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Abstract

This report is about the exploration of logical concepts in cryptography and
their linguistic abstraction and model-theoretic combination in a logical sys-
tem, called CPL (for Cryptographic Protocol Logic). The report focuses on two
fundamental aspects of cryptography. Namely, the security of communication
(as opposed to security of storage) and cryptographic protocols (as opposed to
cryptographic operators). The logical concepts explored are the following. Pri-
mary concepts: the modal concepts of knowledge, norms, provability, space,
and time. Secondary concepts: individual and propositional knowledge,
confidentiality norms, truth-functional and relevant (in particular, intuitionis-
tic) implication, multiple and complex truth values, and program types. The
distinguishing feature of CPL is that it unifies and refines a variety of existing
approaches. This feature is the result of our wholistic conception of property-
based (logics) and model-based (process algebra) formalisms. We illustrate the
expressiveness of CPL on representative requirements engineering case studies.

Addendum I. We extend (core) CPL (qualitative time) with rational-valued
time, i.e., time stamps, timed keys, and potentially drifting local clocks, to tCPL
(quantitative time). Our extension is conservative and really simple. It requires
only the refinement of two relational symbols (one new defining rule resp. pa-
rameter) and of one modality (one new conjunct in its truth condition), and
the addition of two relational symbols (but no operators!). Our work thus pro-
vides further evidence for Lamport’s claim that adding real time to an untimed
formalism is really simple.

Addendum II. In Chapter 2, we sketch an extension of (core) CPL with
a notion of probabilistic polynomial-time (PP) computation. We illustrate the
expressiveness of this extended logic (ppCPL) on tentative formalisation case
studies of fundamental and applied concepts. Fundamental concepts: (1) one-
way function, (2) hard-core predicate, (3) computational indistinguishability,
(4) (n-party) interactive proof, and (5) (n-prover) zero-knowledge. Applied
concepts: (1) security of encryption schemes, (2) unforgeability of signature
schemes, (3) attacks on encryption schemes, (4) attacks on signature schemes,
and (5) breaks of signature schemes. The argument of this chapter is that in
the light of logic, adding PP to a (property-based) formalism for cryptographic
protocols is perhaps also simple and can be achieved with an Ockham’s razor
extension of an existing core logic, namely CPL.

Keywords applied formal logic, cryptographic protocols
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Chapter 1

(Timed) Dolev-Yao
Cryptography

1.1 Introduction

We give a comprehensive motivation for our approach to the correctness of
cryptographic protocols by placing the approach in its historical and topical
context. The length of the introduction reflects our desire to expose a wide and
deep perspective on the highly interdisciplinary field of cryptographic protocols.

1.1.1 Historical context

“A cryptographic protocol [. . .] is a distributed algorithm defined by a sequence
of steps precisely specifying the actions required of two or more entities to
achieve a specific security objective.” [MvOV96, Page 33]. Principal security
objectives are secrecy of confidential information, authenticity of received mes-
sages w.r.t. their origin, and non-repudiation of message authorship. Our slogan
is:

Slogan 1 The purpose of a cryptographic protocol is to interactively compute,
via message passing1, knowledge of the truth of desired — and, dually, knowledge
of the falsehood of undesired — cryptographic states of affairs.

In 1996, Anderson and Needham assert that cryptographic protocols typi-
cally “involve the exchange of about 2–5 messages, and one might think that a
program of this size would be fairly easy to get right. However, this is absolutely
not the case: bugs are routinely found in well known protocols, and years after
they were first published. The problem is the presence of a hostile opponent,
who can alter messages at will. In effect, our task is to program a computer
which gives answers which are subtly and maliciously wrong at the most incon-
venient possible moment.” [AN96]. Indeed, designing a correct cryptographic
protocol (i.e., “programming Satan’s computer” [AN96]), is extremely more dif-
ficult than designing a correct, ordinary computer program (i.e., “programming
Murphy’s [computer]” [AN96]) of the same size. In fact, at the end of the 1980s,

1rather than shared memory
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i.e., 20 years after the surge of the software crisis in the software-engineering
community, the communication-security community was also shaken by a soft-
ware crisis, though a different one. The first software crisis was provoked by the
(increasing) size of computer programs [Dij72], whereas the second crisis was
triggered by the (sudden, e.g., [BAN90]) awareness about the complexity of the
structure of a certain class of such programs, namely cryptographic protocols.
Our slogan, especially applying to cryptographic protocols, is:

Slogan 2 In theory, it is possible to construct a correct computer program with-
out knowing a theory of program correctness; in practice, it rarely is.

The answer to both software crises has really been the formal-methods move-
ment. In 1999, McLean affirms that “[o]ne of the biggest success stories of formal
methods in the computer security community is the application of them to cryp-
tographic protocols. Cryptographic protocols are small enough to be susceptible
to complete formal analysis, and such analyses have turned up flaws that would
have, otherwise, gone undetected.” [McL99]. However, McLean also points out
“the need for more research in the specification arena.” in the same paper. In
2003, Meadows reaffirms and strengthens the importance of that issue by ob-
serving that “[. . .] although it is difficult to get cryptographic protocols right,
what is really difficult is not the design of the protocol itself, but of the require-
ments. Many problems with security protocols arise, not because the protocol
as designed did not satisfy its requirements, but because the requirements were
not well understood in the first place.” [Mea03] (consider also, more generally,
[Rog04]). Our slogan is:

Slogan 3 Cryptographic protocol correctness: a killer application for formal
methods.

1.1.2 Topical context

Requirements engineering—ideally

Indeed, the construction of a cryptographic protocol begins (and “ends” if this
stage is not mastered) with requirements engineering , i.e., the definition of the
requirements (global properties) the protocol is supposed to meet. In particu-
lar, understanding protocol requirements is necessary for understanding protocol
attacks, which can be looked at as falsifications of necessary conditions for the
requirements to hold. Protocol specification (requirements engineering), design
(modelling), verification, and implementation (programming) are engineering
tasks (the spirit of [MvOV96]). In contrast, the construction of a cryptographic
operator (for encryption, signing, and hashing) is a scientific task (the spirit
of [Gol01, Gol04]) requiring profound expertise from different fields of discrete
mathematics.2 Protocol engineers do (and should) not have (to have) this exper-
tise. For example, it is legitimate for a protocol engineer to “abstract” negligible
probabilities and consider them as what they are — negligible. Ideally, engi-
neers should only have to master a single, common, and formal language for

2consider also [Riv90]: “The design of protocols and the design of operators are rather
independent [. . .]. The protocol designer creates protocols assuming the existence of operators
with certain security properties. The operator designer proposes implementations of those
operators, and tries to prove that the proposed operators have the desired properties.”
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requirements engineering that adequately abstracts “hard-core” mathematical
concepts.

Since logic is what all sciences have in common, it is natural to stipulate
that such a lingua franca for requirements-engineering cryptographic protocols
be an appropriate logical language.

Program statement We argue that a good candidate language is a can-
didate that is technically adequate and socially acceptable. By a technically
adequate candidate we mean a candidate that (1) is semantically and pragmat-
ically sufficiently expressive, i.e., versatile and yielding intuitive specifications,
respectively; (2) has a cryptographically intuitive semantics; (3) is completely
axiomatisable; and (4) has important decidable fragments (e.g., the temporal
fragment). By a versatile candidate we mean a candidate that allows all desir-
able specifications to be directly expressed, or else macro-defined, in terms of
the primitives of the candidate. By intuitive specifications we mean that the
conceptual dimensions of the specification are apparent in distinctive forms in
the formula that expresses the specification — succinctly. By a socially ac-
ceptable candidate we mean a candidate that unifies and possibly transcends
previous specification languages.

Our task shall be to synthesise the relevant logical concepts in cryptogra-
phy into a cryptographic protocol logic with a temporal-logic skeleton. Our
preference of temporal logic over program logics such as Hoare and dynamic
logic is motivated by the success of temporal logic as a specification language
for (non-cryptographic) interactive systems. We will validate our language, at
least at a first stage, on specification (stress on different requirements) rather
than verification (stress on different protocols) case studies, since program spec-
ification must in theory, and should in practice—where it unfortunately rarely
does, precede program verification. Nonetheless, the existence of verification
examples is guaranteed by subsumption under CPL of other logics from authors
with the opposite focus.

Requirements engineering—really

We briefly survey requirements engineering (the practice of the specification) of
cryptographic protocols. Protocol designers commonly define a cryptographic
protocol jointly by a semi-formal description of its behaviour (or local prop-
erties) in terms of protocol narrations, and by an informal prescription of its
requirements (or global properties) in natural language [BM03]. Informal spec-
ifications present two major drawbacks: they do not have a well-defined, and
thus a well-understood meaning, and, therefore, they do not allow for verifica-
tion of correctness. In formal specifications of cryptographic protocols, local and
global properties are expressed either explicitly as such in a logical (or property-
based) language, or implicitly as code, resp. as encodings in a programming (or
model -based) language (e.g., applied λ-Calculus [SP03]; process calculi: CSP
[RSG+00], applied π-Calculus [AF01], Spi-Calculus [AG99], and [MRST06]).
The most popular examples of such encodings are equations between protocol
instantiations [Aba00]. However, such encodings present four major drawbacks:
(1) they have to be found for each protocol anew; worse, (2) they may not even
exist; (3) they are neither directly comparable with other encodings in the same
or in other programming languages, nor with properties expressed explicitly in

6



logical languages; and (4) they are not easy to understand because the intuition
of the encoded property is not explicit in the encoding; yet “[r]obust security
is about explicitness.” [AN96]. On the other hand, process calculi are ideal
design formalisms. That is, they offer — due to their minimalist, linguistic ab-
stractions of modelling concepts (syntax) and their mathematical, operational
notion of execution (semantics) — a win-win situation between the (pedantic)
rigour of (Turing) machine models and the (practical) usability of programming
languages.

Still, informal language and programming (or effect) languages are inade-
quate for expressing and comparing cryptographic properties. It is our belief
that only a logical (or truth) language equipped with an appropriate notion
of truth, i.e., a cryptographic logic, will produce the necessary adequacy. A
number of logics have been proposed in this aim so far, ranging from special-
purpose, cryptographic logics: the pioneering BAN-logic [BAN90], a unifica-
tion of several variants of BAN-logic [SvO96], and a recent reworking of BAN-
logic [KS06]; over general-purpose propositional, modal, program, and first-
and higher-order logics used for the special purpose of cryptographic protocol
analysis: propositional (“logic programming”) [AM01, AB05]; modal : deontic
[BC93], doxastic [ABV01, ZV01], epistemic [SS99, HO02], linear [BD04], tempo-
ral [GM95]; program: dynamic [FHJ02, ADM03], Hoare-style [DMP03, LA05];
first-order [CJM98, Sel01, Coh03]; higher-order [Pau98, IK06]; to combinations
thereof: doxastic-epistemic [CS97], doxastic-temporal [BGPS00], distributed
temporal [CVB05], dynamic-epistemic [Bal01], epistemic-temporal [DGMF04,
LW06] first-order-temporal [GLL01], dynamic-epistemic-temporal [Bie90], and
deontic-epistemic-temporal [GMP92].

All these logics have elucidated important concerns of the security of com-
munication and proved the relevance of logical concepts to that security. In
particular, mere enunciation of maybe the three most fundamental protocol
requirements, namely secrecy, authenticity, and non-repudiation, reveals the
paramount importance of the concept of knowledge, both in its propositional
(so-called knowledge de dicto) and in its individual (so-called knowledge de re)
manifestation. Possible3 enunciations in natural language of these requirements
are the following (cf. Section 1.3 for their formalisation in CPL). Secrecy for a
protocol: “Always and for all messages m, if it is forbidden that the adversary
(Eve) know m then Eve does not know m.” (knowledge de re in the present
subjunctive and the present indicative mode, respectively). Authenticity of a
message m from the viewpoint of agent a w.r.t. agent b: “a knows that once only
b knew m.” (knowledge de dicto in the present and knowledge de re in the past
indicative mode). Non-repudiation of authorship of a message m′ by b w.r.t. a,
corroborated by a proof m (m is a proof for a that b is the author of m′): “If a
knew m then a would know that once only b knew m′.” (knowledge de re in the
past subjunctive and then in the past indicative mode, and knowledge de dicto
in the conditional mode). However, general-purpose/standard epistemic logic
is inadequate in a cryptographic setting due to weak paradoxes, as is, for the
same reason, (standard) deontic logic (cf. Section 1.2.3). (We recall that a weak
paradox is a counter-intuitive statement in the logic, whereas a strong paradox
is an inconsistency in the logic.) And doxastic logic is inadequate because the
above requirements are ineffable in it, as these crucially rely on knowledge, i.e.,

3as a matter of fact unique, canonical formulations of these requirements do not exist (yet)
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necessarily true, and not possibly false, belief (no error control!). Our slogan,
and pun4, is:

Slogan 4 Belief can be used to show the presence of attacks, but, as opposed to
knowledge, never to show their absence.

Further, linear logic has, for our approach, a flavour that is too operational to
the extent that it is possible that “the combinators of a process calculus are
mapped to [linear] logical connectives” [Mil06]. Our approach is diametric, i.e.,
we aim at providing declarative abstractions of operational aspects. Finally,
special-purpose logics have been limited in their adequacy due to their choice of
primitive concepts, e.g., belief, no negation/quantification, too specific primitive
concepts at the price of high extension costs.

Requirements engineering—CPL

Our goal is to supply a formal synthesis of (mono-dimensional) concepts in a
single, poly-dimensional5 modal logic, namely CPL6, that yields requirements
that are intuitive but (syntactically) abstract w.r.t. particular conceptions of
cryptography7. First, our belief, expressed as a slogan, is:

Slogan 5 The formal method for any science is, ultimately, logic.

Logic, as defined by a relation of satisfaction (model -theoretic approach8, effec-
tuated via model-checking [CGP99]) or a relation of deduction (proof -theoretic
approach, effectuated via automated theorem-proving [Fit96]). Second, given
that requirements engineering is mainly about meaning, i.e., understanding and
formalising properties, we believe that a model-theoretic approach is, at least
at a first stage, more suitable than a proof-theoretic approach. We argue that
propositional and higher-order (at least beyond second order) logic, and set the-
ory are unsuitable as front-end formalisms for requirements engineering. Propo-
sitional logic is simply too weak as a specification language but is well-suited for
fully-automated, approximative verification. Higher-order logic and set theory
may well be semantically sufficiently expressive; however, we opine that they
are unsuitable for engineers in charge of capturing meaning of protocol require-
ments within an acceptable amount of time (i.e., financial cost per specification)
and space (i.e., intelligibility of specifications). The intuitiveness of the specifi-
cations that a formalism yields is not just luxury, but the very (and difficult to
distil) essence and a measure of its pragmatics, i.e., practical usefulness. Our
slogan9 is:

4on the slogan “Program testing can be used to show the presence of bugs, but never to
show their absence!” by Dijkstra

5cf. [GKWZ03] for a research monograph on poly-dimensional modal logic, characterised
in [BdRV01] as “. . . a branch of modal logic dealing with special relational structures in which
the states, rather than being abstract entities, have some inner structure. . . . Furthermore,
the accessibility relations between these states are (partly) determined by this inner structure
of the states.”

6a preliminary, now outdated version of CPL appeared in the informal proceedings of
[Kra04]

7such logics are called endogenous (or mono-modal), as opposed to exogenous (or poly-
modal)

8not to be confused with a model-based formalism
9and pun on the two cornerstones of modal logic, namely possibility and necessity
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Slogan 6 Logic for engineering necessarily is, possibly first-order, modal logic.

Modal operators (modalities) are object-level abstractions of meta-level quan-
tifiers. In effect, they eliminate variables (and the quantifiers that bind them)
in logical (truth) languages as combinators do in programming (effect) lan-
guages, and delimit quantification to the relevant (i.e., accessible) parts of the
interpretation structure. Their benefits are intelligibility of the expressed state-
ment, and effectiveness and relative efficiency of truth establishment, respec-
tively. The concept of a cryptographic protocol is very rich. A suitable for-
malism must organise and hard-wire/pre-compile this conceptual variety in its
semantics and provide succinct and intuitive linguistic abstractions (syntax)
for them. The resulting added value of such a formalism is empowerment of
the engineer (speed-up of the mental process of requirements formalisation)10,
and more powerful tools (speed-up of model-checking and automated theorem-
proving). Higher-order logic and set theory, having been conceived as general-
purpose formalisms, obviously lack this special-purpose semantics and syntax.
However, they are well-suited as logical frameworks (meta-logics/back-ends) for
such special-purpose formalisms (object logics/front-ends). For example, our
candidate language has a model-theoretic (i.e., relying on set theory) semantics.

CPL has a first-order fragment for making statements about protocol events
and about the (individual) knowledge (“knows”) and the structure of crypto-
graphic messages induced by those events; and four modal fragments for making
statements about confidentiality norms (cf. deontic logic [BC93]); propositional
knowledge (“knows that”), i.e., knowledge of cryptographic states of affairs, (cf.
epistemic logic [FHMV95]); execution space (cf. spatial logic [Dam89]); and ex-
ecution time (cf. temporal logic [MP84]). That is, CPL unifies first-order and
four modal logics in a single, first-order, poly-dimensional modal logic. Further,
CPL refines standard epistemic and deontic logic in the sense that it resolves
the long-standing problem of weak paradoxes (caused by logical omniscience and
conflicting obligations, respectively) that these logics exhibit when applied in
a cryptographic setting (cf. Section 1.2.3). Yet CPL (a property-based formal-
ism) goes even further in its wholistic ambition in that it integrates the perhaps
most important model-based framework, namely process algebra [BPS01], in
a novel co-design. First, CPL’s temporal accessibility relation (the semantics
of its temporal modalities) can be defined by an event-trace generating pro-
cess (reduction) calculus, for example C3 [BKN06, BGK06] whose reduction
constraints can moreover be checked via CPL-satisfaction; and second, CPL’s
epistemic accessibility relation (the semantics of its epistemic modality “knows
that”) is the definitional basis for C3’s observational equivalence, which can be
used for the model-based (process-algebraic and complementary to property-
based) formulation of protocol requirements. We believe that this co-design is
also the key to a genuine modal model theory for cryptography.

A cryptographic protocol involves the concurrent interaction of agents that
are physically separated by — and exchange messages across — an unreliable
and insecure transmission medium. Expressing properties of concurrent inter-
action (i.e., interactive computation) requires temporal modalities [MP84]. The
physical separation by an unreliable and insecure transmission medium (i.e., un-
reliable computation) in turn demands the epistemic and deontic modalities. To
see why, consider that the existence of such a separating medium introduces an

10in analogy with high-level programming languages versus machine-code languages
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uncertainty among agents about the trustworthiness of the execution of protocol
actions (sending, receiving) and the contents of exchanged messages, both w.r.t.
actuality (an epistemic concern) and legitimacy (a deontic concern). The pur-
pose of a cryptographic protocol is to reëstablish this trustworthiness through
the judicious use of cryptographic evidence, i.e., essential information (e.g., ci-
phers, signatures and hash values) for the knowledge of other information (e.g.,
messages or truth of formulae), bred in a crypto system (e.g., a shared-key or
public-key system) from cryptographic germs such as keys and nonces, them-
selves generated from cryptographic seeds (or seed values). However, any use of
keys (as opposed to hash values and nonces) requires that the knowledge of those
keys be shared a priori. This sharing of key knowledge is established by crypto-
graphic protocols called key-establishment protocols (comprising key-transport
and key-agreement protocols) [MvOV96, Chapter 12], which are executed before
any cryptographic protocol that may then subsequently use those keys. Thus
certain cryptographic protocols must be considered interrelated by a notion of
composition in a common execution space; hence the need of spatial opera-
tors. Another argument for spatial operators comes from the fact that a correct
protocol should conserve its sole correctness even when composed with other
protocols, i.e., a compositionally correct protocol should be stable in different
execution contexts [Can01, BPW03].

1.2 Logic

1.2.1 Syntax

The language F of CPL is parametric in the language M of its individuals,
i.e., cryptographic messages. It is chiefly relational, and functional in exactly
the language M of cryptographic messages it may be instantiated with. The
temporal fragment of F coincides with the syntax of LTLP (linear temporal logic
with past). We shall fix our mind on the following, comprehensive languageM.

Definition 1 (Cryptographic messages) We form messages M ∈ M with
the term constructors displayed in Table 1.1. There, names n ∈N denote agent
names a, b, c ∈ A, the (for the moment Dolev-Yao [DY83]) adversary’s name
Eve, symmetric short-term (session) (K1) and long-term (K∞) keys k ∈ K,
(asymmetric) private keys p ∈ K−, and nonces x ∈ X (also used as session
identifiers).

We assume that given a private key p, one can compute the corresponding
public key p+, as in DSA and Elgamal. Shared and private keys shall be referred
to as confidential keys CK, i.e., keys that must remain secret. Symmetric keys
may be compound for key agreement (as opposed to mere key transport). Mes-
sage forms (open messages) F are messages with variables v ∈ V.

We use the terms privacy , confidentiality , and secrecy to qualify cryptographic
information w.r.t. the legitimacy , the intention, resp. the actuality of the knowl-
edge of that information (status of discreetness). For example, in asymmetric-
key cryptography, the knowledge of a key for decrypting or signing cryptographic
information is limited to the discretion of a single entity, say a. Thus, such a
key qualifies as the private key of entity a; and encrypted plain text is by defi-
nition cryptographic information whose knowledge is intended to be limited to

10



Table 1.1: Message language

M ::= n (names, i.e., logical constants)˛̨
� (the abstract message)˛̨
p+ (public keys)˛̨
dMe (message hashes)˛̨
{|M |}M (symmetric message ciphers)˛̨
{|M |}+

p+ (asymmmetric message ciphers)˛̨
{|M |}−p (signed messages)˛̨
(M, M) (message tuples)

the discretion of the sender and the recipient(s), i.e., it is qualified confidential
a priori, and may be qualified secret by vigour of verification a posteriori.

The abstract message is a computational artifice to represent the absence of
intelligibility , just as the number zero is a computational artifice to represent the
absence of quantity. The abstract message is very useful for doing knowledge-
based calculations (cf. Definition 5), just as the number zero is very useful (to
say the least) for doing number-based calculations.

The focus on cryptographic protocols rather than cryptographic operators
leads us (for the moment) to (1) making abstraction from the exact representa-
tion of messages, e.g., bit strings; and assuming (2.1) perfect hashing , i.e., col-
lision resistance (hash functions are injective) and strong pre-image resistance
(hash functions are not invertible, or given dMe, it is infeasible to compute M),
and (2.2) perfect encryption (given {|M |}k but not the shared key k or given
{|M |}+p+ but not the private key p corresponding to the public key p+, it is
infeasible to compute M).

We introduce a type language for messages to increase the succinctness of
statements about the structure of messages.

Definition 2 (Message types) Message types τ have the following structure.

τ, τ ′ ::= ∅
˛̨

σ
˛̨
H[τ ]

˛̨
SCM [τ ]

˛̨
ACp+ [τ ]

˛̨
Sp[τ ]

˛̨
T[τ, τ ′]

˛̨
τ ∪ τ ′

˛̨
τ ∩ τ ′

˛̨
τ \ τ ′

˛̨
M

σ, σ′ ::= A
˛̨
Adv

˛̨
ς

˛̨
K
+

ς, ς ′ ::= K
1

˛̨
K
∞ ˛̨

K
− ˛̨

X

Message type forms θ shall be message types with variables in key position.

Observe that (1) for each kind of message there is a corresponding type (e.g.,
H[τ ] for hashes, SCM [τ ] for symmetric and ACp+ [τ ] for asymmetric ciphers, Sp[τ ]
for signatures, and T[τ, τ ′] for tuples); (2) encryption and signature types are
parametric; and (3) the union, intersection, and difference of two message types
is again a message type. In short, message types are structure-describing depen-
dent types closed under union, intersection, and difference. ς and ς ′ denote types
of dynamically generable names. We macro-define AAdv := A∪Adv, K := K1∪K∞,
CK := K ∪ K−, K∗ := CK ∪ K+, and N := AAdv ∪ K∗ ∪ X.

Definition 3 (Logical formulae) The set of formulae F contains precisely
those propositions that are the closed predicates formed with the sentence con-
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structors displayed in Table 1.2. There, β denotes basic, α action, and δ data
formulae; and o denotes tuples of agent names (key owners).

Table 1.2: Predicate language

φ, φ′ ::= β
˛̨
¬φ

˛̨
φ ∧ φ′

˛̨
∀v(φ)˛̨

Pφ|{z}
norms

˛̨
Ka(φ)

˛̨
φ ⊇ φ′| {z }

knowledge

˛̨
φ⊗ φ′

˛̨
φ B φ′| {z }

space

˛̨
φ S φ′

˛̨
©−φ

˛̨
©+ φ

˛̨
φ U φ′| {z }

time

β, β′ ::= α
˛̨

δ

α, α′ ::= a � n.o
˛̨

a
F−→
6Eve

b
˛̨

a
F←−
6Eve

b| {z }
private comm.

˛̨
a

F−→
Eve

b
˛̨

a←
Eve

F| {z }
public comm.

δ, δ′ ::= n : σ
˛̨

a k F
˛̨

F 4 F ′ ˛̨
a@x

Predicates can be transformed into propositions either via binding of free vari-
ables, i.e., universal (generalisation) or existential (abstraction) quantification,
or via substitution of individuals for free variables (individuation). In accor-
dance with standard logical methodology, basic predicates express elementary
facts11.

Our symbols are — and their intuitive meaning is as they are — pronounced
¬ “not”, ∧ “and”, ∀v “for all v”, P “it is permitted that”, Ka “a knows that”, ⊇
“epistemically implies”, ⊗ “conjunctively separates”, B “assume—guarantee”,
S “since”, ©− “previous”, ©+ “next”, U “until”, a � n.o “a freshly generated
the name n for owner(s) o”, a

F−→
6Eve

b “a securely (i.e., over some private channel)

sent F as such (i.e., not only as a strict sub-term of another message) to b”,
a

F←−
6Eve

b “a securely received F as such from b”, a
F−→
Eve

b “a insecurely (i.e., over

some public channel) sent off F as such to b”, a ←
Eve

F “a insecurely received F

as such”, : “has type”, k “knows”, 4 “is a subterm of”, and @ “is in protocol
run/session”.

Our predicate language is 1-sorted thanks to the standard technique of sort
reduction12 and to the fact that agents are referred to by their name and names
are transmittable data, i.e., messages.

The modality K expresses propositional knowledge, i.e., the knowledge that
a certain proposition is true. In contrast, the relational symbol k expresses indi-
vidual knowledge. Individual knowledge conveys understanding of the purpose
and possession of a certain piece of cryptographic information up to crypto-
graphically irreducible parts. It is established based on the capability of agents
to synthesise those pieces from previously analysed pieces. By ‘understanding
of the purpose’ we mean (1) knowledge of the structure for compound, and (2)
knowledge of the identity for atomic (names) information. Note that such un-
derstanding requires that there be a minimal redundancy in that information.

11a fact is a contingent (particular) truth as opposed to a logical (universal) truth
12introduction of unary relational symbols (· : σ in our case) emulating the different sorts
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The conditional φ ⊇ φ′ is epistemic in the sense that the set of evidence cor-
roborating truth of the consequent φ′ (e.g., the knowledge of a key) is included
in the set of evidence corroborating truth of the antecedent φ (e.g., the knowl-
edge of a plain text derived from that key). The epistemic conditional captures
the epistemic dependence of the truth of the antecedent on the truth of the
consequent.

The formula φ⊗φ′ is satisfied by a (protocol) model if and only if the model
can be separated in exactly two parts such that one part satisfies φ (e.g., key es-
tablishment/production) and the other satisfies φ′ (e.g., key use/consumption).
The spatial conditional φ B φ′ is satisfied by a model if and only if for all mod-
els that satisfy φ the adjunction of the second to the first model satisfies φ′ (cf.
compositional correctness of a protocol, as mentioned earlier).

Typing formulae F : θ have an essential and a pragmatic purpose. Typing
of atomic data, i.e., when F designates a name n and θ an atomic type σ, is
a linguistic abstraction for the above-mentioned essential modelling hypothesis
of minimal redundancy. Typing of compound data simply increases succinct-
ness of statements about message structure. It is actually macro-definable in
terms of typing of atomic data, equality (itself macro-definable), and existential
quantification (cf. Appendix A).

1.2.2 Semantics

Our definition of satisfaction13 is anchored (or rooted) and defined on protocol
states, i.e., tuples (h, P ) ∈ H × P of a protocol model P (i.e., a process term
of parallel-composable, located threads a.x[T ]) and a protocol history h (i.e., a
trace of past protocol events). Note that history-dependency is characteristic of
interactive computation [GSW06].

For the purpose of this paper, we presuppose a notion of execution, for
example [BKN06], −→ ⊆ (H × P)2 (or relation of temporal accessibility in
the jargon of modal logic) producing protocol events of a certain kind and
chaining them up to form protocol histories. We stress that the locality and
parallel-composability of processes, and the kind of protocol events are the only
particularities of −→ that we presuppose.

Protocol events are of the following kind: generation of a name n for owners
o (recall that o is a tuple of agent names) in session x by a, written N(a, x, n, o);
insecure input of M by a, written I(a, x,M); secure input of M from b by a,
written sI(a, x,M, b); insecure output of M to b by a, written O(a, x,M, b); and
secure output of M to b by a, written sO(a, x,M, b). By definition, an event ε
is secure if and only if ε is unobservable by the adversary Eve. By convention,
name generation is a secure event. We write ε(a) for any of the above protocol
events, ε(a, n) for any of the above name-generation events, ε(a,M) for any of
the above communication events, and ε̂(a) for any of the above secure events.
Protocol histories h ∈ H are simply finite words of protocol events ε, i.e., event
traces h ::= ε

∣∣ h · ε, where ε designates the empty protocol history.
We define satisfaction in a functional style on the structure of formulae.

Satisfaction employs complex (and thus multiple14 ) truth values. Truth values
are complex in the sense that they are tuples of a simple truth value (i.e., ‘true’

13the concept was invented by Tarski
14multi-valued logic was invented by Post
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or ‘false’) and a set of those events (the evidence/witnesses) that corroborate
that simple truth.

Definition 4 (Satisfaction) Let |= ⊆ (H × P) × F designate satisfaction of
a formula φ ∈ F by a protocol state s ∈ H × P (the anchor/root of an implicit
execution path model15 for φ):

s |= φ :iff there is a set E of protocol events s.t. s |=E φ

s |=E φ :iff for all p ∈ paths(s), JφK0p = (true, E)

where paths(s) := { p | p@0 = s and for all i < |p|, p@0 −→∗ p@i } designates
the set of paths p achored/rooted in s and induced by −→, and J·K designates
our function of truth denotation from formulae to complex truth values (cf.
Table 1.4). There,

• p@i designates the state, say—please memorise—(h, P ), at position i in p

• ḣ designates the set of events derived from the trace of events h

• h `Ea M designates derivation of M by a from—this is a novel idea—the
set E of events in a’s view on h, i.e., the extraction, analysis, and synthesis
of the data that a has generated, received, or sent in h (cf. Table 1.3)16

• ◦ designates concatenation of histories conserving uniqueness of events

• Σ := ∃(k : CK)(Eve k k ∧¬ k ck Eve) designates a state formula expressing
the state of violation in a Dolev-Yao adversarial setting, namely the one
where the adversary has come to know a confidential key not of her own

• ≈a ⊆ (H×P)2 designates the relation of epistemic accessibility associated
with the modality Ka; it is defined hereafter

• L · Mh
a designates a unary function (inspired by [AR02]) of cryptographic

parsing defined on protocol states and on logical formulae; it is defined
hereafter on messages and tacitly lifted onto protocol states and logical
formulae

• ≡ designates a relation of structural equivalence defined on process terms
and on event traces. On process terms, it designates the smallest equiva-
lence relation expressing associativity and commutativity of processes. On
event traces, it designates permutation, i.e., h ≡ h′ :iff |h| = |h′| and
ḣ = ḣ′.

The permission modality is primitive rather than macro-defined because we want
to highlight that each new notion of state of violation will give rise to a new
notion of permission, such as the one for real-time or the ones for probabilistic

15notice the two notions of a model: namely, the one of a model for a logical formula (i.e.,
a protocol state (h, P )), and the one of a model of a cryptographic protocol (i.e., a process
term P )

16we could easily account for individual knowledge modulo an equational theory of crypto-
graphic messages, i.e., a set of algebraic properties of cryptographic operators expressed with

an equivalence relation ≡⊆M×M, by adding a rule
h `Ea M M ≡ M ′

h `Ea M ′
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Table 1.3: Derivation of individual knowledge

Data extraction

h · ε(a, M) `{ε(a,M)}
a (a, M)

h `Ea M

h · ε `Ea M

Data synthesis Data analysis

h `Ea M h `E
′

a M ′

h `E∪E′
a (M, M ′)

h `Ea (M, M ′)

h `Ea M

h `Ea (M, M ′)

h `Ea M ′

h `Ea p

h `Ea p+

h `Ea M

h `Ea dMe

h `Ea M h `E
′

a M ′

h `E∪E′
a {|M |}M′

h `Ea {|M |}M′ h `E
′

a M ′

h `E∪E′
a M

h `Ea M h `E
′

a p+

h `E∪E′
a {|M |}+

p+

h `Ea {|M |}+p+ h `E
′

a p

h `E∪E′
a M

h `Ea M h `E
′

a p

h `E∪E′
a {|M |}−p

h `Ea {|M |}−p h `E
′

a p+

h `E∪E′
a M

polynomial-time settings (cf. Section 1.4 and Chapter 2, respectively). That is,
we look at the state formula Σ as a parameter of the logic.

The epistemic accessibility relation has, as previously mentioned, a double
use. It not only serves as the definitional basis for the epistemic modality of
CPL, but also as the definitional basis for the observational equivalence of C3

[BKN06].
Cryptographic parsing captures an agent’s capability to understand the

structure of a cryptographically obfuscated message. It allows the definition
of a cryptographically meaningful notion of epistemic accessibility via the inter-
mediate concept of structurally indistinguishable protocol histories. The idea is
to parse unintelligible messages to the abstract message �.

Definition 5 (Cryptographic parsing) The cryptographic parsing function
L · Mh

a associated with an agent a ∈ P and a protocol history h ∈ H (and comply-
ing with the assumptions of perfect cryptography) is an identity on names, the
abstract message, and public keys; and otherwise acts as defined in Table 1.5.

A particularity of this notion of cryptographic parsing is that if h 6|= a k k and
h′ 6|= a k k then L {|M |}k Mh

a = � = L {|M ′|}k Mh′

a . That is, two different plaintexts
(M and M ′) encrypted under the same symmetric key (k) are parsed to the
same (abstract) message (�), if the parsing agent does not know the decrypting
key. This is justified by the fact that in reality, and in an extension of CPL
with a notion of probabilistic (polynomial-time) computation (cf. Chapter 2),
encryption is probabilistic anyway, which has precisely the effect of rendering
the above ciphers (computationally) indistinguishable to a parsing agent.
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Table 1.4: Truth denotation

Ja � n.oKi
p := (E 6= ∅, E) where E := ∪x∈X{N(a, x, n, o)} ∩ ḣ

Ja M−→
6Eve

bKi
p := (E 6= ∅, E) where E := ∪x∈X{sO(a, x, M, b)} ∩ ḣ

Ja M←−
6Eve

bKi
p := (E 6= ∅, E) where E := ∪x∈X{sI(a, x, M, b)} ∩ ḣ

Ja M−→
Eve

bKi
p := (E 6= ∅, E) where E := ∪x∈X{O(a, x, M, b)} ∩ ḣ

Ja←
Eve

MKi
p := (E 6= ∅, E) where E := ∪x∈X{I(a, x, M)} ∩ ḣ

Jn : σKi
p := (n has type σ, ∅)

Ja k MKi
p := (E 6= ∅, E) where E := ∪{ E ′ | h `E

′
a M }

JM 4M ′Ki
p := (M is a subterm of M ′, ∅)

Ja@xKi
p := (there is a thread T s.t. P = a.x[ T ] and h = h|a.x, ∅)

J¬φKi
p := (not vφ, ḣ \ Eφ) where JφKi

p = (vφ, Eφ)

Jφ ∧ φ′Ki
p := (vφ and vφ′ , Eφ ∪ Eφ′) where

JφKi
p = (vφ, Eφ) and

Jφ′Ki
p = (vφ′ , Eφ′)

J∀v(φ)Ki
p := (for all M ∈M, vM ,

S
M∈MEM ) where J

˘M
/v

¯
φKi

p = (vM , EM )

JPφKi
p := Jφ B �(Σ→ (Σ 6⊇ φ))Ki

p

JKa(φ)Ki
p := (for all s, if p@0 −→∗ s and s ≈a p@i then s′ |=E′ φ′, E ′(s,φ))

where (s′, φ′) :=

(
(s, φ) if s = p@i, and

(L s Mh
a, L φ Mh

a) otherwise.

Jφ ⊇ φ′Ki
p := (if vφ then vφ′ and ∅ 6= Eφ′ ⊆ Eφ, Eφ) where

JφKi
p = (vφ, Eφ) and

Jφ′Ki
p = (vφ′ , Eφ′)

Jφ⊗ φ′Ki
p := (there are Q, Q′ ∈ P and h′, h′′ ∈ H s.t. P ≡ Q 9 Q′ and h ≡ h′ ◦ h′′

and (h′, Q) |=Eφ φ and (h′′, Q′) |=Eφ′ φ′, Eφ ∪ Eφ′)

Jφ B φ′Ki
p := (for all (h′, Q) ∈ H× P and h′′ ≡ h′ ◦ h, if (h′, Q) |=E′ φ then

(h′′, Q 9 P ) |=E′′ φ′,
S
E ′′ ∪

S
E ′)

Jφ S φ′Ki
p := (there is k s.t. 0 ≤ k ≤ i and vk and for all j, if k < j ≤ i then vj ,S

j Ej ∪ Ek) where JφKj
p = (vj , Ej) and Jφ′Kk

p = (vk, Ek)

J©−φKi
p :=

(
JφKi−1

p if i > 0, and

(false, ∅) otherwise.

J©+ φKi
p :=

(
JφKi+1

p if i < |p| − 1, and

(false, ∅) otherwise.

Jφ U φ′Ki
p := (there is k s.t. i ≤ k and vk and for all j, if i ≤ j < k then vj ,S

j Ej ∪ Ek) where JφKj
p = (vj , Ej) and Jφ′Kk

p = (vk, Ek)
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Table 1.5: Parsing cryptographic messages

L dMe Mh
a :=

(
dL M Mh

ae if h |= a k M , and

� otherwise.

L {|M |}M′ Mh
a :=

(
{|L M Mh

a|}L M′ Mh
a

if h |= a k M ′, and

� otherwise.

L {|M |}+
p+ Mh

a :=

(
{|L M Mh

a|}+p+ if h |= a k p ∨ (a k M ∧ a k p+), and

� otherwise.

L {|M |}−p Mh
a :=

(
{|L M Mh

a|}−p if h |= a k p+, and

� otherwise.

L (M, M ′) Mh
a := (L M Mh

a, L M ′ Mh
a)

Definition 6 (Structurally indistinguishable protocol histories) Two
protocol histories h and h′ are structurally indistinguishable from the viewpoint
of an agent a, written h ≈a h′, :iff a observes the same event pattern and
the same data patterns in h and h′. Formally, for all h, h′ ∈ H, h ≈a h′ :iff
h ≈(h,h′)

a h′ where,

• given that a is a legitimate agent or the adversary Eve,

1. ε ≈(h,h′)
a ε

2.
hl ≈(h,h′)

a hr

hl · ε(a, n) ≈(h,h′)
a hr · ε(a, n)

3.
hl ≈(h,h′)

a hr

hl · ε(a,M) ≈(h,h′)
a hr · ε(a,M ′)

L M Mh
a = LM ′ Mh′

a

• given that a is a legitimate agent,

4.
hl ≈(h,h′)

a hr

hl · ε(b) ≈(h,h′)
a hr

a 6= b
hl ≈(h,h′)

a hr

hl ≈(h,h′)
a hr · ε(b)

a 6= b

• given that a is the adversary Eve,

5.
hl ≈(h,h′)

Eve hr

hl · ε̂(b) ≈(h,h′)
Eve hr

Eve 6= b
hl ≈(h,h′)

Eve hr

hl ≈(h,h′)
Eve hr · ε̂(b)

Eve 6= b

6.
hl ≈(h,h′)

Eve hr

hl · I(b, x,M) ≈(h,h′)
Eve hr · I(b, x, M ′)

L M Mh
Eve = L M ′ Mh′

Eve

17



7.
hl ≈(h,h′)

Eve hr

hl · O(b, x, M, c) ≈(h,h′)
Eve hr · O(b, x, M ′, c)

L M Mh
Eve = L M ′ Mh′

Eve

Note that the observations at the different (past) stages hl and hr in h and h′,
respectively, must be made with the whole (present) knowledge of h and h′ (cf.
hl ≈(h,h′)

· hr). Learning new keys may render intelligible past messages to an
agent a in the present that were not to her before.

Remark 1 For all a ∈ AEve, ≈a ⊆ H×H is

1. an equivalence with an infinite index due to fresh-name generation

2. not a right-congruence due to the possibility of learning new keys

3. a refinement on the projection H|a of H onto a’s view [FHMV95]

4. decidable.

We lift structural indistinguishability from protocol histories to protocol
states, i.e., tuples of a protocol term and a protocol history, and finally ob-
tain our relation of epistemic accessibility.

Definition 7 (Observationally equivalent protocol states) Let P1 and
P2 designate two cryptographic processes, i.e., models of cryptographic protocols,
of some set P. Then two protocol states (h1, P1) and (h2, P2) are observationally
equivalent from the viewpoint of an agent a, written (h1, P1) ≈a (h2, P2), :iff
h1 ≈a h2.

Proposition 1 Let for all φ, φ′ ∈ F ,

• JφK = Jφ′K :iff for all p and i, JφKi
p = Jφ′Ki

p

• |= φ, pronounced “φ is a logical truth (or tautology) in CPL”, :iff for all
s ∈ H × P, s |= φ.

Then for all φ, φ′ ∈ F ,

1. if |= φ ≡ φ′ then JφK = Jφ′K

2. if JφK = Jφ′K then |= φ↔ φ′.

Proof. almost by definition

Definition 8 (Logical consequence and equivalence) Let φ, φ′ ∈ F .
Then,

• φ′ is a logical consequence of φ, written φ⇒ φ′, :iff for all s ∈ P ×H, if
s |= φ then s |= φ′.

• φ′ is logically equivalent to φ, written φ⇔ φ′, :iff φ⇒ φ′ and φ′ ⇒ φ.

Remark 2 φ ⊇ φ′ ⇒ φ→ φ′ but φ→ φ′ 6⇒ φ ⊇ φ′.

Definition 9 (CPL: logic and logical theory)
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• logic (a body of truth):

CPL := { φ | |= φ }

• logical theory (a system of inference):

CPL := { φ | there is s ∈ H × P s.t. s |= φ }

(For all φ ∈ CPL and φ′ ∈ F , if φ⇒ φ′ then φ′ ∈ CPL.)

Remark 3 CPL-satisfaction (“model-checking”) is undecidable, as secrecy, be-
ing CPL-expressible, is.

1.2.3 Discussion

Relevant implication

In the terminology of relevant logics, both the spatial conditional B and the
epistemic conditional ⊇ are relevant (as opposed to the truth-functional material
conditional →) in the sense that information based on which the antecedent
is evaluated is relevant to the information based on which the consequent is
evaluated. In B, the relevant (and potential) information is represented by the
adjoint state (h′, Q). In ⊇, the relevant (and actual) information is represented
by the event subset Eφ′ .

As an example, consider (session identifier and process term omitted) the
assertion

ε · I(Eve, {|M |}k) |= Eve k k B Eve k M

which states what primary knowledge, namely k, Eve requires to derive the
(secondary) knowledge M in the given model. In other words, if Eve knew k
then Eve would know M in the given model. (Notice the conditional mode!)
This is a property of Eve’s cryptographic knowledge w.r.t. its potentiality . That
is, the addition of information potentially leads to multiplication of knowledge.
In comparison, consider the assertion

ε · I(Eve, {|M |}k) · I(Eve, k) |= Eve k M ⊇ Eve k k

which states how Eve actually derives the secondary knowledge M from the
primary knowledge in the given model. In other words, if Eve knows M then
possibly (not only probably) because Eve knows k in the given model. (Notice
the indicative mode!) This is a property of Eve’s cryptographic knowledge w.r.t.
its actuality . In contrast, consider the tautology

|= (Eve k {|M |}k ∧ Eve k k)→ Eve k M

which states a property of a cryptographic operation, namely encryption. We
believe that B and ⊇ are (perhaps the) two natural — and incidentally, relevant
— notions of implication for cryptographic knowledge. Our slogan, applying to
⊇, is:

Slogan 7 Cryptography deserves a proper, relevant notion of implication.
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Conflicting obligations

A particularly interesting use of the spatial and the epistemic conditional is the
definition of a cryptographically meaningful notion of permission (cf. Table 1.4)
and prohibition (cf. Appendix A). Our definition says that it is permitted that
φ is true if and only if if φ were true then whenever a state of violation would
be reached, it would not be due to φ being true. This (reductionistic) notion
of permission is inspired by [MDW94, Page 9] where a notion of prohibition
is defined in the framework of dynamic logic. The authors resume their basic
idea as “. . . some action is forbidden if doing the action leads to a state of
violation.” Observe that [MDW94] construe a notion of prohibition based on
actions, whereas we construe a notion of permission based on propositions. We
recall that the motivation of reductionistic approaches to (standard) deontic
logic (SDL) is the existence of weak paradoxes in SDL. That is, SDL actually
contains true statements that are counter to the normative intuition it was
originally intended to capture.

In SDL permission, prohibition, and obligation are interdefinable, whereas
in CPL only permission and prohibition are. In fact, there is no notion of obli-
gation in CPL because (faulty) cryptographic protocols create a context with
conflicting obligations whose treatment would require machinery from defeasible
deontic logic [Nut97]. Consider that it must be obligatory that (1) a state of vio-
lation be never reached during protocol execution, and (2) agents always comply
with protocol prescription. These two obligations are obviously conflicting in a
context created by the execution of a faulty protocol, which by definition does
reach a state of violation.

Logical omniscience

Our semantics for the epistemic modality reconciles the cryptographically intu-
itive but incomplete semantics from [AT91] with the complete (but less com-
putational), renaming semantics from [CD05a]. We achieve this by casting the
cryptographic intuition from [AT91] in a simple (rule-based) and visibly com-
putational formulation of epistemic accessibility. Similarly to [AT91], we parse
unintelligible data in an agent’s a individual knowledge M into abstract mes-
sages �. In addition, and inspired by [CD05b, CD05a], we parse unintelligible
data in an agent’s a propositional knowledge Ka(φ). Thanks to this additional
parsing, our epistemic modality avoids weak paradoxes that, like in SDL, ex-
ist in standard epistemic logic (SEL). These paradoxes are due to epistemic
necessitation

|= φ

|= Ka(φ)

i.e., the fact that an agent a knows all logical truths (logical omniscience) such
as ∃v({|M |}k = {|v|}k). To illustrate, consider the following simple example.
Let P ∈ P and M ∈ M. Then paradoxically (ε, P ) |= Ka(∃v({|M |}k = {|v|}k))
“in” SEL but truthfully (ε, P ) 6|= Ka(∃v({|M |}k = {|v|}k)) in CPL because |=
¬∃v(� = {|v|}k) (cf. “otherwise”-clause in the truth denotation of Ka(φ) in
Table 1.4). In a cryptographic setting, epistemic necessitation should — and in
CPL does — take the following form [CD05a]:

|= φ

|= a k M → Ka(φ)
M is a tuple of the key values in φ
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The presence of logical omniscience in SEL is, interestingly, due to the ab-
sence of relevance in the truth condition of the epistemic modality. The condi-
tion is in fact a truth-functional (meta-level) implication, which is true whenever
its consequent is true, which in turn is always the case for a tautological conse-
quent. Therefore, any solution to the problem of logical omniscience must break
the truth-functionality of the meta-level implication and make it relevant. This
is precisely what we do: the relevant information is represented by the history
h of protocol state p@i from the antecedent, used for cryptographic parsing in
the consequent. Note that our truth condition for the epistemic modality is an
simplification of the one from [CD05b, CD05a] in the sense that we eliminate
one universal quantifier (the one over renamings) thanks to the employment of
cryptographic parsing. Further note that our epistemic modality does capture
knowledge, i.e., |= Ka(φ)→ φ, due to the reflexivity of its associated accessibility
relation. Solving the problem of logical omniscience has a price:

Proposition 2 Logical equivalence is not a congruence.

Proof. see Appendix B

Other connections

What is more, our (basic) location predicate a@x enables us to invent, by
macro-definition, spatial freeze quantifiers (in analogy to the well-known tem-
poral freeze quantifiers, which we are also able to macro-define, analogously,
in the real-time setting, cf. Section 1.4.3): �a.x(φ) := �(a@x → φ) and
�a.x(φ) := ¬�a.x¬(φ), and further �a(φ) := ∀x(�a.x(φ)) which corresponds

to the location modality @a[φ] from distributed temporal logic [CVB05]. Spa-
tial freeze quantifiers are, for example, useful for the macro-definition of action
predicates restricted to particular sessions, e.g., a.x

M−→
Eve

b := �a.x(a M−→
Eve

b).

Finally, the popularity of strand spaces [FHG99] as an execution model for
cryptographic protocols justifies that we briefly compare our classical, trace-
based execution model to strand spaces. According to [FHG99, Definition 2.2],
a strand space over a set of message terms (in our case M) is a set (say S)
(of strand names) with a so-called trace mapping tr : S → (±M)∗, where
±M := { +M | M ∈ M } ∪ { −M | M ∈ M } designates the set of so-called
signed message terms. In our terminology, the intended meaning of a strand
(name) is the one of a located session name (a.x), and the one of a positive (neg-
ative) message term is insecure output (input). With these intended meanings
and S := { a.x | a ∈ AEve and x ∈ X }, strands (and its concept) are obviously
strictly included in our (concept of) traces of insecure and secure message in-
put/output events. The inclusion is strict because [FHG99, Definition 2.2] does
not allow for secure message input/ouput.

1.3 Formalisation case studies

We exemplify the expressiveness of CPL on a selection of tentative formalisations
of fundamental cryptographic states of affairs. To the best of our knowledge,
(1) no other existing crypto logic is sufficiently expressive to allow for the defi-
nition of the totality of these properties, and (2) the totality of these properties
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has never been expressed before in any other formalism. In fact, entire logics
(e.g., [BAN90], [SS99], [HO02]) have been designed to capture a single crypto-
graphic state of affairs (e.g., authenticity, anonymity, resp. secrecy). We invite
the reader to validate our formalisations on the criteria of intuitiveness and suc-
cinctness, but also to discern that the simplicity of the formalisation results is in
sharp contradistinction to the difficulty of their formalisation process. However,
thanks to the empowerment that CPL confers, a formalisation process involving
such a large number of conceptual degrees of freedom has become tractable at
an engineering level. Observe that our formalisations of cryptographic states of
affairs, except for the one of key separation and those of trust-related affairs,
involve no actions, just pure knowledge. Note that the formalisations employ
macro-defined predicates (cf. Appendix A; the reader is urged to consult it) and
that α(b) abbreviates disjunction of name generation, sending, and receiving
performed by b.

1.3.1 Trust-related affairs

Maliciousness Agent b is malicious, written malicious(b), :iff b knowingly per-
forms a forbidden action at some time, written �(α(b)∧Fα(b)∧Kb(Fα(b))).

Honesty Agent b is honest, written honest(b), :iff b is not malicious, written
¬malicious(b).

Faultiness b is faulty, written faulty(b), :iff b performs a forbidden action at
some time, written �(α(b) ∧ Fα(b)).

Prudency b is prudent, written prudent(b), :iff b is not faulty, written ¬faulty(b).

Trustworthiness Agent a trusts b, written a trusts b, :iff a knows that b is
prudent, written Ka(prudent(b)).17

1.3.2 Confidentiality-related affairs

Secret Sharing Datum M is a shared secret among agents a and b, written
M sharedSecret (a, b), :iff only a and b know M , written a k M ∧ b k
M ∧ ∀(c : AAdv)(c k M → (c = a ∨ c = b)).

Protocol Secrecy A protocol has the (reachability-based) secrecy property
:iff the adversary Eve never knows any classified information, written
�∀m(F(Eve k m)→ ¬ Eve k m).

Anonymity Agent b is anonymous to agent a in state of affairs φ(b) :iff if a
knows that some agent is involved in φ then a cannot identify that agent
with b, written Ka(∃(c : A)(φ(c)))→ ¬Ka(φ(b)).

Data Derivation Agent b knows M ′ due to agent a knowing M (when a 6= b
then necessarily due to communication from a to b), written M ′ ⊇(a,b)

M := a k M ∧ b k M ′ ⊇ a k M18 (when a = b we just write M ′ ⊇a M).

17this is about justified trust (a rightly trusts b) as opposed to blind trust (a possibly wrongly
trusts b)

18A material conditional would not do here because the antecedent and the consequent are
epistemically — and thus not truth-functionally — related via data derivation.
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Non-Interaction There is absence of interaction between agents a and b, writ-
ten a | b := ¬∃m∃m′(m ⊇(a,b) m′ ∨m ⊇(b,a) m′).

Perfect Forward Secrecy “[. . .] compromise of long-term keys [k] does not
compromise past session keys [k′].” [MvOV96, Page 496], written ¬ �∃(k :
K∞)∃(k′ : K1)(k′ ⊇Eve k)

Known-Key Attack “[. . .] an adversary obtains some keys used previously
and then uses this information to determine new keys.” [MvOV96, Page 41],
written ∃(k : CK)∃(k′ : CK)(k′ 6= k ∧ k′ ⊇Eve k)

Agent Corruption The adversary, somehow, comes to know all what an agent
(say a) knows in state of affairs φ, written ∀m(a k m→ (Eve k m I φ)).

1.3.3 Authentication-related affairs

Key Confirmation “[. . .] one party [a] is assured that a second (possibly un-
identified) party [b] actually has possession of a particular secret19 key
[k].” [MvOV96, Page 492], written k : K ∧ Ka(b k k)

Key Authentication

• implicit : “[. . .] one party [a] is assured that no other party [c] aside
from a specifically identified second party [b] (and possibly additional
identified trusted parties) may gain access to a particular secret key
[k].” [MvOV96, Page 492], written k : K∧Ka(∀(c : AAdv)(c k k → (c =
a ∨ c = b)))

• explicit : “[. . .] both (implicit) key authentication and key confirma-
tion hold.” [MvOV96, Page 492], written simply as conjunction of
implicit key authentication and key confirmation

Message Integrity Agent b knows that M is an intact message from agent a,
written Kb(M ⊇(a,b) M).

Message Authorship Agent a authored datum M , written a authored M , :iff
once a was the only one to know M , written �− (a k M ∧ ∀(b : AAdv)(b k
M → b = a)).

Message Authentication (or Authenticity) Datum M is authentic w.r.t.
its origin (say agent a) from the viewpoint of agent b :iff b can authentically
attribute (i.e., in the sense of authorship) M to a, i.e., b knows that a
authored M , written Kb(a authored M).

Key Transport (safety) between agents a and b initiated by a

• unacknowledged uaKT(a, b):

�∀(k : K)(Kb(a authored k)→ Kb(k sharedSecret (a, b)))

• acknowledged aKT(a, b):

�∀(k : K)(Ka(Kb(a authored k))→ Ka(Kb(k sharedSecret (a, b))))

19in our terminology, ‘secret’ here means ‘symmetric’
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Key Agreement (safety) between agents a and b initiated by a

• unacknowledged uaKA(a, b):

�∀ma∀mb((Kb(a authored ma) ∧ Ka(b authored mb))→
Ka((ma,mb) sharedSecret (a, b)))

• acknowledged aKA(a, b):

�∀ma∀mb((Kb(a authored ma) ∧ Kb(Ka(b authored mb)))→
Kb(Ka((ma,mb) sharedSecret (a, b))))

Entity Authentication (or Identification) (safety) via secret sharing be-
tween agents a and b initiated by a

• unilateral (or weak) entity authentication uEA(a, b): “[. . .] the pro-
cess whereby one party [b] is assured (through acquisition of corrob-
orative evidence [m]) of the identity of a second party [a] involved in
a protocol, and that the second has actually participated (i.e., is ac-
tive at, or immediately prior to, the time the evidence is acquired).”
[MvOV96, Page 386], written

�∀m(Kb(a authored m)→ Kb(m sharedSecret (a, b)))

Notice that unilateral entity authentication is unacknowledged trans-
port of an arbitrary secret, e.g., not necessarily a symmetric key.

• weakly mutual (or strong-weak) entity authentication wmEA(a, b):
“[. . .] [one party (say a)] has fresh assurance that [the other party
(say b)] has knowledge of [a] as her peer entity.” [BM03, Page 39],
written

�∀ma∀mb((Kb(a authored ma) ∧ Kb(Ka(b authored mb)))→
Kb(Ka((ma,mb) sharedSecret (a, b))))

Notice that weakly mutual entity authentication coincides with ac-
knowledged key agreement.

• strongly mutual (or strong-strong) entity authentication smEA(a, b):

�∀ma∀mb((Ka(Kb(a authored ma)) ∧ Kb(Ka(b authored mb)))→
Ka(Kb(Ka((ma,mb) sharedSecret (a, b)))))

Notice that our formalisations of key transport/agreement and entity authen-
tication only address safety , but not liveness, i.e., that some key actually gets
transported/agreed upon and that some entity is authenticated. The reason is
that due to the adversary, liveness can not be guaranteed.

Visibly, both key transport/agreement and entity authentication rely on
message authentication as well as secret sharing, and authentication-related
affairs rely on confidentiality-related affairs.
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1.3.4 Commitment-related affairs

Proof

• cryptographic proof : datum M is a cryptographic20 proof for proposi-
tion φ, written M proofFor φ, :iff assuming an arbitrary agent a knows
M guarantees that a knows that φ is true, written ∀(a : AAdv)(a k
M B Ka(φ))

• provability : agent a can prove that proposition φ is true, written
Pa(φ), :iff a knows a proof for φ, written ∃m(m proofFor φ ∧ a k m)

Non-Repudiation Agent b cannot repudiate authorship of M to agent a :iff
a can prove that b authored M , written Pa(b authored M).

Contract Signing “[. . .] two players [say a and b] wish to sign a contract m
in such a way that either each player obtains the other’s signature [S], or
neither player does.” (fair exchange of electronic signatures FEES(a, b)),
written �((a k Sb ∧ b k Sa) ∨ (¬ a k Sb ∧ ¬ b k Sa))

• Optimism: “[. . .] no honest party [neither a nor b] interacts with the
trusted third party [say c].” [ASW00], written a | c ∧ b | c
• Fairness: “[. . .] it is infeasible for the adversary [Eve] to get the

honest player’s [a] signature [Sa], without the honest player getting
the adversary’s signature [SEve].” [ASW00], written �(Eve k Sa →
�(a k SEve))

• Completion: “[. . .] it is infeasible for the adversary [. . .] to prevent
[a] and [b] from successfully exchanging their signatures.” [ASW00],
writtten �(a k Sb ∧ b k Sa)

• Accountability : “[. . .] if the trusted third party misbehaves [i.e.,
the contract signing property FEES is violated] then this can be
proven.” [ASW00], written �(¬FEES(a, b) → �(Pa(¬FEES(a, b)) ∧
Pb(¬FEES(a, b))))

• Abuse-freeness: “[. . .] [b] does not obtain publicly verifiable informa-
tion about (honest) [a] signing the contract until [b] is also bound by
the contract.”21 [GJM99], written ¬Pb(a authored Sa)Ub authored Sb

Visibly, commitment-related affairs rely on authentication-related affairs.
Then, we have actually been able to macro-define Gödel’s provability modal-

ity , and, with it, are able to macro-define the intuitionistic conditional in CPL!

Theorem 1 The operator Pa is compliant with the modal system S4, adapted
to the cryptographic setting.

Proof. Pa complies with (cf. Appendix B for an elementary, Fitch-style proof)

K |= Pa(φ→ φ′)→ (Pa(φ)→ Pa(φ′))

T |= Pa(φ)→ φ

20as opposed to propositional (i.e., a sequence of propositions that is compliant with a
relation of deduction) proof; cryptographic proofs can be viewed as cryptographic encodings
of propositional proofs

21symmetrically for “(honest) [b]”
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4 |= Pa(φ)→ Pa(Pa(φ))

N
|= φ

|= a k M → Pa(φ)
M is a tuple of the key values in φ

Hence, (the classical logic) CPL can simulate intuitionistic logic via the
following macro-definition:

φ 7→ φ′ := ∃(a : AAdv)(Pa(φ→ φ′))

The intuitionistic conditional is another example of relevant implication: infor-
mation (a proof of φ) based on which the antecedent is evaluated is relevant to
the information (a proof of φ′) based on which the consequent is evaluated in
the sense that any proof of φ is also a proof of φ′ (cf. K).

The obvious temptation is to attempt a Curry-Howard isomorphism [dG95]
between cryptographic protocols and propositions. That is, to look

1. at a proposition φ ∈ F for which there are (h, P ), (h′, P ′) ∈ H × P, a ∈
AEve, and M ∈ M s.t. (h, P ) −→ (h′, P ′) and (h′, P ′) |= M proofFor
φ ∧ a k M as a type for process term P , and

2. at process term P as an interactive proof procedure (to the benefit of agent
a) for the cryptographic proof M of φ.

Our (macro-defined) concepts of cryptographic proof and provability are
related to [AN05], where a notion of justification for propositional knowledge
is introduced as a primitive concept in the (propositional) epistemic logic S4.
That notion of justification roughly corresponds in our (first-order, epistemic-
S5) setting to the notion of cryptographic proof.

1.3.5 Compositionality-related affairs

Key Separation The protocol space can be separated in an establishment
(production) and a use (consumption) part w.r.t. the key k, written

�∀m((∃(a, b : A)(a m−→
Eve

b) ∧ k K∗ m)→ ¬ k J∗ m) ⊗
�∀m((∃(a, b : A)(a m−→

Eve
b) ∧ k J∗ m)→ ¬ k K∗ m)

Compositional Correctness Protocol (plug-in) P with prehistory h is

1. solely correct w.r.t. an internal correctness criterion, i.e., endo-condi-
tion φ :iff (h, P ) |= φ

2. compositionally correct , i.e., either

(a) existentially composable w.r.t. an external correctness criterion,
i.e., exo-condition φ′ :iff (h, P ) |= φ′ I φ,22 or

(b) conditionally composable, i.e., composable w.r.t. exo-condition
φ′, :iff (h, P ) |= φ′ B φ, or

(c) universally composable :iff (h, P ) |= > B φ.23

22the case where φ′ is > is obviously uninteresting
23the name of this notion of correctness coincides with the one from [Can01], and should

roughly correspond to the notion of robust satisfaction [GL91]
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The concept of an exo-condition (endo-condition) is to interactive
programs what a pre-condition (post-condition) is to non-interactive
programs.24 Our slogan, especially applying to cryptographic proto-
cols, is:

Slogan 8 Stating the possibly weakest exo-condition for an interac-
tive program is at least as necessary as stating the possibly weakest
pre-condition for a non-interactive program.

Attack Scenario Protocol P with prehistory h and internal correctness cri-
terion φ is vulnerable in a protocol context — de facto constituting a
potential attack scenario — with property φ′ :iff (h, P ) |= φ′ I ¬φ.

Notice that a statement of an attack scenario is a negated statement of
conditional compositionality.

Remark 4 The concept of a chosen-protocol attack [KSW98], understood
as the adversarial choice of a different (attacking) protocol than P is an
instance of the concept of an attack scenario, and understood as the adver-
sarial choice of an arbitrary attacking protocol coincides with the concept
of an attack scenario.

We exemplify our concept of attack scenario with the perhaps most popular
attack on a cryptographic protocol, namely the man-in-the-middle attack on
the Needham-Schroeder public-key protocol (NSPuK) for (weakly mutual) en-
tity authentication (acknowledged key agreement). Our choice is motivated by
the fact that we wish to explain the unfamiliar (our approach) with the famil-
iar (a paradigmatic attack). Notwithstanding the popularity of the attack, we
believe that its contextual formalisation in CPL explicates it to a novel extent
of explicitness. The attack is also particularly interesting because the protocol
requirement that it violates is particularly challenging to formalise — satis-
factorily. We contend that common formulations of entity authentication are
unsatisfactory. They usually purport to formalise an intuition expressed as “I
know who I’m talking to.”. However the actual formulations then only involve
belief to varying degrees of explicitness [Low97]. Our slogan, and fact, is:

Slogan 9 Debatable requirements entail debatable attacks.

Table 1.6 displays the protocol narration (i.e., an intended run) of core
NSPuK, i.e., NSPuK where the public keys of the initiator (e.g., Alice) and
the responder (i.e., Bob) are assumed to have already been established. The
narration describes (elliptically) that first, Alice sends to Bob the encryption
under Bob’s public key p+

Bob of a tuple of a freshly-generated nonce xAlice and her
name Alice; (upon reception, Bob decrypts the message with his private key,
stores the first component of the tuple, gets the public key p+

Alice corresponding
to the second component from his key store, generates a fresh nonce xBob, and
encrypts the tuple of Alice’s and his nonce with Alice’s public key;) second, Bob
sends his reply to Alice; (upon reception, Alice decrypts the message with her
private key, checks that the first component of the tuple is her nonce previously

24(h, P ) |= φ′ B φ roughly corresponds to a Hoare triple φ′{P}φ. Observe the absence
of a computation history in Hoare triples: non-interactive programs are characteristically
history-independent; interactive programs are characteristically history-dependent !
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Table 1.6: Protocol narration for core NSPuK

1. Alice → Bob : {|(xAlice, Alice)|}+
p+
Bob

2. Bob → Alice : {|(xAlice, xBob)|}+
p+
Alice

3. Alice → Bob : {|xBob|}+
p+
Bob

sent to Bob, and encrypts the second component xBob with Bob’s public key
p+
Bob;) third, Alice sends her reply to Bob. Protocol narrations are elliptical in

the sense that non-interactive protocol actions are visibly not explicit.
The intention of each protocol step is as follows: the intention of the first

step is to challenge the responder (e.g., Bob) to authenticate with the initiator
(e.g., Alice); the intention of the second step is twofold, i.e., to accomplish au-
thentication of the responder with the initiator, and to challenge the initiator to
authenticate with the responder; the intention of the third step is twofold, i.e.,
to acknowledge authentication of the responder with the initiator to the respon-
der, and to accomplish authentication of the initiator with the responder. The
protocol intends to achieve weakly (due to the uni lateral acknowledgement) mu-
tual entity authentication (acknowledged key agreement) between an initiator
and a responder.

The protocol narration of NSPuK can be transcribed into a (non-elliptic)
formal language, for example into the one of [BKN06] by instantiating the
protocol template displayed in Table 1.7 via substitution of Alice for init
and Bob for resp. Features of that language are: a primitive for key look-
up, an input primitive with pattern-matching and guard, and primitives for
out-of-band communication. The left (right) column of the table defines the

Table 1.7: Protocol template for core NSPuK

NSPuKINIT(slf , oth) := NSPuKRESP(slf ) :=

New (xslf : X).
Getoth (koth : K+, oth) in Getslf (kslf : K−, slf ) in
Outoth {|(xslf , slf )|}+koth

. In {|(xoth , oth)|}+
kslf

when xoth : X ∧ oth : A.

New (xslf : X).
Getslf (kslf : K−, slf ) in Getoth (koth : K+, oth) in
In {|(xslf , xoth)|}+

kslf
when xoth : X. Outoth {|(xoth , xslf )|}+koth

.

Outoth {|xoth |}+koth
.1 In {|xslf |}+kslf

.1

NSPuK(init , resp, xinit , xresp) := init .xinit [ NSPuKINIT(init , resp) ] 9
resp.xresp [ NSPuKRESP(resp) ]

initiator (responder) role. The bottom row defines the protocol template, dis-
tributing (via parallel composition) the roles at the corresponding locations
init .xinit [ · ] and resp.xresp [ · ], respectively. The protocol template assumes that
each agent has generated her own private and public key, and that each agent’s
public key has been established with the other agent. The actions of the ini-
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tiator role are the following: New (xslf : X) generation — and binding in vari-
able xslf — of a new nonce; Getoth (koth : K+, oth) in look up — and binding
in variable koth — of the other agent’s (cf. subscript oth) public key gener-
ated by the other agent herself (cf. parameter oth); Outoth {|(xslf , slf )|}+koth

out-
put of the message {|(xslf , slf )|}+koth

to the other, hopefully responding, agent;
Getslf (kslf : K−, slf ) in look up — and binding in variable kslf — of the local
agent’s (cf. subscript slf ) private key generated by that agent herself (cf. param-
eter slf ); In {|(xslf , xoth)|}+

kslf
when xoth : X guarded (cf. guard xoth : X) input of

a message with pattern25 {|(xslf , xoth)|}+
kslf

and binding in variable xoth of the

other, apparently responding, agent’s nonce; Outoth {|xoth |}+koth
output of the

message {|xoth |}+koth
to the other agent; and, finally, 1 — termination. The ac-

tions of the responder role are (almost) symmetrical to the ones of the initiator
role.

The previously mentioned assumptions about preliminary generation and
(authenticated, of course) establishment of public keys can be modelled by
means of corresponding key-generation and out-of-band communication events,
chained up to form the protocol prehistory displayed in Table 1.8. We recall
that out-of-band (or private) communication is, by definition, authenticated
(and secret), and that the adversary (Eve) can, as in the mentioned attack, also
be an insider.

Table 1.8: Prehistory for core NSPuK

h := ε · N(Alice, xa0, pAlice, Alice) · N(Bob, xb0, pBob, Bob)·
sO(Alice, xa0, p

+
Alice, Bob) · sI(Bob, xb0, p

+
Alice, Alice)·

sO(Bob, xb0, p
+
Bob, Alice) · sI(Alice, xa0, p

+
Bob, Bob)·

sO(Alice, xa0, p
+
Alice, Eve) · sI(Eve, xe0, p

+
Alice, Alice)·

sO(Bob, xb0, p
+
Bob, Eve) · sI(Eve, xe0, p

+
Bob, Bob)

This completes the definition of the initial state

(h,NSPuK(Alice, Bob, xa1, xb1))

of (our attack scenario for) core NSPuK.
Table 1.9 displays the narration of the actual attack. The attack can be

orchestrated by an active insider adversary that performs denial of service and
impersonation across two different, interleaved sessions, cf. (un)primed number-
ing. It consists in:

1. Eve tricking (wrongly trusting) Alice (believing that Eve is a legitimate
agent) to initiate a regular session

Q := Alice.xa2[ NSPuKINIT(Alice, Eve) ]

with Eve

25with pattern-matching effectuating the identity check on the received nonce
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2. Eve disabling the execution (denial of service) of the regular session initi-
ation

Alice.xa1[ NSPuKINIT(Alice, Bob) ]

3. Eve impersonating Alice in the face of (wrongly trusting) Bob (lead to
believe that he is talking only to Alice while in fact talking also to Eve)
by enabling the execution of the regular session response

Bob.xb1[ NSPuKRESP(Bob) ]

concurrently with Q.

In result, Alice is lead to believe that she is talking only to Eve (via session xa2)
while in fact talking also to Bob (via impersonator Eve and session xb1), and
Bob is lead to believe that he is talking only to Alice (via session xb1) while in
fact talking also to Eve (via impersonator Eve and session xa1). The protocol
obviously fails to achieve its requirement.

The assumption about private- and public-key generation and public-key
establishment is, of course, also valid for Eve and regular interactions between
Alice and Eve, respectively. That is, the protocol context is assumed to con-
tain the prehistory h′ := ε · N(Eve, xe0, pEve, Eve) · sO(Eve, xe0, p

+
Eve, Alice) ·

sI(Alice, xa0, p
+
Eve, Eve) · sO(Eve, xe0, p

+
Eve, Bob) · sI(Bob, xb0, p

+
Eve, Eve). More

formally,

• (h′, Q) ∈ H × P and

• (h′, Q) |= uEA(Alice, Eve) and

• (h ◦ h′,NSPuK(Alice, Bob, xa1, xb1) 9 Q) |= ¬wmEA(Alice, Bob)

by which we obtain

(h,NSPuK(Alice, Bob, xa1, xb1)) |= uEA(Alice, Eve) I ¬wmEA(Alice, Bob)

representing our (property-based or logical) attack scenario for NSPuK. We
invite the reader to compare this scenario to the corresponding, model-based
(or process-algebraic) attack scenario described in [BKN06].

Table 1.9: Attack narration for NSPuK

1. Alice → Eve : {|(xAlice, Alice)|}+
p+
Eve

1′. EveAlice → Bob : {|(xAlice, Alice)|}+
p+
Bob

2′. Bob → EveAlice : {|(xAlice, xBob)|}+
p+
Alice

2. Eve → Alice : {|(xAlice, xBob)|}+
p+
Alice

3. Alice → Eve : {|xBob|}+
p+
Eve

3′. EveAlice → Bob : {|xBob|}+
p+
Bob
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1.4 Extending CPL with real-time to tCPL

We extend (core) CPL (qualitative time) with real time, i.e., time stamps, timed
keys, and potentially drifting local clocks, to tCPL (quantitative time). Our ex-
tension is conservative and really simple (a single section is enough to describe
it!). It requires only the refinement of two relational symbols (one new defining
rule resp. parameter) and of one modality (one new conjunct in its truth condi-
tion), and the addition of two relational symbols (but no operators!). Our work
thus provides further evidence for Lamport’s claim that adding real time to an
untimed formalism is really simple [Lam05]. The special-purpose machinery for
timed (including cryptographic) settings need not be built from scratch nor be
heavy-weight.

1.4.1 Historical and topical context

The formal specification, modelling, and verification of general-purpose timed
systems has received considerable attention from the formal methods commu-
nity since the end of the nineteen-eighties. See [Wan04] for a survey of timed
system models (automata, Petri nets), model- and property-based specification
languages (process calculi, resp. logics), and verification tools; and [BMN00] for
a survey of timed property-based specification languages (logics).

However, the formal methods community has paid comparatively little, and
only recent (since the end of the nineteen-nineties), attention to the timed as-
pects of cryptographic systems, e.g., cryptographic protocols, which due to their
complexity deserve special-purpose models, and formalisms26 for their specifica-
tion and verification.

We are aware of the following special-purpose formalisms for timed crypto-
graphic protocols.

• Model-based formalisms (process calculi): [ES00], [GM04], [HJ05] with
discrete time; [Sch99], [BEL05], and our own contribution [BGK06] with
dense time

• Property-based formalisms (logics): interval -based [HS04]; time-parame-
trised epistemic modalities [KM99] and a third-order logic [BEL05] both
point-based, and our hereby presented logic tCPL allowing for both tem-
poral points and intervals.

Clearly, “[d]ense-time models are better for distributed systems with multiple
clocks and timers, which can be tested, set, and reset independently.” [Wan04].
Specifically in cryptographic systems, “[c]locks can become unsynchronized due
to sabotage on or faults in the clocks or the synchronization mechanism, such
as overflows and the dependence on potentially unreliable clocks on remote sites
[. . .]” [Gon92]. Moreover, “[e]rroneous behaviors are generally expected during
clock failures [. . .]” [Gon92].

Timed logics can be classified w.r.t. their order and the nature of their
temporal domain.

26In our view, a formalism consists of exactly three components: a formal (e.g., program-
ming or logical) language, a mathematical model (or interpretation structure), and a formal
semantics (e.g., effect or truth) for the language in terms of the model.
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Order Propositional logic is simply too weak for specification purposes (but
is good for fully-automated, approximative verification); modal logics provide
powerful abstractions for specification purposes, but are still not expressive
enough (cf. Section 1.1.2); higher-order logics are too expressive at the cost of
axiomatic and algorithmic incompleteness (but are good as logical frameworks);
finally “[f]irst-order logics seem a good compromise between expressiveness and
computability, since they are [axiomatically] complete in general.” [Wan04]. We
recall that core CPL is a first-order, poly-dimensional modal (norms, knowledge,
space, qualitative time) logic.

Temporal domain We recall that core CPL can be instantiated with a tran-
sitive, irreflexive, linear and bounded in the past, possibly branching (but a
priori flattened) and unbounded (depending on the protocol) in the future,
discrete (due to event-induced protocol states) temporal accessibility relation
[BKN06]. That is, CPL has a hybrid (state- and event-based) temporal do-
main: “[. . . ] neither pure state-based nor pure event-based languages quite
support the natural expressiveness desirable for the specification of real-world
systems [. . . ]” [Wan04]. tCPL can be instantiated with a temporal accessibility
relation that additionally accounts for quantitative time [BGK06]. That is, time
is (1) rational-number valued, yielding a dense temporal grain; (2) referenced ex-
plicitly (the truth of a timed formula does not depend on its evaluation time),
but implicit-time operators are macro-definable (cf. Section 1.4.3); (3) mea-
sured with potentially drifting local clocks (one per agent), where the (standard
Dolev-Yao) adversary’s local clock has drift rate 1; (4) advanced monotonically
by letting the adversary choose the amount by which she desires to increase
her local clock (de facto the system clock); and (5) determinant for adversarial
break of short-term keys, enabled jointly by key expiration and ciphertext-only
attacks (the weakest reasonable attack). Regarding rational versus real num-
bers: consider that cryptographic messages have finite length, which implies
that real numbers, e.g., real-valued time stamps, are not transmittable as such,
and that real clocks only have finite precision.

Regarding the timed adversary model: consider that our model amounts to
a natural generalisation of the adversary’s scheduling power from the control of
the (relative) temporal order of protocol events in the network (space) to the
control of their (absolute) temporal issuing (time).

The following section describes the extension of CPL to tCPL. The extension
depends on the core described in the previous sections (the reader is urged to
consult them) and parallels the extension from C3 [BKN06] to tC3 [BGK06].

1.4.2 Extension

The notion of execution from [BGK06], which we adopt as the temporal ac-
cessibility relation for tCPL, generates the following two kinds of timed events:
N(a, x, n, (o, V )) for the generation of name n with intended owners o and tem-
poral validity V := (tb, te) for the declaration of the intended beginning (tb) and
end (te) of validity of the generated name (typically a key) by agent a in session
x, and S(a, x, t) for the setting of a’s local clock to clock value t by a in session
x. By convention, these events are unobservable by the adversary, i.e., they are
secure. t ∈ CV := Q denotes clock values having the associated type CV, and
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tb, te ∈ T V := CV ∪ {−∞,∞} denote time values having the associated type
TV. Time values are transmittable as messages.

The syntactic and semantic novelties are the following:

1. addition of two new, binary relational symbols ≤ and @ (overloading the
session locality symbol) forming atomic formulae E ≤ E′ and E@a, for
the comparison of temporal expressions (calculation of temporal intervals
and bounds) E ::= t

∣∣ E + E
∣∣ E − E and the testing of agent a’s local

clock with time E, respectively. Their truth denotation is as follows:

JE ≤ E′Ki
p := (JEK is smaller than or equal to JE′K, ∅)

where J·K designates the obvious evaluation function from temporal ex-
pressions to time values (not to be confused with the function of truth
denotation J·Ki

p); and

JE@aKi
p := (JEK = t + δa ·∆, {S(a, x, t), S(Eve,�, ti)})

where

• t designates the clock value of a’s last clock-set event in h, i.e., there
are h1, h2, x s.t. h = h1 · S(a, x, t) ◦ h2 and there is no x′, t′ s.t.
S(a, x′, t′) ∈ ḣ2

• δa ∈ T V designates the drift rate of a’s local clock

• ∆ designates the temporal difference between Eve’s last clock-set
event before S(a, x, t) and Eve’s last clock-set event so far in h, i.e.,

∆ =


t2 − t1 if for i ∈ {1, 2} there are hi′ , h

′′
i , ti s.t.

hi = h′i · S(Eve,�, ti) ◦ h′′i and there is no t′i s.t.
S(Eve,�, t′i) ∈ ḣ′′i , and

0 otherwise.

• � serves as a dummy session identifier for Eve’s clock-set events

2. refinement (i.e., one new parameter) of the relational symbol for new-
name generation � with a validity tag V := (tb, te) for the declaration of
the intended beginning (tb ∈ T V) and end (te ∈ T V) of validity of the
generated name (typically a key). Its truth denotation is the following:

Ja � n.o.V )Ki
p := (E 6= ∅, E) where E := ∪x∈X {N(a, x, n, (o, V ))} ∩ ḣ

3. refinement (i.e., adding of one new defining rule) of the relation `Ea⊆
H × M for the derivation of individual knowledge (cf. Table 1.3) with
adversarial break of short-term keys (k) enabled jointly by key expira-
tion (expired(k)) and the existence of a ciphertext-only attack on the key
(h′ `EEve {|M |}k):

h′ `EEve {|M |}k
h `EEve k

h′ is a prefix of h, and there is t ∈ T V s.t.
h′ |= t@Eve and
h |= expired(k) ∧

∃tv(tv validityOf k ∧ ∃tn(tn@Eve ∧ tv < tn − t))
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where tv designates the duration of validity of the considered key (i.e., the
strength of the key, corresponding to its length in a bit-string representa-
tion), and tn− t the duration of the attack on the considered key (i.e., the
time during which the corresponding ciphertext has been known to the
adversary, and during which the adversary has potentially been attacking
— i.e., performing computations on — the ciphertext in order to recover
the desired key); and

expired(k) := ∃tn(tn@Eve ∧ ∃te(k validUntil te ∧ te < tn))
k validUntil te := ∃tb(k validBetween (tb, te))

k validBetween (tb, te) := ∃a∃o(a � k.o.(tb, te))
tv validityOf k := k validBetween (tb, te) ∧ te − tb = tv

4. refinement (i.e., one new conjunct) of the state of violation Σ with key
expiration in the truth condition of the permission modality (cf. Table 1.4):

Σ := ∃(k : CK)(Eve k k ∧ ¬ k ck Eve ∧ ¬expired(k) )

5. stipulation that composition of protocol histories preserves the natural
order of real-time

1.4.3 Expressiveness

We demonstrate the expressiveness of tCPL on the macro-definability of impor-
tant modalities from general-purpose timed logics:

• point-parametrised future-time (similarly for past-time) modalities (so-
called freeze quantifiers):

�t(φ) := �(t@Eve→ φ) �t(φ) := ¬�t (¬φ)

• interval -parametrised future-time (similarly for past-time) modalities with
an:

– absolute-time understanding of closed (similarly for open) intervals
[t1, t2]:

�[t1,t2](φ) := ∀t(t1 ≤ t ≤ t2 → �t(φ))

�[t1,t2](φ) := ¬�[t1,t2] (¬φ)

– understanding of intervals that is relative to the current time t@Eve:

�[∆](φ) := ∀t(t@Eve→ �[t,t+∆](φ))

�[∆](φ) := ∀t(t@Eve→ �[t,t+∆](φ))

• the chop connective:

φ _[t,t′] φ′ := ∃t′′(�[t,t′′](φ) ∧�[t′′,t′](φ′))

• durations [ZHR91], [ZH04] (cf. Table 1.10)

The cryptographic states of affairs involving qualitative temporal modalities
from Section 1.3 can easily be quantitatively adapted by replacing the qualitative
temporal modalities by the above quantitative ones with actual time values
(points and/or intervals) as desired.
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Table 1.10: Definability of durations

∆ duration(t,t′) φ := �− t(∆ durationt′ φ) ∨ �t(∆ durationt′ φ)

∆ durationt′ φ := (φ→ ∀td(td@Eve→
©+ ((φ→ ∀tm((tm@Eve ∧ tm ≤ t′)→

∆− (tm − td) durationt′ φ)) ∧
(¬φ→©+ (∆ durationt′ φ))))) ∧

(¬φ→©+ (∆ durationt′ φ))

1.4.4 A timed attack scenario

We exemplify our concept of attack scenario in the timed setting with another
popular attack on a cryptographic protocol, namely the man-in-the-middle at-
tack on the Wide-Mouthed-Frog protocol (WMF) (cf. Table 1.11). WMF is a
server-based, (session) key-transport protocol employing symmetric cryptogra-
phy intended to guarantee timely, unacknowledged transport of a session key be-
tween an initiator and a responder mediating a trusted third party (the server).
Timeliness of key transport means that the responder only accepts session keys
within a fixed interval of time. The protocol presumes that the long-term sym-

Table 1.11: Protocol narration for WMF

1a. Alice → Trent : Alice

1b. Alice → Trent : {|((tAlice, Bob), kAliceBob)|}kAliceTrent

2. Trent → Bob : {|((tTrent, Alice), kAliceBob)|}kBobTrent

metric keys (e.g., kAliceTrent and kBobTrent) between the initiator (Alice) and
the server (Trent) and between the responder (Bob) and the server have al-
ready been generated by the server and established with all other corresponding
clients.

The intention of each protocol step is as follows: the intention of the first
step is to announce the initiator to the server; the intention of the second step
is twofold, i.e., to transport the session key (e.g., kAliceBob) from the initiator to
the server and to solicit the server to transport the session key to the responder;
the intention of the third step is twofold, i.e., to transport the session key from
the server to the responder and to transmit from the server to the responder
the intention of the initiator to communicate securely with the responder by
means of the transported session key. The time stamps are from the initiator’s
and the server’s local clock, respectively. Their purpose is to ensure freshness
of the session key.

The protocol narration can be transcribed into a formal language, for ex-
ample into the one of [BGK06], a timed extension of the one of [BKN06], by
instantiating the protocol template displayed in Table 1.12 via substitution of
Alice for init , Trent for serv , and Bob for resp; and choice of a positive time
value for ∆v, i.e., half the desired duration of validity of the transported key.
Features of that language are: a double-purpose primitive for look-up of stored
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keys and (local) time, an input primitive with pattern-matching and guard,
and primitives for out-of-band communication. The left (right) column of the
table defines the initiator (responder) role, and the middle column the server
role. The bottom row defines the protocol template, distributing (via parallel
composition) the roles at the corresponding locations init .xinit [ · ], srv .xsrv [ · ],
and resp.xresp [ · ], respectively. Observe that lookup of local time is done in two
different ways, namely imperatively by means of the get-instruction (with �
serving as a dummy owner), and declaratively by means of the @-predicate.

The previously mentioned assumption about preliminary symmetric key gen-
eration and establishment can be modelled by means of corresponding key-
generation and out-of-band communication events, chained up to form the pro-
tocol prehistory displayed in Table 1.13. Observe that the prehistory includes
set events for the resetting of all local clocks (with � serving as a dummy session
identifier for Eve’s set event).

Table 1.13: Prehistory for WMF

h := ε · N(Trent, xt0, kAliceTrent, ((Trent, Alice), (−∞,∞)))·
N(Trent, xt0, kBobTrent, ((Trent, Bob), (−∞,∞)))·
sO(Trent, xt0, kAliceTrent, Alice) · sI(Alice, xa0, kAliceTrent, Trent)·
sO(Trent, xt0, kBobTrent, Bob) · sI(Bob, xb0, kBobTrent, Trent)·
S(Eve,�, 0) · S(Alice, xa0, 0) · S(Bob, xb0, 0) · S(Trent, xt0, 0)

This completes the definition of the initial state

(h,WMF(Alice, Trent, Bob, xa1, xt1, xb1,∆v))

of (our attack scenario for) WMF.
Table 1.14 displays the narration of the actual attack. The attack can be

orchestrated by an active outsider adversary that performs interception, imper-
sonation, and reflection (i.e., replay to the same agent) across three different,
interleaved sessions. However, the attack does not exploit drifting of local clocks
(i.e., all drift rates are 1). It consists in:

1. Eve impersonating Bob in the face of Trent by reflecting back to Trent a
previously intercepted service reply {|((tTrent, Alice), kAliceBob)|}kBobTrent

—

Table 1.14: Attack narration for WMF

1a′. EveBob → Trent : Bob

1b′. EveBob → Trent : {|((tTrent, Alice), kAliceBob)|}kBobTrent

2′. Trent → EveAlice : {|((t′Trent, Bob), kAliceBob)|}kAliceTrent

1a′′. EveAlice → Trent : Alice

1b′′. EveAlice → Trent : {|((t′Trent, Bob), kAliceBob)|}kAliceTrent

2′′. Trent → Bob : {|((t′′Trent, Alice), kAliceBob)|}kBobTrent
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perceived as a service request from Bob by (forgetful) Trent — from Trent
to Bob to a service request from Alice

2. Eve intercepting Trent’s service reply {|((t′Trent, Bob), kAliceBob)|}kAliceTrent

destined to Alice

3. Eve impersonating Alice in the face of Trent by reflecting back to Trent
Trent’s service reply destined to Alice — perceived as a service request
from Alice by (forgetful) Trent — and Trent marshalling the corresponding
service reply {|((t′′Trent, Alice), kAliceBob)|}kBobTrent

to Bob

In result, Bob accepts a session key that possibly is stale due to Eve achieving
first delay of key delivery through repeated reflection of service replies from
Trent back to Trent, and second prolongation of key validity through Trent,
who, on each reflection, trustingly restamps the key with a new time stamp
(cf. t′Trent and t′′Trent) of his, each time more advanced, local clock. The session
key necessarily is stale when Eve delays each reflection by ∆v time units. In
sum, the protocol fails to achieve its requirement of timely, unacknowledged key
transport between initiating Alice and responding Bob, mediating Trent.

More formally, let

tuaKT∆(a, b) := �∀(k : K)((Kb(a authored k)→ Kb(k sharedSecret (a, b)))→
�− [∆](a authored k))

Q := Trent.xt2[WMFSERV(Trent,∆v) ] 9
Trent.xt3[WMFSERV(Trent,∆v) ]

Then:

• (h, Q) ∈ H × P and

• (h, Q) |= tuaKT∆v (Eve, Trent)⊗ tuaKT∆v (Eve, Trent) and

• (h ◦ h,WMF(Alice, Trent, Bob, xa1, xt1, xb1,∆v) 9 Q) |=
¬tuaKT∆v+∆v

(Alice, Bob)

by which we obtain

(h,WMF(Alice, Trent, Bob, xa1, xt1, xb1,∆v)) |=
(tuaKT∆v

(Eve, Trent)⊗ tuaKT∆v
(Eve, Trent)) I

¬tuaKT∆v+∆v
(Alice, Bob)

representing our (property-based or logical) attack scenario for WMF. We in-
vite the reader to compare this scenario to the corresponding, model-based (or
process-algebraic) attack scenario described in [BGK06].

1.5 Conclusion

Achievements We believe having achieved with CPL an original synthesis of
an unprecedented variety of logical concepts that are relevant to the security of
communication. In particular, we have

1. defined a cryptographically meaningful (in the sense of Dolev-Yao for the
moment) epistemic modality
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2. invented a cryptographically interesting epistemic conditional thanks to
the auxiliary invention of complex truth values

3. pioneered the application of spatial logic to the formalisation of crypto-
graphic states of affairs

4. invented, by macro-definition, spatial freeze quantifiers and shown that
with them distributed temporal logic is definable within the spatio-tempo-
ral fragment of CPL

5. demonstrated the macro-definability of Gödel’s provability modality within
the spatio-epistemic fragment of CPL, and by that, shown that CPL can
also simulate intuitionistic logic

6. demonstrated the definability of cryptographically meaningful deontic mo-
dalities within the spatio-epistemico-temporal fragment of CPL

7. demonstrated that the addition of (dense-valued) real-time to an untimed,
property-based formalism for cryptographic protocols can be simple and
backwards-compatible, when properly conceived.

We have also achieved the formalisation of an unprecedented variety of cryp-
tographic states of affairs in a single logic. We hope that our tentative formal-
isations have convinced the reader that CPL is an interesting candidate as a
lingua franca for requirements-engineering cryptographic protocols.

Present work At present, we are extending CPL with a notion of proba-
bilistic polynomial-time computation in order to accommodate CPL to modern
(complexity-theoretic) cryptography (cf. Chapter 2).

Future work Further, in case first-order CPL should not suffice for some ap-
plications, it would be trivial to extend CPL to the second-order. Just allow
(unquoted) message types (denoting sets of messages) as messages, and quan-
tification may range over second-order entities (sets).

Finally, a modal model theory for cryptography based on CPL, a proof sys-
tem for CPL, the study of decidable fragments, and the actual construction of a
Curry-Howard isomorphism between cryptographic protocols and propositions
are our main desiderata. Fortunately, and this is a strength of our approach,
axiomatisations of each one of CPL’s operators except for the epistemic condi-
tional exist, which almost reduces the task of defining a proof system for CPL
to finding the laws that correctly axiomatise the mixing of operators.

Acknowledgements I would like to thank Mika Cohen for our stimulating
discussions about crypto logics and his constructive criticism of my work, and
Lawrence S. Moss for his valuable comments.
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Chapter 2

Towards Probabilistic
Polynomial-time
Cryptography

2.1 Introduction

We sketch an Ockham’s razor extension of core CPL (cf. Chapter 1) with a
notion of probabilistic polynomial-time (PP) computation. We hope to con-
vince the reader that adding a notion of PP-computation to a (property-based)
formalism for cryptographic protocols can be simple and conceived through
a refinement of the Dolev-Yao conception of cryptographic operators. The
special-purpose machinery for PP (as for real time, cf. Chapter 1, [Lam05],
and [BGK06, Kra06]), need not be built from scratch nor be heavy-weight.

The general idea is to identify agents with feasible algorithms and, con-
sequently, to resource-bound only the truth establishment of individual and
propositional knowledge. That is, the machinery for probabilistic polynomial-
time computation does not affect the whole logic (as opposed to [DDM+05],
[IK06], where it does), but remains nicely confined to — and is observable only
through the looking glass of — epistemic operators.

The style of our presentation of concepts is alternative to the traditional
style, which is operational and based on interactive (Turing) machines. In
contrast, our style is logical and based on linguistic abstractions of cryptographic
concepts.

We are aware of the following existing formalisms1 for the specification and
verification of cryptographic constructions.

• Property-based: [DMP03, DDMP05, DDM+05] in the tradition of Hoare
logic, with satisfaction and deduction relations, and originally conceived
for cryptographic protocols; and [IK06] a higher -order logic, deduction-
based, and originally conceived for cryptographic operators

1In our view, a formalism consists of exactly three components: a formal (e.g., program-
ming or logical) language, a mathematical model (or interpretation structure), and a formal
semantics (e.g., effect or truth) for the language in terms of the model.
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• Model-based: [MRST06] a process algebra for equivalence-based specifi-
cation and verification.

In contrast, ppCPL is in the tradition of first-order2, temporal — more precisely,
poly-dimensional (i.e., norms, knowledge, space, qualitative and possibly quan-
titative time, cf. Chapter 1 and [Kra06]) mono-modal — logic, (for the moment
still) satisfaction-based, and originally conceived for cryptographic protocols but
here extended to encompass cryptographic operators to some extent.

2.1.1 Symbolic logic

We qualify a logic as symbolic3 when its language allows quantification over
individuals that are represented as syntactic terms formed with term construc-
tors (i.e., functional symbols). In this sense, CPL is symbolic; its language
allows quantification over individuals, i.e., cryptographic messages, represented
as message terms.

Core CPL (cf. Chapter 1) can further be qualified as abstract (in the sense
of Dolev-Yao) because message terms are not interpreted as bit-strings. In
contrast, ppCPL is concrete (in the sense of PP-computation) because mes-
sage terms are interpreted as bit-strings. More precisely, in ppCPL message
terms are denoted to probability distributions of bit-strings by interpreting log-
ical constants as bit-strings and functional symbols as possibly probabilistic
polynomial-time, i.e., feasible, algorithms on bit-strings (cf. Table 2.1).

Table 2.1: Syntactic representation of individual concepts

Concept Representation

formal variable possibly primed letters ‘v’

ad-hoc variable lowercase roman letter except ‘v’s (e.g., ‘m’ for messages)

meta-variable roman letter except ‘v’s (e.g., ‘M ’ for messages)

abstract value atomic (name, logical constant) or compound message term

concrete value bit-string

Furthermore, core CPL can be qualified as positive about truth and knowl-
edge because false positives, i.e., false statements wrongly established as true,
and false belief respectively, are impossible. In contrast, ppCPL is probabilis-
tic about truth and knowledge because false positives are, w.r.t. truth, possible
(though only) with negligible probability, and w.r.t. knowledge, (im)probable
with variable degrees of support.

Finally, we highlight that in the language of ppCPL probability is implicit
except for belief where it parametrises the (new) doxastic modality. In partic-
ular, there is no likelihood operator (cf. [Hal03]) in ppCPL. The reason is that
in modern cryptography truth must be established with overwhelming proba-
bility, whereas belief of a human being may be established with possibly non-
overwhelming degrees of support. Philosophically speaking (cf. Carnap), prob-
ability can be an (epistemological) measure of our (subjective) belief of states
of affairs as well as an (ontological) measure of their (objective) possibility. The

2higher-order logics are too expressive at the cost of axiomatic incompleteness
3traditional usage of the term is philosophical and not standardised
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refinement of the doxastic modality with probability allows the expression of
degrees of certitude that an agent may experience w.r.t. her apprehension of
cryptographic states of affairs.

2.1.2 Probability theory

A fundamental concept of probability theory is the one of a probabilistic ex-
periment characterised by the indeterminacy of its outcome, i.e., its entropy .
The fact that such experiments are probabilistic implies that they are stateful,
i.e., they represent states (with an inherent potential future) of the considered
model, and their execution means probabilistic state transition. A priori, an ex-
perimenter, i.e., a human being about to experience the considered experiment,
typically has an uncertainty about the actual outcome of the experiment, and
makes a hypothesis about its expected outcome. A posteriori, the experimenter
typically makes an epistemic error about the actual outcome of the experiment
w.r.t. the hypothesis made a priori.

In ppCPL, exactly two kinds of probabilistic experiments are relevant: pro-
cess reduction, i.e., protocol execution, (cf. Table 2.2) and message denotation,
i.e., message evaluation, (cf. Table 2.3).

Table 2.2: Probabilistic process reduction

Probability theory CPL

sample space P ×H
variable (experiment) X protocol state (h, P )

atomic event transition (h, P ) −→ (h′, P ′)
possible value (outcome) of X (h′, P ′) s.t. (h, P ) −→ (h′, P ′)
probability distribution P(X) { ((h′, P ′), p) | (h, P ) −→ (h′, P ′) and p ∈]0, 1] }

such that Σp∈P((h,P ))p = 1

hypothesis h about outcome proposition φ
hypothesis H about outcome { (h′, P ′) | (h, P ) −→ (h′, P ′) |= φ }

In Table 2.2, P designates the set of process terms (protocol models) P
(the potential future), H the set of protocol histories h (a finite word of past
protocol events4 ε, e.g., message output or input and new-key/-nonce genera-
tion), −→ the relation of process reduction (modelling interleaving concurrency
of protocol events), and |= CPL’s relation of satisfaction. Note that interleaving
concurrency implies that atomic events are mutually exclusive and independent
within each branching. Applying the principle of indifference, we fix P(s) to
the uniform distribution for all s ∈ P ×H.

In Table 2.3,M designates the set of message terms and J·K the function of
message denotation.

2.1.3 Probabilistic polynomial-time cryptography

The distinguishing features of probabilistic polynomial-time cryptography are
that (1) key and signature generation, and encryption are probabilistic (or ran-
domised); (2) the execution time of the operations under Item 1 and decryption

4not to be confused with the concept of atomic events from probability theory
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Table 2.3: Probabilistic message denotation

Probability theory CPL

sample space {0, 1}∗
variable (experiment) X message term M ∈M

atomic event JMK = s where J·K ⊆M× {0, 1}∗
possible value (outcome) of X s ∈ {0, 1}∗ s.t. s = JMK
probability distribution P(X) { (s, p) | s = JMK and p ∈]0, 1] }

such that Σp∈P(M)p = 1

hypothesis h about outcome JMK = s
hypothesis H about outcome { s | s = JMK }

are polynomially bounded in a security parameter (the length of the key) used
for key generation; (3) adversaries are PP Turing machines with oracle access;
and (4) oracles are PP Turing machines.

2.2 Extension

This section describes the extension of CPL to ppCPL. The extension depends
on the core described in Chapter 1 (the reader is urged to consult it).

2.2.1 Syntax

The syntactic novelties are the following:

1. logical constants (atomic message terms): refinement of the abstract mes-
sage �l with a length indication l ∈ N; addition of bit-strings s ::=
0

∣∣ 1
∣∣ s • s and of probability values q ∈ PV := [0, 1] ∩ Q with the

associated sort PV

2. functional symbols: refinement of hashes dMeHA, symmetric [M ]SEA
M ′ and

asymmetric [M ]AEA
p+ encryptions, and signatures ]M [SA

p with a parame-
ter HA ∈ {SHA1, MD5, . . .}, SEA ∈ {DES(MOO), AES(MOO), . . .}, AEA ∈
{RSA, Elgamal, . . .}, resp. SA ∈ {RSA, Elgamal, . . .} for the name of the
employed algorithm. MOO ∈ {ECB, CBC, CFB, OFB, . . .} is a parameter for
the name of the employed mode of operation of a block cipher.

3. relational symbols:

(a) refinement of the predicate a
ι
�

NGA
n.o for new-name generation with a

security parameter ι ∈ N, and a parameter NGA ::= SEA
∣∣ AEA

∣∣ SA
for the name of the employed generation algorithm

(b) addition of a binary relational symbol ≤ for the comparison of proba-
bility values (actually the same as for the comparison of time values,
cf. Section 1.4)

4. logical operators: addition of a modality Bq
a for belief with error control

q, where q is the probability for agent a not to err in her apprehension of
the truth of the considered proposition (say φ), written Bq

a(φ)
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2.2.2 Semantics

The principal semantic novelties are the following:

1. (backwards-compatible) refinement of temporal accessibility simpliciter to
PP temporal accessibility: addition of denotation events D(a,M, s,ALGO)
stating that agent a denoted the message term M to the string s ∈ {0, 1}∗
by application of the algorithm ALGO ::= NGA

∣∣ �, where ALGO ∈ NGA
if M is a name and ALGO = � otherwise

2. refinement of individual knowledge simpliciter to PP individual knowledge
(cf. Table 2.4) relying on (stateful) PP message denotation:

JMKh
a :=

{
choose s s.t. D(a, n, s,NGA) ∈ ḣ or else n if M = n, and
choose s s.t. there is p s.t. (s, p) ∈ P(M ′) otherwise.

where M ′ :=
⋃

n∈names(M)

{JnKh
a/n

}
M designates the message that results

from the substitution of all names n in M with the corresponding deno-
tations JnKh

a. (The act of choosing s could be made strictly formal with
Hilbert’s choice operator [Sla06].)

3. let

Ka(p, i) := { s | p@0 −→∗ s and s ≈a p@i }
Ba(p, i) := { s | p@0 −→∗ s and s ≈a p@i and

there is a polynomial p : N→ N s.t. |s| ≤ p(|p@i|) }
|(h, P )| := |ḣ|

(a) refinement of propositional knowledge simpliciter

JKa(φ)Ki
p := (for all s, if s ∈ Ka(p, i) then s′ |=E′ φ′, E ′(s,φ))

where (s′, φ′) :=

{
(s, φ) if s = p@i, and
(L s Mp@i

a , L φ Mp@i
a ) otherwise.

to PP propositional knowledge

JKa(φ)Ki
p := (for all s, if s ∈ Ka(p, i)

then s′ |=E′ φ′ and there is a polynomial
p : N→ N s.t. |s| ≤ p(|p@i|), E ′(s,φ))

where (s′, φ′) :=

{
(s, φ) if s = p@i, and
(L s Mp@i

a , L φ Mp@i
a ) otherwise.

(b) addition of believe with error control q ∈ PV

JBq
a(φ)Ki

p := (q = |Ba(p,i)|
|Ka(p,i)| and

for all s, if s ∈ Ba(p, i) then s′ |=E′ φ′, E ′(s,φ))

where (s′, φ′) :=

{
(s, φ) if s = p@i, and
(L s Mp@i

a , Lφ Mp@i
a ) otherwise.

4. redefinition of the state of violation with the desired kind(s) of breaks
(i.e., successful attacks) of cryptographic schemes as formalised in the
next section
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Table 2.4: PP derivation of individual knowledge

Random coin tossing

h `(∅,1)
a 0 h `(∅,1)

a 1

Input data extraction

h · ε(a, M) `({ε(a,M)},0)
a (a, M)

h `(E,r)
a M

h · ε `(E,r)
a M

Data synthesis Data analysis

h `(E,r)
a M h `(E′,r′)

a M ′

h `(E∪E′,r+r′)
a (M, M ′)

h `(E,r)
a (M, M ′)

h `(E,r)
a M

h `(E,r)
a (M, M ′)

h `(E,r)
a M ′

h `(E,r)
a p

h `(E,r)
a p+

h `(E,r)
a M

h `(E,r)
a dMe

h `(E,r)
a M h `(E′,r′)

a M ′

h `(E∪E′,r+r′)
a [M ]M′

h `(E,r)
a [M ]M′ h `(E′,r′)

a M ′

h `(E∪E′,r+r′)
a M

h `(E,r)
a M h `(E′,r′)

a p+

h `(E∪E′,r+r′)
a [M ]p+

h `(E,r)
a [M ]p+ h `(E′,r′)

a p

h `(E∪E′,r+r′)
a M

h `(E,r)
a M h `(E′,r′)

a p

h `(E∪E′,r+r′)
a ]M [p

h `(E,r)
a ]M [p h `(E′,r′)

a p+

h `(E∪E′,r+r′)
a M

Data concretisation Data abstraction

h `(E,r)
a M

h `(E,r)
a s

s = JMKh
a

h `(E,r)
a s

h `(E,r)
a M

JMKh
a = s

PP-abstraction

h `(E,r)
a M

h `Ea M
there is a polynomial p : N→ N s.t. r ≤ p(Σε(a,M)∈E |J(a, M)Kh

a|)

2.3 Case studies

We illustrate the expressiveness of ppCPL on tentative formalisation case stud-
ies of fundamental and applied concepts. Fundamental concepts: (1) one-way
function, (2) hard-core predicate, (3) computational indistinguishability, (4) (n-
party) interactive proof, and (5) (n-prover) zero-knowledge. Applied concepts:
(1) security of encryption schemes, (2) unforgeability of signature schemes, (3)
attacks on encryption schemes, (4) attacks on signature schemes, and (5) breaks
of signature schemes.

Note that in core CPL we focused on cryptographic protocols and their
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requirements, but here (in ppCPL) we focus on cryptographic operators and
their attacks and breaks. Naturally, properties of good operators take the form
of tautologies, i.e., propositions that hold in any (protocol) model (cf. Table 2.5).
Our formalisations illustrate the dramatic expressive power that results from the

Table 2.5: Expressing properties of protocols, operators, and messages

Subject
Expression of a
property as a

Linking concept Style of expression

Protocol
proposition φ in an
assertion (P, h) |= φ

(true statement)
satisfiability

endogenous (i.e.,
point-free/intensional

w.r.t. protocols)

Operator
proposition φ in an

assertion |= φ
(tautology)

validity
point-wise/extensional

w.r.t. messages
(quantification!)

Message unary predicate φ(·) substitution
(φ(M))

combined use of epistemic and spatial operators.

2.3.1 Fundamental concepts

This section is in the spirit of [Gol01].

Definition 10 (Random propositional guessing)

RGa(φ) := ¬∃(q : PV)(
1
2

< q ∧ Bq
a(φ))

Definition 11 (Hard proposition) A proposition φ is hard :iff in any model,
any agent a can only guess the truth of φ. That is, RGa(φ) is a tautology.

|= RGa(φ)

We generalise the concept of a hard proposition (a closed formula) to the
concept of a hard predicate (an open formula).

Definition 12 (Hard predicate) An n-ary predicate φ(M1, . . . ,Mn) is hard
on M1, . . . ,Mn satisfying the (n + 1-ary) predicate ϕ(M1, . . . ,Mn, a) :iff in any
model, if ϕ(M1, . . . ,Mn, a) then any a can only randomly guess the truth of
φ(M1, . . . ,Mn).

|= ϕ(M1, . . . ,Mn, a)→ RGa(φ(M1, . . . ,Mn))

Formalisation 1 (One-way function)
“[. . .] a function that is easy to compute but hard to invert.” [Gol01, Page 32]
Ease of computation |= a k M → a k f(M)

Hardness of invertibility f−1(M ′) = M is hard on M and M ′ satisfying
f(M) = M ′ ∧ ¬ a k M .

y
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Notice that the standard definition of one-way functions only requires the op-
erator f to be computable in deterministic polynomial-time, whereas the satis-
fiability of a k f(M) may be computable only in probabilistic polynomial-time
(cf. Table 2.4). We could easily provide a deterministic variant of k by simply
disallowing random coin tossing. Further, observe that our definition implies
that cryptographic operators are common knowledge among agents. In order to
express (individual) knowledge of operators, we would need quantification over
functional symbols, which would make our logic higher-order.

Formalisation 2 (Hard-core predicate)
“[. . .] a polynomial-time predicate b is called a hard-core of a function f if
every efficient algorithm, given f(x), can guess b(x) with success probability
that is only negligibly better than one-half.” [Gol01, Page 64]

Let the satisfiability of φ(M) be computable in polynomial-time. Then φ(M) is a
hard-core of a function f :iff φ(M) is hard on M satisfying a k f(M)∧¬ a k M .

y

Notice that we identify agents with feasible algorithms!

Formalisation 3 (Computational indistinguishability)
“Objects are considered to be computationally equivalent if they cannot be dif-
ferentiated by any efficient procedure.” [Gol01, Page 103]

M and M ′ are computationally indistinguishable :iff ¬(M = M ′) is hard on M
and M ′ satisfying ¬(M = M ′). y

Definition 13 (Cryptographic evidence and proof)

M necessaryEvidenceFor φ := ∀a(Ka(φ) B (Ka(φ) ⊇ a k M))
M sufficientEvidenceFor φ := ∀a(Ka(φ) B (a k M ⊇ Ka(φ)))

M strictEvidenceFor φ := M necessaryEvidenceFor φ ∧
M sufficientEvidenceFor φ

M evidenceFor φ := M necessaryEvidenceFor φ ∨
M sufficientEvidenceFor φ

M necessaryProofFor φ := ∀a(a k M B (Ka(φ) ⊇ a k M))
M sufficientProofFor φ := ∀a(a k M B (a k M ⊇ Ka(φ)))

M strictProofFor φ := M necessaryProofFor φ ∧
M sufficientProofFor φ

M proofFor φ := M necessaryProofFor φ ∨
M sufficientProofFor φ

Conjecture 1

1. |= M necessaryProofFor φ→M necessaryEvidenceFor φ

2. |= M sufficientProofFor φ→M sufficientEvidenceFor φ

3. |= M strictProofFor φ↔M strictEvidenceFor φ

Formalisation 4 (2-party interactive proof)
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“A 2-party interactive proof (or 2-party computation or 2-party protocol) M
between a verifier a and prover b (initiated by a) for a proposition φ (protocol
goal) is a (possibly minimal) finite chain M = (M0, . . . ,Mn) of messages s.t. (1)
Mn is a proof of φ for a, and (2) for all consecutive pairs (Mi,Mj) in M , Mj

derives from Mi due to communication between a and b.” [author’s formulation]

M ::= (M,�)
∣∣ (M,M)

I ::= �
∣∣ M

M iProofFor(a,b) φ := M iProofFora(a,b) φ

(M,�) iProofForc(a,b) φ := c k M ∧M proofFor φ

(M, (M ′, I)) iProofForc(a,b) φ := M ′ ⊇(a,b) M ∧ (M ′, I) iProofForc(b,a) φ

y

Definition 14 (Interactive provability)

IP(a,b)(φ) := ∃m(m iProofFor(a,b) φ)

Our (macro-defined) operator for interactive provability is a generalisation to
the interactive setting of our macro-definition of Gödel’s provability modality
(cf. Chapter 1).

Proposition 3 |= IP(a,b)(φ)→ Pa(φ)

Conjecture 2 (Characteristics of interactive proofs) For “certain” φ,

Soundness |= ¬φ→ ¬IP(a,b)(φ)

Completeness |= φ→ IP(a,b)(φ)

Formalisation 5 (Proof of knowledge)

“[. . .] [interactive] proofs in which the prover [b] asserts “knowledge” of some
object [. . .] and not merely its existence [. . .]” [Gol01, Page 262]

IP(a,b)(b k M)

y

Formalisation 6 (Zero-Knowledge)

“Zero-knowledge proofs are defined as those [interactive] proofs that convey no
additional knowledge other than the correctness of the proposition [φ] in ques-
tion.” [GMR89]

ZK(a,b)(φ) := IP(a,b)(Ka(∃m′(Kb(m
′ proofFor φ))) ∧

¬∃m′′(Ka(Kb(m
′′ evidenceFor φ))))

y

Spelled out, a (the verifier) knows through interaction with b (the prover) that
b knows a proof (m′) for the proposition φ, however a does not know that proof
nor any evidence (m′′) that could corroborate the truth of φ. (Observe the
importance of the scope of the existential quantifiers.) Philosophically speaking,
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a has pure propositional knowledge of φ, i.e., a has zero individual knowledge
relevant to the truth of φ. In Goldreich’s words, it is “as if [the verifier] was
told by a trusted party that the assertion holds” [Gol05, Page 39].

Standard zero-knowledge, i.e., zero-knowledge w.r.t. a malicious verifier is an
instance of the above scheme where a = Eve. Zero-knowledge w.r.t. an honest
verifier is definable as ZK(a,b)(φ) ∧ honest(a).

Conjecture 3 “[A]nything that is feasibly computable from a zero-knowledge
proof is also feasibly computable from the (valid) assertion itself.” [Gol05,
Page 39]

|= φ→ ((Ka(ϕ) ⊇ ZK(a,b)(φ))→ (Ka(ϕ) ⊇ φ))

This is a logical formulation of an instance of the simulation paradigm [GM84].

Formalisation 7 (n-party interactive proof)
“An n-party interactive proof (or n-party computation or n-party protocol) M
between agents {a0, a1, . . . , an−1} (initiated by a0) for a proposition φ (protocol
goal) is a (possibly minimal) finite chain M = ((a0,M0), . . . , (al,Mm)) s.t. (1)
Mm is a proof of φ for a0, and (2) for all consecutive pairs ((ai,Mi), (aj ,Mj))
in M , Mj derives from Mi due to communication between ai and aj.” [author’s
formulation]

A ::= (a,�)
∣∣ (b, A)

M iProofFor(a,A) φ := M iProofFora(a,A) φ

(M,�) iProofForc(a,�) φ := c k M ∧M proofFor φ

(M, (M ′, I)) iProofForc(a,(b,A)) φ := M ′ ⊇(a,b) M ∧ (M ′, I) iProofForc(b,A) φ

y

Definition 15 (Quotient proof)

M |a M ′ := ¬(a k M ⊇ a k M ′) ∧
¬(a k M ′ ⊇ a k M)

(M,M ′) disjointEvidenceFor φ := ∀a(Ka(φ) B (Ka(φ) ⊇ a k (M,M ′) ∧
M |a M ′))

(M,�) mutuallyDisjointEvidenceFor φ := M evidenceFor φ

(M,M) mutuallyDisjointEvidenceFor φ := (M,M) disjointEvidenceFor φ ∧
M mutuallyDisjointEvidenceFor φ

M quotientProofFor φ := M proofFor φ ∧
M mutuallyDisjointEvidenceFor φ

We pronounce M |a M ′ as “M is (epistemically) independent from M ′ w.r.t. to
a’s knowledge”. Quotient proofs could also be called compositional proofs.

Definition 16 (Multi-prover Zero-Knowledge)

ZK(a,A)(φ) := IP(a,A)(Ka(∃m′(m′ quotientProofFor φ ∧A k m′)) ∧
¬∃m′(Ka(m′ evidenceFor φ ∧A k m′)))
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where

(a,�) k (M,�) := a k M

(b, A) k (M,M) := b k M ∧A k M

Observe again the importance of the scope of the existential quantifiers.

Formalisation 8 (Oblivious Transfer)
“[. . .] we can view this protocol as one in which Alice sends a [confidential]
letter to Bob, which arrives exactly half the time.” [Kil88] (cf. [Rab81] for the
original reference of the idea)

�∀m(a k m ∧ ∀(c : A)(c k m→ (c = a ∨ c = b)) ∧ RGb(b k m))

y

2.3.2 Applied concepts

This section is in the spirit of [Gol04] and [MvOV96]. Note that for clarity,
names of cryptographic algorithms are omitted in message terms in the sequel.

Definition 17 (Security of encryption schemes)

1. “Standard security: the infeasibility of obtaining information regarding
the plaintext” [Gol04, Page 470]

Semantic security “[. . .] given any a priori information about the plain-
text, it is infeasible to obtain any (new) information about the plain-
text from the ciphertext (beyond what is feasible to obtain from the a
priori information on the plaintext).” [Gol04, Page 378]

|= (a k C ∧ Ka(φ(M)))︸ ︷︷ ︸
a priori information

→ ((Ka(ϕ(M)) ⊇ a k C)︸ ︷︷ ︸
obtaining information

→ (φ(M) ⊇ ϕ(M))︸ ︷︷ ︸
no news

)

where C ::= [M ]k
∣∣ [M ]p+

This is again a logical formulation of an instance of the simulation
paradigm [GM84]. Observe the similarity with the previous instance.

Indistinguishability of encryptions

• [M ]k (or [M ]p+) and [M ′]k (or [M ′]p+) are computationally in-
distinguishable (in the sense of our formalisation)
• there is l ∈ N s.t. [M ]k (or [M ]p+) and �l are computationally

indistinguishable (in the sense of our formalisation)

2. Non-malleability “[. . .] it [is] infeasible for an adversary, given a ci-
phertext, to produce a valid ciphertext (under the same encryption-key)
for a related plaintext.” [Gol04, Page 470]

|= (Eve k [M ]k ∧ φ(M) ∧ φ(M ′)︸ ︷︷ ︸
M ′ is related to M

)→ (Eve k [M ′]k → Eve k k)

|= (Eve k [M ]p+ ∧ φ(M) ∧ φ(M ′))→ (Eve k [M ′]p+ → Eve k M ′)
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Formalisation 9 (Unforgeability of signature schemes)
“ it is infeasible to produce signatures of other users to documents they did not
sign.” [Gol04, Page 498]

|= a authored ]M [p → a k p

y

Attacks on encryption schemes We state formalisations of attacks on en-
cryption schemes as vulnerabilities and in increasing strength.

Formalisation 10 (Ciphertext-only attack)
“[. . .] the adversary (or cryptanalyst) tries [⊇] to deduce the decryption key [k
(symmetric) resp. p (private)] or plaintext [M ] by only [≡] observing ciphertext
[m1, . . . ,mn].” [MvOV96, Page 41]

Eve k M ≡ ∃(k : K)(Eve k [M ]k)
Eve k M ≡ ∃(p : K−)(Eve k [M ]p+)

Eve k k ≡ (∃(m1 : SCk[M])(Eve k m1) ∧ · · · ∧ ∃(mn : SCk[M])(Eve k mn))
Eve k p ≡ (∃(m1 : ACp+ [M])(Eve k m1) ∧ · · · ∧ ∃(mn : ACp+ [M])(Eve k mn))

y

Formalisation 11 (Known-plaintext attack)
“[. . .] the adversary has a quantity of plaintext [m1, . . . ,mn] and corresponding
ciphertext.” [MvOV96, Page 41]

Eve k k ≡ (∃m1(Eve k m1 ∧ Eve k [m1]k) ∧ · · · ∧
∃mn(Eve k mn ∧ Eve k [mn]k))

Eve k p ≡ (∃m1(Eve k m1 ∧ Eve k [m1]p+) ∧ · · · ∧
∃mn(Eve k mn ∧ Eve k [mn]p+))

Our interpretation of ‘a quantity of plaintext’ can be refined from ‘a number
of plaintexts’ to ‘a number of parts of plaintexts’ by replacing Eve k m1 with
∃m11(m11 4 m1∧Eve k m11)∧· · ·∧∃m1i(m1i 4 m1∧Eve k m1i), and Eve k mn

with ∃mn1(mn1 4 m1 ∧ Eve k mn1) ∧ · · · ∧ ∃mnj(mnj 4 m1 ∧ Eve k mnj). y

Formalisation 12 (Chosen-plaintext attack)
“[. . .] the adversary chooses [B] plaintext [m] and is then given [I] correspond-
ing ciphertext. Subsequently [ �], the adversary uses any information deduced
[⊇] in order to recover plaintext [M ] corresponding to previously unseen cipher-
text.” [MvOV96, Page 41]

∃(k : K)(¬ Eve k [M ]k ∧
∃m(Eve k m B

(Eve k [m]k I �(M ⊇Eve (m, [m]k)))))

∃(p : K−)(¬ Eve k [M ]p+ ∧
∃m(Eve k m B

(Eve k [m]p+ I �(M ⊇Eve (m, [m]p+)))))
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Our interpretation of ‘plaintext’ can be refined from ‘ the plaintext’ to ‘ some of
the plaintext’ by replacing Eve k M with ∃m1(m1 4 M ∧ Eve k m1) ∧ · · · ∧
∃mn(mn 4 M ∧ Eve k mn). y

Formalisation 13 (Adaptive chosen-plaintext attack)

“[. . .] a chosen-plaintext attack wherein the choice of plaintext may depend on
the ciphertext received from previous requests.” [MvOV96, Page 41]

Let A denote chosen-plaintext chains in the public key p+ of the form

A ::= �
∣∣ ((M, [M ]p+), A)

and aCPCp+

a an inductively-defined macro expressing the realisation of such a
chain for agent a

� aCPCp+

a φ := φ

((M, [M ]p+), A) aCPCp+

a φ := a k M B (a k [M ]p+ I A aCPCp+

a φ)

Then
∃(p : K−)(¬ Eve k [M ]p+ ∧

∃m(∃m′(m′ aCPCp+

Eve Eve k m) B
(Eve k [m]p+ I �(M ⊇Eve (m, [m]p+)))))

formalises an adaptive chosen-plaintext attack on a private key. (The formali-
sation of a corresponding attack on a symmetric key is similar.) y

Formalisation 14 (Chosen-ciphertext attack)

“[. . .] the adversary selects the ciphertext and is then given the corresponding
plaintext.” [MvOV96, Page 41]

∃(k : K)(¬ Eve k [M ]k ∧
∃m(Eve k [m]k B

(Eve k m I �(M ⊇Eve (m, [m]k)))))
y

Formalisation 15 (Adaptive chosen-ciphertext attack)

“[. . .] a chosen-ciphertext attack where the choice of ciphertext may depend on
the plaintext received from previous requests.” [MvOV96, Page 42]

Let S denote chosen-ciphertext chains in the symmetric key k of the form

S ::= �
∣∣ (([M ]k,M), S)

and sCCCk
a an inductively-defined macro expressing the realisation of such a

chain for agent a

� sCCCk
a φ := φ

(([M ]k,M), S) sCCCk
a φ := a k [M ]k B (a k M I S sCCCk

a φ)
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Then
∃(k : K)(¬ Eve k [M ]k ∧

∃m(∃m′(m′ sCCCk
Eve Eve k m) B

(Eve k [m]k I �(M ⊇Eve (m, [m]k)))))

formalises an adaptive chosen-plaintext attack on a symmetric key. (The for-
malisation of a corresponding attack on an asymmetric key is similar.) y

Attacks on signature schemes We state formalisations of attacks on sig-
nature schemes in increasing strength.

Formalisation 16 (Key-only attack)
“[. . .] an adversary knows only the signer’s public key.” [MvOV96, Page 432]

∃v∃(a : A)(v+ puk a ∧ Eve k v+ ∧ ∀m(Eve k ]m[v → ¬ Eve k m))

y

Formalisation 17 (Known-message attack)
“An adversary has signatures for a set of messages which are known to the
adversary but not chosen by him.” [MvOV96, Page 432]

∃v∃(a : A)(v+ puk a ∧ Eve k v+ ∧
∃m1 · · · ∃mn(Eve k ]m1[v ∧ · · · ∧ Eve k ]mn[v ∧

Eve k m1 ∧ · · · ∧ Eve k mn))
y

Formalisation 18 (Chosen-message attack)
“An adversary obtains valid signatures from a chosen list of messages before
attempting to break the signature scheme.” [MvOV96, Page 433]

∃v∃(a : A)(v+ puk a ∧ Eve k v+ ∧
∃m1 · · · ∃mn((Eve k m1 ∧ · · · ∧ Eve k mn) B

(Eve k ]m1[v ∧ · · · ∧ Eve k ]mn[v)))
y

Formalisation 19 (Adaptive chosen-message attack)
“An adversary is allowed to use the signer as an oracle; the adversary may re-
quest signatures of messages which depend on the signer’s public key and he may
request signatures of messages which depend on previously obtained signatures
or messages.” [MvOV96, Page 433]

Let C denote chosen-message chains in the private key p of the form

C ::= �
∣∣ ((M, ]M [p), C)

and CMCp
a an inductively-defined macro expressing the realisation of such a

chain for agent a

� CMCp
a φ := φ

((M, ]M [p), C) CMCp
a φ := a k M B (a k ]M [p I C CMCp

a φ)

Then
∃v∃(a : A)(v+ puk a ∧ Eve k v+ ∧ ∃m(m CMCv

a Eve k m))

formalises an adaptive chosen-message attack on a signing key. y
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Breaks of signature schemes We state formalisations of breaks of signature
schemes in increasing strength.

Formalisation 20 (Existential forgery)

“An adversary is able to forge a signature for at least one message. The adver-
sary has little or no control over the message whose signature is obtained, and
the legitimate signer may be involved in the deception . . . ” [MvOV96, Page 432]

∃v∃(a : A)(v+ puk a ∧ Eve k v+ ∧ ∃m(]m[v ⊇Eve m))

y

Formalisation 21 (Selective forgery)

“An adversary is able to create a valid signature for a particular [∃] message or
class of messages chosen [B] a priori. Creating the signature does not directly
involve the legitimate signer.” [MvOV96, Page 432]

∃v∃(a : A)(v+ puk a ∧ Eve k v+ ∧ ∃m(Eve k m B ]m[v ⊇Eve m))

y

Formalisation 22 (Universal forgery)

“An adversary is able to create a valid signature for an arbitrary [∀] message
chosen a priori.”

∃v∃(a : A)(v+ puk a ∧ Eve k v+ ∧ ∀m(Eve k m B ]m[v ⊇Eve m))

y

Formalisation 23 (Total break)

“An adversary is either able to compute the private key information of the
signer, or finds an efficient signing algorithm functionally equivalent to the valid
signing algorithm.” [MvOV96, Page 432]

∃v∃(a : A)(v+ puk a ∧ Eve k v+ ∧ Eve k v)

y
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Appendix A

Specification library

Classical propositional and first-order operators

> := Eve : Adv true

⊥ := ¬> false

φ ∨ φ′ := ¬(¬φ ∧ ¬φ′) φ or φ′

φ→ φ′ := ¬φ ∨ φ′ if φ then φ′

φ↔ φ′ := (φ→ φ′) ∧ (φ′ → φ) φ if and only if φ′

∃v(φ) := ¬∀v(¬φ) there is v s.t. φ

∀(v : θ)(φ) := ∀v(v : θ → φ)

∃(v : θ)(φ) := ∃v(v : θ ∧ φ)

Modal operators

Fφ := ¬Pφ it is forbidden that φ

φ ≡ φ′ := (φ ⊇ φ′) ∧ (φ′ ⊇ φ) φ is epistemically equivalent to φ′

φ⊕ φ′ := ¬(¬φ⊗ ¬φ′) φ disjunctively separates φ′

�φ := φ⊕⊥ everywhere φ

�φ := ¬�¬φ somewhere φ

φ′ I φ := ¬(φ′ B ¬φ) assert φ′ guarantee φ

∗ := ©−⊥ in the beginning

† := ©+⊥ in the end

�φ := φ S⊥ so far φ

�−φ := ¬� ¬φ once φ

1.φ := φ ∧ ¬©− �−φ for the first time φ

�φ := φ U⊥ henceforth φ

�φ := ¬� ¬φ eventually φ

φ ≤ φ′ := (φ ∧ �φ′) ∨ (φ′ ∧ �−φ) φ before φ′

φ φ′ := (φ↔ �φ
′) ∧ (φ′ ↔ �−φ) φ correlates φ′

Relational symbols

F = F ′ := F 4 F ′ ∧ F ′ 4 F F is equal to F ′

F ≺ F ′ := F = F ′ ∧ ¬F 4 F ′ F is a strict subterm of F ′
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a h F := ∃v(F 4 v ∧ a k v) a has/possesses F

a tk F := a h F ∧ ¬ a k F a tacitly knows F

F : ∅ := ⊥
F : H[θ] := ∃(v : θ)(F = dve)
F : SCF ′ [θ] := ∃(v : θ)(F = {|v|}F ′)

F : ACp+ [θ] := ∃(v : θ)(F = {|v|}+
p+)

F : Sp[θ] := ∃(v : θ)(F = {|v|}−p )

F : T[θ, θ′] := ∃(v : θ)∃(v′ : θ′)(F = (v, v′))

F : θ ∪ θ′ := F : θ ∨ F : θ′

F : θ ∩ θ′ := F : θ ∧ F : θ′

F : θ \ θ′ := F : θ ∧ ¬F : θ′

F : M := >
F : SC[θ] := ∃v(F : SCv[θ])

F : AC[θ] := ∃(v : K+)(F : ACv[θ])

F : C[θ] := F : SC[θ] ∪ AC[θ]

F : S[θ] := ∃(v : K−)(F : Sv[θ])

θ v θ′ := ∀(v : θ)(v : θ′) θ is a subtype of θ′

θ = θ′ := θ v θ′ ∧ θ′ v θ

θ @ θ′ := θ v θ′ ∧ θ′ 6= θ

F K F ′ := ∃v({|v|}F 4 F ′)

p+ K+ F := ∃v({|v|}+
p+ 4 F )

p K− F := ∃v({|v|}−p 4 F )

F K∗ F ′ := F K F ′ ∨ F K+ F ′ ∨ F K− F ′ F is operational in F ′

F J F ′ := ∃v∃v′(F 4 v ∧ {|v|}v′ 4 F ′)

F J+ F ′ := ∃v∃(p+ : K+)(F 4 v ∧ {|v|}+
p+ 4 F ′)

F J− F ′ := ∃v∃(p : K−)(F 4 v ∧ {|v|}−p 4 F ′)

F J∗ F ′ := F J F ′ ∨ F J+ F ′ ∨ F J− F ′ F is guarded in F ′

k sk a := ∃b∃o(b � k.o ∧ a 4 o) k is a symmetric key for a

k sk1 a := k sk a ∧ k : K1 k is a session/short-term key for a

k sk∞ a := k sk a ∧ k : K∞ k is a long-term key for a

p prk a := ∃b∃o(b � p.o ∧ a 4 o) p is a private key for a

n puk a := ∃v(v+ = n ∧ v prk a) n is a public key for a

n ck a := n sk a ∨ n prk a n is a confidential key for a
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Appendix B

Proofs

Proposition 2

Proof. by counterexample:

• Eve : Adv⇔ k : K because |= Eve : Adv and |= k : K, but

• Ka(Eve : Adv) 6⇔ Ka(k : K) because the establishment of the truth of
Ka(Eve : Adv) does not dependent on a’s knowledge of the key values in
Eve : Adv (there aren’t any), whereas the establishment of the truth of
Ka(k : K) does dependent on a’s knowledge of the key values in k : K
(there is one).

Hence, |= Ka(Eve : Adv), i.e., Ka(Eve : Adv) is a logical truth (tautology), but
6|= Ka(k : K), i.e., Ka(k : K) is only a contingent truth. Yet, a logical truth is, by
definition, not logically equivalent to a contingent truth.

Lemma 1 φ⇒ φ′ iff |= φ→ φ′

Proof.

|= φ→ φ′ iff
for all s, s |= φ→ φ′ iff
for all s, s |= ¬φ ∨ φ′ iff
for all s, s |= ¬(¬¬φ ∧ ¬φ′) iff
for all s, not s |= ¬¬φ ∧ ¬φ′ iff
for all s, not (s |= ¬¬φ and s |= ¬φ′) iff
for all s, not (not not s |= φ and not s |= φ′) iff
for all s, not (s |= φ and not s |= φ′) iff
for all s, not s |= φ or not not s |= φ′ iff
for all s, not s |= φ or s |= φ′ iff
for all s, if s |= φ then s |= φ′ iff
φ⇒ φ′

Proposition 4 |= Pa(φ→ φ′)→ (Pa(φ)→ Pa(φ′))
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Proof.

1. s |= Pa(φ→ φ′) hyp.
2. s |= Pa(φ) hyp.
3. s |= ∃m(m proofFor (φ→ φ′) ∧ a k m) 1
4. there is M ∈M s.t. s |= M proofFor (φ→ φ′) ∧ a k M 3
5. M ∈M and s |= M proofFor (φ→ φ′) ∧ a k M hyp.
6. s |= ∃m(m proofFor (φ) ∧ a k m) 2
7. there is M ∈M s.t. s |= M proofFor (φ) ∧ a k M 6
8. M ′ ∈M and s |= M ′ proofFor (φ) ∧ a k M ′ hyp.
9. s |= M proofFor (φ→ φ′) and s |= a k M 5

10. s |= ∀(v : AAdv)(v k M B Kv(φ→ φ′)) 9
11. for all v ∈ AEve, s |= v k M B Kv(φ→ φ′) 10
12. s |= M ′ proofFor (φ) and s |= a k M ′ 8
13. s |= ∀(v : AAdv)(v k M ′ B Kv(φ)) 12
14. for all v ∈ AEve, s |= v k M ′ B Kv(φ) 13
15. v ∈ AEve hyp.
16. s′ |= v k (M,M ′) hyp.
17. s′ |= v k M 16, property of k

18. s |= v k M B Kv(φ→ φ′) 11, 15
19. for all s′, if s′ |= v k M then s′ ◦ s |= Kv(φ→ φ′) 18
20. if s′ |= v k M then s′ ◦ s |= Kv(φ→ φ′) 19
21. s′ ◦ s |= Kv(φ→ φ′) 17, 20
22. s′ |= v k M ′ 16, property of k

23. s |= v k M ′ B Kv(φ) 14, 15
24. for all s′, if s′ |= v k M ′ then s′ ◦ s |= Kv(φ) 23
25. if s′ |= v k M ′ then s′ ◦ s |= Kv(φ) 24
26. s′ ◦ s |= Kv(φ) 22, 25
27. s′ ◦ s |= Kv(φ′) 21, 26, property of K

28. if s′ |= v k (M,M ′) then s′ ◦ s |= Kv(φ′) 16, 27
29. for all s′, if s′ |= v k (M,M ′) then s′ ◦ s |= Kv(φ′) 28
30. s |= v k (M,M ′) B Kv(φ′) 29
31. if v ∈ AEve then s |= v k (M,M ′) B Kv(φ′) 15, 30
32. for all v ∈ AEve, s |= v k (M,M ′) B Kv(φ′) 31
33. s |= ∀(v : AAdv)(v k (M,M ′) B Kv(φ′)) 32
34. s |= (M,M ′) proofFor φ′ 33
35. s |= a k (M,M ′) 9, 12, property of k

36. s |= (M,M ′) proofFor φ′ and s |= a k (M,M ′) 34, 35
37. s |= (M,M ′) proofFor φ′ ∧ a k (M,M ′) 36
38. there is M ′′ ∈M s.t. s |= M ′′ proofFor φ′ ∧ a k M ′′ 37
39. s |= ∃m(m proofFor φ′ ∧ a k m) 38

58



40. s |= Pa(φ′) 39
41. s |= Pa(φ′) 7, 40
42. s |= Pa(φ′) 4, 41
43. if s |= Pa(φ) then s |= Pa(φ′) 2, 42
44. s |= Pa(φ)→ Pa(φ′) 43
45. if s |= Pa(φ→ φ′) then s |= Pa(φ)→ Pa(φ′) 1, 44
46. for all s, if s |= Pa(φ→ φ′) then s |= Pa(φ)→ Pa(φ′) 45
47. Pa(φ→ φ′)⇒ Pa(φ)→ Pa(φ′) 46, Definition 8
48. |= Pa(φ→ φ′)→ (Pa(φ)→ Pa(φ′)) 47, Lemma 1

Proposition 5 |= Pa(φ)→ Ka(φ)

Proof.

1. s |= Pa(φ) hyp.
2. s |= ∃m(m proofFor φ ∧ a k m) 1
3. there is M ∈M s.t. s |= M proofFor φ ∧ a k M 2
4. M ∈M and s |= M proofFor φ ∧ a k M hyp.
5. s |= M proofFor φ and s |= a k M 4
6. s |= ∀(v : AAdv)(v k M B Kv(φ)) 5
7. for all v ∈ AEve, s |= v k M B Kv(φ) 6
8. s |= a k M B Ka(φ) 7
9. for all s′, if s′ |= a k M then s′ ◦ s |= Ka(φ) 8

10. if s |= a k M then s ◦ s |= Ka(φ) 9
11. s ◦ s |= Ka(φ) 5, 10
12. s |= Ka(φ) 111

13. s |= Ka(φ) 3, 12
14. if s |= Pa(φ) then s |= Ka(φ) 1, 13
15. for all s, if s |= Pa(φ) then s |= Ka(φ) 14
16. Pa(φ)⇒ Ka(φ) 15, Definition 8
17. |= Pa(φ)→ Ka(φ) 16, Lemma 1

Proposition 6 |= Pa(φ)→ φ

Proof.

1. |= Pa(φ)→ Ka(φ) Proposition 5
2. |= Ka(φ)→ φ property of K

3. |= Pa(φ)→ φ 1, 2

1◦ is supposed to preserve uniqueness of process terms and of protocol events in protocol
histories, i.e., ◦ is supposed to be idempotent
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Proposition 7 |= Pa(φ)→ Pa(Pa(φ))

Proof.

1. s |= Pa(φ) hyp.
2. s |= ∃m(m proofFor φ ∧ a k m) 1
3. there is M ∈M s.t. s |= M proofFor φ ∧ a k M 2
4. M ∈M and s |= M proofFor φ and s |= a k M 3
5. v ∈ AEve hyp.
6. s′ |= v k M hyp.
7. s′ ◦ s |= v k M 6
8. s′ ◦ s |= Kv(a k M) 4, 7, definition of K

9. s′ ◦ s |= Kv(M proofFor φ) 4, 7
10. s′ ◦ s |= Kv(Pa(φ)) 8, 9
11. if s′ |= v k M then s′ ◦ s |= Kv(Pa(φ)) 6, 10
12. for all s′, if s′ |= v k M then s′ ◦ s |= Kv(Pa(φ)) 11
13. s |= v k M B Kv(Pa(φ)) 12
14. if v ∈ AEve then s |= v k M B Kv(Pa(φ)) 5, 13
15. for all v ∈ AEve, s |= v k M B Kv(Pa(φ)) 14
16. s |= ∀(v : AAdv)(v k M B Kv(Pa(φ))) 15
17. s |= M proofFor Pa(φ) and s |= a k M 4, 16
18. there is M ∈M s.t. s |= M proofFor Pa(φ) ∧ a k M 17
19. s |= ∃m(m proofFor Pa(φ) ∧ a k m) 18
20. s |= Pa(Pa(φ)) 19
21. s |= Pa(Pa(φ)) 3, 20
22. if s |= Pa(φ) then s |= Pa(Pa(φ)) 1, 21
23. for all s, if s |= Pa(φ) then s |= Pa(Pa(φ)) 22
24. Pa(φ)⇒ Pa(Pa(φ)) 23, Definition 8
25. |= Pa(φ)→ Pa(Pa(φ)) 24, Lemma 1

Proposition 8
|= φ

|= a k M → Pa(φ)
M is a tuple of the key values in φ

Proof.

1. |= φ and M is a tuple of the key values in φ hyp.
2. s |= a k M hyp.
3. v ∈ AEve hyp.
4. s′ |= v k M hyp.
5. s′ ◦ s |= v k M 4
6. s′ ◦ s |= Kv(φ) 1, 5, epistemic necessitation
7. if s′ |= v k M then s′ ◦ s |= Kv(φ) 4, 6
8. for all s′, if s′ |= v k M then s′ ◦ s |= Kv(φ) 7
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9. s |= v k M B Kv(φ) 8
10. if v ∈ AEve then s |= v k M B Kv(φ) 3, 9
11. for all v ∈ AEve, s |= v k M B Kv(φ) 10
12. s |= ∀(v : AAdv)(v k M B Kv(φ)) 11
13. s |= M proofFor φ and s |= a k M 2, 12
14. there is M ∈M s.t. s |= M proofFor φ ∧ a k M 13
15. s |= ∃m(m proofFor φ ∧ a k m) 14
16. s |= Pa(φ) 15
17. if s |= a k M then s |= Pa(φ) 2, 16
18. for all s, if s |= a k M then s |= Pa(φ) 17
19. a k M ⇒ Pa(φ) 18, Definition 8
20. |= a k M → Pa(φ) 19, Lemma 1
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