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Abstract. At Eurocrypt 2005, Waters presented an identity based encryption (IBE) protocol which is secure
in the full model without the random oracle assumption. Later independent work by Chatterjee-Sarkar and
Naccache generalized Waters’ construction. In this paper, we extend these IBE protocols to a hierarchical
IBE (HIBE) protocol which is secure in the full model without random oracle. The only previous suggestion
for a HIBE in the same setting is due to Waters. Our construction improves upon Waters’ suggestion by
significantly reducing the number of public parameters.

1 Introduction

The concept of identity based encryption (IBE) was introduced by Shamir in 1984 [18]. An IBE is a
type of public key encryption where the public key can be any binary string. The corresponding secret
key is generated by a private key generator (PKG) and provided to the relevant user. The notion of
IBE simplifies several applications of public key cryptography. The first efficient implementation and
an appropriate security model for IBE was provided by Boneh and Franklin [5, 6].

The PKG issues a private key associated with an identity. The notion of hierarchical identity based
encryption (HIBE) was introduced in [15, 14] to reduce the workload of the PKG. An entity in a HIBE
structure has an identity which is a tuple (v1, . . . , vj). The private key corresponding to such an identity
can be generated by the entity whose identity is (v1, . . . , vj−1) and which possesses the private key
corresponding to this identity. The security model for IBE was extended to that of HIBE in [15, 14].

The construction of IBE in [5] and of HIBE in [14], was proved to be secure in appropriate models
using the random oracle heuristic, i.e., the protocols make use of cryptographic hash functions that are
modeled as random oracle in the security proof. This led to a search for protocols which can be proved
to be secure without random oracle. The first such construction was presented in [9]. Unfortunately,
the work in [9] had to relax the notion of security and consider a weaker model called the selective-ID
(sID) model. A more efficient construction of (H)IBE secure in the sID model was given by Boneh and
Boyen in [2].

The first construction of an IBE which can be proved to be secure in the full model without the
random oracle heuristic was given by Boneh and Boyen in [3]. Later, Waters presented an efficient
construction of an IBE which is secure in the same setting. In a recent paper, Chatterjee and Sarkar [10],
generalize the protocol in [20] to obtain an IBE protocol for which it is possible to control the trade-
off between the size of the public parameters and the efficiency of the protocol. An independent work
by Naccache [17], describe the same protocol as that in [10], without however, the above mentioned
trade-off. We will jointly call the IBEs in [20, 10, 17] to be the WCSN-IBE.

Our Contributions: We present a HIBE which can be proved to be secure in the full model assuming
the decisional bilinear Diffie-Hellman problem to be hard without using the random oracle heuristic.



The construction extends the WCSN-IBE to a HIBE. A suggestion for extending the IBE in [20] to a
HIBE was provided in [20] itself.

Waters’ IBE uses U ′, U1, . . . , Un (and P, P1, P2) as public parameters. His suggestion to extend this
to a HIBE is to have new public parameters for each level. For an h-level HIBE, the public parameters
will be of the form U ′

1, U1,1, . . . , U1,n, U ′
2, U2,1, . . . , U2,n, . . ., U ′

h, Uh,1, . . . , Uh,n. The parameters P, P1, P2

are still required giving rise to 3+(n+1)h many parameters. The IBE construction of Chatterjee-Sarkar
and Naccache uses public parameters of the form U ′, U1, . . . , Ul (and P, P1, P2) for 1 ≤ l ≤ n. For l = n,
this is Waters’ IBE.

The HIBE construction in this paper uses public parameters of the form U ′
1, . . . , U

′
h, U1, . . . , Ul for

1 ≤ l ≤ n. In other words, the parameters U ′
1, . . . , U

′
h correspond to the different levels of the HIBE,

whereas the parameters U1, . . . , Ul are the same for all the levels. These parameters U1, . . . , Ul are reused
in the key generation procedure. For l = n, we require 3 + n + h parameters compared to 3 + (n + 1)h
parameters in Waters’ suggestion.

Thus, our work provides two things. First, by reusing public parameters it reduces the size of the
public parameters. Second, it extends the flexibility in the protocol of [10, 17] to the HIBE setting.
The reuse of public parameters over the different levels of the HIBE complicates the security proof. A
straightforward extension of the independence results and lower bound proofs from [20] is not possible.
We provide complete proofs of the required results. The constructed HIBE is proved to be secure under
chosen plaintext attack (called CPA-secure). Standard techniques [9, 7] can convert such a HIBE into
one which is secure against chosen ciphertext attack (CCA-secure).

Related Work: The first construction of HIBE which is secure in the full model is due to Gentry and
Silverberg [14]. The security proof depends on the random oracle heuristic. HIBE constructions which
can be proved secure without random oracle are known [2, 4]. However, these are secure in the weaker
selective-ID model. A generic transformation converts a selective-ID secure HIBE to a HIBE secure in
the full model. Unfortunately, this results in an unacceptable degradation in the security bound. As
mentioned earlier, Waters [20] suggestion is the only previous indication of directly obtaining a HIBE
which is secure in the full model without random oracle. In Table 1 of Section 4, we provide a comparison
of our construction with the previous constructions.

2 Definitions

In this section, we describe HIBE, security model for HIBE, cryptographic bilinear map and the hardness
assumption that will be required in the proof.

2.1 HIBE Protocol

Following [15, 14] a HIBE scheme is specified by four probabilistic algorithms: Setup, Key Generation,
Encryption and Decryption. Note that, for a HIBE of height h (henceforth denoted as h-HIBE) any
identity v is a tuple (v1, . . . , vj) where 1 ≤ j ≤ h.

Setup: It takes as input a security parameter and returns the system parameters together with the
master key. The system parameters include the public parameters of the PKG, a description of the
message space, the ciphertext space and the identity space. These are publicly known while the master
key is known only to the PKG.

Key Generation: It takes as input an identity v = (v1, . . . , vj), the public parameters of the PKG and
the private key dv|(j−1) corresponding to the identity (v1, . . . , vj−1) and returns a private key dv for v.
The identity v is used as the public key while dv is the corresponding private key.



Encryption: It takes as input the identity v, the public parameters of the PKG and a message from the
message space and produces a ciphertext in the ciphertext space.

Decryption: It takes as input the ciphertext and the private key of the corresponding identity v and
returns the message or bad if the ciphertext is not valid.

2.2 Security Model for HIBE

Security is defined using an adversarial game. An adversary A is allowed to query two oracles – a
decryption oracle and a key-extraction oracle. At the initiation, it is provided with the public parameters
of the PKG. The game has two query phases with a challenge phase in between.

Query Phase 1: Adversary A makes a finite number of queries where each query is addressed either to
the decryption oracle or to the key-extraction oracle. In a query to the decryption oracle it provides a
ciphertext as well as the identity under which it wants the decryption. It gets back the corresponding
message or bad if the ciphertext is invalid. Similarly, in a query to the key-extraction oracle, it asks for
the private key of the identity it provides and gets back this private key. Further, A is allowed to make
these queries adaptively, i.e., any query may depend on the previous queries as well as their answers.
The adversary is not allowed to make any useless queries, i.e., queries for which it can compute the
answer itself. For example, the adversary is not allowed to ask for the decryption of a message under
an identity if it has already obtained a private key corresponding to the identity.

Challenge: At this stage, A outputs an identity v∗ = v∗1, . . . , v
∗
j for 1 ≤ j ≤ h, and a pair of messages

M0 and M1. There is the natural restriction on the adversary, that it cannot query the key extraction
oracle on v∗ or any of its proper prefixes in either of the phases 1 or 2. A random bit b is chosen and
the adversary is provided with C∗ which is an encryption of Mb under v∗.

Query Phase 2: A now issues additional queries just like Phase 1, with the (obvious) restriction that it
cannot ask the decryption oracle for the decryption of C∗ under v∗.

Guess: A outputs a guess b′ of b.
The advantage of the adversary A is defined as:

AdvHIBE
A = |Pr[(b = b′)]− 1/2|.

The quantity AdvHIBE(t, qID, qC) denotes the maximum of AdvHIBE
A where the maximum is taken over all

adversaries running in time at most t and making at most qC queries to the decryption oracle and at
most qID queries to the key-extraction oracle. A HIBE protocol is said to be (ε, t, qID, qC)-CCA secure if
AdvHIBE(t, qID, qC) ≤ ε.

In the above game, we can restrict the adversary A from querying the decryption oracle. AdvHIBE(t, q)
in this context denotes the maximum advantage where the maximum is taken over all adversaries running
in time at most t and making at most q queries to the key-extraction oracle. A HIBE protocol is said
to be (t, q, ε)-CPA secure if AdvHIBE(t, q) ≤ ε.

As mentioned earlier there are generic techniques [9, 7] for converting a CPA-secure HIBE into a
CCA-secure HIBE. In view of these techniques, we will concentrate only on CPA-secure HIBE.



2.3 Cryptographic Bilinear Map

Let G1 and G2 be cyclic groups having the same prime order p and G1 = 〈P 〉, where we write G1

additively and G2 multiplicatively. A mapping e : G1×G1 → G2 is called a cryptographic bilinear map
if it satisfies the following properties.

– Bilinearity: e(aP, bQ) = e(P,Q)ab for all P,Q ∈ G1 and a, b ∈ ZZp.
– Non-degeneracy: If G1 = 〈P 〉, then G2 = 〈e(P, P )〉.
– Computability: There exists an efficient algorithm to compute e(P,Q) for all P,Q ∈ G1.

Since e(aP, bP ) = e(P, P )ab = e(bP, aP ), e() also satisfies the symmetry property. The modified Weil
pairing [5] and Tate pairing [1, 12] are examples of cryptographic bilinear maps.

Note: Known examples of e() have G1 to be a group of Elliptic Curve (EC) points and G2 to be a
subgroup of a multiplicative group of a finite field. Hence, in papers on pairing implementations [1, 12],
it is customary to write G1 additively and G2 multiplicatively. On the other hand, some “pure” protocol
papers [2, 3, 20] write both G1 and G2 multiplicatively though this is not true for the initial protocol
papers [16, 5]. Here we follow the first convention as it is closer to the known examples of cryptographic
bilinear map.

The decisional bilinear Diffie-Hellman (DBDH) problem in 〈G1, G2, e〉 [6] is as follows: Given a tuple
〈P, aP, bP, cP, Z〉, where Z ∈ G2, decide whether Z = e(P, P )abc (which we denote as Z is real) or Z is
random.

The advantage of a probabilistic algorithm B, which takes as input a tuple 〈P, aP, bP, cP, Z〉 and
outputs a bit, in solving the DBDH problem is defined as

AdvDBDH
B = |Pr[B(P, aP, bP, cP, Z) = 1|Z is real]

−Pr[B(P, aP, bP, cP, Z) = 1| Z is random]|

where the probability is calculated over the random choices of a, b, c ∈ ZZp as well as the random bits used
by B. The quantity AdvDBDH(t) denotes the maximum of AdvDBDH

B where the maximum is taken over
all adversaries B running in time at most t. By the (ε, t)-DBDH assumption we mean AdvDBDH(t) ≤ ε.

3 HIBE Construction

The IBE scheme proposed in [20] has some similarities with the 1-level (H)IBE scheme of Boneh-Boyen
[2]. Waters in his paper [20] has suggested that this similarity can be utilized to build a HIBE in
an obvious manner, i.e., for each level we have to generate new parameters. This makes the public
parameters quite large – for a HIBE of height h with n-bit identities, the number of public parameters
becomes n× h.

Here we suggest an alternative construction where the public parameters can be significantly reduced.
We base our protocol on the generalization of Waters’ protocol presented in [10, 17], where each n-bit
identity is represented by l blocks of n/l bits each. We show that for a h-HIBE it suffices to store (l+h)
elements in the public parameter. If a similar representation is used for Waters’ suggestion then the
public parameter size would be l × h.

The identities are of the type (v1, . . . , vj), for j ∈ {1, . . . , h} where each vk = (vk,1, . . . , vk,l) and vk,i

is an (n/l)-bit string which will also be considered to be an integer in the set {0, . . . , 2n/l−1}. Choosing
l = n gives vk to be an n-bit string as considered by Waters [20].

Let G1 and G2 be cyclic groups having the same prime order p. We use a cryptographic bilinear
map e : G1 ×G1 → G2 the definition of which is given in 2.3. The message space is G2.



Set-Up: The protocol is built from groups G1, G2 and a bilinear map e as mentioned above. The public
parameters are the following elements: P , P1 = αP , P2, U ′

1, . . . , U
′
h, U1, . . . , Ul, where G1 = 〈P 〉, α is

chosen randomly from ZZp and the other quantities are chosen randomly from G1.
The master secret is αP2. (The quantities P1 and P2 are not directly required; instead e(P1, P2) is

required. Hence one may store e(P1, P2) as part of the public parameters instead of P1 and P2.)

A Useful Notation: Let v = (v1, . . . , vl), where each vi is an (n/l)-bit string and is considered to be an
element of ZZ2n/l . For 1 ≤ k ≤ h we define,

Vk(v) = U ′
k +

l∑
i=1

viUi. (1)

When v is clear from the context we will write Vk instead of Vk(v). The modularity introduced by this
notation allows an easier understanding of the protocol.

Note that for the jth level of the HIBE, we add a single element, i.e., U ′
j in the public parameter

while the elements U1, . . . , Ul are re-used for each level. This way we are able to shorten the public
parameter size. Later in the security reduction we show that the simulator forms U ′

js, 1 ≤ j ≤ h in such
a way that it is able to answer the adversarial queries.

Key Generation: Let v = (v1, . . . , vj), j ≤ h, be the identity for which the private key is required.
Choose r1, . . . , rj randomly from ZZp and define dv = (d0, d1, . . . , dj) where

d0 = αP2 +
j∑

k=1

rkVk(vk)

and dk = rkP for 1 ≤ k ≤ j.
Key delegation can be done in the manner shown in [2]. Suppose (d′0, d

′
1, . . . , d

′
j−1) is a private key

for the identity (v1, . . . , vj−1). To generate a private key for v, first choose r′1, . . . , r
′
j−1, rj randomly from

ZZp and compute dv as follows.

d0 = d′0 + r′1V1(v1) + · · ·+ r′j−1Vj−1(vj−1) + rjVj(vj);
di = d′i + r′iP 1 ≤ i ≤ j − 1;
dj = rjP.

Encryption: Let v = (v1, . . . , vj) be the identity under which a message M ∈ G2 is to be encrypted.
Choose t to be a random element of ZZp. The ciphertext is

(C0 = M × e(P1, P2)t, C1 = tP,B1 = tV1(v1), . . . , Bj = tVj(vj)).

Decryption: Let C = (C0, C1, B1, . . . , Bj) be a ciphertext and the corresponding identity v = (v1, . . . , vj).
Let (d0, d1, . . . , dj) be the decryption key corresponding to the identity v. The decryption steps are as
follows.

Verify whether C0 is in G2, C1 and the Bi’s are in G1. If any of these verifications fail, then return
bad, else proceed with further decryption as follows. Compute V1(v1), . . . , Vj(vj). Return

C0 ×
∏j

k=1 e(Bi, di)
e(d0, C1)

.

It is standard to verify the consistency of decryption.



4 Security

In this section, we state the result on security and discuss its implications. The proof is given in Section 5.

Theorem 1. The HIBE protocol described in Section 3 is (εhibe, t, q)-CPA secure assuming that the
(t′, εdbdh)-DBDH assumption holds in 〈G1, G2, e〉, where εhibe ≤ 2εdbdh/λ; t′ = t + χ(εhibe) and

χ(ε) = O(τq + O(ε−2 ln(ε−1)λ−1 ln(λ−1));
τ is the time required for one scalar multiplication in G1;
λ = 1/(2(2σ(µl + 1))h) with µl = l(N1/l − 1), N = 2n and σ = max(2q, 2n/l).

We further assume 2σ(1 + µl) < p.

The last assumption is practical and similar assumptions are also made in [20, 10, 17], though not quite
so explicitly. Before proceeding to the proof, we discuss the above result. The main point of the theorem
is the bound on εhibe. This is given in terms of λ and in turn in terms of µl. We simplify this bound.

Since l ≥ 1, we have 1 + µl = 1 + l(N1/l − 1) ≤ lN1/l = l2n/l. Consequently,

εhibe ≤
2εdbdh

λ
= 4(2σ(µl + 1))hεdbdh

≤ 4(2σl2n/l)hεdbdh

= 4(2l2n/l)hσhεdbdh (2)

The reduction is not tight; security degrades by a factor of 4(2l2n/l)hσh. We now consider several cases.
The actual value of degradation depends on the value of q, the number of key extraction queries made
by the adversary. A value of q used in earlier analysis is q = 230 [13]. We will use this value of q in the
subsequent analysis.

h = 1 and l = n: The value of h = 1 implies that the HIBE is actually an IBE and l = n implies that
each identity is a bit vector of length n. This is the situation originally considered by Waters [20]. In this
case, 2q = max(2q, 2n/l) and Equation (2) reduces to εhibe ≤ 32nqεdbdh. For n = 160, the degradation is
by a factor of 10× 239.

h > 1: This corresponds to a proper HIBE. If l = n, then we obtain εhibe ≤ 4(8nq)hεdbdh. For n = 160
(and q = 230), this amounts to εhibe ≤ 4(10× 237)h. We consider a few other values of l. If l = 10, then
εhibe ≤ 4(10× 248)hεdbdh and if l = 32, then εhibe ≤ 242h+2εdbdh.

In Table 1, we compare the known HIBE protocols which are secure in the full model. We note
that HIBE protocols which are secure in the selective-ID model are also secure in the full model with
a security degradation of ≈ 2nh, where h is the number of levels in the HIBE and n is number of bits
in the identity. This degradation is far worse than the protocols in Table 1. For the GS-HIBE [14], the

Table 1. Comparison of HIBE Protocols.

Protocol Hardness Random Security Pub. Para. size Pvt. Key size Ciphertext size Pairing
Assumption Oracle Degradtion (elts. of G1) (elts. of G1) (elts. of G1) Enc. Dec.

GS [14] BDH Yes qHqh 2 j j 1 j

Waters [20] DBDH No (32nq)h (n + 1)h + 3 j + 1 j + 1 None j + 1

Our DBDH No 4(2l2n/lσ)h h + l + 3 j + 1 j + 1 None j + 1

parameter qH stands for the total number of random oracle queries and in general qH ≈ 260 � q [13].



The parameter j in the private key size, ciphertext size and the encryption and decryption columns
of Table 1 represents the number of levels of the identity on which the operations are performed. The
parameter h is the maximum number of levels in the HIBE. Recall that 1 ≤ l ≤ n and σ = max(2q, 2n/l).
For l = n, the construction in this paper requires (h+n+3) many elements of G1 as public parameters
whereas Waters suggestion requires (n + 1)h + 3 many elements. The security degradation remains the
same in both cases. For l < n, the new construction extends the IBE protocol of [10, 17]. In this setting,
no previous HIBE protocols were known.

5 Proof of Theorem 1

The security reduction follows along standard lines and develops on the proof given in [20, 10, 17]. We
need to lower bound the probability of the simulator aborting on certain queries and in the challenge
stage. The details of obtaining this lower bound is given in Section 5.1. In the following proof, we simply
use the lower bound. We want to show that the HIBE is (εhibe, t, q)-CPA secure. In the game sequence
style of proofs, we start with the adversarial game defining the CPA-security of the protocol against an
adversary A and then obtain a sequence of games as usual. In each of the games, the simulator chooses
a bit b and the adversary makes a guess b′. By Xi we will denote the event that the bit b is equal to the
bit b′ in the ith game.

Game 0: This is the usual adversarial game used in defining CPA-secure HIBE. We assume that the
adversary’s runtime is t and it makes q key extraction queries. Also, we assume that the adversary max-
imizes the advantage among all adversaries with similar resources. Thus, we have εhibe =

∣∣∣Pr[X0]− 1
2

∣∣∣ .
Game 1: In this game, we setup the protocol from a tuple 〈P, P1 = aP, P2 = bP, P3 = cP, Z =
e(P1, P2)abc〉 and answer key extraction queries and generate the challenge. The simulator is assumed
to know the values a, b and c. However, the simulator can setup the protocol as well as answer certain
private key queries without the knowledge of these values. Also, for certain challenge identities it can
generate the challenge ciphertext without the knowledge of a, b and c. In the following, we show how
this can be done. If the simulator cannot answer a key extraction query or generate a challenge without
using the knowledge of a, b and c, it sets a flag flg to one. The value of flg is initially set to zero.

Note that the simulator is always able to answer the adversary (with or without using a, b and c).
The adversary is provided with proper replies to all its queries and is also provided the proper challenge
ciphertext. Thus, irrespective of whether flg is set to one, the adversary’s view in Game 1 is same as
that in Game 0. Hence, we have Pr[X0] = Pr[X1].

We next show how to setup the protocol and answer the queries based on the tuple 〈P, P1 = aP, P2 =
bP, P3 = cP, Z = e(P1, P2)abc〉.

Set-Up: Recall that σ = max(2q, 2n/l). Let m be a prime such that σ < m < 2σ. Our choice of m is
different from that of previous works [20, 10, 17] where m was chosen to be equal to 4q and 2q.

Choose x′1, . . . , x
′
h and x1, . . . , xl randomly from ZZm; y′1, . . . , y

′
h and y1, . . . , yl randomly from ZZp.

Choose k1, . . . , kh randomly from {0, . . . , µl}.
For 1 ≤ j ≤ h, define U ′

j = (p −mkj + x′j)P2 + y′jP and for 1 ≤ i ≤ l define Ui = xiP2 + yiP . Set
the public parameters of HIBE to be (P, P1, P2, U

′
1, . . . , U

′
h, U1, . . . , Ul). The master secret is aP2 = abP .

The distribution of the public parameters is as expected by A. In its attack, A will make some queries,
which have to be properly answered by the simulator.



For 1 ≤ j ≤ h, we define several functions. Let v = (v1, . . . , vl) where each vi is an n/l-bit string
considered to be an integer from the set {0, . . . , 2n/l − 1}. We define

Fj(v) = p−mkj + x′j +
∑l

i=1 xivi

Jj(v) = y′j +
∑l

i=1 yivi

Lj(v) = x′j +
∑l

i=1 xivi (mod m)

Kj(v) =

{
0 if Lj(v) = 0
1 otherwise.


(3)

Recall that we have assumed 2σ(1 + µl) < p. Let Fmin and Fmax be the minimum and maximum values
of Fj(v). Fmin is achieved when kj is maximum and x′j and the xi’s are all zero. Thus, Fmin = p−mµl.
We have mµl < 2σ(1 + µl) and by assumption 2σ(1 + µl) < p. Hence, Fmin > 0. Again Fmax is
achieved when kj = 0 and x′j and the xi’s and vi’s are equal to their respective maximum values.
We get Fmax < p + m(1 + l(2n/l − 1)) = p + m(1 + µl) < p + 2σ(1 + µl) < 2p. Thus, we have
0 < Fmin ≤ Fj(v) ≤ Fmax < 2p. Consequently, Fj(v) ≡ 0 mod p if and only if Fj(v) = p which holds if
and only if −mkj + x′j +

∑l
i=1 xivi = 0.

Now we describe how the queries made by A are answered by B. The queries can be made in both
Phases 1 and 2 of the adversarial game (subject to the usual restrictions). The manner in which they
are answered by the simulator is the same in both the phases.

Key Extraction Query: SupposeAmakes a key extraction query on the identity v = (v1, . . . , vj). Suppose
there is a u with 1 ≤ u ≤ j such that Ku(vu) = 1. Otherwise set flg to one. In the second case, the
simulator uses the value of a to return the proper decryption key dv = (aP2 +

∑j
i=1 riVi, r1V1, . . . , rjVj).

In the first case, the simulator constructs a decryption key in the following manner.
Choose random r1, . . . , rj from ZZp and define

d0|u = − Ju(vu)
Fu(vu)P1 + ru(Fu(vu)P2 + Ju(vu)P )

du = −1
Fu(vu)P1 + ruP

dk = rkP for k 6= u
dv = (d0|u +

∑
k∈{1,...,j}\{u} rkVk, d1, . . . , dj)

 (4)

The quantity dv is a proper private key corresponding to the identity v. The algebraic verification of
this fact is similar to that in [2, 20]. This is provided to A.

Challenge: Let the challenge identity be v∗ = (v∗1, . . . , v
∗
h∗), 1 ≤ h∗ ≤ h and the messages be M0 and

M1. Choose a random bit b. We need to have Fk(v∗k) ≡ 0 mod p for all 1 ≤ k ≤ h∗. If this condition does
not hold, then set flg to one. In the second case, the simulator uses the value of c to provide a proper
encryption of Mb to A by computing (Mb × e(P1, P2)c, cP, cV1, . . . , cVh∗). In the first case, it constructs
a proper encryption of Mb in the following manner.

(M b × Z,C1 = P3, B1 = J1(v∗1)P3, . . . , Bh∗ = Jh∗(v∗h∗)P3).

We require Bj to be equal to cVj(v∗j ) for 1 ≤ j ≤ h∗. Recall that the definition of Vj(v) is Vj(v) =
U ′

j +
∑l

k=1 vkUk. Using the definition of U ′
j and the Uk’s as defined in the setup by the simulator, we

obtain, cVi = c(Fi(v∗i )P2 + Ji(v∗i )P ) = Ji(v∗i )cP = Ji(v∗i )P3. Here we use the fact, Fi(v∗i ) ≡ 0 mod p.
Hence, the quantities B1, . . . , Bh∗ are properly formed.

Guess: The adversary outputs a guess b′ of b.



Game 2: This is a modification of Game 1 whereby the Z in Game 1 is now chosen to be a random
element of G2. This Z is used to mask the message Mb in the challenge ciphertext. Since Z is random,
the first component of the challenge ciphertext is a random element of G2 and provides no information
to the adversary about b. Thus, Pr[X2] = 1

2 .
We have the following claim.

Claim:
|Pr[X1]− Pr[X2]| ≤

εdbdh

λ
+

εhibe

2
.

Proof: The change from Game 1 to Game 2 corresponds to an “indistinguishability” step in Shoup’s
tutorial [19] on such games. Usually, it is easy to bound the probability difference. In this case, the
situation is complicated by the fact that there is a need to abort.

We show that it is possible to obtain an algorithm B for DBDH by extending Games 1 and 2. The
extension of both the games is same and is described as follows. B takes as input a tuple (P, aP, bP, cP, Z)
and sets up the HIBE protocol as in Game 1 (The setup of Games 1 and 2 are the same). The key
extraction queries are answered and the challenge ciphertext is generated as in Game 1. If at any point
of time flg is set to one by the game, then B outputs a random bit and aborts. This is because the query
cannot be answered or the challenge ciphertext cannot be generated using the input tuple. At the end
of the game, the adversary outputs the guess b′. B now goes through a separate abort stage as follows.

“Artificial Abort”: The probability that B aborts in the query or challenge phases depends on the
adversary’s input. The goal of the artificial abort step is to make the probability of abort independent
of the adversary’s queries by ensuring that in all cases its probability of abort is the maximum possible.
This is done by sampling the transcript of adversary’s query and in certain cases aborting. The sampling
procedure introduces the extra component O(ε−2

hibe ln(ε−1
hibe)λ

−1 ln(λ−1)) into the simulator’s runtime.
(For details see [20, 17].) Here λ is a lower bound on the probability that B does not abort before
entering the artificial abort stage. The expression for λ is obtained in Proposition 3 of Section 5.1.

Output: If B has not aborted up to this stage, then it outputs 1 if b = b′; else 0.
Note that if Z is real, then the adversary is playing Game 1 and if Z is random, then the adversary

is playing Game 2. The time taken by the simulator in either Game 1 or 2 is clearly t + χ(εhibe). From
this point, standard inequalities and probability calculations establish the claim. We provide the details
in Appendix A. ut

Now we can complete the proof in the following manner.

εhibe =
∣∣∣∣Pr[X0]−

1
2

∣∣∣∣
≤ |Pr[X0]− Pr[X2]|
≤ |Pr[X0]− Pr[X1]|+ |Pr[X1]− Pr[X2]|

≤ εhibe

2
+

εdbdh

λ
.

Rearranging the inequality gives the desired result. This completes the proof of Theorem 1. ut

5.1 Lower Bound on Not Abort

We require the following two independence results in obtaining the required lower bound. Similar in-
dependence results have been used in [20, 10, 17] in connection with IBE protocols. The situation for
HIBE is more complicated than IBE and especially so since we reuse some of the public parameters over



different levels of the HIBE. This makes the proofs more difficult. Our independence results are given
in Proposition 1 and 2 and these subsume the results of previous work. We provide complete proofs for
these two propositions as well as a complete proof for the lower bound. The probability calculation for
the lower bound is also more complicated compared to the IBE case.

Proposition 1. Let m be a prime and L(·) be as defined in (3). Let v1, . . . , vj be identities, i.e., each
vi = (vi,1, . . . , vi,l), with vi,k to be an n/l-bit string (and hence 0 ≤ vi,k ≤ 2n/l − 1). Then

Pr

 j∧
k=1

(Lk(vk) = 0)

 =
1

mj
.

The probability is over the independent and uniform random choices of x′1, . . . , x
′
j , x1, . . . , xl from ZZm.

Consequently, for any θ ∈ {1, . . . , j}, we have

Pr

Lθ(vθ) = 0

∣∣∣∣∣∣
j∧

k=1,k 6=θ

(Lk(vk) = 0)

 =
1
m

.

Proof: Since ZZm forms a field, we can do linear algebra with vector spaces over ZZm. The condition∧j
k=1 (Lj(vj) = 0) is equivalent to the following system of equations over ZZm.

x′1 + v1,1x1 + · · · + v1,lxl = 0
x′2 + v2,1x1 + · · · + v2,lxl = 0
· · · · · · · · · · · · · · · · ·
x′j + vj,1x1 + · · · + vj,lxl = 0

This can be rewritten as

(x′1, . . . , x
′
j , x1, . . . , xl)A(j+j)×(j+l) = (0, . . . , 0)1×(j+l)

where

A =

[
Ij Oj×l

Vl×j Ol×l

]
and Vl×j =

v1,1 · · · vj,1

· · · · · · · · ·
v1,l · · · vj,l

 ;

Ij is the identity matrix of order j; O is the all zero matrix of the specified order. The rank of A is clearly j
and hence the dimension of the solution space is l. Hence, there are ml solutions in (x′1, . . . , x

′
j , x1, . . . , xl)

to the above system of linear equations. Since the variables x′1, . . . , x
′
j , x1, . . . , xl are chosen independently

and uniformly at random, the probability that the system of linear equations is satisfied for a particular
choice of these variables is ml/ml+j = 1/mj . This proves the first part of the result.

For the second part, note that we may assume θ = j by renaming the x′’s if required. Then

Pr

Lj(vj) = 0

∣∣∣∣∣∣
j−1∧
k=1

(Lk(vk) = 0)

 =
Pr
[∧j

k=1 (Lk(vk) = 0)
]

Pr
[∧j−1

k=1 (Lk(vk) = 0)
] =

mj−1

mj
=

1
m

.

ut

Proposition 2. Let m be a prime and L(·) be as defined in (3). Let v1, . . . , vj be identities, i.e., each
vi = (vi,1, . . . , vi,l), with vi,k to be an n/l-bit string. Let θ ∈ {1, . . . , j} and let v′θ be an identity such that
v′θ 6= vθ. Then

Pr

(Lθ(v′θ) = 0) ∧
j∧

k=1

(Lk(vk) = 0)

 =
1

mj+1
.



The probability is over the independent and uniform random choices of x′1, . . . , x
′
j , x1, . . . , xl from ZZm.

Consequently, we have

Pr

Lθ(v′θ) = 0

∣∣∣∣∣∣
j∧

k=1

(Lk(vk) = 0)

 =
1
m

.

Proof: The proof is similar to the proof of Proposition 1. Without loss of generality, we may assume
that θ = j, since otherwise we may rename variables to achieve this. The condition (Lθ(v′θ) = 0) ∧∧j

k=1 (Lk(vk) = 0) is equivalent to a system of linear equations xA = 0 over ZZm. In this case, the form
of A is the following.

A =

[
Ij cT Oj×l

Vl×j (v′j)
T Ol×l

]
where c = (0, . . . , 0, 1); cT denotes the transpose of c and (v′j)

T is the transpose of v′j . The first j
columns of A are linearly independent. The (j + 1)th column of A is clearly linearly independent of
the first (j − 1) columns. We have vj 6= v′j . Since each component of both vj and v′j is less than 2n/l

and m > 2n/l, we have vj 6≡ v′j mod m. Using this, it is not difficult to see that the first (j + 1)
columns of A are linearly independent and hence the rank of A is (j + 1). (Note that if m ≤ 2n/l,
then it is possible to have vj 6= v′j but vj ≡ v′j mod m. Then the jth and (j + 1)th columns of A are
equal and the rank of A is j.) Consequently, the dimension of the solution space is l − 1 and there are
ml−1 solutions in (x′1, . . . , x

′
j , x1, . . . , xl) to the system of linear equations. Since the x′’s and the x’s

are chosen independently and uniformly at random from ZZm, the probability of getting a solution is
ml−1/ml+j = 1/mj+1. This proves the first part of the result. The proof of the second part is similar
to that of Proposition 1. ut

Proposition 3. The probability that the simulator in the proof of Theorem 1 does not abort before the
artificial abort stage is at least 1

2(2σ(µl+1))h .

Proof: We consider the simulator in the proof of Theorem 1. Up to the artificial abort stage, the
simulator could abort on either a key extraction query or in the challenge stage. Let abort be the event
that the simulator aborts before the artificial abort stage. For 1 ≤ i ≤ q, let Ei denote the event that
the simulator does not abort on the ith key extraction query and let C be the event that the simulator
does not abort in the challenge stage. We have

Pr[abort] = Pr

[( q∧
i=1

Ei

)
∧ C

]

= Pr

[( q∧
i=1

Ei

)
|C
]

Pr[C]

=

(
1− Pr

[( q∨
i=1

¬Ei

)
|C
])

Pr[C]

≥
(

1−
q∑

i=1

Pr [¬Ei |C ]

)
Pr[C].

We first consider the event C. Suppose the challenge identity is v∗ = (v∗1, . . . , v
∗
h∗). Event C holds if and

only if Fj(v∗j ) ≡ 0 mod p for 1 ≤ j ≤ h∗. Recall that by choice of p, we can assume Fj(v∗j ) ≡ 0 mod p if
and only if x′j +

∑l
k=1 xkvj,k = mkj . Hence,

Pr[C] = Pr

 h∗∧
j=1

(
x′j +

l∑
k=1

xkvj,k = mkj

) . (5)



For 1 ≤ j ≤ h∗ and 0 ≤ i ≤ µl, denote the event x′j +
∑l

k=1 xkvj,k = mi by Aj,i and the event kj = i by
Bj,i. Also, let Cj,i be the event Aj,i ∧Bj,i.

Note that the event
∨µl

i=0 Aj,i is equivalent to the condition x′j +
∑l

k=1 xkvj,k ≡ 0 mod m and hence
equivalent to the condition Lj(vj) = 0. Since kj is chosen uniformly at random from the set {0, . . . , µl},
we have Pr[Bj,i] = 1/(1 + µl) for all j and i. The events Bj,i’s are independent of each other and also
independent of the Aj,i’s. We have

Pr

 h∗∧
j=1

(
x′j +

l∑
k=1

xkvj,k = mkj

) = Pr

 h∗∧
j=1

( µl∨
i=0

Cj,i

)
= Pr

 ∨
i1,...,ih∗∈{0,...,µl}

(
C1,i1 ∧ · · · ∧ Ch∗,ih∗

)
= Pr

 ∨
i1,...,ih∗∈{0,...,µl}

(
A1,i1 ∧B1,i1 ∧ · · · ∧Ah∗,ih∗ ∧Bh∗,ih∗

)
=

∑
i1,...,ih∗∈{0,...,µl}

Pr
[
A1,i1 ∧B1,i1 ∧ · · · ∧Ah∗,ih∗ ∧Bh∗,ih∗

]
=

∑
i1,...,ih∗∈{0,...,µl}

Pr
[
A1,i1 ∧ · · · ∧Ah∗,ih∗

]
× Pr

[
B1,i1 ∧ · · · ∧Bh∗,ih∗

]
=

1
(1 + µl)h∗

∑
i1,...,ih∗∈{0,...,µl}

Pr
[
A1,i1 ∧ · · · ∧Ah∗,ih∗

]

=
1

(1 + µl)h∗
Pr

 ∨
i1,...,ih∗∈{0,...,µl}

(
A1,i1 ∧ · · · ∧Ah∗,ih∗

)
=

1
(1 + µl)h∗

Pr

 h∗∧
j=1

( µl∨
i=0

Aj,i

)
=

1
(1 + µl)h∗

Pr

 h∗∧
j=1

(Lj(vj) = 0)


=

1
(m(1 + µl))h∗

The last equality follows from Proposition 1.
Now we turn to bounding Pr[¬Ei|C]. For simplicity of notation, we will drop the subscript i from

Ei and consider the event E that the simulator does not abort on a particular key extraction query on
an identity (v1, . . . , vj). By the simulation, the event ¬E implies that Li(vi) = 0 for all 1 ≤ i ≤ j. This
holds even when the event is conditioned under C. Thus, we have Pr[¬E|C] ≤ Pr[∧j

i=1Li(vi) = 0|C].
The number of components in the challenge identity is h∗ and now two cases can happen:
j ≤ h∗: By the protocol constraint (a prefix of the challenge identity cannot be queried to the key
extraction oracle), we must have a θ with 1 ≤ θ ≤ j such that vθ 6= v∗θ .
j > h∗: In this case, we choose θ = h∗ + 1.

Now we have

Pr[¬E|C] ≤ Pr

 j∧
i=1

Li(vi) = 0|C

 ≤ Pr[Lθ(vθ) = 0|C] = Pr

[
Lθ(vθ) = 0|

h∗∧
i=1

Li(v∗i ) = 0

]
= 1/m.



The last equality follows from an application of either Proposition 1 or Proposition 2 according as
whether j > h∗ or j ≤ h∗. Substituting this in the bound for Pr[abort] we obtain

Pr[abort] ≥
(

1−
q∑

i=1

Pr [¬Ei |C ]

)
Pr[C].

≥
(

1− q

m

)
1

(m(µl + 1))h∗

≥
(

1− q

m

)
1

(m(µl + 1))h

≥ 1
2
× 1

(2σ(µl + 1))h
.

We use h ≥ h∗ and 2q ≤ σ < m < 2σ to obtain the inequalities. This completes the proof. ut

6 Conclusion

Waters presented a construction of IBE [20] which significantly improves upon the previous construction
of Boneh-Boyen [3]. Later independent work by Chatterjee-Sarkar [10] and Naccache [17] generalized
Waters’ construction. In his paper, Waters also suggested a method to extend his IBE to a HIBE. The
problem with this suggestion is that it increases the number public parameters. In this paper, we have
presented a construction of a HIBE which builds upon the previous IBE protocols. The number of
public parameters is significantly less compared to Waters’ suggestion. The main open problem in the
construction of HIBE protocols is to avoid or control the security degradation which is exponential in
the number of levels of the HIBE.
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Appendix

A Details for the Proof of Claim

Let Yi be the event that the simulator outputs 1 in Game i, i = 1, 2. Then, we have

|Pr[Y1]− Pr[Y2]| ≤ εdbdh.

Let abi be the event that the simulator aborts in Game i, i = 1, 2. This includes both protocol and
artificial abort. Following the analysis of [20] and [17], we have

λ− λε

2
≤ Pr[abi|Xi],Pr[abi|Xi] ≤ λ +

λε

2
. (6)

Here ε = εhibe and λ is the lower bound on the probability of not abort up to the artificial abort stage
(see Section 5.1).

Pr[Yi] = Pr[Yi ∧ (abi ∨ abi)]
= Pr[(Yi ∧ abi) ∨ (Yi ∧ abi)]
= Pr[Yi ∧ abi] + Pr[Yi ∧ abi]
= Pr[Yi | abi]Pr[abi] + Pr[Yi | abi]Pr[abi]

=
1
2
(1− Pr[abi]) + Pr[Xi | abi]Pr[abi]

=
1
2
(1− Pr[abi ∧ (Xi ∨Xi)]) + Pr[Xi ∧ abi]

=
1
2

+
1
2

(
Pr[abi|Xi]Pr[Xi]− Pr[abi|Xi]Pr[Xi]

)



Now we need to do some manipulations with inequalities and for convenience we set Ai = Pr[abi|Xi],
Bi = Pr[Xi] and Ci = Pr[abi|Xi] and D = Pr[Y1]− Pr[Y2]. We have from (6)

λ− λε

2
≤ Ai, Ci ≤ λ +

λε

2
.

Also

2D = (A1B1 − C1(1−B1))− (A2B2 − C2(1−B2)). (7)

Since both B1 and (1−B1) are non-negative, we have

Bi(λ− λε
2 ) ≤ AiBi ≤ Bi(λ + λε

2 )
(1−Bi)(−λ− λε

2 ) ≤ −Ci(1−Bi) ≤ (1−Bi)(−λ + λε
2 ).

Hence,

λ(2Bi − 1)− λε

2
≤ AiBi − Ci(1−Bi) ≤ λ(2Bi − 1) +

λε

2
. (8)

Putting i = 1 in (8), we obtain

λ(2B1 − 1)− λε

2
≤ A1B1 − C1(1−B1) ≤ λ(2B1 − 1) +

λε

2
. (9)

Multiplying (8) by −1 and putting i = 2 we obtain

−λ(2B2 − 1)− λε

2
≤ −(A2B2 − C2(1−B2)) ≤ −λ(2B2 − 1) +

λε

2
. (10)

Combining (7), (9) and (10) we get

2λ(B1 −B2)− λε ≤ 2D ≤ 2λ(B1 −B2) + λε. (11)

This shows that |λ(B1 − B2) −D| ≤ λε
2 . Now |λ(B1 − B2)| − |D| ≤ |λ(B1 − B2) −D| ≤ λε

2 . Note that
|D| = |Pr[Y1]− Pr[Y2]| ≤ εdbdh and recalling the values of B1 and B2, we have

|Pr[X1]− Pr[X2]| ≤
εdbdh

λ
+

εhibe

2
.

This completes the proof of the claim. ut


