
CCA2-Security Under Partial Key Exposure and the

Cramer-Shoup Cryptosystem

Douglas Wikström

ETH Zürich, Department of Computer Science, douglas@inf.ethz.ch

Abstract. We introduce a stronger, but natural, variation of CCA2-security and observe
that the generic CCA2-secure cryptosystem of Cramer and Shoup (1998) satisfy the stronger
de�nition. We also present an alternative generic cryptosystem satisfying the stronger de�-
nition which is a combination of the schemes of Naor and Yung (1990), Cramer and Shoup
(1998), and Sahai (1999). This is interesting, since it uni�es these two seemingly indepen-
dent approaches for constructing CCA2-secure cryptosystems. We also show how the stronger
de�nition can be applied directly to signi�cantly simplify, improve the e�ciency, and reduce
interaction in protocols such as mix-nets based on the El Gamal or Paillier cryptosystem.

1 Introduction

Several cryptographic protocols start with a submission phase where many parties
submit ciphertexts encrypted with a public key pk , and a smaller group of servers
holds shares of the secret key sk corresponding to pk . The servers then compute and
publish some function of the input plaintexts. The problem with using a polynomially
indistinguishable cryptosystem directly in such protocols is that it does not guarantee
that the plaintexts submitted by corrupt parties are not related to those submitted
by honest users.

Formally, the problem surfaces when the cryptographer constructing the protocol
tries to reduce the security of his/her scheme to the security of the cryptosystem.
If the simulation paradigm is used, some kind of simulator must be constructed and
the simulator must extract the values of the corrupt parties to be able to hand these
to an ideal version of the protocol, e.g., in the universal composability framework
of Canetti [4]. The existence of a successful adversary must contradict the security
of the cryptosystem, i.e., extraction must be done without using the secret key of
the cryptosystem. This is not possible using a polynomially indistinguishable [12]
cryptosystem naively.

1.1 Previous Work and Motivation

The solutions to the above problem found in the literature fall into two categories: the
submitting party proves knowledge of the plaintext in zero-knowledge and a CCA2-
secure cryptosystem is used. More precisely, the solutions can be characterized as
follows:

1. The submitting party proves knowledge of its plaintext. There are three variations
of this solution.

(a) An interactive proof of knowledge [13] is used, either with a straight-line ex-
tractor in the public key setting using the Naor and Yung [16] double-ciphertext
trick, or with an extractor using rewinding.

(b) A non-interactive proof of knowledge is used. If based on a non-interactive
zero-knowledge proof [2], this is not e�cient for either the submittor or the
receivers (even using the recent techniques of Groth et al. [14]). If based on the
secret sharing based proof of knowledge exploiting the distributed public key
setting [1], the computational and communication complexity of the sender
grows linearly with the number of receivers.

(c) A non-interactive proof of knowledge in the random oracle model is used. This
may be e�cient, but it is only heuristically secure [5].

2. A CCA2-secure cryptosystem is used such that a ciphertext can be transformed
into a new ciphertext for the polynomially indistinguishable scheme. Although in
principle any CCA2-secure can be made distributed using general techniques the
only concrete schemes we are aware of are the schemes of Canetti and Goldwasser
[6] and Lysyanskaya and Peikert [15].
These solutions are practical, but the communication complexity between the
receivers is at least linear in the number of received messages.

To summarize, there is no solution to the above problem which has all the follow-
ing nice properties at the same time: non-interactive submission, computational and
communication complexity of submitter independent of number of secret key shares,
communication complexity among receivers independent of number of the senders,
and truly e�cient.

Recall that to decrypt a Cramer-Shoup ciphertext it is �rst veri�ed that it is valid.
If it is valid, then decryption proceeds and otherwise the decryption algorithm simply
outputs ⊥. Furthermore, two distinct parts of the secret key are used to perform these
two steps. Suppose for a moment that the scheme remains secure even if the �rst part
of the key is disclosed to the adversary. Then the above problem could be solved by
letting the servers reconstruct this part of the shared key, and simply check the validity
of each ciphertext without any interaction with other servers, giving a signi�cantly
simpli�ed and more e�cient submission phase. This is the original motivation to this
work.

1.2 Our Contribution

To capture the above scenario we introduce a stronger variant de�nition of CCA2-
security, where part of the secret key is given to the adversary before it guesses the
plaintext of the challenge ciphertext. Then we show that the generic scheme of Cramer
and Shoup [9] satis�es this stronger de�nition. Then we describe an alternative generic
scheme based on a combination of the constructions in Naor and Yung [16], Cramer
and Shoup [9], and Sahai [20]. This uni�es these two approaches to constructing
CCA2-secure cryptosystems. Finally, we illustrate the usefulness of the new de�nition
by applying it to mix-nets.

2

1.3 Notation

We denote by PT and PPT the sets of deterministic and probabilistic polynomial time
Turing machines respectively, and write PT∗ for the set of non-uniform polynomial
time Turing machines. We use n to denote the security parameter, and say that a
function ε(n) is negligible if for every constant c there exists a constant n0 such that
ε(n) < n−c for n > n0. If I is a distribution, then we denote by [I] its support, i.e.,
the values assigned a positive probability. If pk is the public key of a cryptosystem,
we denote byMpk and Cpk the plaintext space and ciphertext space respectively.

2 The Idea

Recall the original construction of Cramer and Shoup [8]. The cryptosystem is de-
ployed in a group Gq of prime order in which the decision Di�e-Hellman assump-
tion is assumed to be hard. The key generator �rst chooses two random genera-
tors g0, g1 ∈ Gq. Then it choses random exponents x0, x1, y0, y1, z ∈ Zq and de�nes
c = gx0

0 gx1
1 , d = gy0

0 gy1

1 , and h = gz
0. It also generates a collision-free hash function H.

Finally, it outputs the pair of public and secret keys

(pk , sk) = ((H, g0, g1, c, d, h), (x0, x1, y0, y1, z)) .

To encrypt a message m ∈ Gq using the public key pk the encryption algorithm
chooses r ∈ Zq randomly and outputs the tuple

(u0, u1, e, v) = (gr
0, g

r
1, h

rm, crdrH(u0,u1,e)) .

To decrypt a tuple (u0, u1, e, v) ∈ G4
q using the secret key sk the decryption algorithm

�rst checks that ux0
0 ux1

1 (uy0

0 uy1

1)H(u0,u1,e) = v. If so it outputs e/uz
0, and otherwise ⊥.

Note that h = gz and z have the form of an El Gamal [11] public and secret key
respectively and that (u0, e) is nothing more than an El Gamal ciphertext. This is of
course not a new observation. What seems to be a new observation is the fact that
the holder of the secret key may reveal (x0, x1, y0, y1) without any loss in security as
long as it never decrypts any ciphertext constructed after this point, and that this is
a very useful property.

3 CCA2-Security Under Partial Key Exposure

What today is known as CCA2-security was introduced by Racko� and Simon [19],
but the general idea of non-malleable and chosen ciphertext secure cryptosystems
was developed by Naor and Yung [16], and Dolev, Dwork and Naor [10]. The break-
through work in [10] gives the �rst construction of a CCA2-secure cryptosystem, but
their construction is not particularly e�cient. The �rst truly e�cient CCA2-secure
cryptosystem under standard complexity assumptions was presented by Cramer and
Shoup [8].

3

Recall the game considered in the de�nition of CCA2-security. The adversary is
given a public key pk . Then it may ask any number of decryption queries to a de-
cryption oracle Decsk(·) holding the secret key sk corresponding to pk . The adversary
must then choose two challenge messages m0 and m1. The game �ips a bit b and re-
turns a challenge ciphertext on the form c = Encpk(mb). Then the adversary is again
allowed to ask arbitrary decryption queries to Decsk(·) with the exception of c, and
must �nally output a guess b′ of the bit b. If the cryptosystem is CCA2-secure, then
the probability that that the guess is correct, i.e., b′ = b, should be negligibly close
to 1/2 for every polynomial time adversary.

3.1 Partial Key Exposure

We want to capture the fact that part of the secret key may be given to the adversary
provided that the decryption oracle does not answer any additional queries after this
event. Thus, we need a way to denote which part of the key is published and which
part stays secret. We simply assume that any secret key output by the key generator
is a string on the form sk = (sk 1 : sk 2).

The game we consider is identical to the original CCA2-security game except that
the adversary is given the �rst part sk 1 of the secret key before it guesses the content
of the challenge ciphertext, and after this point it is no longer allowed to ask any
decryption queries. We call this CCA2-security under partial key exposure (CCA2-
PKE-security). Clearly, any cryptosystem that is CCA2-secure can be trivially turned
into one which is secure even with partial key exposures by simply putting the colon
at the beginning of the secret key, but we are interested in non-trivial examples.

Experiment 1 (CCA2-Security Under PKE, Expcca2−pke−b
CS,A (n)).

(pk , (sk 1 : sk 2))← CSKg(1n)

(m0, m1, state1)← ADecsk (·)(choose, pk)

c← Encpk(mb)

state2← ADecsk (·)(morequeries, state1, c)

d← A(guess, state2, sk 1)

The experiment returns 0 if Decsk(·) was queried on c, and d otherwise.

De�nition 1 (CCA2-PKE-Security). A public key cryptosystem CS is said to
be secure against chosen ciphertext attacks under partial key exposure (CCA2-PKE-
secure) if for all adversaries A ∈ PT∗ the absolute value |Pr[Expcca2−pke−0

CS,A (n) =

1]− Pr[Expcca2−pke−1
CS,A (n) = 1]| is negligible in n.

Example 1. The most natural example is the original CCA2-secure cryptosystem de-
scribed above. Simply rede�ne the key generation algorithm to output a pair on the
form ((H, g0, g1, c, d, h), (x0, x1, y0, y1 : z)).

4

4 Achieving CCA2-PKE-Security

The fact that the generic CCA2-secure cryptosystem of Cramer and Shoup remains
CCA2-secure even under partial key exposure is quite easy to see from their security
proof. On the other hand we need to show that this is indeed the case. Thus, we
recall their scheme and prove this fact in the appendix, but we use coarse grained
and streamlined de�nitions. We also take the liberty of ignoring the technical prob-
lem of constructing e�ciently computable hash families, since this complicates the
de�nitions and does not add anything to our exposition. See [9] for more details.
Then we introduce an alternative generic construction and explain how the most ef-
�cient Cramer-Shoup schemes based on the El Gamal cryptosystem and the Paillier
cryptosystem are instantiations of this.

4.1 Preliminaries

Subset Membership Problems. A subset membership problem consists of three sets
X, L (X, and W , and a relation R ⊂ X ×W . The idea is that it should be hard to
decide if an element is sampled from X \ L or from L. To be useful in cryptography
we also need some algorithms that allow us to sample instances and elements, and
check for membership in X. Formal de�nitions are given below.

De�nition 2. A subset membership problem M consists of a collection of distribu-
tions (In)n∈N, an instance generator Ins ∈ PPT, a sampling algorithm Sam ∈ PPT,
and a membership checking algorithm Mem ∈ PT such that:

1. In is a distribution on instance descriptions Λ[X, L,W,R] specifying �nite non-
empty sets X, L (X, and W , and a binary relation R ⊂ X ×W .

2. On input 1n, Ins outputs an instance Λ with distribution statistically close to In.
3. On input 1n and Λ[X, L,W,R] ∈ [In], Sam outputs (x, w) ∈ R, where the distri-

bution of x is statistically close to uniform over L.
4. On input 1n, Λ[X,L,W,R] ∈ [In], and ζ ∈ {0, 1}∗ Mem outputs 1 or 0 depending

on if ζ ∈ X or not.

De�nition 3. Let M be a subset membership problem. Sample Λ from In and let x
and x′ be randomly distributed over L and X \L respectively. We say that M is hard
if for all A ∈ PT∗ the absolute value |Pr[A(Λ, x) = 1]−Pr[A(Λ, x′) = 1]| is negligible.

Hash Families. Hash families are well known in the cryptographic literature and
there are many interesting variations. We assume implicitly that the families below
are indexed by a security parameter n.

De�nition 4. A projective hash family H = (H, K, X,L,Π, S, α) consists of �nite
non-empty sets K, X, L (X, Π, and S, a function α : K → S, and a collection
H = (Hk : X ×Π → Π)k∈K of functions, where α(k) determines Hk on L×Π .

5

De�nition 5. Let H = (H, K, X,L,Π, S, α) be a projective hash family, and let k ∈
K be random. Then H is universal2 if for all s ∈ S, x, x′ ∈ X, and πx, π

′
x, π, π′ ∈ Π

with x 6∈ L ∪ {x′}, Prk[Hk(x, πx) = π ∧Hk(x
′, π′

x) = π′ ∧ α(k) = s] is negligible.

The following lemma is stated implicitly in [9].

Lemma 1 (Projective Hashing). Let H be a universal2 projective hash family and
consider the following experiment for an adversary A ∈ PT∗. Let τk be the predicate
de�ned by τk((x, πx), π)⇐⇒ Hk(x, πx) = π.

k←K

(x, πx, state)← Aτk(·,·)(α(k))

← Aτk(·,·)(Hk(x, πx), state)

Denote by ((xi, πx,i), πi) the ith query to τk, and let il be the index of the last query
before the �rst output. Denote by E the event that A asks a query ((xi, πx,i), πi) to τk

with Hk(xi, πx,i) = πi, xi ∈ X \ L, and i ≤ il or xi 6= x. Then Pr[E] is negligible.

De�nition 6. Let H = (H, K, X,L,Π, S, α) be a projective hash family, and let
k ∈ K, x ∈ X \L, and π ∈ X be random. Then H is smooth if for every πx ∈ Π the
distributions of (x, πx, α(k), Hk(x, πx)) and (x, πx, α(k), π) are statistically close.

Universal Hash Proof Systems. Informally, a hash proof system may be viewed as
a non-interactive zero-knowledge proof system where only the holder of a secret key
corresponding to the public common random string can verify a proof. Strictly speak-
ing, the de�nition below corresponds to a special case of what Cramer and Shoup [9]
call �extended strongly (smooth, universal2)� hash proof system.

De�nition 7. A (smooth, universal2) hash proof system P for a subset membership
problem M associates with each instance Λ[X, L,W,R] a (smooth, universal2) pro-
jective hash family H = (H, K, X,L,Π, S, α), and the following algorithms

1. A key generation algorithm Gen ∈ PPT that on input 1n and Λ ∈ [In] outputs
(s, k), where k is randomly distributed in K and s = α(k).

2. A private evaluation algorithm PEval ∈ PT that on input 1n, Λ ∈ [In], k ∈ K,
and (x, πx) ∈ X ×Π outputs Hk(x, πx).

3. A public evaluation algorithm Eval ∈ PT that on input 1n, Λ ∈ [In], α(k) with
k ∈ K, (x, πx) and w, with (x, w) ∈ R, outputs Hk(x, πx).

4. A membership checking algorithm Mem ∈ PT that on input 1n, Λ ∈ [In], and
ζ ∈ {0, 1}∗ outputs 1 or 0 depending on if ζ ∈ Π or not.

4.2 The Generic Scheme of Cramer and Shoup

Given the de�nitions above it is not hard to describe the generic cryptosystem of
Cramer and Shoup [9]. Let M be a hard subset membership problem, such that Π can
be �tted with a group operation for any instance Λ, letP0 = (Gen0, PEval0, Eval0, Mem0)
be a smooth hash proof system for M, and let P1 = (Gen1, PEval1, Eval1, Mem1) be a
universal2 hash proof system for M.

6

Key Generation. Compute Λ[X, L,W,R] = Ins(1n), (s, k) = Gen0(1
n, Λ), (ŝ, k̂) =

Gen1(1
n, Λ), and output the key pair (pk , sk) = ((Λ, ŝ, s), (k̂ : k)).

Encryption of a message m ∈ Π. Compute (x, w) = Sam(Λ), π = Eval0(Λ, s, x, w) =

Hk(x), e = m + π, and π̂ = Eval1(Λ, ŝ, x, w, e) = Ĥk̂(x, e) and output (x, e, π̂).

Decryption of a ciphertext (x, e, π̂). Output m = e−PEval0(Λ, k̂, x) = e−Hk(x),
only if PEval1(Λ, k̂, x, e) = Ĥk̂(x, e) = π̂ and otherwise output ⊥.

We have not modi�ed the cryptosystem in any way except that we have introduced
a comma in the notation of the secret key to distinguish the two parts as needed in
the CCA2-PKE-security de�nition. Cramer and Shoup prove (see Theorem 1 in [9])
that the above cryptosystem is CCA2-secure under the assumption that M is hard.
We prove the slightly stronger result using their powerful machinery.

Proposition 1. If M is a hard subset membership problem, then the generic Cramer-
Shoup cryptosystem above is CCA2-PKE-secure.

The only essential change to the proof is that one must observe that the projective
hashing lemma is applicable even if k̂ is revealed at the end of the CCA2-experiment
under partial key exposure, since no queries are asked after this point.

4.3 An Alternative Generic Scheme

There is a natural alternative way to construct a CCA2-secure cryptosystem which
may be seen as a combination of the ideas of Naor and Yung [16], Cramer and Shoup
[8], and Sahai [20]. This shows how these seemingly independent approaches are
related.

Denote by CS(0) = (CSKg(0), Enc(0), Dec(0)) and CS(1) = (CSKg(1), Enc(1), Dec(1))
cryptosystems. Denote by M = ((In)n∈N, Ins, Sam, Mem) the subset membership prob-
lem de�ned as follows. To sample In, compute (pk 0, sk 0) = CSKg(0)(1n) and (pk 1, sk 1) =
CSKg(1)(1n), and output (pk 0, pk 1). To de�ne an instance Λ[X, L,W,R] from these
public keys, let X = Cpk0

× Cpk1
, let R = {((c0, c1), (m, r0, r1)) ∈ Cpk0

× Cpk1
×

Mpk0
∩ Mpk1

× {0, 1}∗ × {0, 1}∗ : c0 = Enc
(0)
pk0

(m, r0) ∧ c1 = Enc
(1)
pk1

(m, r1)}, and
let L and W denote the projection of R onto its �rst and second component re-
spectively. In other words X is the set of pairs of ciphertexts formed with pk 0 and
pk 1, and the subspace L consists of all such pairs encrypting identical messages. Let
P = (Gen, PEval, Eval, Mem) be a smooth and universal2 hash proof system for M.
We then de�ne the CCA2-secure cryptosystem as follows.

Key Generation. Compute (pk 0, sk 0) = CSKg(0)(1n), (pk 1, sk 1) = CSKg(1)(1n), and
(s, k) = Gen(1n, Λ), and output (pk , sk) = ((pk 0, pk 1, s), (k : sk 0, sk 1)).

Encryption of a message m ∈Mpk0
∩Mpk0

. Choose r0, r1 ∈ {0, 1}∗ randomly,

compute c0 = Enc
(0)
pk0

(m, r0), c1 = Enc
(1)
pk1

(m, r1), and π = Eval(Λ, s, (c0, c1), (r0, r1)) =
Hk(c0, c1), and output (c0, c1, π).

Decryption of a ciphertext (c0, c1, π). Output Dec
(0)
sk0

(c0) if PEval(Λ, k, c0, c1) =
Hk(c0, c1) = π and otherwise output ⊥.

7

Sometimes the keys of the two cryptosystems and/or the ciphertexts may be
dependent. We say that the cryptosystems are siblings when the construction works
even if this is the case and de�ne this below.

De�nition 8. Two cryptosystems CS(0) and CS(1) are siblings if there exists deter-
ministic algorithms sCSKg(b), Mall(b) for b ∈ {0, 1}, such that for every r, t0, t1 ∈
{0, 1}∗, if we de�ne CSKg(b)(1n, (t0, t1)) = (pk b, sk b) and cb = Enc

(b)
pkb

(m, r), then

sCSKg(b)(pk 1−b, tb) = (pk b, sk b) and Mall(b)(pk 0, pk 1, c1−b, m, tb) = cb.

If the two cryptosystems in the scheme above are siblings we assume that the
same random string (t0, t1) is used to generate both key pairs, and we assume that
the same random string r is used to form both ciphertexts. We call this the sibling
version.

Proposition 2. If CS is polynomially indistinguishable, then the cryptosystem above
is CCA2-PKE-secure, including the sibling version.

The di�erence between the scheme above and that presented by Sahai [20] (based
on [16]) is that the non-interactive adaptively zero-knowledge simulation sound proof
is replaced by a hash proof. The role of one-time simulation soundness of the non-
interactive proof corresponds to the projective hashing lemma (Lemma 1) of the hash
proof. The role of the adaptive zero-knowledge simulator corresponds to the private
evaluation algorithm and smoothness of the hash proof. The non-interactive proof
has one property which has no counterpart in a hash proof; public veri�ability.

The Original Cramer-Shoup Scheme. That the original Cramer-Shoup scheme is
an optimized instantiation of the sibling version can be seen as follows. Let h be
a generator of Gq and let be (pk b, sk b) equal to the El Gamal key on the form
((gb, h), zb), where gb = hzb and zb ∈ Zq is random. This does not change the dis-
tribution of h or gb compared to the original. Note also that an El Gamal ciphertext
(u, e) = (gr

b , h
rm) may be decrypted as e/u1/zb . Then to generate the hash proof

parameter on input (g0, g1, h), pick x0, x1, y0, y1 ∈ Zq randomly, de�ne c = gx0
0 gx1

1

and d = gy0

0 gy1

1 , and set (s, k) = ((g0, g1, c, d), (x0, x1, y0, y1)). The public evalua-
tion algorithm takes (g0, g1, c, d) and (u0, u1, e, r) as input and outputs crdrH(u0,u1,e).
The private evaluation algorithm takes (u0, u1, e), and (x0, x1, y0, y1) and outputs
ux0

0 ux1
1 (uy0

0 uy1

1)H(u0,u1,e). This hash proof system is both smooth and universal2 (see
[8]). Then de�ne (pk , sk) = ((H, g0, g1, c, d, h), (x0, x1, y0, y1 : z0, z1)). A ciphertext
would have the form ((u0, e), (u1, e), v) = ((gr

0, h
rm), (gr

1, h
rm), crdrH((u0,e),(u1,e))). It is

obviously not necessary to send two copies of e, and neither is it necessary to input
two copies of e to H or to use both z0 and z1 which explains how to get the original
Cramer-Shoup scheme.

The Cramer-Shoup Version of the Paillier Scheme. In a similar way it can be seen
that the e�cient CCA2-secure version of the Paillier [17] cryptosystem presented
in [9,3] is also an optimized instantiation of the sibling version. Recall the Paillier

8

cryptosystem [17]. The key generator CSKg chooses safe primes p and q, computes
N = pq, and outputs the key pair (p, N). Let b = 1 + N . To encrypt a message
m ∈ ZN choose r ∈ Z∗

N randomly and output e = EncN(m, r) = bmrN mod N2. To
decrypt, compute m = Decp(e) = ((et mod N2) − 1)/N , where t = 1 mod N and
t = 0 mod φ(N). A natural variation of this is to let a modi�ed key generator CSKg′

also choose a random generator h of the group of 2Nth residues in Z∗
N2 by �nding

a random element in Z∗
N2 and exponentiate it by 2N . Then encryption is de�ned by

Enc′N(m, r) = bmhr mod N2, where r is chosen randomly in [0, N2]. This changes the
distribution of a ciphertext only negligibly. The modi�cation makes a ciphertext look
almost like the second component of an El Gamal ciphertext. We can make decryption
independent of the factorization of N by using a further modi�ed key generator CSKg
which chooses z ∈ [0, N2] randomly, and de�nes g = hz mod N2. Then the encryption
of m is de�ned by (u, e) = Enc′′(g,h)(m, r) = (gr, bmhr) and decryption of a ciphertext
(u, e) by Dec′′z(u, e) = e/uz mod N2. We can now apply the same argument as is done
for the El Gamal instantiation. This would give a symmetrical CCA2-secure version
of the Paillier cryptosystem, but not the scheme proposed in [9] as promised.

To get their scheme, we do an asymmetrical combination of the cryptosystems
(CSKg′, Enc′, Dec′) and (CSKg′′, Enc′′, Dec′′). These schemes are siblings, since the
key generator CSKg′′ can be de�ned using the output of CSKg′ and a ciphertext
in one scheme then can be translated into one in the other scheme using the se-
cret key of the second scheme. The hash proof is de�ned by choosing a collision-free
hash function H, x0, x1, y0, y1 ∈ [0, N2] randomly and de�ning c = gx0hNx1 mod N2

and d = gy0hNy1 mod N2, and setting (s, k) = ((N, g, h, c, d), (x0, x1, y0, y1)). The
public evaluation algorithm takes (N, g, h, c, d) and (e0, u1, e1, r) as input and out-
puts crdrH(u,e0,e1) mod N2. The private evaluation algorithm takes (e0, u1, e1) and
(x0, x1, y0, y1) as input and outputs ux0

1 eNx1
0 (uy0eNy1

0)H(e0,u1,e1) mod N2. This hash
proof system is both smooth and universal2 (see [9]). Then de�ne the key pair by
(pk , sk) = ((N, g, h, c, d), (x0, x1, y0, y1 : p, z)). In the sibling version e0 = e1, and we
can obviously omit one of them. This gives the scheme in [9]. We have cheated a
little, in assuming that e0, u1, and e1 are quadratic residues. This can be solved by
modifying the encryption algorithms such that they encrypt m/2 mod N instead of
m, and then consider the output e′0 or (u′

1, e
′
1) as one of two encodings of the same

ciphertext e0 = (e′0)
2 mod N2 or (u1, e1) = ((u′

1)
2 mod N2, (e′1)

2 mod N2), which is
then used as above.

Proof (Proposition 2). Denote by T
(0)
b the machine that simulates the experiment

Expcca2−pke−b
CS,A (n) with some adversary A ∈ PT∗, except that when it computes the

challenge ciphertext (c0, c1, π) it computes π = PEval(Λ, (c0, c1), k) instead of π =
PEval(Λ, (c0, c1), (m, r0, r1)). Furthermore, the decryption oracle in T1 answers a query
(ci,0, ci,1, πi) by Dec

(1)
sk1

(ci,1) if Hk(ci,0, ci,1) = πi and otherwise by ⊥.

Claim 1. |Pr[Expcca2−pke−b
CS,A (n) = 1]− Pr[T

(0)
b = 1]| is negligible.

9

Proof. It follows immediately from the de�nition of a hash proof system that the
�rst change does not change the distribution at all. Thus, we may concentrate on the
second modi�cation.

De�ne Aproj as the adversary that simulates Pr[Expcca2−pke−b
CS,A (n) = 1] and takes

part in the experiment of Lemma 1. The simulation is done honestly except that it
queries its τk(·, ·)-oracle instead of computing Hk(ci,0, ci,1) = πi, when given a decryp-
tion query (ci,0, ci,1, πi), and instead of computing the challenge ciphertext (c0, c1, π)
honestly it hands (c0, c1) to the experiment and uses the value π the experiment
returns. Then claim now follows from Lemma 1, since P is universal2.

Claim 2. Denote by T
(1)
b the machine T

(0)
b except that the challenge ciphertext c1−b is

de�ned as Enc
(1−b)
pk1−b

(m′
1−b, r1−b) for a randomly chosen m′

1−b ∈Mpk1−b
. Then |Pr[T

(0)
b =

1]− Pr[T
(1)
b = 1]| is negligible.

Proof. De�ne the adversary Aind to be an adversary against the polynomial indistin-
guishability of CS. It accepts a public key pk 1−b as input and simulates T

(0)
b , running

A as a black-box, except for the following modi�cations. In the sibling version it
de�nes (pk b, sk b) = sCSKg(b)(pk 1−b, tb), for a random tb ∈ {0, 1}∗. In the non-sibling
version it generates these keys honestly. It interrupts the execution when it is about
to compute the challenge ciphertext (c0, c1, π). Then it outputs (m1−b, m

′
1−b), where

m′
1−b is chosen randomly in Mpk1−b

. When the polynomial indistinguishability ex-

periment returns c1−b this value is used in the continued simulation of T
(0)
b . In the

sibling version Aind also de�nes cb = Mall(b)(pk 0, pk 1, c1−b, m1−b, tb). In the non-sibling
version it generates these values honestly.

It follows that Aind is identically distributed to T
(0)
b or T

(1)
b depending on if the

polynomial indistinguishability experiment de�nes c1−b as an encryption of m1−b or
m′

1−b respectively. Thus, Aind breaks the polynomial indistinguishability of CS if the
claim is false.

Claim 3. De�ne T
(2)
b to be identical to T

(1)
b except that the decryption oracle in T

(2)
b

answers a query (ci,0, ci,1, πi) by Dec
(1−b)
sk1−b

(ci,1−b) if Hk(ci,0, ci,1) = πi and otherwise by

⊥. Then |Pr[T
(1)
b = 1]− Pr[T

(2)
b = 1]| is negligible.

Proof. This follows from Lemma 1 similarly to the proof of Claim 1.

Claim 4. Denote by T
(3)
b the machine that is identical to T

(2)
b except that mb is

replaced by a randomly chosen m′
b ∈ Mpkb

. Then |Pr[T
(2)
b = 1] − Pr[T

(3)
b = 1]| is

negligible.

Proof. This follows mutatis mutandi from the proof of Claim 2.

Claim 5. De�ne T
(4)
b to be identical to T

(3)
b except that the decryption oracle in T

(4)
0

answers a query (ci,0, ci,1, πi) by Dec
(0)
sk0

(ci,0) if Hk(ci,0, ci,1) = πi and otherwise by ⊥.
Then |Pr[T

(3)
b = 1]− Pr[T

(4)
b = 1]| is negligible.

10

Proof. Again, this follows mutatis mutandi from the proof of Claim 1.

Claim 6. Denote by T
(5)
b the machine that is identical to T

(4)
b except that instead

of computing π = Hk(c0, c1), it simply chooses π ∈ Π randomly. Then |Pr[T
(4)
b =

1]− Pr[T
(5)
b = 1]| is negligible.

Proof. Consider an arbitrary �xed instance Λ of the subset membership problem and
an arbitrary �xed random string of the experiment. De�ne a function f : X×S×Π →
{0, 1} as follows. Let f(x, α(k), π) simulate T

(4)
b except that the input parameters are

used in the computation of the challenge ciphertext. Note that although f may not
be computable in polynomial time it certainly exists, since T

(4)
b outputs ⊥ if the

event E occurs and α(k) determines Hk on L by the projective property of H, so the
answers of all queries are determined by α(k). When k ∈ K, x ∈ X, and π ∈ Π are
randomly chosen, f(x, α(k), Hk(x)) is identically distributed to T

(4)
b and f(x, α(k), π)

is identically distributed to T
(5)
b . The claim now follows from the smoothness of H.

Conclusion of Proof of Proposition. Note that T
(5)
0 and T

(5)
1 are identically dis-

tributed. The claims above now imply that the proposition holds. �

5 Application to a Mix-Net

The original motivation for this paper was to come up with a non-interactive sub-
mission phase in El Gamal based mix-nets. For readers that are not familiar with
mix-nets we give an informal description of one such construction that goes back to
Sako and Kilian [21].

There are many senders S1, . . . , SN and a small number of mix-servers M1, . . . ,Mk.
A secret key zj and a public key gj = hzj are associated with each mix-server, and a
joint key g =

∏k
j=1 gj is de�ned. The secret keys zj may be secret shared to achieve

a more robust scheme. To submit a message mi ∈ Gq a sender computes an El
Gamal ciphertext (u0,i, e0,i) = (gri , hrimi), where ri ∈ Zq is randomly chosen. Then
the mix-servers take turns at re-encrypting, using the homomorphic property of El
Gamal, and permuting the list of ciphertexts. In other words, for j = 1, . . . , k, Mj

computes and publishes {(uj,i, ej,i)} = {(uj−1,πj(i)g
sj,i , ej−1,πj(i)h

sj,i)}, where sj,i ∈ Zq

is random. Finally, the mix-servers jointly and veri�ably decrypt the list {(uk,i, ek,i)}
output by the last mix-server Mk, sort the result and output it. The idea is that due
to the transformations computed by the mix-servers the correspondence between the
output plaintexts and the input ciphertexts should be hidden. To ensure robustness,
the mix-servers also prove knowledge of a witness of the transformation it computes
on the list of ciphertexts.

Unfortunately, the above straight-forward construction is completely insecure [18],
since a malicious sender Sl may compute its ciphertext as (u0,l, e0,l) = (ua

0,i, e
a
0,i)

for some random exponent and then identify a matching pair (m, ma) in the �nal
output. Note that this reveals the message sent by the designated honest sender Si.
Intuitively, what is needed is a non-malleable cryptosystem, but on the other hand

11

the cryptosystem must be homomorphic for re-encryption to be possible. Formally,
what is needed in the overall proof of security of the mix-net is a way to extract
the messages submitted by corrupted players without using the secret key of the
cryptosystem, as explained in the introduction.

We augment the above to make the cryptosystem used for submission identical
to the original Cramer-Shoup scheme. We rename g0 = g, z0,j = zj, and g0,j = hz0,j ,
and then introduce g1,j = hz1,j , g1 =

∏k
j=1 g1,j, x0,j, x1,j, y0,j, y1,j ∈ Zq, cj = g

x0,j

0 g
x1,j

1 ,

dj = g
y0,j

0 g
y1,j

1 , c =
∏k

j=1 cj, and d =
∏k

j=1 dj. This gives a Cramer-Shoup key pair
((H, g0, g1, c, d, h), (x0, x1, y0, y1 : z0, z1)) with distributed secret key.

If the original Cramer-Shoup scheme is used and we only exploit its CCA2-security,
then the mix-servers would have to execute some protocol to �nd the set of valid
ciphertexts or randomize those that are invalid as is done in [6]. This requires com-
munication between the mix-servers at least linear in the number of senders.

However, due to the CCA2-PKE-security of the cryptosystem the mix-servers may
simply reconstruct the second part of the shared key. This allows each mix-server to
identify the valid ciphertexts without any additional communication, and form the
list of El Gamal ciphertexts consisting of the El Gamal part of each valid ciphertext.
Then the mix-net is executed on this list as before.

6 Future Work

In the mix-net application all messages are free-form. This may not be the case in some
applications. It is for example not the case in some multi-candidate homomorphic
election schemes, e.g., [7], where the submitted messages must be on a speci�c form
to encode a valid candidate. An interesting question is if it is possible to come up
with an e�cient hash proof system that constrains the set of messages in this way.
This would give a very e�cient non-interactive submission phase for such election
schemes in the standard model.

References

1. M. Abe, R. Cramer, and S. Fehr. Non-interactive distributed-veri�er proofs and proving relations among
commitments. In Advances in Cryptology � Asiacrypt 2002, volume 2501 of Lecture Notes in Computer
Science, pages 206�223. Springer Verlag, 2002.

2. M. Blum, P. Feldman, and S. Micali. Non-interactive zero-knowledge and its applications. In 20th ACM
Symposium on the Theory of Computing (STOC), pages 103�118. ACM Press, 1988.

3. J. Camensisch and V. Shoup. Practical veri�able encryption and decryption of discrete logarithms.
In Advances in Cryptology � Crypto 2003, volume 2729 of Lecture Notes in Computer Science, pages
126�144. Springer Verlag, 2003.

4. R. Canetti. Universally composable security: A new paradigm for cryptographic protocols. In 42nd
IEEE Symposium on Foundations of Computer Science (FOCS), pages 136�145. IEEE Computer So-
ciety Press, 2001. (Full version at Cryptology ePrint Archive, Report 2000/067, http://eprint.iacr.org,
October, 2001.).

5. R. Canetti, O. Goldreich, and S. Halevi. The random oracle model revisited. In 30th ACM Symposium
on the Theory of Computing (STOC), pages 209�218. ACM Press, 1998.

6. R. Canetti and S. Goldwasser. An e�cient threshold public key cryptosystem secure against adaptive
chosen ciphertext attack. In Advances in Cryptology � Eurocrypt '99, volume 1592 of Lecture Notes in
Computer Science, pages 90�106. Springer Verlag, 1999.

12

7. R. Cramer, R. Gennaro, and B. Schoenmakers. A secure and optimally e�cient multi-authority election
scheme. In Advances in Cryptology � Eurocrypt '97, volume 1233 of Lecture Notes in Computer Science,
pages 103�118. Springer Verlag, 1997.

8. R. Cramer and V. Shoup. A practical public key cryptosystem provably secure against adaptive chosen
ciphertext attack. In Advances in Cryptology � Crypto '98, volume 1462 of Lecture Notes in Computer
Science, pages 13�25. Springer Verlag, 1998.

9. R. Cramer and V. Shoup. Universal hash proofs and a paradigm for adaptive chosen ciphertext secure
public-key encryption. http://homepages.cwi.nl/˜cramer/, June 1999.

10. D. Dolev, C. Dwork, and M. Naor. Non-malleable cryptography. In 23rd ACM Symposium on the
Theory of Computing (STOC), pages 542�552. ACM Press, 1991.

11. T. El Gamal. A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE
Transactions on Information Theory, 31(4):469�472, 1985.

12. S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and System Sciences,
28(2):270�299, 1984.

13. S. Goldwasser, S. Micali, and C. Racko�. The knowledge complexity of interactive proof systems. SIAM
Journal on Computing, 18(1):186�208, 1989.

14. J. Groth, R. Ostrovsky, and A. Sahai. Perfect non-interactive zero knowledge for np. In Advances
in Cryptology � Eurocrypt 2006, volume 4004 of Lecture Notes in Computer Science, pages 339�358.
Springer Verlag, 2006.

15. A. Lysyanskaya and C. Peikert. Adaptive security in the threshold setting: From cryptosystems to
signature schemes. In Advances in Cryptology � Asiacrypt 2001, volume 2248 of Lecture Notes in
Computer Science, pages 331�350. Springer Verlag, 2001.

16. M. Naor and M. Yung. Public-key cryptosystems provably secure against chosen ciphertext attacks. In
22nd ACM Symposium on the Theory of Computing (STOC), pages 427�437. ACM Press, 1990.

17. P. Paillier. Public-key cryptosystems based on composite degree residuosity classes. In Advances in
Cryptology � Eurocrypt '99, volume 1592 of Lecture Notes in Computer Science, pages 223�238. Springer
Verlag, 1999.

18. B. P�tzmann and A. P�tzmann. How to break the direct RSA-implementation of mixes. In Advances in
Cryptology � Eurocrypt '89, volume 434 of Lecture Notes in Computer Science, pages 373�381. Springer
Verlag, 1990.

19. C. Racko� and D. Simon. Non-interactive zero-knowledge proof of knowledge and chosen ciphertext
attack. In Advances in Cryptology � Crypto '91, volume 576 of Lecture Notes in Computer Science,
pages 433�444. Springer Verlag, 1991.

20. A. Sahai. Non-malleable non-interactive zero-knowledge and adaptive chosen-ciphertext security. In
40th IEEE Symposium on Foundations of Computer Science (FOCS), pages 543�553. IEEE Computer
Society Press, 1999.

21. K. Sako and J. Killian. Reciept-free mix-type voting scheme. In Advances in Cryptology � Eurocrypt
'95, volume 921 of Lecture Notes in Computer Science, pages 393�403. Springer Verlag, 1995.

A Omitted Proofs

Proof (Lemma 1). Denote by ((xi, πx,i), πi) the ith query of A and let Ei be the event
that Hk(xi, πx,i) = πi, xi ∈ X \ L, and i ≤ il or xi 6= x. Condition on arbitrary �xed
values of (x, πx), π = Hk(x, πx), and α(k). Then the conditional probability of the
event Ei is negligible by universal2-ness of H. Since the �xed values are arbitrary,
this holds also without conditioning. Finally, A asks at most a polynomial number of
queries and the lemma follows from the union bound. �

Proof (Proposition 1). Conceptually, we follow the proof of Cramer and Shoup, but
our proof is somewhat simpli�ed, since we ignore the problem of approximating the
hash families by e�ciently computable hash families. Denote by T

(0)
b the machine

that simulates the experiment Expcca2−pke−b
CS,A (n) with some adversary A ∈ PT∗. We

change T
(0)
b step by step until it is independent of b.

13

Claim 7. Denote by T
(1)
b the machine T

(0)
b except that x is chosen randomly in X \L.

Then |Pr[T
(0)
b = 1]− Pr[T

(1)
b = 1]| is negligible.

Proof. Denote by Asubset an algorithm that tries to solve the subset membership
problem M. It accepts as input (Λ, x), where x either belongs to X \ L or L. It
simulates T

(0)
b except that it uses the instance Λ and de�nes the challenge ciphertext

(x, e, π̂) using x from its input (Λ, x). Note that Asubset is identically distributed to
T

(0)
b or T

(1)
b depending on if x ∈ L or X \ L. From the hardness of M follows that

|Pr[T
(0)
b = 1]− Pr[T

(1)
b = 1]| is negligible.

Denote by (πi, ei, π̂i) the ith query of A to the decryption oracle Decsk(·, ·, ·), and
let il be the index of the last query before the �rst output. Denote by (x, e, π̂) the
challenge ciphertext, and let E be the event that there exists an index i such that
A asks a decryption query (πi, ei, π̂i) with Ĥk̂(xi, ei) = π̂i, xi ∈ X \ L, and i ≤ il or
xi 6= x.

Claim 8. Denote by T
(2)
b the machine T

(1)
b except that it halts with output 0 if the

event E occurs. Then |Pr[T
(1)
b = 1]− Pr[T

(2)
b = 1]| is negligible.

Proof. De�ne Aproj as the machine that simulates T
(1)
b and that takes part in the

experiment of Lemma 1. The simulation is done honestly except that whenever T
(1)
b

needs to compute PEval1(Λ, k̂, xi, ei) = Ĥk̂(xi, ei) it simply queries the τk̂(·, ·) oracle
with (xi, ei), and instead of computing Eval1(Λ, ŝ, x, w, e) = Ĥk̂(x, e) = π̂ it outputs

(x, e) and waits for Ĥk̂(x, e) from the experiment. The lemma then implies that Pr[E]
is negligible, which in turn implies the claim.

Note that the lemma can be applied despite that the experiment reveals k̂, since
all queries asked by A are asked before this happens. This observation is the only
essential change to the original proof.

Claim 9. Denote by T
(3)
b the machine T

(2)
b except that π̂ in the challenge ciphertext

(x, e, π̂) is chosen randomly in Π. Then |Pr[T
(2)
b = 1]− Pr[T

(3)
b = 1]| is negligible.

Proof. This follows from the smoothness of the hash proof similarly as in the proof
of Claim 6 in the proof of Proposition 2.

Conclusion of Proof of the Proposition. To conclude the proof of the proposition we
simply note that the distributions of T

(3)
0 and T

(3)
1 are identical. The claims above

now imply that |Pr[T
(0)
0 = 1]− Pr[T

(0)
1 = 1]| is negligible. �

14

