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Abstract. At Eurocrypt 2005, Waters proposed an efficient identity based encryption (IBE) scheme. One
drawback of this scheme is that the size of the public parameter is rather large. Our first contribution is a
generalization of Waters scheme. In particular, we show that there is an interesting trade-off between the
tightness of the security reduction and smallness of the public parameter size. For a given security level, this
implies that if one reduces the public parameter size there is a corresponding increase in the computational
cost. This introduces a flexibility in choosing the public parameter size without compromising in security. In
concrete terms, to achieve 80-bit security for 160-bit identities we show that compared to Waters protocol
the public parameter size can be reduced by almost 90% while increasing the computation cost by 30%. Our
second contribution is to extend the IBE protocol to a hierarchical IBE (HIBE) protocol which can be shown
to be secure in the full model without the use of random oracle. A previous construction of a HIBE in the
same setting is due to Waters. Our construction improves upon Waters’ suggestion by significantly reducing
the number of public parameters.1

1 Introduction

The concept of identity based encryption (IBE) was introduced by Shamir in 1984 [18]. An IBE is a
type of public key encryption where the public key can be any binary string. The corresponding secret
key is generated by a private key generator (PKG) and provided to the relevant user. The notion of
IBE simplifies several applications of public key cryptography. The first efficient implementation and
an appropriate security model for IBE was provided by Boneh and Franklin [4].

The PKG issues a private key associated with an identity. The notion of hierarchical identity based
encryption (HIBE) was introduced in [13, 12] to reduce the workload of the PKG. An entity in a
HIBE structure has an identity which is a tuple (v1, . . . , vj). The private key corresponding to such an
identity can be generated by the entity whose identity is (v1, . . . , vj−1) and which possesses a private
key corresponding to this identity. The security model for IBE was extended to that of HIBE in [13, 12].

The construction of IBE in [4] and of HIBE in [12], was proved to be secure in appropriate models
using the random oracle heuristic, i.e., the protocols make use of cryptographic hash functions that are
modeled as random oracle in the security proof. This led to a search for protocols which can be proved
to be secure without random oracle. The first such construction was presented in [7]. Unfortunately,
the work in [7] had to relax the notion of security and consider a weaker model called the selective-ID
(sID) model. A more efficient construction of (H)IBE secure in the sID model was given by Boneh and
Boyen in [2].

The first construction of an IBE which can be proved to be secure in the full model without the
random oracle heuristic was given by Boneh and Boyen in [3]. Later, Waters [20] presented an efficient
construction of an IBE which is secure in the same setting. However, one disadvantage of the scheme
1 The material in this paper has appeared in different and abridged forms in [8, 9].



in [20] is the requirement of a rather large public parameter file. If identities are represented by a bit
string of length n, then the scheme requires a vector of length n to be maintained as part of public
parameter, where each element of the vector is a point on a suitable elliptic curve group.

In the same paper [20], Waters also outlines a construction of a HIBE. The idea is to have a new
set of public parameters for each of the h levels of the HIBE. This leads to a system having nh many
elliptic curve points as public parameters for an h-level HIBE having n-bit identities at each level.

Our Contributions: We provide a generalization of the identity based encryption scheme of Waters
[20]. This generalization shows that if one tries to reduce the public parameter size there is a corre-
sponding degradation in the security reduction. In other words, a trade-off is involved in the tightness
of security reduction and smallness of public parameter. The trade-off between tightness and smallness
can be converted to a trade-off between group size and smallness of public parameter.

When desiring a specific security level, the loss of security due to loss of tightness in the security
reduction can be compensated by working in a larger group. This in turn affects the efficiency of the
protocol. Thus, the trade-off is actually between the space required to store the parameters and the
time required to execute the protocol. For example, if identities are represented by 160-bit strings,
then Waters protocol requires to store 160 extra elements (EC points) as part of the public parameter.
Alternatively, using our generalization if one wants to store 16 elements, then to achieve 80-bit security,
compared to Waters protocol the space requirement reduces by around 90% of Waters protocol while
the computation cost increases by around 30%.

Our second contribution is to extend the IBE protocol to a HIBE protocol. This can be proved to
be secure in the full model assuming the decisional bilinear Diffie-Hellman problem to be hard without
using the random oracle heuristic. In the same setting, Waters had outlined a HIBE construction based
on his IBE construction [20]. Waters’ IBE uses U ′, U1, . . . , Un (and P, P1, P2) as public parameters. His
suggestion to extend this to a HIBE is to have new public parameters for each level. For an h-level
HIBE, the public parameters are of the form U ′

1, U1,1, . . . , U1,n, U ′
2, U2,1, . . . , U2,n, . . ., U ′

h, Uh,1, . . . , Uh,n.
The parameters P, P1, P2 are still required giving rise to 3 + (n + 1)h many parameters.

The IBE construction given in this paper uses public parameters of the form U ′, U1, . . . , Ul (and
P, P1, P2) for 1 ≤ l ≤ n. For l = n, this is Waters’ IBE. The HIBE construction in this paper uses public
parameters of the form U ′

1, . . . , U
′
h, U1, . . . , Ul for 1 ≤ l ≤ n. In other words, the parameters U ′

1, . . . , U
′
h

correspond to the different levels of the HIBE, whereas the parameters U1, . . . , Ul are the same for all
the levels. These parameters U1, . . . , Ul are reused in the key generation procedure. For l = n, we require
3 + n + h parameters compared to 3 + (n + 1)h parameters in Waters’ suggestion.

Thus, our HIBE construction provides two things. First, by reusing public parameters it reduces
the size of the public parameters. Second, it extends the flexibility of the IBE protocol of this paper
to the HIBE setting. The reuse of public parameters over the different levels of the HIBE complicates
the security proof. A straightforward extension of the independence results and lower bound proofs
from [20] is not possible. We provide complete proofs of the required results. The constructed HIBE is
proved to be secure under chosen plaintext attack (called CPA-secure). Standard techniques [7, 5] can
convert such a HIBE into one which is secure against chosen ciphertext attack (CCA-secure).

Note: An independent work by Naccache [17], describes the IBE protocol (but not the HIBE protocol)
given in this paper. However, the concrete security analysis of the IBE protocol and in particular the
space/time trade-off given in this paper is not present in [17].



2 Preliminaries

The running time of all algorithms in this paper is upper bounded by a polynomial in a security
parameter κ. Formally, all algorithms take 1κ as input. We will be assuming this formalism without
explicitly mentioning it.

2.1 HIBE Protocol

Following [13, 12] a HIBE scheme is specified by four probabilistic algorithms: Setup, Key Generation,
Encryption and Decryption. Note that, for a HIBE of height h (henceforth denoted as h-HIBE) any
identity v is a tuple (v1, . . . , vj) where 1 ≤ j ≤ h.

Setup: It takes as input a security parameter and returns the system parameters together with the
master key. The system parameters include the public parameters of the PKG, a description of the
message space, the ciphertext space and the identity space. These are publicly known while the master
key is known only to the PKG.

Key Generation: It takes as input an identity v = (v1, . . . , vj), the public parameters of the PKG and
the private key dv|(j−1) corresponding to the identity (v1, . . . , vj−1) and returns a private key dv for v.
The identity v is used as the public key while dv is the corresponding private key.

Encryption: It takes as input the identity v, the public parameters of the PKG and a message from the
message space and produces a ciphertext in the ciphertext space.

Decryption: It takes as input the ciphertext and the private key of the corresponding identity v and
returns the message or bad if the ciphertext is not valid.

Identity Based Encryption: An IBE is a special case of a HIBE where the number of levels h is
equal to one.

Key Encapsulation Mechanism: In practice, a public key protocol is almost never used to encrypt
the actual message. Instead, a symmetric encryption algorithm is used to encrypt the message and the
public key part is used to derive a session key for the symmetric encryption algorithm. The later task
is called a key encapsulation mechanism (KEM) and can be combined with the (hierarchical) identity
based situation giving rise to (H)IBKEM. We do not explicitly consider KEM in this paper, though we
remark that it is not difficult to convert the (H)IBE encryption protocols described in this paper into
(H)IBKEM protocols.

2.2 Security Model for HIBE

Security is defined using an adversarial game. An adversary A is allowed to query two oracles – a
decryption oracle and a key-extraction oracle. At the initiation, it is provided with the public parameters
of the PKG. The game has two query phases with a challenge phase in between.

Query Phase 1: Adversary A makes a finite number of queries where each query is addressed either to
the decryption oracle or to the key-extraction oracle. In a query to the decryption oracle it provides a
ciphertext as well as the identity under which it wants the decryption. It gets back the corresponding
message or bad if the ciphertext is invalid. Similarly, in a query to the key-extraction oracle, it asks for
the private key of the identity it provides and gets back this private key. Further, A is allowed to make



these queries adaptively, i.e., any query may depend on the previous queries as well as their answers.
The adversary is not allowed to make any useless queries, i.e., queries for which it can compute the
answer itself. For example, the adversary is not allowed to ask for the decryption of a message under
an identity if it has already obtained a private key corresponding to the identity.

Challenge: At this stage, A outputs an identity v∗ = (v∗1, . . . , v
∗
j ) for 1 ≤ j ≤ h, and a pair of equal

length messages M0 and M1. There is the natural restriction on the adversary, that it cannot query the
key extraction oracle on v∗ or any of its proper prefixes in either of the phases 1 or 2. A random bit γ
is chosen and the adversary is provided with C∗ which is an encryption of Mγ under v∗.

Query Phase 2: A now issues additional queries just like Phase 1, with the (obvious) restriction that it
cannot ask the decryption oracle for the decryption of C∗ under v∗.

Guess: A outputs a guess γ′ of γ.
The advantage of the adversary A is defined as:

AdvHIBE
A = |Pr[(γ = γ′)]− 1/2|.

The quantity AdvHIBE(t, qID, qC) denotes the maximum of AdvHIBE
A where the maximum is taken over all

adversaries running in time at most t and making at most qC queries to the decryption oracle and at
most qID queries to the key-extraction oracle. A HIBE protocol is said to be (ε, t, qID, qC)-CCA secure if
AdvHIBE(t, qID, qC) ≤ ε.

In the above game, we can restrict the adversary A from querying the decryption oracle. AdvHIBE(t, q)
in this context denotes the maximum advantage where the maximum is taken over all adversaries running
in time at most t and making at most q queries to the key-extraction oracle. A HIBE protocol is said
to be (t, q, ε)-CPA secure if AdvHIBE(t, q) ≤ ε.

As mentioned earlier there are generic techniques [7, 5] for converting a CPA-secure HIBE into a
CCA-secure HIBE. In view of these techniques, we will concentrate only on CPA-secure HIBE.

Security Model for IBE: The security model for IBE is derived from the security model for HIBE
by simply allowing only one level in the hierarchy.

2.3 Cryptographic Bilinear Map

Let G1 and G2 be cyclic groups having the same prime order p and G1 = 〈P 〉, where we write G1

additively and G2 multiplicatively. A mapping e : G1×G1 → G2 is called a cryptographic bilinear map
if it satisfies the following properties.

– Bilinearity: e(aP, bQ) = e(P,Q)ab for all P,Q ∈ G1 and a, b ∈ ZZp.
– Non-degeneracy: If G1 = 〈P 〉, then G2 = 〈e(P, P )〉.
– Computability: There exists an efficient algorithm to compute e(P,Q) for all P,Q ∈ G1.

Since e(aP, bP ) = e(P, P )ab = e(bP, aP ), e() also satisfies the symmetry property. The modified Weil
pairing [4] and Tate pairing [1, 10] are examples of cryptographic bilinear maps.

Note: Known examples of e() have G1 to be a group of Elliptic Curve (EC) points and G2 to be a
subgroup of a multiplicative group of a finite field. Hence, in papers on pairing implementations [1, 10],
it is customary to write G1 additively and G2 multiplicatively. On the other hand, some “pure” protocol
papers [2, 3, 20] write both G1 and G2 multiplicatively though this is not true for the initial protocol
papers [14, 4]. Here we follow the first convention as it is closer to the known examples of cryptographic
bilinear map.



2.4 Hardness Assumption

The decisional bilinear Diffie-Hellman (DBDH) problem in 〈G1, G2, e〉 [4] is as follows: Given a tuple
〈P, aP, bP, cP, Z〉, where Z ∈ G2, decide whether Z = e(P, P )abc (which we denote as Z is real) or Z is
random.

The advantage of a probabilistic algorithm B, which takes as input a tuple 〈P, aP, bP, cP, Z〉 and
outputs a bit, in solving the DBDH problem is defined as

AdvDBDH
B = |Pr[B(P, aP, bP, cP, Z) = 1|Z is real]

−Pr[B(P, aP, bP, cP, Z) = 1| Z is random]|

where the probability is calculated over the random choices of a, b, c ∈ ZZp as well as the random bits used
by B. The quantity AdvDBDH(t) denotes the maximum of AdvDBDH

B where the maximum is taken over
all adversaries B running in time at most t. By the (ε, t)-DBDH assumption we mean AdvDBDH(t) ≤ ε.

2.5 Waters’ IBE Protocol

Let G1 = 〈P 〉, G2 and e() be as defined in Section 2.3. Identities are n-bit strings. The groups G1 = 〈P 〉,
G2 and the map e() are as already defined in Section 2.3. In the following, we assume the message space
M is G2, the cipher space C is G2 ×G1 ×G1.

Setup: Randomly choose a secret α ∈ ZZp. Set P1 = αP , then choose P2 ∈ G1 at random. Further,
choose random elements U ′, U1, . . . , Un from G1. The master secret is αP2 whereas the public parameters
are 〈P, P1, P2, U

′, U1, . . . , Un〉.

Key Generation: Let v = (v1, . . . , vn) ∈ {0, 1}n be any identity. A secret key for v is generated as
follows. Choose a random r ∈ ZZ∗

p, then the private key for v is

Dv = (αP2 + rV, rP )

where V = U ′ +
∑

{i:vi=1} Ui.

Encryption: Any message M ∈ G2 is encrypted for an identity v as

C = (e(P1, P2)tM, tP, tV ),

where t is a random element of ZZp and V is as defined in key generation algorithm.

Decryption: Let C = (C1, C2, C3) be a ciphertext and v be the corresponding identity. Then we
decrypt C using secret key Dv = (D1, D2) by computing C1e(D2, C3)/e(D1, C2).

3 Generalization of Waters’ IBE

In Waters’ scheme identities are represented as n-bit strings. Because of this representation, Waters
requires to store n elements of G1 i.e., U1, . . . , Un in the public parameter. Depending upon the choice
of representation of the identities we can change the size of the public parameter.

Let N = 2n, then we can consider the identities as elements of ZZN and one extreme case would be
to consider the identities just as elements of ZZN . A more moderate approach, however, is to fix a-priori
a size parameter l, where 1 < l ≤ n. In this case, an identity v is represented as v = (v1, v2, . . . , vl), where
vi ∈ ZZN1/l i.e., each vi is an n/l bit string. (If identities are considered to be bit strings of arbitrary
length, then as in Waters protocol we hash them into ZZN using a collision resistant hash function.) In
this case, the protocol is changed to the following, which we call IBE-SPP(l).



3.1 Protocol IBE-SPP(l) with 1 < l ≤ n

Setup: Randomly choose a secret α ∈ ZZp. Set P1 = αP , then choose P2 ∈ G1 at random. Further,
choose random elements U ′, U1, U2, . . . , Ul ∈ G1. The master secret is αP2 whereas the public parameters
are 〈P, P1, P2, U

′, U1, U2, . . . , Ul〉.

A Useful Shorthand: Let v = (v1, . . . , vl)) be an identity. We define

V (v) = U ′ +
l∑

i=1

viUi. (1)

When v is clear from the context we simply write V to denote V (v).

Key Generation: Let v be any identity, a secret key for v is generated as follows. Choose a random
r ∈ ZZ∗

p, then the private key for v is

dv = (αP2 + rV, rP )

where V is as defined in Equation (1).

Encryption: Any message M ∈ G2 is encrypted for an identity v as

C = (e(P1, P2)s ×M, sP, sV ),

where s is a random element of ZZp and V is as defined in Equation (1).

Decryption: Let C = (C1, C2, C3) be a ciphertext and v be the corresponding identity. Then we decrypt
C using secret key dv = (d1, d2) by computing

C1 ×
e(d2, C3)
e(d1, C2)

= e(P1, P2)s ×M
e(rP, sV )

e(αP2 + rV, sP )
= M.

Note that, for l = n this is exactly Waters protocol.

3.2 Efficiency

Consider IBE-SPP(l) with 1 < l ≤ n. Let cost(V ) be the cost of computing V . The cost of key generation
is two scalar multiplications over G1 plus cost(V ). By including e(P1, P2) instead of P1, P2 in the public
parameter, we can avoid the pairing computation during encryption. So the cost of encryption is one
exponentiation over G2, two scalar multiplications over G1 plus cost(V ). The cost of decryption is two
pairings, one multiplication and one inversion over G2. The effect of l is in cost(V ) and affects key
generation and encryption costs but does not affect decryption cost.

We first consider the costs of scalar multiplication over G1 and exponentiation over G2. As mentioned
earlier, G1 is an elliptic curve group. Let IFa denote the base field over which G1 is defined. Then G2 is a
subgroup of IFak , where k is the MOV degree. Additions and doublings over G1 translate into a constant
number of multiplications over IFa. The actual number is slightly different for addition and doubling, but
we will ignore this difference. Let |IFa| be the size of the representation of an element of IFa. Assuming
the cost of multiplication over G1 is approximately equal to |IFa|2, the cost of a scalar multiplication
over G1 is equal to c1|IFa|3 for some constant c1. One can also show that the cost of exponentiation



over G2 is equal to c2|IFa|3. Thus, the total cost of scalar multiplication and exponentiation is equal to
c|IFa|3.

The cost of computing V amounts to computing l scalar multiplications where each multiplier is an
(n/l)-bit string. On an average, the cost of each such multiplication will be n/2l additions and (n/l−1)
doublings over G1. Hence, the total cost of computing V is n/2 additions and (n − l) doublings over
G1. This cost is equal to d(3/2− l/n)n|IFa|2 for some constant d.

We consider the cost of encryption. The total cost is

c|IFa|3 + d(3/2− l/n)n|IFa|2 =
(

c + d× n

|IFa|

(
3
2
− l

n

))
|IFa|3. (2)

This cost is minimum when l = n (as in Waters protocol). The maximum value of the coefficient of
|IFa|3 is (c + (3nd)/(2|IFa|)) whereas the minimum value is (c + (nd)/(2|IFa|)). The value of |IFa| is
usually greater than n and hence the value of (nd)/(2|IFa|) will be a small constant and hence there is
not much effect of l on the total cost of encryption. A similar analysis shows that the effect of l is also
not very significant on the cost of key generation. We note, however, that key generation is essentially
a one-time offline activity.

3.3 Security Reduction

The CPA-security of the identity based encryption scheme (IBE-SPP(l)) developed above can be reduced
from the hardness of the DBDH problem as stated in the following theorem.

Theorem 1. Protocol IBE-SPP(l) of Section 3.1 is (εibe, t, q)-CPA secure assuming that the (t′, εdbdh)-
DBDH assumption holds in 〈G1, G2, e〉, where εibe ≤ 2εdbdh/λ; t′ = t + O(τq) + χ(εibe) and

χ(ε) = O(ε−2 ln(ε−1)λ−1 ln(λ−1));
τ is the time required for one scalar multiplication in G1;
λ = 1/(8q(µl + 1)) with µl = l(N1/l − 1), N = 2n.

Theorem 1 is a special case of the more general result for HIBE stated in Theorem 2 and is obtained from
it by substituting h = 1 (number of levels) and σ = 2q (i.e., 2q ≥ 2n/l). The essential part of Theorem 1
is the relation between εdbdh and εibe. This is analysed in details after Theorem 2. Interpreting this
analysis in the context of Theorem 1, we obtain εibe ≤ 16lq2n/lεdbdh. This shows that there is a security
degradation by a factor of 16lq2n/l. In Section 4, we analyse in details the implications of this security
degradation.

3.4 Signature

It is an observation of Naor that any identity-based encryption scheme can be converted to a signature
scheme. Waters in his paper [20] has given a construction of a signature scheme based on his IBE scheme.
A similar construction is possible for the generalised scheme IBE-SPP(l). This signature scheme can be
proved to be secure assuming that the CDH problem is hard in G1. The concrete security analysis
performed in Section 4 also holds for the signature protocol.

Let G1 = 〈P 〉, G2 and e() be as defined in Section 2.3. Messages are assumed to be elements of ZZN

where N = 2n. Alternatively, if messages are assumed to be bit strings of arbitrary length, then we use
a collision resistant hash function to map the messages into ZZN .

Setup: Choose a random α in ZZp. Let P1 = αP . Next, choose random points P2, U
′, U1, . . . , Ul from

G1. The public key is 〈P, P1, P2, U
′, U1, . . . , Ul〉 and the secret key is αP2.



Signing: Let M = (m1,m2, . . . ,ml) be the message to be signed, where each mi, 1 ≤ i ≤ l is a bit string
of length n/l. To generate a signature on M , first choose a random r ∈ ZZ∗

p. Then the signature is

σM = (αP2 + rV, rP ),

where V = V (M) is as defined in Equation (1).

Verification: Given a message M = (m1,m2, . . . ,ml) and a signature σ = (σ1, σ2) on M , one accepts σ
as a valid signature on M if

e(σ1, P ) = e(P1, P2)e(σ2, V )

where V = V (M) is as defined in Equation (1).

4 Concrete Security

From the security reduction of previous section we observe that any (t, q, ε) adversary A against IBE-
SPP(l) can actually be used to build an algorithm B to solve the DBDH problem over (G1, G2, e) which
runs in time t′ and has a probability of success ε′. Then t′ = t+cτq+χ(ε) ≈ t+cτq+χ′ for some constant
c and ε′ ≈ ε/δ where τ is the time for a group operation in G1 and δ is the corresponding degradation
in the security reduction. Resistance of IBE-SPP(l) against A can be quantified as ρ

(l)
|A = lg(t/ε). To

assert that IBE-SPP(l) has at least 80-bit security, we must have ρ
(l)
|A ≥ 80 for all possible A. Similarly,

the resistance of DBDH against B can be quantified as

ρ|B = lg
(

t′

ε′

)
≈ lg

(
δ × t + cτq + χ′

ε

)
= lg(δ(A1 + A2))

where A1 = t/ε and A2 = (cτq + χ′)/ε. We now use max(A1, A2) ≤ A1 + A2 ≤ 2 max(A1, A2). Since
a factor of two does not significantly affect the analysis we put ρ|B = lg(δ × max(A1, A2)). By our
assumption, A1 = t/ε ≥ 280 and hence max(A1, A2) ≥ A1 ≥ 280. This results in the condition ρ|B ≥
80 + lg δ.

Thus, if we want IBE-SPP(l) to have 80-bit security, then we must choose the group sizes of G1, G2

in such a way that the best possible algorithm for solving DBDH in these groups takes time at least
280+lg δ. Hence, in particular, the currently best known algorithm for solving the DBDH should also take
this time. Currently the only method to solve the DBDH problem over (G1, G2, e) is to solve the discrete
log problem (DLP) over either G1 or G2. The best known algorithm for the former is the Pollard’s rho
method while that for the later is number/function field sieve. Thus, if we want IBE-SPP(l) to have
80-bit security, then we must choose the group sizes such that, 280+lg δ ≤ min(tG1 , tG2), where tGi stands
for the time to solve DLP in Gi for i ∈ {1, 2}.

We have assumed that G1 is a group of elliptic curve points of order p defined over a finite field
IFa (a is a prime power). Suppose G2 is a subgroup of order p of the finite field IFak where k is the
embedding degree. The Pollard’s rho algorithm to solve ECDLP takes time tG1 = O(

√
p), while the

number/function field seive method to solve the DLP in IFak takes time tG2 = O(ec1/3 ln1/3 ak ln2/3(ln ak))
where c = 64/9 (resp. 32/9) in large characteristic fields (resp. small characteristic fields).

4.1 Space/time trade-off

In this section, we parametrize the quantities by l wherever necessary. Let, δ(l) denote the degradation
factor in IBE-SPP(l). We have already noted in Section 3.1 that l = n stands for Waters protocol. δ(l)

and hence ρ(l) is minimum when l = n and we use this as a benchmark to compare with other values



Table 1. Approximate group sizes for attaining 80-bit security for IBE-SPP(l) for different values of l and relative space
and time requirement. The first part corresponds to n = 160 and the second to n = 256.

l ∆ρ(l) |p(l)| |G(l)
2 | α(l) β(l)

(a) (b) (a) (b) (a) (b)

160 – 246 1891(2225) 3284(3872) – – – –

8 15 276 2443(2831) 4258(4944) 6.5(6.4) 6.5(6.4) 2.16(2.06) 2.18(2.08)

16 6 258 2102(2457) 3655(4288) 11.1(11.0) 11.1(11.1) 1.37(1.35) 1.38(1.35)

32 2 250 1960(2300) 3405(4006) 20.7(20.7) 20.7(20.7) 1.11(1.11) 1.12(1.11)

80 1 248 1924(2262) 3344(3939) 50.9(50.8) 50.9(50.9) 1.05(1.05) 1.06(1.05)

256 – 246 1891(2225) 3284(3872) – – - –

8 27 300 2948(3381) 5151(5919) 4.9(4.7) 4.9(4.8) 3.79(3.51) 3.86(3.57)

16 12 270 2326(2703) 4051(4717) 7.7(7.6) 7.7(7.6) 1.86(1.79) 1.88(1.81)

32 5 256 2066(2417) 3592(4212) 13.7(13.6) 13.7(13.6) 1.30(1.28) 1.31(1.29)

64 2 250 1960(2300) 3405(4006) 25.9(25.8) 25.9(25.9) 1.11(1.11) 1.11(1.11)

128 1 248 1924(2262) 3344(3939) 50.9(50.8) 50.9(50.9) 1.05(1.05) 1.06(1.05)

of l. Suppose ∆ρ(l) = ρ(l) − ρ(n) = lg(δ(l)/δ(n)) = (n/l) − lg(n/l). This parameter ∆ρ(l) gives us an
estimate of the extra bits required in case of IBE-SPP(l), to achieve the same security level as that of
IBE-SPP(n) i.e., Waters protocol.

Suppose, |p(l)| (resp. |G(l)
2 |) denotes the bit length of representation of p(l) (resp. an element of G

(l)
2 ).

Like [11], we assume that the adversary A is allowed to make a maximum of q = 230 number of queries.
For a given security level, we can now find the values of |p(l)| and |G(l)

2 | for IBE-SPP(l) based on the
bit length of the identities (i.e., n), q and l. Note that, the value of |p(l)| (resp. |G(l)

2 |) thus obtained is
the minimum required to avoid the Pollard’s rho (resp. number/function field seive) attack. In actual
implementation, these values give an estimate of the size of suitable pairing groups G1, G2 and the
embedding degree so that the requirements can be optimally met. In our comparison, the embedding
degree k is taken to be same for different values of l and |G(l)

2 | = k lg a (G(l)
2 is a multiplicative subgroup

of order p(l) of the finite field IFak). As already noted, the value of p(l) is given by Pollard’s rho. On the
other hand, the logarithm of the size of G

(l)
1 is equal to max(p(l), |G(l)

2 |/k). For relatively small embedding
degree (i.e., k ≤ 6), |G(l)

2 |/k > |p(l)| and so the logarithm of the size of G
(l)
1 is equal to |G(l)

2 |/k = |IF(l)
a |.

For a given l, we have to store l elements of G
(l)
1 in the public parameter file and a scalar multiplication

in G
(l)
1 takes time proportional to (|IF(l)

a |)3.
Now, we are in a position to compare the space requirement in the public parameter file and the

time requirement for a scalar multiplication in G
(l)
1 for different values of l. Let α(l) = l×|G(l)

1 |
n×|G(n)

1 |
× 100

i.e., the relative amount of space (expressed in percentage) required to store the public parameters in
case of IBE-SPP(l) with respect to IBE-SPP(n) and β(l) = |IF(l)

a |3/|IF(n)
a |3, i.e., the relative increase in

time for scalar multiplication in G
(l)
1 in the case of IBE-SPP(l) with respect to IBE-SPP(n). Note that,

β(l) can be computed from |G(l)
2 | and |G(n)

2 | since k cancels out from both numerator and denominator.
The pairing computation is also of order |IF(l)

a |3 (but with a larger constant factor). So, the ratio β(l)

also holds for pairing computation and exponentiation in case of IBE-SPP(l) with respect to Waters
protocol.

In Table 1, we sum-up these results for n = 160 and 256 for different values of l ranging from 8
to n for 80-bit security. The subcolumns (a) and (b) under α(l) and β(l) stand for the values obtained
for general characteristic field and field of characteristic three respectively. The values of |G(l)

2 |, α(l), β(l)

are computed using the formula as suggested in [11] (see Section 3); while in parenthesis we give the



corresponding values as computed from the formula obtained from [15] (as given in Section 3 of [11]).
Note that, the values of α(l) and β(l) being the ratio of two quantities remain more or less invariant
whether the underlying field is a general characteristic field or a field of characteristic three or which
formula (of [11] or of [15]) is used.

Public parameter consists of (l + 4) elements of G1. From Table 1, for 80-bit security in general
characteristic fields using EC with MOV degree 2, the public parameter size for Waters protocol will be
around 37 kilobyte (kb) for 160-bit identities and 59 kb for 256-bit identities. The corresponding values
in case of IBE-SPP(l) with l = 16 will be around 4 kb and 4.5 kb respectively. Similarly, in characteristic
three field EC with MOV degree 6, the corresponding values are respectively 21.5 kb and 34.2 kb and
for IBE-SPP(l) with l = 16 these are respectively 2.4 kb and 2.64 kb. There is an associated increase
in computation cost by 30%. In typical applications, the protocol will be used in a key encapsulation
mechanism (KEM). Thus the encryption and decryption algorithms will be invoked once for a message
irrespective of its length. Also the key generation procedure is essentially a one-time offline activity. In
view of this, the increase in computation cost will not substantially affect the throughput. On the other
hand, the significant reduction in space requirement will be an advantage in implementing the protocol
and also in reducing the time for downloading or transmitting the public parameter file over the net.
Overall, we suggest l = 16 to be a good choice for implementing the protocol.

5 HIBE Construction

The IBE protocol of Waters (see Section 2.5) has some similarities with the 1-level (H)IBE scheme of
Boneh-Boyen [2]. Waters in his paper [20] has suggested that this similarity can be utilized to build
a HIBE in an obvious manner, i.e., for each level we have to generate new parameters. This makes
the public parameters quite large – for a HIBE of height h with n-bit identities, the number of public
parameters becomes n× h.

In this section, we suggest an alternative construction where the public parameters can be signifi-
cantly reduced. We base our protocol on the generalization of Waters’ protocol presented in Section 3.1
where each n-bit identity is represented by l blocks of n/l bits each. We show that for a h-HIBE it
suffices to store (l + h) elements in the public parameter. If a similar representation is used for Waters’
suggestion then the public parameter size would be l × h.

The identities are of the type (v1, . . . , vj), for j ∈ {1, . . . , h} where each vk = (vk,1, . . . , vk,l) and vk,i

is an (n/l)-bit string which will also be considered to be an integer in the set {0, . . . , 2n/l−1}. Choosing
l = n gives vk to be an n-bit string as considered by Waters [20].

Set-Up: The protocol is built from groups G1, G2 and a bilinear map e as mentioned in Section 2.3. The
public parameters are the following elements: P , P1 = αP , P2, U ′

1, . . . , U
′
h, U1, . . . , Ul, where G1 = 〈P 〉,

α is chosen randomly from ZZp and the other quantities are chosen randomly from G1.
The master secret is αP2. (The quantities P1 and P2 are not directly required; instead e(P1, P2) is

required. Hence one may store e(P1, P2) as part of the public parameters instead of P1 and P2.)

A Useful Shorthand: Let v = (v1, . . . , vl), where each vi is an (n/l)-bit string and is considered to be
an element of ZZ2n/l . For 1 ≤ k ≤ h we define,

Vk(v) = U ′
k +

l∑
i=1

viUi. (3)

When v is clear from the context we will write Vk instead of Vk(v). The modularity introduced by this
notation allows an easier understanding of the protocol.



Note that for the jth level of the HIBE, we add a single element, i.e., U ′
j in the public parameter

while the elements U1, . . . , Ul are re-used for each level. This way we are able to shorten the public
parameter size. Later in the security reduction we show that the simulator forms U ′

js, 1 ≤ j ≤ h in such
a way that it is able to answer the adversarial queries.

Key Generation: Let v = (v1, . . . , vj), j ≤ h, be the identity for which the private key is required.
Choose r1, . . . , rj randomly from ZZp and define dv = (d0, d1, . . . , dj) where

d0 = αP2 +
j∑

k=1

rkVk(vk)

and dk = rkP for 1 ≤ k ≤ j.
Key delegation can be done in the manner shown in [2]. Suppose (d′0, d

′
1, . . . , d

′
j−1) is a private key

for the identity (v1, . . . , vj−1). To generate a private key for v, first choose rj randomly from ZZp and
compute dv as follows.

d0 = d′0 + rjVj(vj);
di = d′i 1 ≤ i ≤ j − 1;
dj = rjP.

Encryption: Let v = (v1, . . . , vj) be the identity under which a message M ∈ G2 is to be encrypted.
Choose t to be a random element of ZZp. The ciphertext is

(C0 = M × e(P1, P2)t, C1 = tP,B1 = tV1(v1), . . . , Bj = tVj(vj)).

Decryption: Let C = (C0, C1, B1, . . . , Bj) be a ciphertext and the corresponding identity v = (v1, . . . , vj).
Let (d0, d1, . . . , dj) be the decryption key corresponding to the identity v. The decryption steps are as
follows.

Verify whether C0 is in G2, C1 and the Bi’s are in G1. If any of these verifications fail, then return
bad, else proceed with further decryption as follows. Compute V1(v1), . . . , Vj(vj). Return

C0 ×
∏j

k=1 e(Bi, di)
e(d0, C1)

.

It is standard to verify the consistency of decryption.

Note: If h = 1, then this reduces to the IBE protocol of Section 3.1.

6 Security of the HIBE Construction

In this section, we state the result on security and discuss its implications. The proof is given in Section 7.

Theorem 2. The HIBE protocol described in Section 5 is (εhibe, t, q)-CPA secure assuming that the
(t′, εdbdh)-DBDH assumption holds in 〈G1, G2, e〉, where εhibe ≤ 2εdbdh/λ; t′ = t + O(τq) + χ(εhibe) and

χ(ε) = O(ε−2 ln(ε−1)λ−1 ln(λ−1));
τ is the time required for one scalar multiplication in G1;
λ = 1/(2(2σ(µl + 1))h) with µl = l(N1/l − 1), N = 2n and σ = max(2q, 2n/l).

We further assume 2σ(1 + µl) < p.



The last assumption is practical and similar assumptions are also made in [20, 17], though not quite so
explicitly. Before proceeding to the proof, we discuss the above result. The main point of the theorem
is the bound on εhibe. This is given in terms of λ and in turn in terms of µl. We simplify this bound.

Since l ≥ 1, we have 1 + µl = 1 + l(N1/l − 1) ≤ lN1/l = l2n/l. Consequently,

εhibe ≤
2εdbdh

λ
= 4(2σ(µl + 1))hεdbdh

≤ 4(2σl2n/l)hεdbdh

= 4(2l2n/l)hσhεdbdh (4)

The reduction is not tight; security degrades by a factor of 4(2l2n/l)hσh. We now consider several cases.
The actual value of degradation depends on the value of q, the number of key extraction queries made
by the adversary. A value of q used in earlier analysis is q = 230 [11]. We will use this value of q in the
subsequent analysis.

h = 1 and l = n: The value of h = 1 implies that the HIBE is actually an IBE and l = n implies that
each identity is a bit vector of length n. This is the situation originally considered by Waters [20]. In this
case, 2q = max(2q, 2n/l) and Equation (4) reduces to εhibe ≤ 32nqεdbdh. For n = 160, the degradation is
by a factor of 10× 238.

h > 1: This corresponds to a proper HIBE. If l = n, then we obtain εhibe ≤ 4(8nq)hεdbdh. For n = 160
(and q = 230), this amounts to εhibe ≤ 4(10× 237)h. We consider a few other values of l. If l = 10, then
εhibe ≤ 4(10× 248)hεdbdh and if l = 32, then εhibe ≤ 242h+2εdbdh.

In Table 2, we compare the known HIBE protocols which are secure in the full model. We note
that HIBE protocols which are secure in the selective-ID model are also secure in the full model with a
security degradation of ≈ qnh, where h is the number of levels in the HIBE and n is number of bits in
the identity. This degradation is far worse than the protocols in Table 2. The parameter j in the private

Table 2. Comparison of HIBE Protocols. In the table, qH is the number of random oracle hash queries made by an
adversary. Usually, qH is taken to be at least 264.

Protocol Hardness Random Security Pub. Para. size Pvt. Key size Ciphertext size Pairing
Assumption Oracle Degradtion (elts. of G1) (elts. of G1) (elts. of G1) Enc. Dec.

GS [12] BDH Yes qHqh 2 j j 1 j

BB [2] DBDH Yes qh
H h + 3 j + 1 j + 1 None j + 1

Waters [20] DBDH No (32nq)h (n + 1)h + 3 j + 1 j + 1 None j + 1

Our DBDH No 4(2l2n/lσ)h h + l + 3 j + 1 j + 1 None j + 1

key size, ciphertext size and the encryption and decryption columns of Table 2 represents the number of
levels of the identity on which the operations are performed. The parameter h is the maximum number
of levels in the HIBE. Recall that 1 ≤ l ≤ n and σ = max(2q, 2n/l). For l = n, the construction in
this paper requires (h+n+3) many elements of G1 as public parameters whereas Waters’ construction
requires (n + 1)h + 3 many elements. The security degradation remains the same in both cases. For
l < n, the new construction extends the IBE protocol of Section 3.1.

7 Proof of Theorem 2

The security reduction follows along standard lines. We need to lower bound the probability of the
simulator aborting on certain queries and in the challenge stage. The details of obtaining this lower



bound is given in Section 7.1. In the following proof, we simply use the lower bound. We want to
show that the HIBE is (εhibe, t, q)-CPA secure. In the game sequence style of proofs, we start with the
adversarial game defining the CPA-security of the protocol against an adversary A and then obtain a
sequence of games as usual. In each of the games, the simulator chooses a bit γ and the adversary makes
a guess γ′. By Xi we will denote the event that the bit γ is equal to the bit γ′ in the ith game.

Game 0: This is the usual adversarial game used in defining CPA-secure HIBE. We assume that the
adversary’s runtime is t and it makes q key extraction queries. Also, we assume that the adversary max-
imizes the advantage among all adversaries with similar resources. Thus, we have εhibe =

∣∣∣Pr[X0]− 1
2

∣∣∣ .
Game 1: In this game, we setup the protocol from a tuple 〈P, P1 = aP, P2 = bP, P3 = cP, Z =
e(P1, P2)abc〉 and answer key extraction queries and generate the challenge. The simulator is assumed
to know the values a, b and c. However, the simulator can setup the protocol as well as answer certain
private key queries without the knowledge of these values. Also, for certain challenge identities it can
generate the challenge ciphertext without the knowledge of a, b and c. In the following, we show how
this can be done. If the simulator cannot answer a key extraction query or generate a challenge without
using the knowledge of a, b and c, it sets a flag flg to one. The value of flg is initially set to zero.

Note that the simulator is always able to answer the adversary (with or without using a, b and c).
The adversary is provided with proper replies to all its queries and is also provided the proper challenge
ciphertext. Thus, irrespective of whether flg is set to one, the adversary’s view in Game 1 is same as
that in Game 0. Hence, we have Pr[X0] = Pr[X1].

We next show how to setup the protocol and answer the queries based on the tuple 〈P, P1 = aP, P2 =
bP, P3 = cP, Z = e(P1, P2)abc〉.

Set-Up: Recall that σ = max(2q, 2n/l). Let m be a prime such that σ < m < 2σ. Our choice of m is
different from that of previous works [20, 17] where m was chosen to be equal to 4q and 2q.

Choose x′1, . . . , x
′
h and x1, . . . , xl randomly from ZZm; y′1, . . . , y

′
h and y1, . . . , yl randomly from ZZp.

Choose k1, . . . , kh randomly from {0, . . . , µl}.
For 1 ≤ j ≤ h, define U ′

j = (p −mkj + x′j)P2 + y′jP and for 1 ≤ i ≤ l define Ui = xiP2 + yiP . Set
the public parameters of HIBE to be (P, P1, P2, U

′
1, . . . , U

′
h, U1, . . . , Ul). The master secret is aP2 = abP .

The distribution of the public parameters is as expected by A. In its attack, A will make some queries,
which have to be properly answered by the simulator.

For 1 ≤ j ≤ h, we define several functions. Let v = (v1, . . . , vl) where each vi is an n/l-bit string
considered to be an integer from the set {0, . . . , 2n/l − 1}. We define

Fj(v) = p−mkj + x′j +
∑l

i=1 xivi

Jj(v) = y′j +
∑l

i=1 yivi

Lj(v) = x′j +
∑l

i=1 xivi (mod m)

Kj(v) =

{
0 if Lj(v) = 0
1 otherwise.


(5)

Recall that we have assumed 2σ(1 + µl) < p. Let Fmin and Fmax be the minimum and maximum values
of Fj(v). Fmin is achieved when kj is maximum and x′j and the xi’s are all zero. Thus, Fmin = p−mµl.
We have mµl < 2σ(1 + µl) and by assumption 2σ(1 + µl) < p. Hence, Fmin > 0. Again Fmax is
achieved when kj = 0 and x′j and the xi’s and vi’s are equal to their respective maximum values.
We get Fmax < p + m(1 + l(2n/l − 1)) = p + m(1 + µl) < p + 2σ(1 + µl) < 2p. Thus, we have
0 < Fmin ≤ Fj(v) ≤ Fmax < 2p. Consequently, Fj(v) ≡ 0 mod p if and only if Fj(v) = p which holds if
and only if −mkj + x′j +

∑l
i=1 xivi = 0.



Now we describe how the queries made by A are answered. The queries can be made in both Phases 1
and 2 of the adversarial game (subject to the usual restrictions). The manner in which they are answered
by the simulator is the same in both the phases.

Key Extraction Query: SupposeAmakes a key extraction query on the identity v = (v1, . . . , vj). Suppose
there is a u with 1 ≤ u ≤ j such that Ku(vu) = 1. Otherwise set flg to one. In the second case, the
simulator uses the value of a to return the proper decryption key dv = (aP2 +

∑j
i=1 riVi, r1V1, . . . , rjVj).

In the first case, the simulator constructs a decryption key in the following manner.
Choose random r1, . . . , rj from ZZp and define

d0|u = − Ju(vu)
Fu(vu)P1 + ru(Fu(vu)P2 + Ju(vu)P )

du = −1
Fu(vu)P1 + ruP

dk = rkP for k 6= u
dv = (d0|u +

∑
k∈{1,...,j}\{u} rkVk, d1, . . . , dj)

 (6)

The quantity dv is a proper private key corresponding to the identity v. The algebraic verification of
this fact is similar to that in [2, 20]. This is provided to A.

Challenge: Let the challenge identity be v∗ = (v∗1, . . . , v
∗
h∗), 1 ≤ h∗ ≤ h and the (equal length) messages

be M0 and M1. Choose a random bit b. We need to have Fk(v∗k) ≡ 0 mod p for all 1 ≤ k ≤ h∗. If this
condition does not hold, then set flg to one. In the second case, the simulator uses the value of c to
provide a proper encryption of Mγ to A by computing (Mγ × e(P1, P2)c, cP, cV1, . . . , cVh∗). In the first
case, it constructs a proper encryption of Mγ in the following manner.

(Mγ × Z,C1 = P3, B1 = J1(v∗1)P3, . . . , Bh∗ = Jh∗(v∗h∗)P3).

We require Bj to be equal to cVj(v∗j ) for 1 ≤ j ≤ h∗. Recall that the definition of Vj(v) is Vj(v) =
U ′

j +
∑l

k=1 vkUk. Using the definition of U ′
j and the Uk’s as defined in the setup by the simulator, we

obtain, cVi = c(Fi(v∗i )P2 + Ji(v∗i )P ) = Ji(v∗i )cP = Ji(v∗i )P3. Here we use the fact, Fi(v∗i ) ≡ 0 mod p.
Hence, the quantities B1, . . . , Bh∗ are properly formed.

Guess: The adversary outputs a guess γ′ of γ.

Game 2: This is a modification of Game 1 whereby the Z in Game 1 is now chosen to be a random
element of G2. This Z is used to mask the message Mγ in the challenge ciphertext. Since Z is random,
the first component of the challenge ciphertext is a random element of G2 and provides no information
to the adversary about γ. Thus, Pr[X2] = 1

2 .
Let λ be a lower bound on the probability that flg remains zero throughout Games 1 and 2. The

expression for λ is obtained in Proposition 3 of Section 7.1. We have the following claim.

Claim:
|Pr[X1]− Pr[X2]| ≤

εdbdh

λ
+

εhibe

2
.

Proof (Of Claim). The change from Game 1 to Game 2 corresponds to an “indistinguishability”
step in Shoup’s tutorial [19] on such games. Usually, it is easy to bound the probability difference. In
this case, the situation is complicated by the fact that there is a need to abort and the fact that the
probability of aborting depends on the adversary’s queries.

We show that it is possible to obtain an algorithm B for DBDH by extending Games 1 and 2. The
extension of both the games is same and is described as follows. B takes as input a tuple (P, aP, bP, cP, Z)



and sets up the HIBE protocol as in Game 1 (The setup of Games 1 and 2 are the same). The key
extraction queries are answered and the challenge ciphertext is generated as in Game 1. If flg is set to
one, then B outputs a random bit and aborts. This is because the query cannot be answered or the
challenge ciphertext cannot be generated using the input tuple. At the end of the game, the adversary
outputs the guess γ′. Note that if Z is real, then the adversary is playing Game 1 and if Z is random,
then the adversary is playing Game 2. B now goes through a separate abort stage as follows.

“Artificial Abort”: (This technique was introduced by Waters [20]). The probability that B aborts
in the query or challenge phases depends on the adversary’s input. The goal of the artificial abort
step is to make the probability of abort “independent” of the adversary’s queries by ensuring that in
all cases its probability of abort is the maximum possible. This is done by sampling the transcript of
adversary’s query and in certain cases aborting. The sampling procedure introduces the extra component
O(ε−2

hibe ln(ε−1
hibe)λ

−1 ln(λ−1)) into the simulator’s runtime. A detailed exposition of this technique and
its relevance in the current context is given in Section A.

Output: If B has not aborted up to this stage, then it outputs 1 if γ = γ′; else 0.
The time taken by the simulator in either Game 1 or 2 is clearly t + χ(εhibe). Let Yi be the event

that the simulator outputs 1 in Game i, i = 1, 2. Then, we have

|Pr[Y1]− Pr[Y2]| ≤ εdbdh.

Let abi be the event that the simulator aborts in Game i, i = 1, 2. This includes both protocol and
artificial abort.

Pr[Yi] = Pr[Yi ∧ (abi ∨ abi)]
= Pr[(Yi ∧ abi) ∨ (Yi ∧ abi)]
= Pr[Yi ∧ abi] + Pr[Yi ∧ abi]
= Pr[Yi | abi]Pr[abi] + Pr[Yi | abi]Pr[abi]

=
1
2
(1− Pr[abi]) + Pr[Xi | abi]Pr[abi] (7)

=
1
2
(1− Pr[abi ∧ (Xi ∨Xi)]) + Pr[Xi ∧ abi]

=
1
2

+
1
2

(
Pr[abi|Xi]Pr[Xi]− Pr[abi|Xi]Pr[Xi]

)
(8)

To proceed further, we need bounds on Pr[abi|Xi] and Pr[abi|Xi]. Recall that Xi is the event γ = γ′ in
Game i. From (30) (proved later), we obtain

λ− λε

2
≤ Pr[abi|Xi],Pr[abi|Xi] ≤ λ +

λε

2
. (9)

Here ε = εhibe. Now we need to do some manipulations with inequalities and for convenience we set
Ai = Pr[abi|Xi], Bi = Pr[Xi] and Ci = Pr[abi|Xi] and D = Pr[Y1]− Pr[Y2]. We have from (9)

λ− λε

2
≤ Ai, Ci ≤ λ +

λε

2
.

Also, using (8)

2D = (A1B1 − C1(1−B1))− (A2B2 − C2(1−B2)). (10)



Since both B1 and (1−B1) are non-negative, we have

Bi(λ− λε
2 ) ≤ AiBi ≤ Bi(λ + λε

2 )
(1−Bi)(−λ− λε

2 ) ≤ −Ci(1−Bi) ≤ (1−Bi)(−λ + λε
2 ).

Hence,

λ(2Bi − 1)− λε

2
≤ AiBi − Ci(1−Bi) ≤ λ(2Bi − 1) +

λε

2
. (11)

Putting i = 1 in (11), we obtain

λ(2B1 − 1)− λε

2
≤ A1B1 − C1(1−B1) ≤ λ(2B1 − 1) +

λε

2
. (12)

Multiplying (11) by −1 and putting i = 2 we obtain

−λ(2B2 − 1)− λε

2
≤ −(A2B2 − C2(1−B2)) ≤ −λ(2B2 − 1) +

λε

2
. (13)

Combining (10), (12) and (13) we get

2λ(B1 −B2)− λε ≤ 2D ≤ 2λ(B1 −B2) + λε. (14)

This shows that |λ(B1 − B2) −D| ≤ λε
2 . Now |λ(B1 − B2)| − |D| ≤ |λ(B1 − B2) −D| ≤ λε

2 . Note that
|D| = |Pr[Y1]− Pr[Y2]| ≤ εdbdh and recalling the values of B1 and B2, we have

|Pr[X1]− Pr[X2]| ≤
εdbdh

λ
+

εhibe

2
. (15)

This completes the proof of the claim. ut
Now we can complete the proof in the following manner.

εhibe =
∣∣∣∣Pr[X0]−

1
2

∣∣∣∣
≤ |Pr[X0]− Pr[X2]|
≤ |Pr[X0]− Pr[X1]|+ |Pr[X1]− Pr[X2]|

≤ εhibe

2
+

εdbdh

λ
.

Rearranging the inequality gives the desired result. This completes the proof of Theorem 2. ut

7.1 Lower Bound on Not Abort

We require the following two independence results in obtaining the required lower bound. Similar inde-
pendence results have been used in [20, 17] in connection with IBE protocols. The situation for HIBE
is more complicated than IBE and especially so since we reuse some of the public parameters over
different levels of the HIBE. This makes the proofs more difficult. Our independence results are given
in Proposition 1 and 2 and these subsume the results of previous work. We provide complete proofs for
these two propositions as well as a complete proof for the lower bound. The probability calculation for
the lower bound is also more complicated compared to the IBE case.



Proposition 1. Let m be a prime and L(·) be as defined in (5). Let v1, . . . , vj be identities, i.e., each
vi = (vi,1, . . . , vi,l), with vi,k to be an n/l-bit string (and hence 0 ≤ vi,k ≤ 2n/l − 1). Then

Pr

 j∧
k=1

(Lk(vk) = 0)

 =
1

mj
.

The probability is over the independent and uniform random choices of x′1, . . . , x
′
j , x1, . . . , xl from ZZm.

Consequently, for any θ ∈ {1, . . . , j}, we have

Pr

Lθ(vθ) = 0

∣∣∣∣∣∣
j∧

k=1,k 6=θ

(Lk(vk) = 0)

 =
1
m

.

Proof: Since ZZm forms a field, we can do linear algebra with vector spaces over ZZm. The condition∧j
k=1 (Lj(vj) = 0) is equivalent to the following system of equations over ZZm.

x′1 + v1,1x1 + · · · + v1,lxl = 0
x′2 + v2,1x1 + · · · + v2,lxl = 0
· · · · · · · · · · · · · · · · ·
x′j + vj,1x1 + · · · + vj,lxl = 0

This can be rewritten as

(x′1, . . . , x
′
j , x1, . . . , xl)A(j+l)×(j+l) = (0, . . . , 0)1×(j+l)

where

A =

[
Ij Oj×l

Vl×j Ol×l

]
and Vl×j =

v1,1 · · · vj,1

· · · · · · · · ·
v1,l · · · vj,l

 ;

Ij is the identity matrix of order j; O is the all zero matrix of the specified order. The rank of A is clearly j
and hence the dimension of the solution space is l. Hence, there are ml solutions in (x′1, . . . , x

′
j , x1, . . . , xl)

to the above system of linear equations. Since the variables x′1, . . . , x
′
j , x1, . . . , xl are chosen independently

and uniformly at random, the probability that the system of linear equations is satisfied for a particular
choice of these variables is ml/ml+j = 1/mj . This proves the first part of the result.

For the second part, note that we may assume θ = j by renaming the x′’s if required. Then

Pr

Lj(vj) = 0

∣∣∣∣∣∣
j−1∧
k=1

(Lk(vk) = 0)

 =
Pr
[∧j

k=1 (Lk(vk) = 0)
]

Pr
[∧j−1

k=1 (Lk(vk) = 0)
] =

mj−1

mj
=

1
m

.

ut

Proposition 2. Let m be a prime and L(·) be as defined in (5). Let v1, . . . , vj be identities, i.e., each
vi = (vi,1, . . . , vi,l), with vi,k to be an n/l-bit string. Let θ ∈ {1, . . . , j} and let v′θ be an identity such that
v′θ 6= vθ. Then

Pr

(Lθ(v′θ) = 0) ∧
j∧

k=1

(Lk(vk) = 0)

 =
1

mj+1
.

The probability is over the independent and uniform random choices of x′1, . . . , x
′
j , x1, . . . , xl from ZZm.

Consequently, we have

Pr

Lθ(v′θ) = 0

∣∣∣∣∣∣
j∧

k=1

(Lk(vk) = 0)

 =
1
m

.



Proof: The proof is similar to the proof of Proposition 1. Without loss of generality, we may assume
that θ = j, since otherwise we may rename variables to achieve this. The condition (Lθ(v′θ) = 0) ∧∧j

k=1 (Lk(vk) = 0) is equivalent to a system of linear equations xA = 0 over ZZm. In this case, the form
of A is the following.

A =

[
Ij cT Oj×l

Vl×j (v′j)
T Ol×l

]

where c = (0, . . . , 0, 1); cT denotes the transpose of c and (v′j)
T is the transpose of v′j . The first j

columns of A are linearly independent. The (j + 1)th column of A is clearly linearly independent of
the first (j − 1) columns. We have vj 6= v′j . Since each component of both vj and v′j is less than 2n/l

and m > 2n/l, we have vj 6≡ v′j mod m. Using this, it is not difficult to see that the first (j + 1)
columns of A are linearly independent and hence the rank of A is (j + 1). (Note that if m ≤ 2n/l,
then it is possible to have vj 6= v′j but vj ≡ v′j mod m. Then the jth and (j + 1)th columns of A are
equal and the rank of A is j.) Consequently, the dimension of the solution space is l − 1 and there are
ml−1 solutions in (x′1, . . . , x

′
j , x1, . . . , xl) to the system of linear equations. Since the x′’s and the x’s

are chosen independently and uniformly at random from ZZm, the probability of getting a solution is
ml−1/ml+j = 1/mj+1. This proves the first part of the result. The proof of the second part is similar
to that of Proposition 1. ut

Proposition 3. The probability that the simulator in the proof of Theorem 2 does not abort before the
artificial abort stage is at least 1

2(2σ(µl+1))h .

Proof: We consider the simulator in the proof of Theorem 2. Up to the artificial abort stage, the
simulator could abort on either a key extraction query or in the challenge stage. Let abort be the event
that the simulator aborts before the artificial abort stage. For 1 ≤ i ≤ q, let Ei denote the event that
the simulator does not abort on the ith key extraction query and let C be the event that the simulator
does not abort in the challenge stage. We have

Pr[abort] = Pr

[( q∧
i=1

Ei

)
∧ C

]

= Pr

[( q∧
i=1

Ei

)
|C
]

Pr[C]

=

(
1− Pr

[( q∨
i=1

¬Ei

)
|C
])

Pr[C]

≥
(

1−
q∑

i=1

Pr [¬Ei |C ]

)
Pr[C].

We first consider the event C. Suppose the challenge identity is v∗ = (v∗1, . . . , v
∗
h∗). Event C holds if and

only if Fj(v∗j ) ≡ 0 mod p for 1 ≤ j ≤ h∗. Recall that by choice of p, we can assume Fj(v∗j ) ≡ 0 mod p if
and only if x′j +

∑l
k=1 xkvj,k = mkj . Hence,

Pr[C] = Pr

 h∗∧
j=1

(
x′j +

l∑
k=1

xkvj,k = mkj

) . (16)

For 1 ≤ j ≤ h∗ and 0 ≤ i ≤ µl, denote the event x′j +
∑l

k=1 xkvj,k = mi by Aj,i and the event kj = i by
Bj,i. Also, let Cj,i be the event Aj,i ∧Bj,i.



Note that the event
∨µl

i=0 Aj,i is equivalent to the condition x′j +
∑l

k=1 xkvj,k ≡ 0 mod m and hence
equivalent to the condition Lj(vj) = 0. Since kj is chosen uniformly at random from the set {0, . . . , µl},
we have Pr[Bj,i] = 1/(1 + µl) for all j and i. The events Bj,i’s are independent of each other and also
independent of the Aj,i’s. We have

Pr

 h∗∧
j=1

(
x′j +

l∑
k=1

xkvj,k = mkj

) = Pr

 h∗∧
j=1

( µl∨
i=0

Cj,i

)
= Pr

 ∨
i1,...,ih∗∈{0,...,µl}

(
C1,i1 ∧ · · · ∧ Ch∗,ih∗

)
= Pr

 ∨
i1,...,ih∗∈{0,...,µl}

(
A1,i1 ∧B1,i1 ∧ · · · ∧Ah∗,ih∗ ∧Bh∗,ih∗

)
=

∑
i1,...,ih∗∈{0,...,µl}

Pr
[
A1,i1 ∧B1,i1 ∧ · · · ∧Ah∗,ih∗ ∧Bh∗,ih∗

]
=

∑
i1,...,ih∗∈{0,...,µl}

Pr
[
A1,i1 ∧ · · · ∧Ah∗,ih∗

]
× Pr

[
B1,i1 ∧ · · · ∧Bh∗,ih∗

]
=

1
(1 + µl)h∗

∑
i1,...,ih∗∈{0,...,µl}

Pr
[
A1,i1 ∧ · · · ∧Ah∗,ih∗

]

=
1

(1 + µl)h∗
Pr

 ∨
i1,...,ih∗∈{0,...,µl}

(
A1,i1 ∧ · · · ∧Ah∗,ih∗

)
=

1
(1 + µl)h∗

Pr

 h∗∧
j=1

( µl∨
i=0

Aj,i

)
=

1
(1 + µl)h∗

Pr

 h∗∧
j=1

(Lj(vj) = 0)


=

1
(m(1 + µl))h∗

The last equality follows from Proposition 1.

Now we turn to bounding Pr[¬Ei|C]. For simplicity of notation, we will drop the subscript i from
Ei and consider the event E that the simulator does not abort on a particular key extraction query on
an identity (v1, . . . , vj). By the simulation, the event ¬E implies that Li(vi) = 0 for all 1 ≤ i ≤ j. This
holds even when the event is conditioned under C. Thus, we have Pr[¬E|C] ≤ Pr[∧j

i=1Li(vi) = 0|C].
The number of components in the challenge identity is h∗ and now two cases can happen:
j ≤ h∗: By the protocol constraint (a prefix of the challenge identity cannot be queried to the key
extraction oracle), we must have a θ with 1 ≤ θ ≤ j such that vθ 6= v∗θ .
j > h∗: In this case, we choose θ = h∗ + 1.

Now we have

Pr[¬E|C] ≤ Pr

 j∧
i=1

Li(vi) = 0|C

 ≤ Pr[Lθ(vθ) = 0|C] = Pr

[
Lθ(vθ) = 0|

h∗∧
i=1

Li(v∗i ) = 0

]
= 1/m.



The last equality follows from an application of either Proposition 1 or Proposition 2 according as
whether j > h∗ or j ≤ h∗. Substituting this in the bound for Pr[abort] we obtain

Pr[abort] ≥
(

1−
q∑

i=1

Pr [¬Ei |C ]

)
Pr[C].

≥
(

1− q

m

)
1

(m(µl + 1))h∗

≥
(

1− q

m

)
1

(m(µl + 1))h

≥ 1
2
× 1

(2σ(µl + 1))h
.

We use h ≥ h∗ and 2q ≤ σ < m < 2σ to obtain the inequalities. This completes the proof. ut

8 Conclusion

Waters presented a construction of IBE [20] which significantly improves upon the previous construction
of Boneh-Boyen [3]. In his paper, Waters also suggested a method to extend his IBE to a HIBE. We
first present a construction of an IBE protocol with shorter public parameters. This leads to a security
degradation which is converted into a space/time trade-off. Our second construction is that of a HIBE
which significantly reduces the number of public parameters in Waters’ construction. All known HIBE
protocols have a security degradation which is exponential in the number of levels. The main open
problem in the construction of HIBE protocols is to avoid or control this security degradation.

Acknowledgement: We would like to thank Rana Barua for carefully reading the paper.
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A An Exposition of the Artificial Abort Technique

The purpose of this section is to present a detailed description of the technique of artificial abort. This
technique is new to security proofs and was introduced by Waters [20]. Since the technique is important
a good exposition of the technique will be important. The original paper by Waters provides only a
sketch. The work by Naccache [17] provides more details, but is not complete. Our description is based
on that of Waters and Naccache, but we work out all the details. We feel that this will be useful to
researchers, especially to those who are new to this area.

Actually the entire technique of artificial abort can be explained in terms of elementary probability
theory without reference to security proofs. We have taken this approach. After outlining the necessary
abstraction, we obtain the relevant bounds. Then, we go back to the security proof and explain how the
technique fits within that scenario.

One of the basic questions that arises is why this technique is required, i.e., “Why artificial abort?”
This question is addressed by Waters. Here we try to identify the point in the probability analysis where
this technique needs to be used. The question of whether a different probability analysis can eliminate
the requirement of the artificial abort technique remains open.

A.1 Preliminaries

In this section, we state a few simple results on conditional probabilities and discuss aspects of the
Chernoff bound which are relevant to the artificial abort technique. Our discussion of Chernoff bound
is from [16].

Lemma 1. Let X and Y be two random variables. Then

Pr[X|Y ]− Pr[Y ] ≤ Pr[X] ≤ Pr[X|Y ] + Pr[Y ].

Proof: We start in the usual manner.

Pr[X] = Pr[X ∧ (Y ∨ Y )]
= Pr[X|Y ]Pr[Y ] + Pr[X|Y ]Pr[Y ].

To get the upper bound, note that Pr[X|Y ]Pr[Y ] ≤ Pr[X|Y ] and Pr[X|Y ]Pr[Y ] ≤ Pr[Y ]. For the lower
bound, we use

Pr[X] ≥ Pr[X|Y ]Pr[Y ]
= Pr[X|Y ](1− Pr[Y ])
= Pr[X|Y ]− Pr[X|Y ]Pr[Y ].

The lower bound now follows by noting that Pr[X|Y ]Pr[Y ] ≤ Pr[Y ] as before. ut

Lemma 2. Let X and Y be random variables which vary over the finite sets Γ and Σ respectively.
Suppose, that f is a function f : Γ ×Σ → {0, 1} and for all y ∈ Σ, we have

λ− ≤ Pr[f(X, y) = 1] ≤ λ+ (17)

for some constants λ− and λ+. Then for any subset Σ0 of Σ, we have

λ− ≤ Pr[f(X, Y ) = 1|Y ∈ Σ0] ≤ λ+. (18)



Proof: Let Σ0 = {y1, . . . , yt}. Then Pr[Y ∈ Σ0] = Pr[Y = y1]+· · ·+Pr[Y = yt]. Note that Pr[f(X, y) =
1] is the same as Pr[f(X, Y ) = 1|Y = y]. We can write

Pr[f(X, Y ) = 1|Y ∈ Σ0] =
Pr[f(X, Y ) = 1 ∧ Y ∈ Σ0]

Pr[Y ∈ Σ0]

=
Pr[f(X, Y ) = 1 ∧ Y = y1] + · · ·+ Pr[f(X, Y ) = 1 ∧ Y = yt]

Pr[Y ∈ Σ0]
.

The last quantity can be written as

Pr[f(X, Y ) = 1|Y = y1]Pr[Y = y1] + · · ·+ Pr[f(X, Y ) = 1|Y = yt]Pr[Y = yt]
Pr[Y ∈ Σ0]

.

For each i, we are given λ− ≤ Pr[f(X, Y ) = 1|Y = yi] ≤ λ+. The required bound follows on substituting
this bound in the last expression. ut

Theorem 3 (Chernoff Bound). Let X1, . . . , Xk be independent Bernoulli trials with pi = Pr[Xi = 1].
Let X =

∑k
i=1 Xi and µ =

∑k
i=1 pi. Then for any δ > 0,

Upper bound: Pr[X > (1 + δ)µ] <

[
eδ

(1 + δ)1+δ

]µ

.

Lower bound: Pr[X < (1− δ)µ] < exp

(
−µδ2

2

)
.

Following the analysis in [16], we obtain that for 0 < δ ≤ 2e− 1,

Pr[X > (1 + δ)µ] < exp

(
−µδ2

4

)

Pr[X < (1− δ)µ] = exp

(
−µδ2

2

)

< exp

(
−µδ2

4

) (19)

Combining these, we have that for 0 < δ ≤ 2e− 1,

Pr[|X − µ| ≥ δµ] ≤ 2× exp

(
−µδ2

4

)
. (20)

Suppose all the Xi’s follow the same Bernoulli distribution with pi = η for all i. Then µ = ηk and let
η′ = X/k. We obtain,

Pr[|η′ − η| ≥ δη] ≤ 2× exp

(
−kηδ2

4

)
. (21)

Let λ be a lower bound on η, i.e., λ ≤ η and ε be such that 0 < ε < 1. We want to ensure 2 ×

exp

(
−kηδ2

4

)
≤ λε

8
and δ = ε/8. This gives us two conditions.

• 2× exp

(
−kηε2

256

)
≤ λε

8



•
√

4 ln 1/ε

kη
≤ ε

8
.

The second inequality comes from the bound on δ. Using the fact that λ ≤ η, it is not too difficult to
work out that these two conditions hold when

k ≥ max
(

256
λε2

ln
16
λε

,
32
λε2

ln
1
ε

)
. (22)

Since λ < 1, the first component is greater and consequently we have that for k ≥ 256
λε2

ln 16
λε ,

Pr

[
|η′ − η| ≥ ηε

8

]
≤ λε

8
. (23)

Summary. A brief summary of the discussion on Chernoff bound presented so far will be helpful for
later reference. In short, the situation is the following. Let X1, . . . , Xk be independent Bernoulli trials
with Pr[Xi = 1] = η, where η is unknown. Let λ be lower bound on η, i.e., λ ≤ η and suppose that λ is
known. Set η′ = (

∑k
i=1 Xi)/k. From the discussion so far, we have that for ε > 0, if k ≥ 256

λε2
ln 16

λε , then

Pr

[
|η′ − η| ≥ ηε

8

]
≤ λε

8
. (24)

Remark. Note that the term 256
λε2

ln 16
λε gives rise to the expression χ(ε) = O(ε−2 ln(ε−1)λ−1 ln(λ−1)) in

Theorem 2.

A.2 Evaluating a Function

Let X (resp. Y ) be a random variable which varies over a finite set Γ (resp. Σ). Suppose that the
random variable X follows the uniform distribution, while the distribution of Y is unknown. Let f be
a function f : Γ ×Σ → {0, 1} and consider the following procedure.

Procedure-A.
1. Choose x from Γ according to the uniform distribution.
2. A value y is obtained from Σ according to some unknown distribution.
3. Output f(x, y).

X (resp. Y ) is the random variable representing x (resp. y). The probability of outputting 1 in the
above game depends on the distribution of Y . Let ηy be the probability that f(X, y) = 1, i.e., ηy =
Pr[f(X, y) = 1] = Pr[f(X, Y ) = 1|Y = y]. Since the distribution of Y is not known, the value of ηy is
also not known. Let λ be a known lower bound on ηy, i.e. λ ≤ ηy for all y ∈ Σ.

We want to augment Procedure-A, such that the probability of outputting 1 remains more or less
the same irrespective of the choice of y. This is done in the following manner. By Ber(p) we mean the
Bernoulli experiment where 1 is produced with probability p and 0 is produced with probability (1−p).

Procedure-B.
1. Choose x from Γ according to the uniform distribution.
2. A value y is obtained from Σ according to some unknown distribution;
3. if f(x, y) = 1, then
4. choose x(1), . . . , x(k) uniformly at random from Γ ;

5. define η′ =
∑k

i=1 f(x(i), y)
k

;

6. if η′ ≥ λ, then perform Ber(λ/η′);
7. else output 1;
8. else output 0.



The quantity η′ computed in Step 5 is an estimate of ηy, for the y given in Step 2. To understand what is
happening, first suppose that the estimate η′ of ηy is exact. Since λ is a lower bound on ηy, the condition
in Step 6 will be true and hence the above procedure will output 1 with probability η × λ/η = λ. In
other words, the above procedure will output 1 with probability λ irrespective of the value of y which is
what we want. Now the estimate η′ will not be exact and consequently the probability the Procedure-B
outputs 1 will be between two bounds λ− and λ+ as we outline below.

A.3 Analysis of Procedure-B

We now perform the probability analysis that Procedure-B outputs 1. In the following, we will use η to
denote ηy, where y is chosen in Step 2 of Procedure-B. Let ab be the event that Procedure-B outputs
0. We are interested in the event ab, i.e., the event that Procedure-B outputs 1. More particularly, we
are interested in the probability of ab when the choice of y in Step 2 of Procedure-B is fixed. Let AB
denote the event (ab|Y = y). Next we analyse Pr[AB].

Let A be the event that |η′ − η| ≤ ηε
8 . Using Lemma 1, we have

Pr[AB|A]− Pr[A] ≤ Pr[AB] ≤ Pr[AB|A] + Pr[A]. (25)

First note that using the Chernoff bound analysis, we have Pr[A] ≤ λε/8. We now consider Pr[AB|A].
There are two cases to consider.

Case λ ≤ η − ηε
8 . Suppose that A holds. Then

η − ηε
8 ≤ η′ ≤ η + ηε

8 . (26)

By the condition of this case, we have λ ≤ η − ηε
8 and so η′ ≥ λ. Hence, the “if” condition in Step 6

of Procedure-B is satisfied and therefore Pr[AB|A] = ηλ/η′. Using (26), it is easy to work out that for
ε ≤ 4,

λ

(
1− ε

4

)
≤ λ

1 + ε
8

≤ λη

η′
≤ λ

1− ε
8

≤ λ

(
1 +

ε

4

)
.

This combined with the bound on Pr[A] shows that

λ

(
1− ε

2

)
≤ λ

(
1− ε

4

)
− λε

8
≤ Pr[AB] ≤ λ

(
1 +

ε

4

)
+

λε

8
≤ λ

(
1 +

ε

2

)
.

Put differently, we have

|Pr[AB]− λ| ≤ λε

2
. (27)

Case λ > η − ηε
8 . As in Case 1, let A be the event |η′ − η| ≤ ηε

8 . We identify two other events A1

and A2 as follows. A1 is the event η − ηε/8 ≤ η′ ≤ λ and A2 is the event λ ≤ η′ ≤ η + ηε/8. Clearly,
A = A1 ∨A2 and Pr[A] = Pr[A1] + Pr[A2]. Now, Pr[AB|A2] = ηλ/η′ and Pr[AB|A1] = η. When A1

occurs, η′ ≤ λ and so Pr[AB|A1] = η ≤ ηλ/η′. We can write

Pr[AB|A] =
Pr[AB|A1]Pr[A1] + Pr[AB|A2]Pr[A2]

Pr[A]

≤ ηλ

η′

≤ λ +
λε

4
.



The last inequality follows from the analysis of the expression ηλ/η′ when A occurs as done for Case 1.
Then, as in Case 1, we have Pr[AB] ≤ λ + λε/2.

We next consider the lower bound. Again, using the analysis of Case 1, we have

Pr[AB|A2] =
λη

η′
≥ λ− λε

4
.

Also,

Pr[AB|A1] = η ≥ λ ≥ λ− λε

4
.

Using these two bounds, we obtain Pr[AB|A] ≥ λ− λε
4 and consequently as in Case 1, Pr[AB] ≥ λ− λε

2 .
Thus, in both Cases 1 and 2, we have |Pr[AB]− λ| ≤ λε

2 . Recalling that AB is the event (ab|Y = y), we
have

|Pr[ab|Y = y]− λ| ≤ λε

2
. (28)

Summary. Thus, (28) shows that the probability that Procedure-B outputs 1 is “very close” to λ. Let
Σ′ be any subset of Σ. Then using (28) and Lemma 2, we have

|Pr[ab|Y ∈ Σ′]− λ| ≤ λε

2
. (29)

A.4 Separation of Random Variables

So far, we have been analysing probabilities without any reference to the actual adversarial game that
arises in the proof of security of the HIBE protocol (Theorem 2). We now relate this analysis to the
proof. First we identify the various random variables involved in the proof.

1. The quantities x1, . . . , xl; x′1, . . . , x
′
h and k1, . . . , kh.

2. The quantities y1, . . . , yl and y′1, . . . , y
′
h.

3. The public parameters U1, . . . , Ul and U ′
1, . . . , U

′
h. Note that the U ’s are fixed once the x’s, k’s and

the y’s are fixed. On the other hand, we could randomly choose the U ’s, the x’s, and the k’s and
then appropriately fix the y’s. This is the view that will be required in the following analysis.

4. The random bit γ chosen during the challenge step.
5. The random elements r’s chosen during the simulation of key extraction oracle queries.
6. The random bits used by the adversary.
7. The random instance of the DBDH problem.

The adversary’s view is determined by Items 3 to 7 above. Let y be the concatenation of all these
quantities and Σ be the set of all possible y’s. Let x be the concatenation of all the quantities in Item 1
above and Γ be the set of all possible x’s.

Suppose we fix a particular y in Σ. Then all the randomness encountered by the adversary is fixed
while we can still vary x uniformly at random from Γ . Thus, for a fixed y, the adversary becomes
deterministic and hence a particular value of y determines all the key extraction queries, the challenge
identity as well as the adversary’s guess γ′. We identify the subset Σ0 of Σ to be such that γ = γ′,
i.e., Σ0 = {y : γ = γ′}. This set represents all possible adversarial behaviours where the adversary is
successful (in breaking the protocol). Also, we define Σ1 = Σ \Σ0, i.e., Σ1 = {y : γ 6= γ′}.

Let f : Γ × Σ → {0, 1} be a function defined as follows. For x ∈ Γ and y ∈ Σ, f(x, y) is defined
to be 1 if the adversary does not abort during the simulation (i.e., if flg is set to 0 at the end of the
simulation). In Proposition 3, we have already obtained a lower bound λ on Pr[f(X, Y ) = 1|Y = y].



The evaluation procedure for f is exactly that of Procedure-A in Section A.2. Procedure-B bounds
the probability of outputting 1 by outputting 0 in certain cases, even when Procedure-A outputs 1. In
terms of the simulator, this means that Procedure-B aborts in certain cases even when Procedure-A
does not abort. This additional abort has been termed “artificial abort” by Waters [20].

When we interpret Procedure-B in terms of the security proof, several things should be kept in
mind. Steps 1 and 2 of Procedure-B correspond to the portion of the simulator which is concerned with
answering the adversary’s queries and generating the challenge. From the probability point of view, the
actual algebraic techniques for doing this is not important. The important thing to note is that for the
choice of x in Step 1 and the choice of y in Step 2 of Procedure-B the value of f(x, y) becomes fixed.
The condition f(x, y) = 1 corresponds to the fact that the simulator does not abort for this choice of
x and y. Steps 4 to 6 of Procedure-B correspond to the artificial abort stage. At this point y is fixed,
which means that the adversary’s queries and the challenge identity has been fixed. In Steps 4 and 5
of Procedure-B, x(1), . . . , x(k) are chosen uniformly at random from Σ and f(x(i), y) is evaluated. (The
quantities x(i)’s in Steps 4 and 5 of Procedure-B should not be confused with x1, . . . , xl and x′1, . . . , x

′
h

chosen as part of the security proof of Theorem 2.) In terms of the security proof, this means that
for the fixed choice of the adversary’s queries and the challenge identity, the simulation is executed a
total of k times with a different random choice of x1, . . . , xl and x′1, . . . , x

′
h each time. The evaluation

f(x(i), y) records whether the simulator has to abort on the ith execution. One important thing to note
is that this procedure does not require the adversary’s participation.

We now follow the analysis of Procedure-B given in Section A.3. Successively using Σ0 and Σ1 in
place of Σ′ in (29), we have,

λ− λε

2
≤ Pr[ab|γ = γ′],Pr[ab|γ 6= γ′],≤ λ +

λε

2
. (30)

Using this equation, the rest of the proof of Theorem 2 has already been described.

A.5 Why Artificial Abort?

An intuitive justification for artificial abort was provided by Waters. The argument is that it is possible
for |Pr[γ = γ′|ab]− 1/2| to be negligible even when |Pr[γ = γ′]− 1/2| is non-negligible. The problem is
that the probability of not aborting (in the actual game) depends on the adversary’s query. This creates
a problem in the probability calculation as we discuss below.

Let us go back to Equation (7). We have

Pr[Yi] =
1
2
(1− Pr[abi]) + Pr[Xi | abi]Pr[abi].

Now suppose, we have Pr[abi | Xi] = Pr[abi]. Then Pr[Xi | abi]Pr[abi] = Pr[abi]Pr[Xi] = λPr[Xi] and it
is easy to work out that

|Pr[X1]− Pr[X2]| ≤
|Pr[Y1]− Pr[Y2]|

λ
≤ εdbdh

λ
.

Thus, the independence condition Pr[abi | Xi] = Pr[abi] makes the analysis easy. Not having this
independence condition forces the use of artificial abort technique.

A.6 Knowing a Lower Bound is Not Sufficient

The artificial abort technique ensures that Pr[ab|γ = γ′] is between two bounds λ− and λ+, i.e.,

λ− ≤ Pr[ab|γ = γ′] ≤ λ+. (31)



Even without artificial abort, we know that if we substitute λ for λ− and 1 for λ+, then (31) holds. We
would like to point out these bounds are not good enough to obtain the desired relationship between
εhibe and εdbdh.

To see this, we go back to the proof of Claim in Theorem 2. In terms of the quantities in the proof of
the Claim, we have λ− ≤ Ai, Ci ≤ λ+, for i = 1, 2. Also, 2D = (A1B1−C1(1−B1))−(A2B2−C2(1−B2)),
where |D| ≤ εdbdh. Now, inequality calculations as in the proof of Claim shows that

|(λ+ + λ−)(B1 −B2)− 2D| ≤ λ+ − λ−.

Using the fact that |x| − |y| ≤ |x− y|, we have∣∣∣∣∣(λ+ + λ−)(B1 −B2)
2

∣∣∣∣∣− |D| ≤ λ+ − λ−

2
.

From this, we get

|B1 −B2| ≤
2

λ+ + λ−
εdbdh +

λ+ − λ−

λ+ + λ−
.

If λ− = λ and λ+ = 1, then we have

|B1 −B2| ≤
2

1 + λ
εdbdh +

1− λ

1 + λ
.

The second term is significantly high and cannot be upper bounded by a constant multiple of ε. On the
other hand, if we put λ− = λ− λε/2 and λ+ = λ + λε/2, then

|B1 −B2| ≤
εdbdh

λ
+

ε

2
.

The last expression provides the required relationship between ε and εdbdh, i.e., Equation (15).


