
Logical Concepts in Cryptography

Simon Kramer

Ecole Polytechnique Fédérale de Lausanne (EPFL)
simon.kramer@a3.epfl.ch

Abstract. This paper is about the exploration of logical concepts in
cryptography and their linguistic abstraction and model-theoretic combi-
nation in a logical system, called CPL (for Cryptographic Protocol Logic).
The paper focuses on two fundamental aspects of cryptography. Namely,
the security of communication (as opposed to security of storage) and
cryptographic protocols (as opposed to cryptographic operators). The
logical concepts explored are the following. Primary concepts: the modal
concepts of knowledge, norms, space, and time. Secondary concepts:
knowledge de dicto and knowledge de re, confidentiality norms, truth-
functional and relevant implication, multiple and complex truth values.
The contribution of the paper is conceptual refinement and unification in
a single, comprehensive logical language, namely CPL. We illustrate the
expressiveness of CPL on representative requirements engineering case
studies. The distinguishing feature of CPL is that it unifies and refines a
variety of (not all!) existing approaches. This feature is the result of our
wholistic conception of property-based (logics) and model-based (process
algebra) formalisms.

Keywords applied formal logic, information security, logical modelling
of cryptographic protocols, combination of modal logics and process al-
gebra, requirements engineering

1 Introduction

The definition of a cryptographic protocol begins (and “ends” if this stage is not
mastered1) with requirements engineering, i.e., the definition of the requirements
(global properties) the protocol is supposed to meet. In particular, understanding
protocol requirements is necessary for understanding protocol attacks, which can
be looked at as negations of necessary conditions for the requirements to hold.
Protocol definition and in particular requirements engineering are engineering
tasks (the spirit of [2]). In contrast, the definition of cryptographic operators
is a scientific task (the spirit of [3, 4]) requiring profound expertise from differ-
ent fields of discrete mathematics. Protocol engineers do (and should) not have

1 “[. . .] although it is difficult to get cryptographic protocols right, what is really diffi-
cult is not the design of the protocol itself, but of the requirements. Many problems
with security protocols arise, not because the protocol as designed did not satisfy
its requirements, but because the requirements were not well understood in the first
place.” [1]

1

(to have) this expertise. For example, it is legitimate for a protocol engineer
to “abstract” negligible probabilities and consider them as what they are —
negligible. Ideally, engineers should only have to master a single, common, and
formal language for requirements engineering that adequately abstracts “hard-
core” mathematical concepts. Since logic is what all sciences have in common,
it is natural to stipulate that such a lingua franca for requirements engineering
cryptographic protocols be an appropriate logical language. Our task shall be
to synthesise the relevant logical concepts in cryptography into a cryptographic
protocol logic in the tradition of temporal2 logic [5] (cf. [6] for an effort of sim-
ilar ambition but in the tradition of dynamic3 logic [7]). We will validate our
language — at least at a first stage — on specification (stress on different re-
quirements) rather than verification (stress on different protocols) case studies,
since specification should precede verification. Nonetheless, the existence of ver-
ification examples is guaranteed by subsumption under CPL of other logics from
authors with the opposite focus.

We briefly survey requirements engineering — the practice of the specifi-
cation — of cryptographic protocols. Protocol designers commonly specify a
cryptographic protocol jointly by a semi-formal description of its behaviour (or
local properties) in terms of protocol narrations, and by an informal prescription
of its intended goals (or global properties) in natural language [8]. Informal speci-
fications present two major drawbacks: they do not have a well-defined, and thus
a well-understood meaning, and, therefore, they do not allow for verification of
correctness. In formal specifications of cryptographic protocols, local and global
properties are expressed either explicitly as such in a logical (or property-based)
language, or implicitly as code, resp. as encodings in a programming (or model -
based) language (e.g., applied λ-Calculus [9]; process calculi: CSP [10], applied
π-Calculus [11], Spi-Calculus [12], and [13]). Examples of such encodings are
equations between protocol instantiations, and predicates defined inductively
on the traces those instantiations may exhibit [14]. However, such encodings
present four major drawbacks: (1) they have to be found; worse, (2) they may
not even exist; (3) they are neither directly comparable with other encodings in
the same or in other programming languages, nor with properties expressed ex-
plicitly in logical languages; and (4) they are not easy to understand because the
intuition of the encoded property is not explicit in the encoding. On the other
hand, process calculi are ideal design formalisms. That is, they offer — due
to their minimalist, linguistic abstractions of modelling concepts (syntax) and
their mathematical, operational notion of execution (semantics) — a win-win
situation between the (pedantic) rigour of machine models and the (practical)
usability of programming languages.

Still, informal language and programming languages are inadequate for ex-
pressing and comparing cryptographic properties. It is our belief that only a
logical language equipped with an appropriate notion of truth, i.e., a crypto-
graphic logic, will produce the necessary adequacy. A number of logics have

2 more precisely, poly-dimensional (i.e., norms, knowledge, space, time) mono-modal
3 more precisely, mono-dimensional (i.e., time) poly-modal (action parameters)

2

been proposed in this aim so far, ranging from special-purpose, cryptographic
logics: the pioneering BAN-logic [15], a unification of several variants of BAN-
logic [16]; over general-purpose propositional, modal, program, and first- and
higher-order logics used for the special purpose of cryptographic protocol anal-
ysis: propositional (“logic programming”) [17, 18]; modal : deontic [19], doxastic
[20, 21], epistemic [22, 23], linear [24], temporal [25]; program: dynamic [26, 27,
6], Hoare-style [28]; first-order [29–31]; higher-order [32, 33]; to combinations
thereof: doxastic-epistemic [34], doxastic-temporal [35], distributed temporal
[36], dynamic-epistemic [37], epistemic-temporal [38] first-order-temporal [39],
dynamic-epistemic-temporal [40], deontic-epistemic-temporal [41].

All these logics have elucidated important aspects of cryptographic commu-
nication and proved the relevance of logical concepts to the modelling of that
communication. In particular, mere enunciation of maybe the three most funda-
mental cryptographic goals, namely secrecy, authenticity, and non-repudiation,
reveals the paramount importance of the concept of knowledge, both in its propo-
sitional (so-called knowledge de dicto) and in its individual (so-called knowledge
de re) manifestation. Possible4 enunciations in natural language of these goals
are the following (cf. Section 2.1 for their formalisations in CPL). Secrecy for a
protocol: “Always and for all messages m, if it is forbidden that the adversary
(Eve) know m then Eve does not know m.” (knowledge de re in the present sub-
junctive and the present indicative mode respectively). Authenticity of a message
m from the viewpoint of protocol participant a w.r.t. participant b: “a knows that
once only b knew m.” (knowledge de dicto in the present and knowledge de re in
the past indicative mode). Non-repudiation of authorship of a message m′ by b
w.r.t. a corroborated by a proof m (m is a proof for a that b is the author of m′):
“If a knew m then a would know that once only b knew m′.” (knowledge de re
in the past subjunctive and then in the past indicative mode, and knowledge de
dicto in the conditional mode). However, general-purpose/standard epistemic
logic is inadequate in a cryptographic setting due to weak paradoxes; for the
same reason (standard) deontic logic is inadequate (cf. Section 2.3). And doxas-
tic logic is inadequate due to its inadequacy for the above goals as these crucially
rely on knowledge, i.e., necessarily true, and not possibly false, belief (no con-
trol of the epistemic error). Finally, special-purpose logics have been limited in
their adequacy due to their choice of primitive concepts, e.g., belief, no nega-
tion/quantification, too specific concepts at the price of high extension costs.

Our goal is to supply a formal synthesis of logical concepts in a single, multi-
dimensional5 modal logic, namely CPL6, that yields requirements that are intu-
itive but abstract w.r.t. particular models of cryptography. First, we believe that
4 as a matter of fact unique definitions of these goals do not exist (yet)
5 cf. [42] for a research monograph on multi-dimensional modal logic (an active re-

search area), characterised in [43] as “. . . a branch of modal logic dealing with spe-
cial relational structures in which the states, rather than being abstract entities,
have some inner structure. . . . Furthermore, the accessibility relations between these
states are (partly) determined by this inner structure of the states.”

6 a preliminary, now outdated version of CPL appeared in the informal proceedings
of [44]

3

the formal method for any science is ultimately logic, as defined by a relation
of satisfaction (model -theoretic approach7, effectuated via model checking [45])
or a relation of deduction (proof -theoretic approach, effectuated via automated
theorem proving [46]). Second, given that requirements engineering is mainly
about meaning, i.e., understanding and formalising properties, we believe that
a model-theoretic approach is — at least at a first stage — more suitable than
a proof-theoretic approach. By ‘intuitive’ we mean that the conceptual dimen-
sions of the requirement are apparent in distinctive forms in the formula that
expresses the requirement — succinctly.

We argue that propositional and higher-order (at least beyond second order)
logic, and set theory are unsuitable as front-end formalisms for requirements en-
gineering purposes. Propositional logic is simply too weak as a specification lan-
guage but is well-suited for fully-automated, approximative verification. Higher-
order logic and set-theory may well be semantically sufficiently expressive; how-
ever, we opine that they are unsuitable for engineers in charge of capturing
meaning of protocol requirements within an acceptable amount of time (i.e.,
financial cost per specification) and space (i.e., intelligibility of specifications).
The intuitiveness of the specifications that a formalism yields are not just luxury,
but the very — and difficult to distil — essence and a measure of its pragmat-
ics, i.e., practical usefulness. The application domain of cryptographic protocols
is conceptually very rich. A suitable requirements engineering formalism must
organise and hard-wire/pre-compile this conceptual variety in its semantics and
provide succinct and intuitive linguistic abstractions (syntax) for them. The re-
sulting added value of such a formalism is empowerment of the engineer (speed-
up of the mental process of formalisation), and more powerful tools (speed-up
of model checking and automated theorem proving). Higher-order logic and set-
theory, having been conceived as general-purpose formalisms, obviously lack this
special-purpose semantics and syntax. However, they are well-suited as logical
frameworks (back-ends) for such special-purpose formalisms (object logics). For
example, our candidate language has a model-theoretic (i.e., relying on set the-
ory) semantics.

CPL has a first-order fragment for making statements about protocol events
and about the (individual) knowledge (“knows”) and the structure of crypto-
graphic messages induced by those events; and four modal fragments for mak-
ing statements about confidentiality norms (cf. deontic logic [19]); propositional
knowledge (“knows that”), i.e., knowledge of cryptographic states of affairs, (cf.
epistemic logic [47]); execution space (cf. spatial logic [48]); and execution time
(cf. temporal logic [5]). That is, CPL unifies first-order and four modal logics
in a single, multi-dimensional logic. Further, CPL refines standard epistemic
and deontic logic in the sense that it resolves the long-standing problem of
weak-paradoxes (caused by logical omniscience and conflicting obligations, re-
spectively) that these logics exhibit when applied in a cryptographic setting
(cf. Section 2.3). Yet CPL (a property-based formalism) goes even further in its
wholistic ambition in that it integrates the perhaps most important model-based

7 not to be confused with a model-based formalism

4

framework, namely process algebra [49], in a novel way. First, CPL’s temporal
accessibility relation (the semantics of its temporal modalities) can be defined
by an event-trace generating process (reduction) calculus, e.g., C3 [50, 51] whose
execution constraints are moreover checkable via CPL-satisfaction; and second,
CPL’s epistemic accessibility relation (the semantics of its epistemic modality
“knows that”) is the definitional basis for C3’s observational process equivalence,
which can be used for the model-based (process-algebraic and complementary
to property-based) formulation of protocol requirements.

A cryptographic protocol involves the concurrent interaction of participants
that are physically separated by — and exchange messages across — an unre-
liable and insecure transmission medium. Expressing properties of concurrent
interaction requires temporal operators [5]. The physical separation by an un-
reliable and insecure transmission medium in turn demands the epistemic and
deontic modalities. To see why, consider that the existence of such a separat-
ing medium introduces an uncertainty among protocol participants about the
trustworthiness of the execution of protocol actions (sending and receiving) and
the contents of exchanged messages, both w.r.t. actuality (an epistemic concern)
and legitimacy (a deontic concern). It is exactly the role of a cryptographic
protocol to re-establish this trustworthiness through the judicious use of cryp-
tographic evidence, i.e., essential information (e.g., ciphers, signatures and hash
values) for the knowledge of other information (e.g., messages or truth of for-
mulae), bred in a crypto system (e.g., a shared-key or public-key system) from
cryptographic germs such as keys and nonces, themselves generated from cryp-
tographic seeds (or seed values). However, any use of keys (as opposed to hash
values and nonces) requires that the knowledge of those keys be shared a priori.
This sharing of key knowledge is established by cryptographic protocols called
key-establishment protocols (comprising key-transport and key-agreement pro-
tocols) [2, Chapter 12], which are executed before any cryptographic protocol
that may then subsequently use those keys. Thus certain cryptographic protocols
must be considered interrelated by a notion of composition in a common exe-
cution space; hence the need of spatial operators. Another argument for spatial
operators comes from the fact that a correct protocol should conserve its inner
correctness even when composed with other protocols, i.e., a (totally) correct
protocol should be stable under different execution contexts [52, 53].

2 Logic

2.1 Syntax

The language F of CPL is parametric in the languageM of its individuals, i.e.,
protocol messages. It is chiefly relational, and functional in exactly the language
M of protocol messages it may be instantiated with. The temporal fragment of
F coincides with the syntax of LTLP (linear temporal logic with past). We shall
fix our mind on the following, comprehensive language M of individuals.

Definition 1 (Protocol messages). Protocol messages M ∈ M have the fol-
lowing structure. M ::= n (names, logical constants)

∣∣ � (the abstract message)
∣∣

5

p+ (public keys)
∣∣ dMe (message hashes)

∣∣ {|M |}M (symmetric message ciphers)∣∣ {|M |}+p+ (asymmetric message ciphers)
∣∣ {|M |}−p (signed messages)

∣∣ (M,M)
(message tuples).

Names n ∈ N are participant names a, b ∈ P, the (for the moment Dolev-
Yao [54]) adversary’s name Eve, symmetric session (K1) and long-term (K∞)
keys k ∈ K, (asymmetric) private keys p ∈ K−, and nonces x ∈ X (also used as
session identifiers). We assume that given a private key p, one can compute the
corresponding public key p+, as in DSA and Elgamal. Shared and private keys
shall be referred to as confidential keys CK, i.e., keys that must remain secret.
Symmetric keys may be compound for key agreement (as opposed to mere key
transport). Message forms (open messages) F are messages with variables v ∈ V.

The abstract message is a computational artifice to represent the absence of
intelligibility, just as the number zero is a computational artifice to represent the
absence of quantity. The abstract message is very useful for doing knowledge-
based calculations (cf. Definition 5), just as the number zero is very useful (to
say the least) for doing number-based calculations. The focus on cryptographic
protocols rather than cryptographic operators leads us (for the moment) to (1)
making abstraction from the exact representation of messages, e.g., bit strings;
and assuming (2.1) perfect hashing, i.e., collision resistance (hash functions are
injective) and strong pre-image resistance (hash functions are not invertible, or
given dMe, it is infeasible to compute M), and (2.2) perfect encryption (given
{|M |}k but not the shared key k or given {|M |}+p+ but not the private key p

corresponding to the public key p+, it is infeasible to compute M). We introduce
a type language for messages to increase succinctness of statements about the
structure of messages.

Definition 2 (Message types). Message types τ have the following structure.

τ, τ ′ ::= ∅
˛̨

σ
˛̨
H[τ]

˛̨
SCM [τ]

˛̨
ACp+ [τ]

˛̨
Sp[τ]

˛̨
T[τ, τ ′]

˛̨
τ ∪ τ ′

˛̨
τ ∩ τ ′

˛̨
τ \ τ ′

˛̨
M

σ, σ′ ::= P
˛̨
Adv

˛̨
ς

˛̨
K
+

ς, ς ′ ::= K
1

˛̨
K
∞ ˛̨

K
− ˛̨

X

Message type forms θ shall be message types with variables in key position.

Observe that (1) for each kind of message there is a corresponding type (e.g.,
H[τ] for hashes, SCM [τ] for symmetric and ACp+ [τ] for asymmetric ciphers, Sp[τ]
for signatures, and T[τ, τ ′] for tuples); (2) encryption and signature types are
parametric; and (3) the union, intersection, and difference of two message types is
again a message type. In short, message types are structure-describing dependent
types closed under union, intersection, and difference. ς and ς ′ denote types of
dynamically generable names. We macro-define PAdv := P ∪ Adv, K := K1 ∪ K∞,
CK := K ∪ K−, K∗ := CK ∪ K+, and N := PAdv ∪ K∗ ∪ X.

Definition 3 (Formulae). The set of formulae F contains precisely those pro-
positions that are the closed predicates formed with the operators of Table 1.
There, β denotes basic, α action, and δ data formulae; a, b, c denote participants
and x, x′ nonces; and k denotes a symmetric key and p a private key.

6

Predicates can be transformed into propositions either via binding of free vari-
ables, i.e., universal (generalisation) or existential (abstraction) quantification,
or via substitution of individuals for free variables (individuation). In accordance
with standard logical methodology, basic predicates express elementary facts.

Table 1. Predicate language

φ, φ′ ::= β
˛̨
¬φ

˛̨
φ ∧ φ′

˛̨
∀v(φ)˛̨

Pφ
˛̨

Ka(φ)
˛̨

φ ⊇ φ′
˛̨

φ⊗ φ′
˛̨

φ B φ′
˛̨

φ S φ′
˛̨
©−φ

˛̨
©+ φ

˛̨
φ U φ′

β, β′ ::= α
˛̨

δ

α, α′ ::= a.x � x′
˛̨

a.x � k.{b, c}
˛̨

a.x � p.b˛̨
a.x

F−→
6Eve

b
˛̨

a.x
F−→
Eve

b
˛̨

a.x
F←−
6Eve

b
˛̨

a.x←
Eve

F

δ, δ′ ::= n : σ
˛̨

a k F
˛̨

F 4 F ′

Our symbols are — and their intuitive meaning is as they are — pronounced
¬ “not”, ∧ “and”, ∀v “for all v”, P “it is permitted that”, Ka “a knows that”, ⊇
“epistemically/necessarily implies”, ⊗ “conjunctively separates”, B “assume—
guarantee”, S “since”, ©− “previous”, ©+ “next”, and U “until”, a.x � x′ “a
freshly generated the nonce x′ in session x”, a.x � k.{b, c} “a freshly generated
the symmetric key k for b and c in session x”, a.x � p.b “a freshly generated the
private key p for b in session x”, a.x

F−→
6Eve

b “a securely (i.e., in a way unobservable

by the adversary) sent off F as such (i.e., not only as a strict sub-term of another
message) to b in session x”, a.x

F−→
Eve

b “a insecurely (i.e., in a way observable by

the adversary) sent off F as such to b in session x”, a.x
F←−
6Eve

b “a securely (i.e.,

not through the adversary) received F as such from b in session x”, a.x ←
Eve

F “a

insecurely (i.e., possibly from the adversary) received F as such in session x”, :
“has type”, k “knows”, and 4 “is a subterm of”.

Our language is 1-sorted because protocol participants are referred to by
their name and names are transmittable data, i.e., messages. K expresses knowl-
edge de dicto (or propositional knowledge). In contrast, k expresses knowledge
de re (or individual knowledge). Knowledge de re conveys understanding of the
purpose and possession of a certain piece of cryptographic information up to
cryptographically irreducible parts. It is established based on the capability of
participants to synthesise those pieces from previously analysed pieces. By ‘un-
derstanding of the purpose’ we mean (1) knowledge of the structure for com-
pound, and (2) knowledge of the identity for atomic (names) information. Note
that such understanding requires that there be a minimal redundancy in that
information. The conditional φ ⊇ φ′ is epistemic or necessary in the sense that
the set of evidence corroborating truth of the consequent φ′ (e.g., the knowledge
of a key) is included in the set of evidence corroborating truth of the antecedent

7

φ (e.g., the knowledge of a plain text derived from that key). The epistemic
conditional captures the epistemic dependence of the truth of the antecedent
on the truth of the consequent. The formula φ ⊗ φ′ is satisfied by a (protocol)
model if and only if the model can be separated in exactly two parts such that
one part satisfies φ (e.g., key distribution/production) and the other satisfies
φ′ (e.g., key use/consumption). The formula φ B φ′ is satisfied by a model if
and only if for all models that satisfy φ the parallel composition of both models
satisfies φ′ (cf. total/compositional correctness of a protocol, as mentioned ear-
lier). Typing formulae F : θ have an essential and a pragmatic purpose. Typing
of atomic data, i.e., when F designates a name n and θ an atomic type σ, is
a linguistic abstraction for the above-mentioned essential modelling hypothesis
of minimal redundancy. Typing of compound data simply increases succinctness
of statements about the structure of messages. It is actually macro-definable in
terms of typing of atomic data, equality (itself macro-definable), and existential
quantification (cf. Appendix B).

We exemplify the expressiveness of CPL on a selection of tentative formali-
sations of fundamental cryptographic states of affairs. To the best of our knowl-
edge, (1) no other existing crypto logic is sufficiently expressive to allow for the
definition of the totality of these properties, and (2) the totality of these prop-
erties has never been expressed before in any other formalism. In fact, entire
logics (e.g., [15], [22], [23]) have been designed to capture a single cryptographic
state of affairs (e.g., authenticity, anonymity, resp. secrecy). We invite the reader
to validate our formalisations on the criteria of intuitiveness and succinctness,
but also to discern that the simplicity of the formalisation results is in sharp
contradistinction to the difficulty of their formalisation process. Note that the
formalisations employ macro-defined predicates (cf. Appendix B) and that α(b)
abbreviates disjunction of name generation, sending, and receiving performed by
b.

Honesty b is honest, written honest(b), :iff b does never knowingly perform a
forbidden action, written ¬ �(α(b) ∧ Fα(b) ∧ Kb(Fα(b))).

Prudency b is prudent, written prudent(b), :iff b does never perform a forbidden
action, written ¬ �(α(b) ∧ Fα(b)) or equivalently �(α(b)→ Pα(b)).

Trust a trusts b, written a trusts b, :iff a knows that b is prudent, written
Ka(prudent(b)).

Reachability-based Secrecy A protocol has the secrecy property :iff the ad-
versary (Eve) never knows any classified information, written �∀m(F(Eve k
m)→ ¬ Eve k m).

Perfect Forward Secrecy “[. . .] compromise of long-term keys does not com-
promise past session keys.” [2, Page 496], written ¬ �(∃(k : K1)(Eve k k) ⊇
∃(k : K∞)(Eve k k))8

8 A material conditional would not do here because the antecedent and the consequent
are epistemically — and thus not truth-functionally — related via key corruption,
i.e., the derivation of a session key from a corrupted long-term key.

8

Anonymity b is anonymous to a in state of affairs φ(b) :iff if a knows that some
participant is involved in φ then a cannot identify that participant with b,
written Ka(∃(c : P)(φ(c)))→ ¬Ka(φ(b)).

Known-key attack “[. . .] an adversary obtains some keys used previously and
then uses this information to determine new keys.” [2, Page 41], written
∃(v : CK)(Eve k v ∧ (∃(v′ : CK)(v′ 6= v ∧ Eve k v′) ⊇ Eve k v))

Key confirmation for a w.r.t. b “. . . one party is assured that a second (pos-
sibly unidentified) party actually has possession of a particular secret key.”
[2, Page 492], written k : K ∧ Ka(b k k)

Implicit key authentication for a w.r.t. b “. . . one party is assured that no
other party aside from a specifically identified second party (and possibly
additional identified trusted parties) may gain access to a particular secret
key.” [2, Page 492], written k : K ∧ Ka(∀(c : PAdv)(c k k → (c = a ∨ c = b)))

Authenticity of a datum A datum M is authentic w.r.t. its origin (say b)
from the viewpoint of a :iff a can authentically attribute (i.e., in the sense
of authorship) M to b, i.e., a knows that b authored M , written Ka(b a M).

Non-repudiation of authorship M proves that b authored M ′ :iff assuming
an arbitrary a knows M guarantees that a knows that b authored M ′, written
∀(a : P)(a k M B Ka(b a M ′)).

Compositional protocol correctness protocol (plug-in) P in (initial) state
h satisfies property φ provided that P is used with a (parallel) protocol
(environment) satisfying ϕ, written (P, h) |= ϕ B φ.

2.2 Semantics

Our definition of satisfaction is anchored (or rooted) and defined on protocol
states, i.e., tuples (P, h) ∈ P × H of a protocol model P (i.e., a parallel-
composable process term) and a protocol history h (i.e., an event trace). For
the purpose of this paper, we presuppose a notion of execution (e.g., [50])
−→ ⊆ (P × H) × (P × H) (or relation of temporal accessibility in the jargon
of modal logic) producing protocol events and chaining them up to form proto-
col histories. Protocol events have the following form: generation of a nonce x′

in session x by a, written N(a, x, x′); generation of a fresh symmetric key k for
b and c in session x by a, written N(a, x, k, (b, c)); generation of a fresh private
key p for b in session x by a, written N(a, x, p, b); insecure input of M in session
x by a, written I(a, x,M); secure input of M from b in session x by a, written
sI(a, x, M, b); insecure output of M to b in session x by a, written O(a, x, M, b);
and secure output of M to b in session x by a, written sO(a, x,M, b). By def-
inition, an event ε is secure if and only if ε is unobservable by the adversary
Eve. By convention, name generation is a secure event. We write ε(a) for any of
the above protocol events, ε(a, n) for any of the above name-generation events,
ε(a,M) for any of the above communication events, and ε̂(a) for any of the above
secure events. Protocol histories h ∈ H are simply finite words of protocol events
ε, i.e., event traces h ::= ε

∣∣ h ·ε, where ε denotes the empty protocol history.
We define satisfaction in a functional style on the structure of formulae.

Satisfaction employs complex (and thus multiple) truth values. Truth values are

9

complex in the sense that they are tuples of a simple truth value (i.e., ‘true’ or
‘false’) and a set of those events (the evidence) that are necessary to corroborate
that simple truth.

Definition 4 (Satisfaction). Let |= ⊆ (P × H) × F denote satisfaction of a
formula φ ∈ F by a protocol state s ∈ P × H (the anchor/root of an implicit
execution path model for φ):

s |= φ :iff there is a set of protocol events E s.t. s |=E φ

s |=E φ :iff for all p ∈ paths(s), JφK0p = (true, E)

where paths(s) denotes the set of paths p achored/rooted in s and induced by
−→, and J·K denotes a function of truth denotation from formulae to complex
truth values (cf. Table 2). There,

– p@i denotes the state (P, h) at position i in path p.
– ḣ denotes the set derived from protocol history h.
– h `a M denotes the derivation of the individual knowledge M by partici-

pant a from a’s view on h, i.e., the extraction, analysis, and synthesis (cf.
Appendix A) of the data that a has generated, received, or sent in h.

– ◦ denotes concatenation of protocol histories.
– EM

a (h) denotes the set of earliest events in h that corroborate truth of the
formula a k M :

EM
a (h) := EM

a (h, ε)

EM
a (h · ε, h′) :=

{
EM

a (h, h′) if h ◦ h′ `a M , and
EM

a (h, h′ · ε) ∪ {ε} otherwise.

EM
a (ε, h′) := ∅

– Σ := ∃(k : CK)(Eve k k ∧ ¬ k ck Eve) denotes a state formula expressing the
fundamental state of violation in a cryptographic setting, namely the one
where the adversary has come to know a confidential key not of her own.

– ≈a ⊆ (P × H) × (P × H) denotes the relation of epistemic accessibility
associated with the modality Ka; it is defined hereafter.

– L · M·a denotes a unary function (inspired by [55]) of cryptographic parsing
defined on protocol states and on logical formulae; it is defined hereafter on
messages and tacitly lifted onto protocol states and logical formulae.

– ≡ denotes a relation of structural equivalence defined on process terms and
on event traces. On process terms, it denotes the smallest equivalence relation
expressing associativity and commutativity of processes. On event traces, it
denotes permutation, i.e., h ≡ h′ :iff |h| = |h′| and ḣ = ḣ′, where | · | denotes
a length function.

Permission is not macro-defined because we want to highlight that each new
notion of fundamental state of violation will give rise to a new notion of per-
mission. That is, we look at the state formula Σ as a parameter of the logic.

10

Table 2. Truth denotation

Ja.x � x′Ki
p := (E 6= ∅, E) where E := {N(a, x, x′)} ∩ ḣ

Ja.x � k.{b, c}Ki
p := (E 6= ∅, E) where E := {N(a, x, k, {b, c})} ∩ ḣ

Ja.x � p.bKi
p := (E 6= ∅, E) where E := {N(a, x, p, b)} ∩ ḣ

Ja.x
M−→
6Eve

bKi
p := (E 6= ∅, E) where E := {sO(a, x, M, b)} ∩ ḣ

Ja.x
M−→
Eve

bKi
p := (E 6= ∅, E) where E := {O(a, x, M, b)} ∩ ḣ

Ja.x
M←−
6Eve

bKi
p := (E 6= ∅, E) where E := {sI(a, x, M, b)} ∩ ḣ

Ja.x←
Eve

MKi
p := (E 6= ∅, E) where E := {I(a, x, M)} ∩ ḣ

Jn : σKi
p := (n has type σ, ∅)

Ja k MKi
p := (h `a M, EM

a (h))

JM 4M ′Ki
p := (M is a subterm of M ′, ∅)

J¬φKi
p := (not vφ, ḣ \ Eφ) where JφKi

p = (vφ, Eφ)

Jφ ∧ φ′Ki
p := (vφ and vφ′ , Eφ ∪ Eφ′) where

JφKi
p = (vφ, Eφ) and

Jφ′Ki
p = (vφ′ , Eφ′)

J∀v(φ)Ki
p := (for all M ∈M, vM ,

S
M∈MEM) where J

˘M
/v

¯
φKi

p = (vM , EM)

JPφKi
p := Jφ B �(Σ → (Σ 6⊇ φ))Ki

p

JKa(φ)Ki
p := (for all s, if p@0 −→∗ s and s ≈a p@i then s′ |=E′ φ′, E ′(s,φ))

where (s′, φ′) :=

(
(s, φ) if s = p@i, and

(L s Mp@i
a , L φ Mp@i

a) otherwise.

Jφ ⊇ φ′Ki
p := (if vφ then vφ′ and Eφ′ ⊆ Eφ, Eφ) where

JφKi
p = (vφ, Eφ) and

Jφ′Ki
p = (vφ′ , Eφ′)

Jφ⊗ φ′Ki
p := (there is Q ∈ P and Q′ ∈ P s.t. P ≡ Q 9 Q′ and (Q, h) |=Eφ φ

and (Q′, h) |=Eφ′ φ′, Eφ ∪ Eφ′)

Jφ B φ′Ki
p := (for all (Q, h′) ∈ P ×H and h′′ ≡ h′ ◦ h, if (Q, h′) |=E′ φ then

(Q 9 P, h′′) |=E′′ φ′,
S
E ′′ ∪

S
E ′)

Jφ S φ′Ki
p := (there is k s.t. 0 ≤ k ≤ i and vk and for all j, if k < j ≤ i then vj ,S

j Ej ∪ Ek) where JφKj
p = (vj , Ej) and Jφ′Kk

p = (vk, Ek)

J©−φKi
p :=

(
JφKi−1

p if i > 0, and

(false, ∅) otherwise.

J©+ φKi
p :=

(
JφKi+1

p if i < |p| − 1, and

(false, ∅) otherwise.

Jφ U φ′Ki
p := (there is k s.t. i ≤ k and vk and for all j, if i ≤ j < k then vj ,S

j Ej ∪ Ek) where JφKj
p = (vj , Ej) and Jφ′Kk

p = (vk, Ek)

11

The epistemic accessibility relation has, as previously mentioned, a double use;
it not only serves as the definitional basis for the epistemic modality (Ka) of
CPL, but also as the definitional basis for the observational process equivalence
of C3 [50]. Cryptographic parsing captures an agent’s capability to understand
the structure of a cryptographically obfuscated message. It allows the definition
of a cryptographically meaningful notion of epistemic accessibility via the inter-
mediate concept of structurally indistinguishable protocol histories. The idea is
to parse unintelligible messages to the abstract message �.

Definition 5 (Cryptographic parsing). The cryptographic parsing function
L · Mh

a associated with an agent a ∈ P and a protocol history h ∈ H (and comply-
ing with the assumptions of perfect cryptography) is an identity on names, the
abstract message, and public keys; and otherwise acts as defined in Table 3.

Table 3. Parsing on cryptographic messages

L dMe Mh
a :=

(
dL M Mh

ae if h |= a k M , and

� otherwise.

L {|M |}M′ Mh
a :=

(
{|L M Mh

a|}L M′ Mh
a

if h |= a k M ′, and

� otherwise.

L {|M |}+
p+ Mh

a :=

(
{|L M Mh

a|}+p+ if h |= a k p ∨ (a k M ∧ a k p+), and

� otherwise.

L {|M |}−p Mh
a :=

(
{|L M Mh

a|}−p if h |= a k p+, and

� otherwise.

L (M, M ′) Mh
a := (L M Mh

a, L M ′ Mh
a)

Definition 6 (Structurally indistinguishable protocol histories). Two
protocol histories h and h′ are structurally indistinguishable from the viewpoint
of an agent a, written h ≈a h′, :iff a observes the same event pattern and
the same data patterns in h and h′. Formally, for all h, h′ ∈ H, h ≈a h′ :iff
h ≈(h,h′)

a h′ where,

– given that a is a legitimate participant or the adversary Eve,

1. ε ≈(h,h′)
a ε

2.
hl ≈(h,h′)

a hr

hl · ε(a, n) ≈(h,h′)
a hr · ε(a, n)

3.
hl ≈(h,h′)

a hr

hl · ε(a,M) ≈(h,h′)
a hr · ε(a,M ′)

L M Mh
a = L M ′ Mh′

a

12

– given that a is a legitimate participant,

4.
hl ≈(h,h′)

a hr

hl · ε(b) ≈(h,h′)
a hr

a 6= b
hl ≈(h,h′)

a hr

hl ≈(h,h′)
a hr · ε(b)

a 6= b

– given that a is the adversary Eve,

4.
hl ≈(h,h′)

Eve hr

hl · ε̂(b) ≈(h,h′)
Eve hr

Eve 6= b
hl ≈(h,h′)

Eve hr

hl ≈(h,h′)
Eve hr · ε̂(b)

Eve 6= b

5.
hl ≈(h,h′)

Eve hr

hl · I(b, x, M) ≈(h,h′)
Eve hr · I(b, x,M ′)

LM Mh
Eve = L M ′ Mh′

Eve

6.
hl ≈(h,h′)

Eve hr

hl · O(b, x, M, c) ≈(h,h′)
Eve hr · O(b, x,M ′, c)

LM Mh
Eve = LM ′ Mh′

Eve

Note that the observations at the different (past) stages hl and hr in h and h′

respectively must be made with the whole (present) knowledge of h and h′ (cf.
hl ≈(h,h′)

· hr). Learning new keys may render intelligible past messages to an
agent a in the present that were not to her before.

Remark 1. For all agents a including Eve, ≈a ⊆ H × H is (1) an equivalence
with an infinite index due to fresh-name generation, (2) not a right-congruence
due to the possibility of learning new keys, (3) a refinement on the projection
H|a of H onto a’s view [47], and (4) decidable.

We lift structural indistinguishability from protocol histories to protocol
states, i.e., tuples of a protocol term and a protocol history, and finally obtain
our relation of epistemic accessibility.

Definition 7 (Structurally indistinguishable protocol states). Let P1

and P2 denote two cryptographic processes, i.e., models of cryptographic pro-
tocols, of some set P. Then two protocol states (P1, h1) and (P2, h2) are struc-
turally indistinguishable from the viewpoint of an agent a, written (P1, h1) ≈a

(P2, h2), :iff h1 ≈a h2.

2.3 Discussion

In the terminology of relevant logics, both the spatial conditional B and the
epistemic conditional ⊇ are relevant (as opposed to the truth-functional material
conditional →) in the sense that information based on which the antecedent
is evaluated is relevant to the information based on which the consequent is
evaluated. In B, the relevant (and potential) information is represented by the
adjoint state (Q, h′). In ⊇, the relevant (and actual) information is represented
by the event subset Eφ′ .

13

As an example, consider

ε · I(Eve,�, {|M |}k) |= Eve k k B Eve k M

which states what primary knowledge, namely k, Eve requires to derive the
(secondary) knowledge M in the given model. In other words, if Eve knew k then
Eve would know M in the given model. This is a property of Eve′s cryptographic
knowledge w.r.t. its potentiality. (The addition of information potentially leads
to multiplication of knowledge.) In comparison, consider

ε · I(Eve,�, {|M |}k) · I(Eve,�, k) |= Eve k M ⊇ Eve k k

which states how Eve actually derives the secondary knowledge M from the
primary knowledge in the given model. In other words, if Eve knows M then
necessarily because Eve knows k in the given model. This is a property of Eve′s
cryptographic knowledge w.r.t. its actuality. In contrast, consider (the tautology)

|= (Eve k {|M |}k ∧ Eve k k)→ Eve k M

which states a property of a cryptographic operation, namely encryption. We
believe that B and ⊇ are (perhaps the) two natural — and incidentally, relevant
— notions of implication for cryptographic knowledge.

A particularly interesting use of the spatial and the epistemic conditional is
the definition of a cryptographically meaningful notion of permission (cf. Ta-
ble 2) and prohibition (cf. Appendix B). Our definition says that it is permitted
that φ is true if and only if if φ were true then whenever the fundamental state
of violation would be reached, it would not be due to φ being true. This (re-
ductionistic) notion of permission is inspired by [56, Page 9] where a notion of
prohibition is defined in the framework of dynamic logic. The authors resume
their basic idea as “. . . some action is forbidden if doing the action leads to a state
of violation.” Observe that [56] construe a notion of prohibition based on actions,
whereas we construe a notion of permission based on propositions. We recall that
the motivation of reductionistic approaches to (standard) deontic logic (SDL)
is the existence of weak paradoxes in SDL. That is, SDL actually contains true
statements that are counter to the normative intuition it was originally intended
to capture.

In SDL permission, prohibition, and obligation are interdefinable, whereas
in CPL only permission and prohibition are. In fact, there is no notion of obli-
gation in CPL because (faulty) cryptographic protocols create a context with
conflicting obligations whose treatment would require machinery from defeasible
deontic logic [57]. Consider that it must be obligatory that (1) the fundamental
state of violation be never reached during protocol execution, and (2) protocol
participants always comply with protocol prescription. These two obligations are
obviously conflicting in a context created by the execution of a faulty protocol,
which by definition does reach the fundamental state of violation.

Our semantics for the epistemic modality reconciles the cryptographically
intuitive but incomplete semantics from [58] with the complete (but less com-

14

putational), renaming semantics from [59]. We achieve this by casting the cryp-
tographic intuition from [58] in a simple (rule-based) and computational formu-
lation of epistemic accessibility. Similarly to [58], we parse unintelligible data in
an agent’s a individual knowledge M into abstract messages �. In addition, and
inspired by [60, 59], we parse unintelligible data in an agent’s a propositional
knowledge Ka(φ). Thanks to this additional parsing, our epistemic modality
avoids weak paradoxes that, like in SDL, exist in standard epistemic logic (SEL).
These paradoxes are due to epistemic necessitation, i.e., the fact that an agent
a knows all logical truths such as ∃v({|M |}k = {|v|}k). To illustrate, consider the
following simple example. Let P ∈ P and M ∈M. Then paradoxically (P, ε) |=
Ka(∃v({|M |}k = {|v|}k)) “in” SEL but truthfully (P, ε) 6|= Ka(∃v({|M |}k = {|v|}k))
in CPL because |= ¬∃v(� = {|v|}k) (cf. “otherwise”-clause in the truth denota-
tion of Ka(φ) in Table 2). For further discussion see [60]. Note that our truth
condition for the epistemic modality is an enhancement of the one from [60, 59]
in the sense that we are able to eliminate one universal quantifier (the one over
renamings) thanks to the employment of cryptographic parsing. Further note
that our epistemic modality does capture knowledge, i.e., |= Ka(φ)→ φ, due to
the reflexivity of its associated accessibility relation.

3 Conclusion

We believe having accomplished with CPL an original synthesis of an unprece-
dented variety of logical concepts that are relevant to the logical modelling of
cryptographic communication. In particular, we have (1) defined a cryptographi-
cally meaningful (in the sense of Dolev-Yao for the moment) epistemic modality,
(2) invented a cryptographically interesting epistemic conditional, (3) pioneered
the application of spatial logic to cryptographic concerns, and (4) shown that
cryptographically meaningful deontic modalities are definable with a combina-
tion of epistemic and spatial conditional. At present, we are extending CPL with
weak real time for time stamps and timed keys. Then, we are planning to extend
CPL with probability for propositional knowledge and computational complex-
ity for individual knowledge. We would like to be able to express that an agent
a knows that φ is true with probability p, written Kp

a(φ), and that a knows
M provided she has probabilistic polynomial time, or greater computing power,
written a k≤ppt M and a k>

ppt M respectively. This would lead to a complexity-
theoretic notion of propositional and individual knowledge for our logic (cf. [61]
for a logic with a complexity-theoretic notion of possession). Further, in case
first-order CPL should not suffice for some applications, it would be trivial to
extend CPL to the second-order. Just allow (unquoted) message types (denoting
sets of messages) as messages, and quantification may range over second-order
entities (sets). Finally, a proof system for CPL is also one of our a desiderata.

Acknowledgement I would like to thank Mika Cohen for our stimulating discus-
sions about crypto logics and his constructive criticism of this paper.

15

References

1. Meadows, C.: Ordering from Satan’s menu: a survey of requirements specification
for formal analysis of cryptographic protocols. Science of Computer Programming
50(3–22) (2003)

2. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryp-
tography. CRC Press (1996)

3. Goldreich, O.: Foundations of Cryptography: Basic Tools. Cambridge University
Press (2001)

4. Goldreich, O.: Foundations of Cryptography: Basic Applications. Cambridge Uni-
versity Press (2004)

5. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems:
Specification. Springer (1984)

6. Durgin, N., Mitchell, J.C., Pavlovic, D.: A compositional logic for proving security
properties of protocols. Journal of Computer Security 11(4) (2003)

7. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press (2000)

8. Boyd, C., Mathuria, A.: Protocols for Authentication and Key Establishment.
Springer (2003)

9. Sumii, E., Pierce, B.C.: Logical relations for encryption. Journal of Computer
Security 11(4) (2003)

10. Ryan, P., Schneider, S., Goldsmith, M., Lowe, G., Roscoe, B.: The Modelling and
Analysis of Security Protocols: the CSP Approach. Addison-Wesley (2000)

11. Abadi, M., Fournet, C.: Mobile values, new names, and secure communication. In:
Proceedings of the ACM Symposium on Principles of Programming Languages.
(2001)

12. Abadi, M., Gordon, A.D.: A calculus for cryptographic protocols: The Spi-calculus.
Information and Computation 148(1) (1999)

13. Mitchell, J.C., Ramanathan, A., Scedrov, A., Teague, V.: A probabilistic
polynomial-time process calculus for the analysis of cryptographic protocols. The-
oretical Computer Science 353(1–3) (2006)

14. Abadi, M.: Security protocols and their properties. In: Foundations of Secure
Computation, IOS Press (2000)

15. Burrows, M., Abadi, M., Needham, R.: A logic of authentication. ACM Transac-
tions on Computer Systems 8(1) (1990)

16. Syverson, P.F., van Oorschot, P.C.: A unified cryptographic protocol logic. CHACS
5540-227, Naval Research Laboratory, Washington D.C., USA (1996)

17. Aiello, L.C., Massacci, F.: Verifying security protocols as planning in logic pro-
gramming. ACM Transactions on Computational Logic 2(4) (2001)

18. Abadi, M., Blanchet, B.: Analyzing security protocols with secrecy types and logic
programs. Journal of the ACM 52(1) (2005)

19. Bieber, P., Cuppens, F.: Expression of Confidentiality Policies with Deontic Logic.
In: Deontic Logic in Computer Science: Normative System Specification. John
Wiley & Sons (1993)

20. Accorsi, R., Basin, D., Viganò, L.: Towards an awareness-based semantics for
security protocol analysis. In: Proceedings of the Post-CAV Workshop on Logical
Aspects of Cryptographic Protocol Verification. (2001)

21. Zhang, Y., Varadharajan, V.: A logic for modeling the dynamics of beliefs in cryp-
tographic protocols. In: Proceedings of the Australasian Conference on Computer
Science. (2001)

16

22. Syverson, P.F., Stubblebine, S.G.: Group principals and the formalization of
anonymity. In: Proceedings of the World Congress On Formal Methods In The
Development Of Computing Systems. (1999)

23. Halpern, J., O’Neill, K.: Secrecy in multi-agent systems. In: Proceedings of the
IEEE Computer Security Foundations Workshop. (2002)

24. Bozzano, M., Delzanno, G.: Automatic verification of secrecy properties for linear
logic specifications of cryptographic protocols. Journal of Symbolic Computation
38(5) (2004)

25. Gray, J.W., McLean, J.D.: Using Temporal Logic to Specify and Verify Cryp-
tographic Protocols (progress report). In: Proceedings of the IEEE Computer
Security Foundations Workshop. (1995)

26. Frendrup, U., Hüttel, H., Jensen, J.N.: Modal logics for cryptographic processes.
In: Electronic Notes in Theoretical Computer Science. Volume 68. (2002)

27. Adi, K., Debbabi, M., Mejri, M.: A new logic for electronic commerce protocols.
Theoretical Computer Science 291(3) (2003)

28. Lowe, G., Auty, M.: On a calculus for security protocol development. Technical
report, Oxford University (2005)

29. Clarke, E., Jha, S., Marrero, W.: A machine checkable logic of knowledge for
specifying security properties of electronic commerce protocols. In: Proceedings of
the LICS-Affiliated Workshop on Formal Methods & Security Protocols. (1998)

30. Selinger, P.: Models for an adversary-centric protocol logic. In: Proceedings of the
Post-CAV Workshop on Logical Aspects of Cryptographic Protocol Verification.
(2001)

31. Cohen, E.: First-order verification of cryptographic protocols. Journal of Computer
Security 11(2) (2003)

32. Paulson, L.C.: The inductive approach to verifying cryptographic protocols. Jour-
nal of Computer Security 6(1) (1998)

33. Impagliazzo, R., Kapron, B.M.: Logics for reasoning about cryptographic construc-
tions. Journal of Computer and Systems Sciences 72(2) (2006)

34. Coffey, T., Saidha, P.: Logic for verifying public-key cryptographic protocols. In:
IEE Proceedings — Computers and Digital Techniques. (1997)

35. Benerecetti, M., Giunchiglia, F., Panti, M., Spalazzi, L.: A logic of belief and a
model checking algorithm for security protocols. In: Proceedings of FORTE. (2000)

36. Caleiro, C., Viganò, L., Basin, D.: Towards a metalogic for security protocol anal-
ysis. In: Proceedings of the Workshop on Combination of Logics. (2004)

37. Baltag, A.: Logics for insecure communication. In: Proceedings of the Conference
on Theoretical Aspects of Rationality and Knowledge. (2001)

38. Dixon, C., Gago, M.C.F., M. Fisher, W.v.d.H.: Using temporal logics of knowledge
in the formal verification of security protocols. In: Proceedings of the International
Symposium on Temporal Representation and Reasoning. (2004)

39. Gnesi, S., Latella, D., Lenzini, G.: A BRUTUS logic for the Spi-Calculus. In:
Proceedings of the IFIP Workshop on Issues in the Theory of Security. (2001)

40. Bieber, P.: A logic of communication in hostile environment. In: Proceedings of
the IEEE Computer Security Foundations Workshop. (1990)

41. Glasgow, J., Macewen, G., Panangaden, P.: A logic for reasoning about security.
ACM Transactions on Computer Systems 10(3) (1992)

42. Gabbay, D., Kurucz, A., Wolter, F., Zakharyaschev, M.: Many-Dimensional Modal
Logics: Theory and Applications. Elsevier (2003)

43. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University
Press (2001)

17

44. Kramer, S.: Cryptographic Protocol Logic. In: Proceedings of the LICS/ICALP-
Affiliated Workshop on Foundations of Computer Security. (2004)

45. Clarke, Jr., E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press (1999)
46. Fitting, M.: First-Order Logic and Automated Theorem Proving. Springer-Verlag

(1996)
47. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning about Knowledge.

MIT Press (1995)
48. Dam, M.F.: Relevance Logic and Concurrent Composition. PhD thesis, University

of Edinburgh (1989)
49. Bergstra, J.A., Ponse, A., Smolka, S.A., eds.: Handbook of Process Algebra. Else-

vier (2001)
50. Borgström, J., Kramer, S., Nestmann, U.: Calculus of Cryptographic Communica-

tion. In: Proceedings of the LICS-Affiliated Workshop on Foundations of Computer
Security and Automated Reasoning for Security Protocol Analysis. (2006)

51. Borgström, J., Grinchtein, O., Kramer, S.: Timed Calculus of Cryptographic Com-
munication. In: Proceedings of the Workshop on Formal Aspects in Security and
Trust. (2006)

52. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: Proceedings of the IEEE Symposium on Foundations of Computer
Science. (2001)

53. Backes, M., Pfitzmann, B., Waidner, M.: A universally composable cryptographic
library. In: Proceedings of the ACM Conference on Computer and Communication
Security. (2003)

54. Dolev, D., Yao, A.C.: On the security of public key protocols. IEEE Transactions
on Information Theory 29(12) (1983)

55. Abadi, M., Rogaway, P.: Reconciling two views of cryptography (the computational
soundness of formal encryption). Journal of Cryptology 15(2) (2002)

56. Meyer, J.J.C., Dignum, F.P.M., Wieringa, R.J.: The Paradoxes of Deontic Logic
Revisited: A Computer Science Perspective. Or: Should computer scientists be
bothered by the concerns of philosophers ? Technical Report UU-CS-1994-38,
Utrecht University (1994)

57. Nute, D., ed.: Defeasible Denotic Logic. Volume 263 of Synthese Library. Kluwer
(1997)

58. Abadi, M., Tuttle, M.R.: A semantics for a logic of authentication. In: Proceedings
of the ACM Symposium of Principles of Distributed Computing. (1991)

59. Cohen, M., Dam, M.: A completeness result for BAN logic. In: Proceedings of the
Workshop on Methods for Modalities. (2005)

60. Cohen, M., Dam, M.: Logical omniscience in the semantics of BAN logic. In: Pro-
ceedings of the LICS-affiliated Workshop on the Foundations of Computer Security.
(2005)

61. Datta, A., Derek, A., Mitchell, J.C., Shmatikov, V., Turuani, M.: Probabilistic
polynomial-time semantics for a protocol security logic. In: Proceedings of the
EATCS International Colloquium on Automata, Languages and Programming.
(2005)

A Auxiliary definitions

18

Data extraction

h · ε(a, . . .) `a (a, . . .)
h `a M

h · ε `a M

Data synthesis Data analysis

h `a M h `a M ′

h `a (M,M ′)
h `a (M,M ′)

h `a M

h `a (M,M ′)
h `a M ′

h `a p

h `a p+

h `a M

h `a dMe

h `a M h `a M ′

h `a {|M |}M ′

h `a {|M |}M ′ h `a M ′

h `a M

h `a M h `a p+

h `a {|M |}+p+

h `a {|M |}+p+ h `a p

h `a M

h `a M h `a p

h `a {|M |}−p
h `a {|M |}−p h `a p+

h `a M

B Specification library

> := Eve : Adv true

⊥ := ¬> false

φ ∨ φ′ := ¬(φ ∧ φ′) φ or φ′

φ→ φ′ := ¬φ ∨ φ′ if φ then φ′

φ↔ φ′ := (φ→ φ′) ∧ (φ′ → φ) φ if and only if φ′

∃v(φ) := ¬∀v(¬φ) there is a v s.t. φ

∀(v : θ)(φ) := ∀v(v : θ → φ)

∃(v : θ)(φ) := ∃v(v : θ ∧ φ)

Fφ := ¬Pφ it is forbidden that φ

φ ≡ φ′ := (φ ⊇ φ′) ∧ (φ′ ⊇ φ) φ is epistemically equivalent to φ′

φ⊕ φ′ := ¬(¬φ⊗ ¬φ′) φ disjunctively separates φ′

�φ := φ⊕⊥ everywhere φ

�φ := ¬�¬φ somewhere φ

φ′ I φ := ¬(φ′ B ¬φ) assert φ′ guarantee φ

�φ := φ S⊥ so far φ

�−φ := ¬� ¬φ once φ

1.φ := φ ∧ ¬©− �−φ for the first time φ

�φ := φ U⊥ henceforth φ

�φ := ¬� ¬φ eventually φ

φ ≤ φ′ := (φ ∧ �φ′) ∨ (φ′ ∧ �−φ) φ before φ′

φ φ′ := (φ↔ �φ
′) ∧ (φ′ ↔ �−φ) φ′ is being caused by φ

19

φ� φ′ := �(φ φ′) φ causes φ′

F = F ′ := F 4 F ′ ∧ F ′ 4 F F is equal to F ′

F ≺ F ′ := F = F ′ ∧ ¬F 4 F ′ F is a strict subterm of F ′

a h F := ∃v(F 4 v ∧ a k v) a has/possesses F

a tk F := a h F ∧ ¬ a k F a tacitly knows F

F : ∅ := ⊥
F : H[θ] := ∃(v : θ)(F = dve)

F : SCk[θ] := ∃(v : θ)(F = {|v|}k)

F : ACp+ [θ] := ∃(v : θ)(F = {|v|}+
p+)

F : Sp[θ] := ∃(v : θ)(F = {|v|}−p)

F : T[θ, θ′] := ∃(v : θ)∃(v′ : θ′)(F = (v, v′))

F : θ ∪ θ′ := F : θ ∨ F : θ′

F : θ ∩ θ′ := F : θ ∧ F : θ′

F : θ \ θ′ := F : θ ∧ ¬F : θ′

F : M := >
F : SC[θ] := ∃(v : K)(F : SCv[θ])

F : AC[θ] := ∃(v : K+)(F : ACv[θ])

F : C[θ] := F : SC[θ] ∪ AC[θ]

F : S[θ] := ∃(v : K−)(F : Sv[θ])

θ v θ′ := ∀(v : θ)(v : θ′) θ is a subtype of θ′

θ = θ′ := θ v θ′ ∧ θ′ v θ

θ @ θ′ := θ v θ′ ∧ θ′ 6= θ

k K F := ∃v({|v|}k 4 F)

p+ K+ F := ∃v({|v|}+
p+ 4 F)

p K- F := ∃v({|v|}−p 4 F)

n K∗ F := n K F ∨ n K+ F ∨ n K- F n is operational in F

F J F ′ := ∃v∃(k : K)(F 4 v ∧ {|v|}k 4 F ′)

F J+ F ′ := ∃v∃(p+ : K+)(F 4 v ∧ {|v|}+
p+ 4 F ′)

F J- F ′ := ∃v∃(p : K−)(F 4 v ∧ {|v|}−p 4 F ′)

F J∗ F ′ := F J F ′ ∨ F J+ F ′ ∨ F J- F ′ F is guarded in F ′

n 7→ x := �− 1.∃m(n K∗ m ∧ ∃(a, b : P)(a.x
m−→
Eve

b)) n is for session x

a a F := �− (a k F ∧ ∀(b : PAdv)(b k F → b = a)) a authored F

k sk a := ∃(b, c : PAdv)∃(x : X)(b.x � k.{a, c} ∨
b.x � k.{c, a})

k is a shared key for a

k sk1 a := k sk a ∧ k : K1 k is a session key for a

k sk∞ a := k sk a ∧ k : K∞ k is a long-term key for a

n prk a := ∃(b : P)∃(x : X)(b.x � n.a) p is a private key for a

n puk a := ∃v(v+ = n ∧ v prk a) n is a private key for a

n ck a := n sk a ∨ n prk a n is a confid. key for a

20

