, the algorithm computes

1. m̃← DIBE(partial keyID, ID, C). If m̃ = ⊥, output ⊥ and halt.
2. Otherwise, compute m′ ← DPKE(uskID, m̃) and output m′.

This scheme has been shown to be semantically secure (i.e. CPA secure) [17] provided that the un-
derlying ΠPKE and ΠIBE are CPA secure. The following theorem shows that it is also CPA secure
in our new models.

Theorem 2. The scheme described above is secure in Game Enc-I and Game Enc-II as defined
in Sec. 2 provided that the Decrypt oracle cannot be accessed.

Proof. Without access to the decryption oracle Decrypt, the games Game Enc-I and Game Enc-II
only capture the CPA (chosen plaintext attack) security.

We first show how an attacker CI uses adversary BI (i.e. Type I adversary) to break the CPA
security of ΠIBE6. CI obtains ID-based master public key mpkIBE from its challenger/simulator
SIBE . It forwards mpkIBE to BI as mpk. In CI ’s interaction with BI , we denote IDi as the ith

distinct identity among the queries made by BI . Let qID be the total number of distinct identities
involved among all the queries. CI randomly chooses an index ` ∈R {1, . . . , qID}. CI also simulates the
following oracles:

– CreateUser: on input IDi (assumed to be distinct), CI runs KPKE to generate user public/secret
key pair (upkPKE

i , uskPKE
i). If i 6= `, CI also queries SIBE for IDi’s user partial key uskIBE

i ,
otherwise, uskIBE

` is set to ⊥. CI stores (IDi, uskPKE
i , upkPKE

i , uskIBE
i) in its database and

returns upkPKE
i .

6 We omit the review of the security model of IBE schemes and refer readers to [7] for details.

12 Man Ho Au, Jing Chen, Joseph K. Liu, Yi Mu, Duncan S. Wong, and Guomin Yang

– RevealPartialKey: on input IDi, if i = `, CI aborts. Otherwise it looks up its database for IDi’s
user partial key uskIBE

i and forwards it to BI if there exists. Otherwise, ⊥ is returned.
– RevealSecretKey: on input IDi, CI returns uskPKE

i if there exists. Otherwise, ⊥ is returned.
– ReplaceKey: on input IDi and (upk∗, usk∗), CI replaces the user public key of IDi as upk∗ and

the user secret key as usk∗ if IDi has been created. Otherwise no action will be taken. Note that
usk∗ could be an empty string.

At the challenge step, BI outputs two equal-length messages (m0,m1) and a target identity ID∗. CI
aborts if ID∗ 6= ID`. Otherwise, it encrypts both m0 and m1 into c0 = EPKE(upkPKE

` ,m0) and
c1 = EPKE(upkPKE

` ,m1) which are sent to SIBE together with the target identity ID` as a challenge
request. The challenge c∗ = EIBE(mpk, ID`, cb), b ∈R {0, 1}, prepared by SIBE is relayed to BI .
BI ’s output b′ ∈ {0, 1} is output by CI as its guess for the hidden bit b of SIBE . If BI is successful,

CI is also successful. The latter has a probability of at least 1/qID to successfully guess the identity
on which BI produces its attack.

Next, we show that the scheme is CPA secure against Type II adversary (in particular, against
malicious-and-passive KGC). We describe how an attacker CII uses adversary BII to break the CPA
security of ΠPKE . In the first step of Game Enc-II, BII is executed and BII returns a master public
key mpk. Note that BII may not execute SetupIBE to generate mpk. CII then randomly selects an
index ` ∈R {1, . . . , qID}, where qID is the total number of distinct identities involved among all the
queries, and obtains a challenge public key pk∗ from its challenger/simulator SPKE . CII also simulates
the following oracles.

– CreateUser: on input IDi (assumed to be distinct) and user partial key partial keyi, if i = `,
it sets upkPKE

i := upk∗. Otherwise, it runs KPKE to generate (upkPKE
i , uskPKE

i) and stores
(IDi, partial keyi, upkPKE

i , uskPKE
i) in its database. upkPKE

i is returned.
– RevealSecretKey: on input IDi, if i = `, CII aborts. Otherwise it looks up its database for IDi’s

user secret key uskPKE
i and returns it to BII if there exists. Otherwise, ⊥ is returned.

– ReplaceKey: on input IDi and (upk∗, usk∗), if i = `, CII aborts. Otherwise, CII replaces the user
public key of IDi as upk∗ and the user secret key as usk∗ if IDi has been created. Otherwise no
action will be taken.

At the challenge step, BII outputs two messages (m0,m1) and a target identity ID∗. CII aborts if
ID∗ 6= ID`. Otherwise, it forwards (m0,m1) as a challenge query to SPKE which responds with
c∗ = EPKE(pk∗,mb) for a random bit b ∈R {0, 1}. This ciphertext is further encrypted into C∗ =
EIBE(mpk, ID∗, c∗) and is given as a challenge to BII .
BII ’s final result b′ ∈ {0, 1} is output by CII as a guess for the hidden bit of SPKE . If BII

is successful, CII is also successful. The latter has a probability of 1/qID to successfully guess the
identity on which BII produces its attack. ut

Let C = CL-EncryptCPA(mpk, ID, upkID,m; coin) be the CL-ENC algorithm described above,
where coin is the randomness involved in the generation of C. Let the corresponding decryption
algorithm be denoted by CL-DecryptCPA(uskID, partial keyID, C). To transform this CPA-secure CL-
ENC scheme to a CCA-secure one, the following modifications are proposed by Libert and Quisquater
[17], where the superscripts of CL-Encrypt and CL-Decrypt are replaced with CCA.

CL-EncryptCCA(mpk, ID, upkID,m) := CL-EncryptCPA(mpk, ID, upkID,m‖coin; r)

where r = H(m‖coin‖upkID‖ID) where H is a hash function. For security analysis, it is considered
to behave as a random oracle [5]. The decryption algorithm is modified as follows:

1. Compute (m′‖coin′)← CL-DecryptCPA(uskID, partial keyID, C).
2. If the output is ⊥, output ⊥ and halt. Otherwise, compute

C ′ ← CL-EncryptCPA(mpk, ID, upkID,m′‖coin′; H(m′‖coin′‖upkID‖ID)).

Malicious KGC Attack in Certificateless Cryptography 13

3. If C ′ = C, output m′, otherwise, output ⊥.

Corollary 1. The modification above is secure in Game Enc-I and Game Enc-II as defined in
Sec. 2 under the random oracle model.

It is straightforward by applying the proof of [17, Theorem 1].

Acknowledgements

We would like to thank Ron Steinfeld for his valuable comments and suggestions.

References

1. S. S. Al-Riyami and K. G. Paterson. Certificateless public key cryptography. In Proc. ASIACRYPT 2003,
pages 452–473. Springer-Verlag, 2003. LNCS 2894.

2. S. S. Al-Riyami and K. G. Paterson. CBE from CL-PKE: A generic construction and efficient schemes.
In 8th International Workshop on Theory and Practice in Public Key Cryptography (PKC 2005), pages
398–415. Springer, 2005. LNCS 3386.

3. J. Baek, R. Safavi-Naini, and W. Susilo. Certificateless public key encryption without pairing. In 8th
Information Security Conference (ISC’05), pages 134–148. Springer, 2005. LNCS 3650.

4. M. Bellare, C. Namprempre, and G. Neven. Security proofs for identity-based identification and signature
schemes. In Proc. EUROCRYPT 2004, pages 268–286. Springer-Verlag, 2004. LNCS 3027 (Full paper is
available at Bellare’s homepage URL: http://www-cse.ucsd.edu/users/mihir).

5. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing efficient protocols.
In First ACM Conference on Computer and Communications Security, pages 62–73, Fairfax, 1993. ACM.

6. K. Bentahar, P. Farshim, J. Malone-Lee, and N. P. Smart. Generic construction of identity-based and
certificateless KEMs. Cryptology ePrint Archive, Report 2005/058, 2005. http://eprint.iacr.org/

2005/058.
7. D. Boneh and M. Franklin. Identity-based encryption from the Weil pairing. In Proc. CRYPTO 2001,

pages 213–229. Springer-Verlag, 2001. LNCS 2139.
8. D. Boneh and M. K. Franklin. Identity-based encryption from the Weil pairing. SIAM J. Computing,

32(3):586–615, 2003.
9. Z. H. Cheng and R. Comley. Efficient certificateless public key encryption. Cryptology ePrint Archive,

Report 2005/012, 2005. http://eprint.iacr.org/2005/012.
10. A. W. Dent. A survey of certificateless encryption schemes and security models. Cryptology ePrint

Archive, Report 2006/211, 2006. http://eprint.iacr.org/2006/211.
11. E. Fujisaki and T. Okamoto. Secure integration of asymmetric and symmetric encryption schemes. In

Proc. CRYPTO 99, pages 537–554. Springer-Verlag, 1999. LNCS 1666.
12. D. Galindo, P. Morillo, and C. Ràfols. Breaking Yum and Lee generic constructions of certificate-less and

certificate-based encryption schemes. In 3rd European PKI Workshop: Theory and Practice (EuroPKI
2006), pages 81–91. Springer, 2006. LNCS 4043.

13. S. Goldwasser, S. Micali, and R. Rivest. A digital signature scheme secure against adaptive chosen-message
attack. SIAM J. Computing, 17(2):281–308, April 1988.

14. B. C. Hu, D. S. Wong, Z. Zhang, and X. Deng. Key replacement attack against a generic construction
of certificateless signature. In Information Security and Privacy: 11th Australasian Conference, ACISP
2006, pages 235–246. Springer-Verlag, 2006. LNCS 4058.

15. X. Huang, W. Susilo, Y. Mu, and F. Zhang. On the security of certificateless signature schemes from
Asiacrypt 2003. In Cryptology and Network Security, 4th International Conference, CANS 2005, pages
13–25. Springer-Verlag, 2005. LNCS 3810.

16. X. Li, K. Chen, and L. Sun. Certificateless signature and proxy signature schemes from bilinear pairings.
Lithuanian Mathematical Journal, 45(1):76–83, 2005.

17. B. Libert and J.-J. Quisquater. On constructing certificateless cryptosystems from identity based encryp-
tion. In 9th International Conference on Theory and Practice in Public Key Cryptography (PKC 2006),
pages 474–490. Springer, 2006. LNCS 3958.

http://www-cse.ucsd.edu/users/mihir
http://eprint.iacr.org/2005/058
http://eprint.iacr.org/2005/058
http://eprint.iacr.org/2005/012
http://eprint.iacr.org/2006/211

14 Man Ho Au, Jing Chen, Joseph K. Liu, Yi Mu, Duncan S. Wong, and Guomin Yang

18. A. Shamir. Identity-based cryptosystems and signature schemes. In Proc. CRYPTO 84, pages 47–53.
Springer, 1984. LNCS 196.

19. D. H. Yum and P. J. Lee. Generic construction of certificateless encryption. In ICCSA’04, pages 802–811.
Springer, 2004. LNCS 3043.

20. D. H. Yum and P. J. Lee. Generic construction of certificateless signature. In Information Security and
Privacy: 9th Australasian Conference, ACISP 2004, pages 200–211. Springer-Verlag, 2004. LNCS 3108.

21. D. H. Yum and P. J. Lee. Identity-based cryptography in public key management. In EuroPKI’04, pages
71–84. Springer, 2004. LNCS 3093.

22. Z. Zhang, D. Wong, J. Xu, and D. Feng. Certificateless public-key signature: Security model and efficient
construction. In 4th International Conference on Applied Cryptography and Network Security (ACNS
2006), pages 293–308. Springer, 2006. LNCS 3989.

A Definitions

In the following, we review the definitions of Standard Signature (SS) schemes, Public Key Encryption
(PKE) schemes, ID-based Signature (IBS) schemes and ID-based Encryption (IBE) schemes.

Let ΠSS = (SetupSS , SignSS , V erSS) be an SS scheme, where the three algorthms are polynomial-
time and all of them may be randomized although the last one is usually not. SetupSS takes 1k

for some security parameter k ∈ N, outputs a public/secret key pair (upkSS , uskSS). SignSS takes
uskSS and message m, outputs a signature σSS . V erSS takes upkSS , message m and signature
σSS , and outputs 1 or 0 for accept or reject. For correctness, we require that for any k ∈ N,
(upkSS , uskPKE) ← SetupSS(1k) and any message m in the message space defined by the public
key, V erSS(upkSS ,m, SignSS(uskSS ,m)) = 1.

Let ΠPKE = (KPKE , EPKE ,DPKE) be a PKE scheme which consists of three polynomial-time
algorithms. All of them may be randomized although the last one is usually not. KPKE takes 1k

and outputs a public/secret key pair (upkPKE , uskPKE). EPKE takes upkPKE and some message
m, and outputs a ciphertext C. DPKE takes uskPKE and C, and outputs either a message m or
a symbol ⊥ meaning that the decryption failed. For correctness, we require that for any k ∈ N,
(uskPKE , upkPKE)← KPKE(1k) and any message m in the message space defined by the public key,
m = DPKE(uskPKE , EPKE(upkPKE ,m)).

Let an IBS scheme ΠIBS = (SetupIBS ,ExtractIBS , SignIBS , V erIBS) be denoted by four poly-
nomial-time algorithms. All of these algorithms may be randomized although the last one is usually
not. SetupIBS takes 1k and outputs a master public/secret key pair (mpkIBS ,mskIBS). ExtractIBS

takes mskIBS and user identity ID ∈ {0, 1}∗, and outputs a user secret key uskIBS . SignIBS takes
uskIBS , ID and a message m, and outputs a signature σIBS . V erIBS takes mpkIBS , ID, a mes-
sage m and a signature σIBS , and outputs 1 or 0 for accept or reject. For correctness, we require
that V erIBS(mpkIBS , ID, m, SignIBS(uskIBS , ID, m)) = 1 provided that (mskIBS ,mpkIBS) ←
SetupIBS(1k), uskIBS ← ExtractIBS(mskIBS , ID) and message m in the message space according
to the scheme specification.

Let ΠIBE = (SetupIBE ,ExtractIBE , EIBE ,DIBE) be an IBE scheme consisting of four polynomial-
time algorithms. All of them may be randomized although the last one is usually not. SetupIBE

and ExtractIBE are similar to SetupIBS and ExtractIBS , respectively. We use (mskIBE ,mpkIBE) to
represent master secret/public key pair and use uskIBE to represent user secret key. EIBE takes
mpkIBE , ID and message m, and outputs a ciphertext C. DIBE takes uskIBE , ID and ciphertext
C, and outputs either a message m or a symbol ⊥ meaning that the decryption failed. For correct-
ness, we require that the equation m = DIBE(uskIBE , ID, EIBE(mpkIBE , ID, m)) holds as long as
(mskIBE ,mpkIBE) ← SetupIBE(1k), uskIBE ← ExtractIBE(mskIBE , ID) and message m in the
message space defined by the master public key.

	Malicious KGC Attack in Certificateless Cryptography
	Man Ho Au cl@@auth, Jing Chen cl@@auth, Joseph K. Liu cl@@auth, Yi Mu cl@@auth, Duncan S. Wong cl@@auth, Guomin Yang
	Introduction
	Our Results
	Related Work

	Definitions and Security Models
	Adversarial Model for Certificateless Signature (CL-SIG)
	Adversarial Model for Certificateless Encryption (CL-ENC)

	Malicious-but-passive KGC Attack
	Hu-Wong-Zhang-Deng Generic Certificateless Signature Scheme
	Libert-Quisquater Generic Certificateless Encryption Scheme
	Definitions

