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Abstract

Blockwise-adaptive chosen-plaintext and chosen-ciphertext attack are new models for crypt-
analytic adversaries, first discovered by Joux, et al [JMV02], and describe a vulnerability in
SSH discovered by Bellare, et al [BKN02]. Unlike traditional chosen-plaintext (CPA) or chosen-
ciphertext (CCA) adversaries, the blockwise adversary can submit individual blocks for en-
cryption or decryption rather than entire messages. This paper focuses on the search for on-line
encryption schemes which are resistant to blockwise-adaptive chosen-plaintext attack. We prove
that one oracle query with non-equal inputs is sufficient to win the blockwise-adaptive chosen-
plaintext game if the game can be won by any adversary in ppt with non-negligible advantage.

In order to uniformly describe such encryption schemes, we define a canonical representation
of encryption schemes based on functions believed to be pseudorandom (i.e. Block Ciphers).
This Canonical Form is general enough to cover many modes currently in use, including ECB,
CBC, CTR, OFB, CFB, ABC, IGE, XCBC, HCBC and HPCBC. An immediate result of the
theorems in this paper is that CTR, OFB, CFB, HCBC and HPCBC are proven secure against
blockwise-adaptive CPA, as well as S-ABC under certain conditions. Conversely ECB, CBC,
IGE, and P-ABC are proven to be blockwise-adaptive CPA insecure. Since CBC, IGE and
P-ABC are chosen-plaintext secure, this indicates that the blockwise-adaptive chosen-plaintext
model is a non-trivial extension of the traditional chosen-plaintext attack model.
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1 Introduction

Cryptanalytic attacks have often been divided into the useful categories of known ciphertext, known
plaintext, chosen-plaintext (CPA), and chosen-ciphertext (CCA) [DH76, KY00]. These categories
represent various possible capabilities of potential attackers, by which the security of a scheme
against each possible class of adversary can be expressed. In particular, Fouque, Joux, and
Poupard [FJP04] show that security definitions are a pairing of an attack model with a security
goal.

This research began in 2002 when Bellare, Kohno, and Namprempre published an operationally
feasible attack very similar to CPA on the Secure Shell (SSH) [BKN02]—using Cipher Block Chain-
ing (CBC) which had been proven secure against CPA [GB]. The difference stems from the simple
idea that in CPA, the adversary has the capability to insert messages of his/her own creation into
a stream of messages for encryption. In the SSH attack, blocks are inserted into existing messages.
From this apparent mismatch between operational CPA and its theoretical definition sprang the
study of blockwise-adaptive attack.

This paper establishes a generalized form for on-line encryption schemes, called Canonical Form
that describes most schemes that make a single call to a pseudorandom permutation per block
of encryption. The theorems that follow prove blockwise-adaptive CPA security under certain
conditions and insecurity under other conditions. Most usefully, if the blockwise-adaptive chosen-
plaintext game can be won by a probabilistic polynomial time (ppt ) adversary with non-negligible
chance of success, one oracle query with non-equal inputs is sufficient (with polynomially many
queries of equal inputs). Also, several common modes of encryption are easily denoted in Canonical
Form: Cipher Block Chaining (CBC), Counter Mode (CTR), Output Feedback Mode (OFB),
Cipher Feedback Mode (CFB), Electronic Codebook Mode (ECB), Infinite Garble Extension (IGE)
as defined by Campbell [Cam78], Accumulated Block Chaining (ABC) as described by Knudsen
[Knu00], Hash Cipher Block Chaining (HCBC) and its variant HPCBC as defined by Bellare et al
[BBKN01], and Extended Cipher Block Chaining (XCBC) as described by Gligor, et al [GD01].
An immediate corollary of this Canonical Form and the theorems related to it, is that CBC, ECB,
IGE, and ABC with public initial conditions1, are shown to be blockwise-adaptive CPA insecure;
likewise, CTR, CFB, OFB, HCBC, HPCBC are shown to be blockwise-adaptive CPA secure, as
well as ABC with certain secret conditions and choices. We have yet to determine the status of
XCBC.

1.1 Blockwise-Adaptive Attack

Informally, the principal distinction between blockwise CPA and messagewise (traditional) CPA
relates to the oracle queries done by the attacker. In messagewise CPA, the attacker can create
messages, submit them for encryption, and observe results. In blockwise CPA, the attacker can
insert blocks into existing messages, submit them for encryption, and observe results.

The name “blockwise-adaptive” alludes to the capability of the attacker to view the results of
inserting one or more blocks of choice into a plaintext message before deciding on the next block,
thus permitting the attacker to “adapt” the attack based upon those observations. It should be
noted that blockwise-adaptive CPA includes all models of cryptanalysis except chosen-ciphertext
attack, in the sense that the BACPA adversary has all the capabilities of the non-CCA adversaries
of other models. Therefore it forms a convenient model for applications where the chosen-ciphertext
capability is not anticipated.

1Public Initial Conditions including any keys for hash functions.
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1.2 Previous and Recent Work

Joux, Martinet, and Valette further identified three additional operational attacks of similar form
to Bellare’s attack on SSH, naming this new class of attacks “blockwise-adaptive CPA” [JMV02].
While very similar to “traditional” CPA, the attacks do not conform to any of the four classes of
cryptanalysis as presently defined. Also introduced in that paper is “blockwise-adaptive CCA”, a
variation on “traditional” CCA.

Fouque, Joux, Martinet, and Valette next provided the first security definitions for blockwise-
adaptive CPA and CCA [FJMV03]. The paper was geared to smart cards in authentication devices,
and so is a somewhat different context than on-line schemes. They propose a generic model,
Decrypt-then-Mask, proved to be blockwise-adaptive CCA secure under certain conditions, and an
example of it, CBC-MAC. However, none of these schemes are on-line and so are not included here.
(See Section 1.3 for reasons).

Boldyreva and Taesombut, focusing on on-line schemes in general, showed that neither HCBC
nor any on-line scheme in general is CCA secure under the general definitions of Fouque, et al.
[BT04, JMV02, FJMV03]. Instead, they define a slightly different security definition, IND-BLK-
CCA. They prove that the mode HPCBC, which is a variation on HCBC, is IND-BLK-CCA secure.
Both HPCBC and HCBC are analyzed (and proven blockwise-adaptive CPA secure) in this paper,
which confirms their results.

At almost the same time, Fouque, Martinet, and Poupard [FMP03] expanded the idea of
Delayed-CBC presented in their previous paper to include a general notion of a delayed cipher.
Moreover, these authors introduce an adversary with concurrent access to multiple blockwise ora-
cles. All previous papers had limited the adversary to sequential access to the oracle, as does this
paper. The authors proved that both delaying modes and CFB are secure under their model. How-
ever, while delaying modes allow for on-line encryption, they do not allow for on-line decryption2,
and so are not discussed here. The security of the mode CFB is also discussed in Boldyreva and
Taesombut [BT04].

More recently, the author demonstrated the potential feasibility of blockwise-adaptive attack
by demonstrating an exploitable flaw in the Secure Sockets Layer (SSL) [Bar04, Bar06]. The
vulnerability is similar to that found by Bellare in SSH. Particular details of SSL and the method
by which proxies, anonymizers, or VPNs interact with a web-browser make the attack feasible.

Recently, at SAC 2004, Fouque, Joux, and Poupard [FJP04] expanded the definitions of security
in the messagewise case into the blockwise case. That paper examines the relationships between
indistinguishability in the Left-Or-Right, Real-Or-Random and Find-Then-Guess senses, in the
attack models of messagewise chosen-plaintext attack, and blockwise-adaptive chosen-plaintext
attack with either sequential or concurrent adversaries. An analysis of these security goals for the
messagewise case and their relationships is found in Katz and Yung [KY00]. The notion used for
security in this paper is LORS-BCPA as defined by Fouque, Joux and Poupard, meaning that the
adversary is given blockwise capability in every stage of the attack, but for sequential messages
(i.e. not for concurrent messages).

1.3 On-line Schemes

Certain forms of communication are interactive by nature and would cease to be useful if queries
and responses could not be exchanged in a synchronized and timely way. There are cryptologic

2Boldyreva and Taesombut show that there is a distinction between schemes which can have on-line encryption,
and those in which both encryption and decryption are on-line. The usual meaning in the literature is for on-line
encryption only, but here, as in Boldyreva and Taesombut, we require both decryption and encryption to be on-line.
Note that this is required for fully interactive communications [BT04]. See also Section 1.3.
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consequences of this property, denoted “on-line”, where a given ciphertext block Ci does not depend
on any plaintext block Pj if j > i.

Bellare, Boldyreva, Knudsen, and Namprempre first identified the notion of on-line ciphers
[BBKN01]. There are several reasons why on-line schemes are attractive. First, they make interac-
tive communication possible. Second, they do not require buffering. Third, in real-time scenarios
delay is undesirable, and thus transmitting Ci upon receiving Pi is necessary.

Authenticated Encryption often requires a tag, hash, checksum or other digest of the plaintext
or ciphertext. This cannot be verified before it is transmitted, and it cannot be transmitted before
it is calculated. Any useful function of the plaintext cannot be calculated before the plaintext is
known, i.e. submitted. Therefore it cannot possibly be the case that such schemes are “decryptable
on the fly”. This distinction was first suggested by Boldyreva and Taesombut in [BT04]. Therefore,
schemes like OCB mode suggested by Rogaway et al [RBBK01] are out of the scope of this paper,
as they do not permit on-line decryption and therefore are not useful for interactive communication.

Delayed-CBC, as suggested by Joux, et al [JMV02, FJMV03] calculates the ciphertexts as in
normal CBC, but delays their output by one block. Thus C1 = Fsk(C0⊕P1) but is not transmitted
until after P2 is received. However, if P2 will be a response to the other party’s response to P1,
then deadlock occurs. This scheme is not meant for “decryption-on-the-fly” and thus is not on-line
in the sense of Boldyreva and Taesombut [BT04].

1.4 Current Research on Modes of Encryption

Loosely speaking, a “mode of operation” for block ciphers is an algorithm that features the use of a
symmetric-key block cipher algorithm to provide an information service, such as confidentiality or
authentication [Dwo01]. An encryption scheme is a mode where the objective is confidentiality, but
other objectives might be pseudorandom number generation or authenticated encryption. We use
the definition of an “encryption scheme” below, as defined by Fouque, Joux and Poupard [FJP04],
which is a precise version of the notion of a mode of operation.

Research into modes of encryption for block ciphers is a historically rich field, with discussions
beginning with the definition of the Data Encryption Standard (DES), and two original modes
of operation, namely the Electronic Code Book (ECB) and Cipher Block Chaining (CBC). More
recently, NIST held two public workshops to study modes of block encryption, in Fall 2000 and
Summer 2001. The result of these workshops was a two-part recommendation [Dwo01, Dwo02],
the first of which specifies encryption modes. These are Electronic Codebook (ECB), Cipher Block
Chaining (CBC), Counter Mode (CTR), Output Feedback Mode (OFB), and Cipher Feedback
Mode (CFB).

Meanwhile many other modes of encryption have been proposed. Specifically, nineteen are
listed on the NIST website, submitted by many authors. Some modes have special advantages, for
example CTR mode can be easily executed in parallel [LRW00]. To analyze all nineteen of them
would be beyond the scope of this paper, but the methods outlined here should be easy to apply
to those cases.

Also the recently proposed modes XCBC and XECB, designed by Gligor, et al, to provide
authenticity and integrity as well as privacy (to prevent encrypted message forgeries) are encryption
schemes, but only XCBC is on-line [GD01].

Knudsen first proposed the general class of modes called ABC, or Accumulated Block Ciphers,
which are defined in terms of a function denoted h. The mode ABC is an extension of Infinite
Garble Extension (IGE), as defined by Campbell [Cam78] and analyzed by Gligor, et al [GD00]. In
fact, if h is the function which always returns zero, then ABC acts identically to IGE. Bellare et al
[BBKN01] distinguish ABC into two subclasses—P-ABC when the initial conditions are publicly
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known, and S-ABC when some initial conditions are secret, including any keys to the function h.
These notions were extended by Bellare et al to include HCBC and HPCBC, which are modes that
utilize a hash function during the encryption process [BBKN01].

2 Encryption Schemes and Canonical Form

Fouque, Joux, and Poupard define an encryption scheme as a triple of algorithms [FJP04]. First,
a key generation algorithm, which does not concern us. Next the plaintext is divided into blocks,
~P = P1, P2, . . . Pn, and some algorithm E(~P )→ ~C produces a ciphertext, again divided into blocks
~C = C0, C1, C2, . . . Cn. A decryption function also exists, D(~C) = ~P , to map ciphertexts back to
their corresponding plaintexts.

All encryption schemes discussed in this paper are on-line and correct.3 Since for all on-line
schemes, Ci does not depend upon Pj for j > i, the sender can compute Ci upon receipt of Pi. Thus
one can model the encryption scheme as a finite-state-machine, with a randomized initialization
algorithm.

First, an algorithm Initsk(k), whose sole input is the security parameter, will output an initial
state s1, and an initialization vector C0. Second, an encryption algorithm Esk(Pi, si) will take as
inputs the secret key, the plaintext, and the current state. It will output the ciphertext block Ci,
and the next state4, si+1. This model is based on Fouque, Joux, and Poupard, [FJP04] and is
similar to that used in Bellare and Boldyreva’s several papers [BKN02, BBKN01, BDJR97, BT04].
In particular, many encryption schemes are based on a function family believed to be pseudorandom
(i.e. a block cipher), and make one call per single block of encryption. To model these encryption
schemes, we define Canonical Form.

2.1 Canonical Form

An encryption scheme in Canonical Form is a quadruple of algorithms, (Init, Pre, Post, and Up-
date). The general concept is that the function Esk(Pi, si) uses some pseudorandom function family
member Fsk() to calculate the ciphertext and next state. Therefore consider the following: Some
function of the inputs of Esk is the input to Fsk. Next, some function of the output of Fsk and the
inputs of Esk becomes the ciphertext block. Finally, some function of the output of Fsk and the
inputs of Esk becomes the next state. This gives rise to the following quadruple.

• Initsk(k)→ (C0, s1)

• Pre(Pi, si)→ x

• Post(Pi, si, y)→ Ci where y = Fsk(x) = Fsk(Pre(Pi, si)).

• Update(Pi, si, y)→ si+1.

3An encryption scheme is correct if D(E(~P )) = ~P for all messages ~P .
4In the special case of stateless encryption (the completely insecure Electronic Codebook mode), the state can

be thought of as the empty string. In all other cases, the state is some binary string, the format and significance of
which depends on the chosen scheme. However, typical choices for the state are the previous ciphertext block, the
previous plaintext block, or a counter.
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2.2 Examples

Here we describe CBC, CTR, and OFB as three examples. The appendices will add ECB, CFB,
ABC, IGE, HCBC, HPCBC and XCBC. All ten of these encryption schemes can be written in
Canonical Form.

For CBC, one normally writes:
r1

R← {0, 1}k; C0 = r1

Ci = Fsk(Ci−1 ⊕ Pi)

However, in Canonical Form:
Initsk(k) : r

R← {0, 1}k; C0 = s1 = r
Pre(Pi, si) = Pi ⊕ si; Post(Pi, si, y) = y; Update(Pi, si, y) = y

Note: above the state si represents the previous ciphertext. For CTR, the standard notation is
Initsk(k) : i0

R← {0, 1}k; C0 = Fsk(i0)
Ci = Fsk(i + i0)⊕ Pi

However, in Canonical Form:
Initsk(k) : r

R← {0, 1}k; C0 = Fsk(r); s1 = r + 1
Pre(Pi, si) = si; Post(Pi, si, y) = y ⊕ Pi; Update(Pi, si, y) = si + 1

Note above the state si represents a counter. For OFB, the classic form would be
x0

R← {0, 1}k; C0 = x0

xi+1 = Fsk(xi); Ci = xi ⊕ Pi

However, in Canonical Form:
Initsk(k) : r

R← {0, 1}k; C0 = s1 = r
Pre(Pi, si) = si; Post(Pi, si, y) = y ⊕ Pi; Update(Pi, si, y) = y

Note above the state si represents the “recycled” output xi of the pseudorandom function,
which is fed back into Fsk during the next block.

3 Definitions

3.1 Three Security Objectives

The following two attack categories are used in this paper to demonstrate possible blockwise-
adaptive attack. One is the intuitive definition first given by Fouque, Joux and Poupard [FJMV03,
FJP04], but modified slightly. The other exists to facilitate proofs; these will be shown to be
equivalent. But first, the normal notion of a chosen-plaintext Left-or-Right Indistinguishability
oracle must be extended to the blockwise case.

Blockwise-Adaptive Chosen Plaintext Oracles

The blockwise-adaptive oracle LRBW(b,sk) for an encryption scheme Esk is a stateful function which
takes as inputs either a pair of plaintext blocks or the special symbol start. Formally, the domain
of LRBW(b,sk) is ({0, 1}`×{0, 1}`)∪ start where ` is the plaintext block-length of Esk. The range
of LRBW(b,sk) is the set of binary strings of length equal to the ciphertext block-length of Esk.
The function is defined by:
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LRBW(b,sk)((M0,M1)) = Esk(Mb, st)
LRBW(b,sk)(start) = Initsk(k)

Note: The state st is set by Init and updated by Esk but never given as an output of LRBW(b,sk).

General Blockwise Chosen-Plaintext Security

Fouque et al defined the following notion called LORS-BCPA, which is based on the notion IND-
LOR-CPA, or Indistinguishability in chosen-plaintext attack [FJMV03, KY00]. Essentially the
adversary is given a left-or-right oracle, to build plaintext messages one block at a time, while
viewing the ciphertext along the way. After polynomially many oracle uses, the adversary attempts
to guess whether the oracle was left or right. For a system to be secure, for ppt adversaries this
should be possible only with negligible probability (compared to the security parameter of the
scheme). The adversary is allowed polynomially many messages, by starting a new message via
submitting LRBW(b,sk)(start).

Definition 1 Suppose Algorithm A(1k), which returns a single bit, is given access to the block-
wise chosen-plaintext oracle LRBW(b,sk) of an encryption scheme Esk. The General Blockwise
Chosen-Plaintext Advantage of A on E is:

∣∣∣Pr[sk ← {0, 1}k, ALRBW(b,sk)(1k) = 1|b = 0]− Pr[sk ← {0, 1}k, ALRBW(b,sk)(1k) = 1|b = 1]
∣∣∣

The encryption scheme E is Generally Blockwise Chosen-Plaintext Secure if and only if
for all ppt algorithms A(1k), the general blockwise chosen-plaintext advantage of A(1k) against E
is negligible compared to k.

Note: Our model does not include the option for any adversary to encrypt multiple messages
simultaneously and adaptively under the same key. At most one message at a time is in the process
of being encrypted, block by block. That corresponds well to the operational circumstances of
how block ciphers are often used. However, no operational scenario has been suggested for the
circumstances where multiple submissions would actually occur in an interleaved and simultaneous
fashion, creating concurrent access to several oracles which are all operating under the same key.
This interleaving is permitted in the model given by Fouque et al [FMP03]. On the other hand,
Fouque et al show that schemes secure against sequential BCPA adversaries are not necessarily
secure against concurrent BCPA adversaries [FJP04].

Primitive Blockwise Chosen-Plaintext Security

Definition 2 The Primitive Blockwise-Adaptive Chosen-Plaintext Game is identical in
all respects to the general blockwise-adaptive chosen-plaintext game, except that the adversary is
only permitted at most one query LRBW(b,sk)((P,Q)) where P 6= Q. All other queries must have
P = Q.

The Primitive Blockwise-Adaptive Chosen-Plaintext Advantage is the same as the
general blockwise-adaptive chosen-plaintext advantage, provided the adversary is permitted only one
P 6= Q query.
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The encryption scheme E is Primitively Blockwise-Adaptive Chosen-Plaintext Secure
if and only if for all ppt algorithms A(1k), the primitive blockwise-adaptive chosen-plaintext ad-
vantage of A(1k) against E is negligible in k.

While much more restrictive than the general case, it turns out that that security in the primitive
model is identical to security in the general model. The general model is more intuitive, but the
primitive model will make proofs easier.

The Collision Game

Informally, the objective of this game is to create a collision in the outputs of Pre. Since the output
of Pre serves as the sole input to Fsk, a collision on the output of Pre is also a collision on the
output of Fsk, and thus provides a potential opportunity for attack. By collision, it is meant that
that the output of Pre is equal for two distinct blocks, and also that the block-numbers of that
pair are known. With this objective in mind, the definition is rather straight-forward.

The adversary AEsk(·)(1k) is given access to a blockwise-encryption oracle Esk(·). The adversary
is not given the state si. This oracle is meant to represent a realistic blockwise attacker who can
submit blocks for encryption and view their ciphertext, but who does not have access to the internal
state of the cipher (though perhaps he/she may calculate it by other means). The adversary can
submit start queries to begin new messages.

Formally, the game proceeds as follows. A call is made to Esk(start) and the adversary is
given C0. Next, the adversary submits P1, and receives C1. This continues, submitting Pi and
receiving Ci for polynomially many blocks. Some of the Pi’s might equal start resulting in several,
but still polynomially many, messages. Then the adversary must output a block-number t, and a
potential plaintext P∗. The adversary is successful if the collision would actually occur, namely
Pre(P∗, si) = Pre(Pt, st).

A scheme E is said to be collision-resistant if all ppt adversaries have negligible probability of
success in the collision game against E.

3.2 Three Security Properties

Definition 3 An encryption scheme is collision-resistant if and only if all ppt adversaries have
negligible advantage in the collision game, compared to the security parameter of the pseudorandom
function being used.

We will prove shortly that if the following two security properties hold, then general blockwise-
adaptive chosen-plaintext security follows if and only if an encryption scheme is collision-resistant.
This is intuitive, because the pseudorandom function is the “work horse” of the encryption scheme,
and if its input can be duplicated, then its output will be duplicated. If this condition can be
detected, then an attack against the scheme can be built. (This is essentially how the original
blockwise-adaptive attack operates against CBC, as discovered by Bellare [BKN02]).

Definition 4 The function Post in {Pre, Post, Update} is entropy-preserving if, when the
plaintext and state are held constant, the function from y to the ciphertext is 1-to-1 (injective).

The reason we call this property entropy-preserving is that for these functions, if y is a random
variable with entropy h, and the plaintext and state are held constant, then the ciphertext has
entropy h also. (Injective functions preserve entropy). In the proof of one of the main theorems
of the paper, we will exploit this property by noting that a uniform random variable has maximal
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entropy over its domain, and so if the input y is uniformly random, and the plaintext and state are
fixed, then the ciphertext is also uniformly random (though possibly over a different set).

Most encryption schemes in use have entropy-preserving Post functions. One should note that
XOR with a constant is an injective map, and this is the most common function choice for Post
along with the identity map (which is also injective). Of the ten encryption schemes analyzed in
this paper, all are entropy-preserving.

A related concept is collision-verifiability.

Definition 5 An encryption scheme {Pre, Post, Update} is collision-verifiable if there exists
an algorithm, given a plaintext message ~P , (of length n blocks) a ciphertext message ~C, and a
block number i, which will with all-but-negligible probability output one when ~C decrypts to ~P and
simultaneously the output of Fsk at blocks i and n are equal, and zero at all other times.

All the schemes analyzed in this paper but XCBC are collision-verifiable.

4 Main Results

The main result of this paper is the following statement: If {Pre, Post, Update} is an entropy-
preserving and collision-verifiable encryption scheme, then it is generally blockwise-adaptive chosen-
plaintext secure if and only if it is collision-resistant. This will be proven in three steps, each of
which is a theorem below.

Theorem 1 The encryption scheme {Pre, Post, Update} is primitively blockwise-adaptive chosen-
plaintext secure, if and only if it is generally blockwise-adaptive chosen-plaintext secure.

Proof See the appendix.

Theorem 2 If {Pre, Post, Update} is a collision-resistant entropy-preserving encryption scheme,
then it is primitively blockwise-adaptive chosen-plaintext secure.

Proof Assume {Pre, Post, Update} is an entropy-preserving encryption scheme that is collision
resistant. Assume there exists a ppt Algorithm A, which can win the primitive blockwise-adaptive
chosen-plaintext game, with non-negligible advantage δA. Then we will construct a ppt algorithm
Dist which will win the pseudorandom game against Fsk with non-negligible advantage. Since Fsk is
assumed to be pseudorandom, this is a contradiction. Thus Algorithm A does not exist. Therefore
{Pre, Post, Update} is primitive BW-CPA secure (and by the first theorem, is also generally BW-
CPA secure).

Algorithm Dist, attempting the pseudorandom game against Fsk, is given an oracle F ′, which is
either a random function (case 0), or Fsk for a randomly chosen value of sk (case 1). Algorithm Dist
will use F ′ with {Pre, Post, Update} acting as an encryption scheme. It will challenge Algorithm
A, and perfectly simulate the primitive blockwise-adaptive chosen-plaintext game.

If Algorithm A wins the game, Algorithm Dist will guess that F ′ = Fsk for some sk in the
key-space, and output 1. If Algorithm A loses the game, Algorithm Dist will guess that F ′ is a
random function, and output 0. Let us now analyze both these cases individually.

The Random Case Consider the outputs of Pre over the course of the game. We claim that
the probability of any pair of them being equal is negligible. The reason for this is not obvious.
Let the probability of at least one pair of outputs of Pre being equal be Pe. (Thus with probability
1− Pe all the outputs of Pre are distinct).
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Let n be the median 5 value of the block number of the latter block of the first matching pair,
when at least one pair of outputs is equal. At least half the time, both blocks of the first pair will
be before or at block n. Thus with probability at least Pe

2 there is at least one pair of blocks before
block n+1, which have equal outputs from Pre.

Algorithm Coll will generate a random number r, taken uniformly from the set {2, . . . , n}. It
will attempt the Collision Game by running a perfect simulation of the primitive BW-CPA game
on behalf of Algorithm A. However, it will halt Algorithm A immediately after it submits the query
request for block r. With probability 1

(n−1)
Pe
2 , the output of Pre during the encryption of block r

will collide the output of Pre for a previous block.
Algorithm Coll doesn’t know which block is the mate for block r, and so will guess a random

value s uniformly from the set {1, . . . , r − 1}. However, this will be correct with probability at
worse 1

r−1 . In the case when block r is indeed going to cause a collision, the probability that s will
be the mate for r is given by:

1
n− 1

r=n∑
r=2

1
r − 1

=
(

1
n− 1

) (
1 +

1
2

+
1
3

+
1
4

+
1
5

+ · · ·+ 1
n

)
≈ ln(n) + γ

n− 1

Where γ signifies the Euler-Mascheroni Constant6. The Algorithm Coll thus produces a correct
collision at r while guessing the mate s, (and therefore winning the collision game) with probability
approximately

Pe(ln(n) + γ)
2(n− 1)2

However, we can simplify this by noting that ln(n)+γ
2(n−1)2

> 1
2n2 and so Algorithm Coll will suc-

ceed with probability greater than Pe
2n2 . Since n must be at most polynomial to k, we know that

this success probability will be non-negligible compared to k if Pe is non-negligible. However, by
assumption, the system is collision-resistant, and so therefore Pe is negligible.

Thus the outputs of Pre over all blocks of the game are distinct with all but negligible probabil-
ity. Furthermore, a series of distinct inputs to a random function creates a sequence of independent,
identically and uniformly distributed random outputs.

Recall that the inputs to Post are the plaintext to be encrypted, the state, and y (which is the
output of the pseudorandom function). Further, we required that Post be one-to-one (an injection)
when the plaintext and state are fixed. Due to this condition, when the y’s are a sequences of
uniform independent and identically distributed variables, the outputs of Post (the ciphertexts)
are also uniform independent and identically distributed variables, or white noise. These cannot
convey any information about the plaintext, and the best that the Algorithm A can output is a
fair coin.

Thus Algorithm A will output a 1 or 0 with probability 1
2 +ε, where |ε| is negligible. This extra

negligible advantage comes from the fact that the accidental collisions described in detail above
occur with negligible but non-zero probability.

The Pseudorandom Case Here Algorithm Dist is providing Algorithm A with a perfect
simulation of the blockwise-adaptive chosen-plaintext game. Therefore Algorithm A will be correct
with non-negligible advantage δA by assumption. Thus Algorithm Dist will be correct (output 1)
with probability 1

2 + δA.

5Since the random variable (the block number) is a positive integer, call it z, there exist many m such that
Pr(z ∈ [1, m]) ≥ 1/2. Let the median be the least of all such m. Since any collection of positive integers has a lower
bound, such a median exists.

6Recall that Σi=n
i=1

1
i
≈ ln(n) + γ for very large n
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The Advantage of Algorithm Dist In the Pseudorandom Case an output of 1 occurs with
probability 1

2 + δA, and in the Random Case with probability 1
2 + ε. Thus the advantage of the

Algorithm Dist is δA − ε, which is non-negligible. This is a contradiction, and so we know that
Algorithm A must not exist. Therefore the encryption scheme is primitive blockwise-adaptive
chosen-plaintext secure.

Theorem 3 If {Pre, Post, Update} is a collision-verifiable encryption scheme, and is primitively
blockwise-adaptive chosen-plaintext secure, then it is collision-resistant.

Proof Suppose {Pre, Post, Update} is collision-verifiable and primitively blockwise-adaptive
chosen-plaintext secure. Suppose further that it is not collision-resistant. This means there exists
a ppt Algorithm Coll which can win the collision game with non-negligible probability δC . We will
use that algorithm to construct an Algorithm A which wins the primitive blockwise-adaptive chosen-
plaintext game with non-negligible advantage. This contradicts the security of {Pre, Post, Update}
and therefore Algorithm Coll does not exist, and the scheme is collision-resistant.

Algorithm A begins by calling Algorithm Coll. Algorithm A will pass Algorithm Coll’s or-
acle queries Esk(Pi) to the left-or-right encryption oracle as LRBW(b,sk)(Pi, Pi), and return the
ciphertexts Ci.

When Algorithm Coll terminates, it outputs P∗ and a block number t. Furthermore, if Algo-
rithm Coll wins the collision game, we know Pre(P∗, sn) = Pre(Pt, st). Let the probability that
it wins the collision game be δC .

The split query LRBW(b,sk)(Q,P∗) is now submitted to the blockwise oracle, where Q 6= P∗
is a random string of appropriate length. The output Cn is received. The collision verification
algorithm, which we will denote Algorithm V er, will now be called. Its inputs are the plaintext
message P1 . . . Pn−1P∗ as well as C0 . . . Cn and the block number k. Let its success probability7 be
1/2 + δV . Algorithm A will output the bit that V er outputs.

If Algorithm Coll has succeeded, and the bit is one, P∗ was encrypted and so then Pre(st, Pt) =
Pre(sn, P∗), and therefore also yt = yn. With probability 1/2 + δV , Algorithm V er will output
one, and Algorithm A will be correct. If the bit is zero, then the plaintext block Q and not P∗
will be encrypted, and so C0 . . . Cn will not decrypt to P1 . . . Pn−1P∗ (since C0 . . . Cn decrypts to
P1 . . . Pn−1Q). Thus, Algorithm V er will output zero with probability 1/2 + δV , and Algorithm A
will be correct.

If Algorithm Coll has failed, then with probability 1/2 + δV , the verification algorithm will
output zero. If the hidden bit is actually zero, then this is correct. If the bit is one, then Algorithm
A will be wrong. So in this case, Algorithm A is correct with probability one-half.

This is all summarized in Table 1.

AdvA = |Pr[A = 1|b = 0]− Pr[A = 1|b = 1]|
= |[(1/2)(δC)(1/2− δV ) + (1/2)(1− δC)(1/2− δV )]
− [(1/2)(δC)(1/2 + δV ) + (1/2)(1− δC)(1/2− δV )]|

= |δCδV |

Since the system is collision-verifiable δV is non-negligible, and δC is non-negligible by assump-
tion. Thus the advantage of Algorithm A is then obviously non-negligible, which contradicts our
assumption that Algorithm A is primitive blockwise-adaptive chosen-plaintext secure. Thus our
assumption that the scheme is not collision-resistant must be false.

7Note, the success probabilities of Algorithm Coll and Algorithm V er are independent.
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Bit b Alg Coll Alg Ver yn = yt? Output Probability
0 Succ Succ No 0 (1/2)(δC)(1/2 + δV )
0 Succ Fail No 1 (1/2)(δC)(1/2− δV )
0 Fail Succ No 0 (1/2)(1− δC)(1/2 + δV )
0 Fail Fail No 1 (1/2)(1− δC)(1/2− δV )
1 Succ Succ Yes 1 (1/2)(δC)(1/2 + δV )
1 Succ Fail Yes 0 (1/2)(δC)(1/2− δV )
1 Fail Succ No 0 (1/2)(1− δC)(1/2 + δV )
1 Fail Fail No 1 (1/2)(1− δC)(1/2− δV )

Table 1: Summary of Probabilities in Theorem 4

Corollary 1 If {Pre, Post, Update} is an entropy-preserving, collision-verifiable encryption scheme,
then it is generally blockwise-adaptive chosen-plaintext secure if and only if it is collision-resistant.

Proof Suppose the scheme is collision-resistant and entropy-preserving. By the second theorem it
is primitively BW-CPA secure, and thus by the first theorem, generally blockwise-adaptive chosen-
plaintext secure. Alternatively, suppose the scheme is generally blockwise-adaptive chosen-plaintext
secure. Then it is primitively secure, by the first theorem, and since it is collision-verifiable, then
by the third theorem it is collision-resistant.

5 Applications

In this section we will use the previous theorems to determine the blockwise-adaptive chosen-
plaintext security of CBC, CTR and OFB. (Note that CTR has been proven blockwise-adaptive
CPA secure by Fouque, Joux and Poupard [FJP04] and the insecurity of CBC has been known
since Bellare, Kohno and Namprempre, discovered the SSH vulnerability [BKN02]).

Entropy Preservation

The function Post for CBC is the identity function, and so obviously is injective. In the case of
CTR and OFB, it is an XOR with the plaintext, and so when the plaintext is held constant, Post
is an injection into the cipher-space. Thus all three schemes are entropy-preserving.

Collision-Verifiable

For CTR and OFB, Ci = yi⊕Pi, or yi = Ci⊕Pi. Consider the expression Cn⊕Ck⊕Pn⊕Pk. This
will equal yk⊕ yn. Four possibilities must be considered. Either the plaintext is correct or not, and
either the collision has occurred or not. Thus if a collision has occurred, and the plaintext blocks
are actually correct, the expression will be zero. If the wrong plaintext is given for one of the blocks,
and a collision occurs, the expression will be non-zero. Also, if a collision has not occurred, and the
plaintext blocks are correct, yi 6= yk and so the expression cannot be zero. Finally, if a collision has
not occurred and one of the plaintext blocks is wrong, the possibility that the expression comes out
to be zero anyway is obviously negligible. (In particular, the proof of the previous theorems has
Q 6= P∗ be generated randomly, so the probability the expression equals any string in particular
is 2−`, where ` is the plaintext block-length of the scheme. In summary, the collision verification
algorithm should output 1 if Cn ⊕ Ck ⊕ Pn ⊕ Pk is all zeroes, and 0 otherwise.
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Collision-Resistance

For CBC, suppose the first query is LRBWb,sk((P1, P1)). Then the ciphertext C1 = Fsk(C0 ⊕ P1).
In this case, let P∗ = C0 ⊕ P1 ⊕ C1. Recalling that si = Ci−1, one can calculate that

Pre(P∗, s2) = s2 ⊕ P∗ = C1 ⊕ (C0 ⊕ P1 ⊕ C1) = C0 ⊕ P1 = Pre(P1, s1)

And so a collision can be easily caused, with P∗ = C0⊕P1⊕C1, and t = 1, and therefore CBC
is not collision-resistant. For CTR and OFB, the attacker has no control over the inputs of the
pseudorandom function. For the case of CTR, the inputs are a counter, and so will only collide if
a wrap-around occurs. However, the adversary is limited to a polynomial number of blocks, and so
this is not possible. Thus CTR is collision-resistant.

In OFB, the output of the pseudorandom function in one step is the input in the next step.
Thus, the output of the pseudorandom function in step j is Fsk(Fsk(Fsk(· · ·Fsk︸ ︷︷ ︸

j times

(x0) · · · ))). Noting

that the specification of OFB requires the block cipher to be a permutation [Dwo01], then one can
calculate the distribution of orbits generated by repeated evaluation of Fsk.

While we omit this calculation, the final distribution of orbit lengths is uniform, and so the
probability of a cycle of length ≤ z is z2−` or negligible. Therefore ppt adversaries will not be able
to cause a collision with non-negligible probability.

Security Since CBC is entropy-preserving and not collision-resistant, it is blockwise-adaptive
chosen-plaintext insecure. Since OFB and CTR are both collision-verifiable and collision-resistant,
they are blockwise-adaptive chosen-plaintext secure.

6 Conclusions

The models of blockwise-adaptive chosen-plaintext attack presented here are those of Joux, et al
[JMV02, FJMV03, FJP04]. Further, a framework is defined which can express encryption schemes
in a canonical form. Once in Canonical Form, a scheme can usually be proven to be secure or not
secure against blockwise-adaptive chosen-plaintext attack, as was the case for nine out of ten of
the schemes given in this paper. Furthermore, the equivalence of primitive and general blockwise-
adaptive chosen-plaintext security will surely provide system designers with a more straightforward
and simple model for proving the security of their schemes against this new form of attack.

It is also interesting to note that blockwise-adaptive chosen-plaintext security strictly implies
security in the known ciphertext, known plaintext and messagewise chosen-plaintext senses—in
short, for sequential adversaries, all but CCA. The schemes proven secure, namely Counter Mode
(CTR), Cipher Feedback Mode (CFB), Output Feedback Mode (OFB), and Hash Cipher Block
Chaining (HCBC), with its variant HPCBC, and Accumulated Block Chaining with secret initial
conditions (S-ABC under certain choices of the function h) are therefore good choices for encryption
schemes when the capabilities of a CCA attacker, or concurrent adversaries, are not anticipated.
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A Equivalence of Primitive and General Games

Theorem 4 An encryption scheme is general blockwise-adaptive chosen-plaintext secure, if and
only if it is secure in the primitive blockwise-adaptive chosen-plaintext game.

Proof
Since the primitive blockwise-adaptive game is merely a special case of the general game, an

adversary who can win the primitive game can win the general game, and so general security implies
primitive security as well.

To show that primitive security implies general security, we will demonstrate that if there exists
an adversary who can win the general blockwise-adaptive chosen-plaintext game, then there exists
an adversary who can win the primitive blockwise-adaptive chosen-plaintext game (in polynomial
time with non-negligible advantage).

Suppose there exists a cryptosystem secure against the primitive blockwise-adaptive game,
which means there is no adversary which can achieve non-negligible advantage in polynomial time.
Suppose further, there is an adversary Gen who can achieve non-negligible advantage in the general
blockwise-adaptive game, again in polynomial time. We will demonstrate that this leads to a
contradiction.

Let N be the random variable that is the number of queries that Gen will make. Let n be
such that Pr[N ≤ n] ≥ 1/2. To see that such an n exists, see the proof of Theorem 2. It is a
requirement of the primitive and general blockwise-adaptive games that the secret bit b remain
constant throughout the entire game. However, we will violate this rule, and create a series of
games G1, G2, . . . , Gn+1. The ith oracle query in Game Gj will work as follows:
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LRBW(b,sk)(P,Q) =


i < j LRBW(b,sk)(P, P )

j ≤ i ≤ n LRBW(b,sk)(Q,Q)
i > n abort

Thus the game Gj will pretend as if the secret bit were 0 until and not including the jth query.
All queries after and including the jth, until and including the nth, will be as if the secret bit were
1. Note that during the game G1, it is as if the secret bit were always 1, and during the game
Gn+1, it is as if the secret bit were always 0.

One cannot expect the output of adversary Gen to have any of its original properties since the
behavior of the oracle has been changed. But nonetheless, its output is a random variable on the
domain {0, 1}. Suppose that the outputs (as random variables) during games Gx and Gx+1 are
computationally distinguishable, for some x in the range 1, 2, . . . n.

This means there is an Algorithm Diff which can, with probability 1/2+δ, correctly guess which
game has been played, and that δ is non-negligible. Now Algorithm Prim will play the primitive
blockwise-adaptive game as follows. First, it will execute Algorithm Gen, and receive its queries in
the form (P,Q). It will submit a query to its own oracle for each of these. For queries 1, 2, . . . , x−1,
it will be (P, P ). For query x it will be honest, or (P,Q), and for queries x, x + 1, . . . , n it will be
(Q,Q). Finally if an n + 1th query is given, it will give up and guess a bit equal to the value of a
fair coin. It is easy to see that Prim only makes at most one split query, and so does not violate
the rules of the primitive game. If the algorithm does not abort, Algorithm Gen will report a guess,
and this will be passed to the distinguisher Algorithm Diff.

Observe that if the secret bit of the primitive game is actually one, then Gx has been played.
And if the secret bit of the primitive game is actually zero, then Gx+1 has been played. Since
Algorithm Diff can distinguish between these correctly with probability 1/2 + δ, then Algorithm
Prim should guess 0 if Diff returns Gx+1 and 1 if Diff returns Gx. Obviously Prim will be correct
if Diff is correct and there is no abortion, or correct half the time if there is an abortion.

Since the probability of an abortion is at most 1/2, then the advantage of Prim is at least
δ/2. This is non-negligible, and so Prim can win the primitive blockwise-adaptive game, which
is a contradiction. Therefore Gx and Gx+1 are computationally indistinguishable, for all x in the
range 1, 2, . . . , n.

Note further that computational indistinguishability is transitive so long as the sequence of
objects compared is polynomial in length. Since Gen runs in polynomial time, there are polyno-
mially many queries, and so n is upper-bounded by a polynomial. Therefore we can conclude, by
transitivity, that G1 is computationally indistinguishable from Gn+1.

But note, that G1 is the general blockwise-adaptive game with the secret bit set to 1, and Gn+1

is the same with the secret bit set to zero. Since Gen wins the general blockwise-adaptive game
with non-negligible advantage, it does in fact distinguish between G1 and Gn+1 in polynomial time
and with probability non-negligibly different from one-half. This is the required contradiction.

Therefore no such algorithm Gen can exist, and any system secure against the primitive
blockwise-adaptive game is secure against the general blockwise-adaptive game as well. Since
the primitive is a restriction of the general, the converse is obvious.

B Specific Encryption Schemes

This section will now apply the theorems of the paper to prove secure or insecure nine of the ten
modes of encryption described in this paper.
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B.1 Previous Work

An indirect proof of insecurity of CBC was first given by Bellare, by demonstrating the flaw in SSH
[BKN02], and is discussed in more detail by Joux, et al [JMV02]. The proof of security of HPCBC,
against blockwise-adaptive CPA (as implied by IND-BLK-CCA8) was first given by Boldyreva, et
al [BT04]. The mode CFB was proven secure almost simultaneously by both Fouque, et al [FMP03]
and Boldyreva and Taesombut [BT04]. The mode IGE was analyzed by Gligor, et al, and Bellare, et
al, and shown to be insecure against messagewise chosen-plaintext attack [GD00, BBKN01]. Since
IGE and likewise ECB are not messagewise CPA secure, clearly they are not blockwise-adaptive
CPA secure, but ECB and IGE are included to show the flexibility of Canonical Form. While
XCBC can be expressed in Canonical Form, the authors have yet to determine its security. The
security of CTR was first suggested by Joux, et al, [JMV02], and proven by Fouque, et al, [FJP04].

The authors believe that this paper contains the first proof of security of OFB and HCBC against
blockwise-adaptive CPA. The authors also believe that this is the first analysis of the blockwise-
adaptive chosen-plaintext security of ABC in its various forms. Nonetheless, the flexibility of the
Canonical Form and the general theorems that follow from it allow many other proposed methods
to be proven secure or insecure.

B.2 Electronic Codebook

The encryption schemes CBC, CTR and OFB have already been discussed. Also, ECB is not even
messagewise chosen-plaintext secure, so it certainly cannot be blockwise chosen-plaintext secure.
However, we list the Canonical Form to demonstrate the flexibility of that notation:

For ECB, there is no initialization vector and one normally writes:
Ci = Fsk(Pi)

However, in Canonical Form:
Initsk(k) : C0 = ∅
Pre(Pi, si) = Pi; Post(Pi, si, y) = y; Update(Pi, si, y) = ∅
Where the symbol ∅ represents the empty string, or lack of any state.

B.3 Cipher Feedback Mode

Cipher Feedback Mode, or CFB, was proven blockwise-adaptive chosen-plaintext Secure by [BT04,
FMP03].

The classic form is
r1 ← {0, 1}k; C0 = r1

Ci = Fsk(Ci−1)⊕ Pi

However, in Canonical Form:
Initsk(k) : r ← {0, 1}k; C0 = s1 = r
Pre(Pi, si) = si; Post(Pi, si, y) = y ⊕ Pi; Update(Pi, si, y) = y ⊕ Pi

Where the state si represents the previous ciphertext.

The operation of Post is merely to XOR the pseudorandom function’s output with the plaintext,
as in CTR or OFB, and so is entropy-preserving. Moreover, CFB is collision-resistant, since the

8The modified form of Blockwise CCA for on-line schemes.
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attacker has no control over the inputs of the pseudorandom function. Only the previous ciphertext
is an input (as in OFB) and thus there is no adversary who can win the collision game with
non-negligible advantage. Therefore since CFB is entropy-preserving and collision-resistant it is
blockwise adaptive chosen-plaintext secure.

B.4 Accumulated Block Ciphers

Accumulated Block Ciphers are a class of encryption schemes, first proposed by Knudsen [Knu00],
based on a function denoted h. Suppose that h is publicly computable.

In the usual notation:
P ′

i ← Pi ⊕ h(P ′
i−1)

Ci ← Fsk(P ′
i ⊕ Ci−1)⊕ P ′

i−1

The values P0 and C0 act as initialization vectors for the scheme. In particular, if P0 and C0 are
secret, then one writes S-ABC, and if they are public, P-ABC. The initialization algorithm merely
randomly selects P0 and C0.

In Canonical Form, there are actually two state variables, the previous ciphertext and (primed)
plaintext. But, we can think of these as two binary strings concatenated into a larger string, since
they are always of a fixed and known size. Thus we write the state si = s′i||s′′i , where s′i is the
previous ciphertext and s′′i the previous (primed) plaintext.

Initsk(k) : r
R← {0, 1}k; C0 = r; s1 = C0||P0

Pre(Pi, si) = Pi ⊕ s′i ⊕ h(s′′i ); Post(Pi, si, y) = y ⊕ s′′i ;
s′i+1 = y ⊕ s′′i ; s′′i+1 = Pi ⊕ h(s′′i ); Update(Pi, si, y) = s′i+1||s′′i+1

Since Post is an XOR of the pseudorandom output and a state variable, if the state is held
constant, Post is injective as a map from y to the ciphertext. Thus the scheme is entropy-preserving.
It is useful to note that

s′′i+1 = P ′
i+1 = Pi ⊕ h(Pi−1 ⊕ h(Pi−2 ⊕ h(Pi−3 ⊕ · · ·h(P0) · · · )))

Therefore, if P0 is public, and h is publicly computable, then s′′i+1 is known to the adversary
for all Pi where P1, P2, P3, . . . Pi are all known.

Note that Ci ⊕ Cj = (yi ⊕ s′′i )⊕ (yj ⊕ s′′j ) or that
Ci ⊕ Cj ⊕ s′′j ⊕ s′′i = yi ⊕ yj

And so therefore the value Ci ⊕ Cj ⊕ s′′j ⊕ s′′i is zero if and only if yi = yj . Thus the system is
collision-verifiable, if s′′i is known to the adversary.

Let us consider for the following scenario. If the adversary receives C0 and submits (P1, P1),
and receives C1. Then if P2 is set to be P1 ⊕ C0 ⊕ h(P0)⊕ h(P1 ⊕ h(P0))⊕ C1 then
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Pre(P2, s2) = P2 ⊕ s′2 ⊕ h(s′′2)
= P2 ⊕ C1 ⊕ h(s′′2)
= P2 ⊕ C1 ⊕ h(P1 ⊕ h(P0))
= [P1 ⊕ C0 ⊕ h(P0)⊕ h(P1 ⊕ h(P0))⊕ C1]⊕ C1 ⊕ h(P1 ⊕ h(P0))
= P1 ⊕ C0 ⊕ h(P0)⊕ h(P1 ⊕ h(P0))⊕ h(P1 ⊕ h(P0))
= P1 ⊕ C0 ⊕ h(P0)
= P1 ⊕ s′1 ⊕ h(s′′1)
= Pre(P1, s1)

And thus a collision on the output of Pre has been caused in polynomial time. The value of P2

is computable if h is publicly computable and P0 is known. Thus if h is publicly computable, and
P0 and C0 are known to the adversary, then the scheme is not collision-resistant, but is entropy-
preserving and collision-verifiable. This is the case for P-ABC, and we can conclude that it is then
not blockwise-adaptive chosen-plaintext secure.

The case of S-ABC is somewhat more complex. For example, simple attacks exist if h is a
linear function, but no attacks exist if h is an Almost-XOR-Universal hash function, as proven by
Bellare, Boldyreva, Knudsen, and Namprempre. [BBKN01]. Lastly, we will show momentarily that
IGE (a special case of ABC) is insecure even if P0 is secret. Therefore the secrecy of P0 is clearly
insufficient for the security of ABC.

Supposing h is an Almost-XOR-Universal hash function, assume an algorithm wins the collision
game with non-negligible probability. Then blocks i and j have identical outputs of the function
Pre . Then

Pre(Pi, si) = Pre(Pj , sj)
Pi ⊕ s′i ⊕ h(s′′i ) = Pj ⊕ s′j ⊕ h(s′′j )

Pi ⊕ s′i ⊕ Pj ⊕ s′j = h(s′′i )⊕ h(s′′j )

Since h is an Almost-XOR-Universal hash function family member, this means that no algorithm
(ppt or otherwise) can find a triple (x1, x2, y) such that h(x1)⊕ h(x2) = y but x1 6= x2 with non-
negligible probability for a random hash key [BBKN01]. Yet we have identified a triple which
meets the required equality. If s′′i 6= s′′j then h is no longer Almost-XOR-Universal, since our
adversary succeeds with non-negligible probability. Yet if s′′i = s′′j , this means that Pi−1⊕h(s′′i−2) =
Pj−1 ⊕ h(s′′j−2) and so the argument can be continued on the previous block. See below, under
HCBC, for more details.

Thus in the case of ABC where h is an Almost-XOR-Universal hash function family member,
the scheme is collision-resistant and collision-verifiable, and therefore blockwise-adaptive chosen-
plaintext secure. Also, this is considered a form of S-ABC since the hash key must be secret from
the attacker (in order for Almost-XOR-Universality to hold).

B.5 Infinite Garble Extension

For IGE, or Infinite Garble Extension, one normally writes
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Initsk(k) : C0
R← {0, 1}k

Ci = Fsk(Pi ⊕ Ci−1)⊕ Pi−1

Where C0 is the per message initialization vector, and P0 is a string which can be public or kept
with the secret key depending on implementation. It turns out the privacy of P0 does not impact
the blockwise-adaptive chosen-plaintext security of IGE. One can see that if h is the function which
always returns zero, then IGE is a specific example of ABC.

In Canonical Form, like ABC, there are actually two state variables, the previous ciphertext
and plaintext. But one can think of these as two binary strings concatenated into a larger string,
since they are always of a fixed and known size. Thus we write the state si = s′i||s′′i , where s′i is the
previous ciphertext and s′′i the previous plaintext.

Initsk(k) : s1 = R← {0, 1}k; C0 = s1

Pre(Pi, si) = Pi ⊕ s′i; Post(Pi, si, y) = y ⊕ s′′i ;
s′i+1 = y ⊕ s′′i ; s′′i+1 = Pi; Update(Pi, si, y) = s′i+1||s′′i+1

Suppose the first queries are P1, P2 and their ciphertexts are C1, C2. In this case, let P3 =
C1 ⊕ P2 ⊕ C2. Recalling that s′i = Ci−1, one can calculate that

Pre(P3, s3) = s′3 ⊕ P3 = C2 ⊕ (C1 ⊕ P2 ⊕ C2) = C1 ⊕ P2 = Pre(P2, s2)

And so a collision has been easily caused, and IGE is not collision-resistant.
Suppose that a collision has occurred on the inputs to the pseudorandom function, for blocks i

and j. Since Cx = yx ⊕ Px−1, then
Ci ⊕ Cj ⊕ Pi−1 ⊕ Pj−1 = yi ⊕ yj

Thus a collision has occurred if and only if Ci ⊕ Cj ⊕ Pi−1 ⊕ Pj−1 is zero, and the scheme is
collision-verifiable, after the first block (all plaintexts after P0 are known to the adversary, since
she/he submitted them).

Since the function Post is simply an XOR with a substring of the state, when the state is kept
constant, Post is injective and thus entropy-preserving. Since the scheme is entropy-preserving,
collision-verifiable and not collision-resistant, it is not blockwise-adaptive chosen-plaintext secure.

B.6 Hash Cipher Block Chaining (HCBC)

HCBC is almost identical to CBC, but the previous ciphertext is hashed before it is XOR-ed with
the plaintext.

Observe, with standard notation:
r1

R← {0, 1}k; C0 = r1

Ci = Fsk(Hhk(Ci−1)⊕ Pi)

However, in Canonical Form:
Initsk(k) : r

R← {0, 1}k; C0 = s1 = r
Pre(Pi, si) = Pi ⊕Hhk(si); Post(Pi, si, y) = y; Update(Pi, si, y) = y
Note above the state si represents the previous ciphertext.

The mode HCBC is built around some Hash function which is Almost-XOR-Universal. This
means that no algorithm (ppt or otherwise) can find a triple (x1, x2, y) such that H(x1)⊕H(x2) = y
but x1 6= x2 with non-negligible probability for a random hash key [BBKN01]. Consider the
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possibility that an adversary wins the collision game. This means the outputs of Pre for blocks i
and j are equal.

Pre(Pi, si) = Pre(Pj , sj)
H(si)⊕ Pi = H(sj)⊕ Pj

H(Ci−1)⊕ Pi = H(Cj−1)⊕ Pj

H(Ci−1)⊕H(Cj−1) = Pi ⊕ Pj

Thus the triple (Ci−1, Cj−1, Pi ⊕ Pj) produces the required equality, and must do so with non-
negligible probability since we assumed the collision game is won with non-negligible probability.
However, it may be the case that Ci−1 = Cj−1. Yet, Ci−1 and Cj−1 are particular outputs of the
pseudorandom function, and since CBC requires Fsk to be a permutation, then the inputs to Fsk

at blocks i− 1 and j − 1 are equal.
In this case H(Ci−2)⊕Pi−1 = H(Cj−2)⊕Pj−1, and therefore H(Ci−2)⊕H(Cj−2) = Pi−1⊕Pj−1.

Thus the triple (H(Ci−2),H(Cj−2), Pi−1 ⊕ Pj−1) meets the equality criterion. This violates the
Almost-XOR-Universality of H unless Ci−2 = Cj−2. Yet, that condition would create another
triple based on Ci−3 and Cj−3. Eventually this leads to C0 which is chosen at random, and will
equal a particular ciphertext with negligible probability. Therefore the collision game cannot be
won with non-negligible probability.

The function post is the identity function, and so is entropy-preserving. Since the scheme is
collision-resistant, and entropy-preserving, it is blockwise-adaptive chosen-plaintext secure.

B.7 Hash Cipher Block Chaining (HPCBC)

This scheme is an extension of HCBC.

Written in the usual form:
r1

R← {0, 1}k; C0 = r1

Ci = Fsk(Hhk(Pi−1||Ci−1)⊕ Pi)⊕Hhk(Pi−1||Ci−1)

However, in Canonical Form:
Initsk(k) : r

R← {0, 1}k; C0 = s1 = r
Pre(Pi, si) = Pi ⊕Hhk(si); Post(Pi, si, y) = y ⊕Hhk(si);
Update(Pi, si, y) = Pi||(y ⊕Hhk(si))

The scheme is collision resistant for the same reasons as HCBC. The function Post is an XOR of
the hash of the state, and so if the state is constant then the hash is constant, and Post is entropy-
preserving. Since the scheme is collision-resistant and entropy-preserving, it is blockwise-adaptive
chosen-plaintext secure.

B.8 Extended Cipher Block Chaining (XCBC)

Extended Cipher Block Chaining, defined by Gligor and Donescu [GD01], adds a constant random
number times the block number, to each block. Since all arithmetic is being done modulo 2k, this
requires the adversary to know something of R to mount an attack.

In traditional notation,
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Initsk(k) = R
R← {0, 1}k; C0 = Fsk(R)

Zi = Fsk(Pi ⊕ Zi−1)
Ci = Zi + i×R
Z0 = Fsk′(R) where sk 6= sk′

The key used to encrypt R into Z0 must be different from sk and secretly shared between
sender and recipient as sk is shared. In canonical form, the state will be in three parts; as before
we represent this as si = s′i||s′′i ||s′′′i . Here, s′i will be the block number, s′′i will be the value of R,
and s′′′i will be the value of Zi−1.

Initsk(k) = R
R← {0, 1}k; C0 = Fsk(R); s′i = 1; s′′i = R; s′′′i = Fsk′(R); si = s′i||s′′i ||s′′′i

Pre(Pi, si) = Pi ⊕ s′′′i ; Post(Pi, si) = y + s′i × s′′i

s′i+1 = s′i + 1; s′′i+1 = s′′i ; s′′′i+1 = y; Update(Pi, si, y) = s′i+1||s′′i+1||s′′′i+1

The authors have yet to determine the security status of XCBC, but this complex method can
be represented in Canonical Form, which shows the flexibility of this notational system.
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