
Formalizing Human Ignorance
Collision-Resistant Hashing without the Keys

Phillip Rogaway

Dept. of Computer Science, University of California, Davis, California 95616, USA
Dept. of Computer Science, Chiang Mai University, Chiang Mai 50200, Thailand

Abstract. There is a rarely mentioned foundational problem involving
collision-resistant hash-functions: common constructions are keyless, but
formal definitions are keyed. The discrepancy stems from the fact that a
function H: {0, 1}∗ → {0, 1}n always admits an efficient collision-finding
algorithm, it’s just that us human beings might be unable to write the
program down. We explain a simple way to sidestep this difficulty that
avoids having to key our hash functions. The idea is to state theorems
in a way that prescribes an explicitly-given reduction, normally a black-
box one. We illustrate this explicit-reduction approach using well-known
examples involving digital signatures, pseudorandom functions, and the
Merkle-Damg̊ard construction.

1 Introduction

Foundations-of-hashing dilemma. In cryptographic practice, a collision-
resistant hash-function (an object like SHA-1) maps arbitrary-length strings to
fixed-length ones; it’s an algorithm H: {0, 1}∗ → {0, 1}n for some fixed n. But
in cryptographic theory, a collision-resistant hash-function is always keyed ; now
H: K×{0, 1}∗ → {0, 1}n where each K ∈ K names a function HK(·) = H(K, ·).
In this case H can be thought of as a collection or family of hash functions
H = {HK : K ∈ K}, each key (or index) K ∈ K, naming one.1

Why should theoretical treatments be keyed when practical constructions are
not? The traditional answer is that a rigorous treatment of collision resistance
for unkeyed hash-functions just doesn’t work. At issue is the fact that for any
function H: {0, 1}∗ → {0, 1}n there is always a simple and compact algorithm
that outputs a collision: the algorithm that has one “hardwired in.” That is, by
the pigeonhole principle, there must be distinct strings X and X ′ of length at
most n such that H(X) = H(X ′), and so there’s a short and fast program that
outputs such an X, X ′. The difficulty, of course, is that us human beings might
not know any such pair X, X ′, so no one can actually write the program down.

Because of the above, what is meant when someone says that a hash function
H: {0, 1}∗ → {0, 1}n is collision-resistant cannot be that there is no efficient
1 (a) We call K a key, but it is not secret; one chooses K from K and then makes it

public. (b) Writing H: K×{0, 1}∗ → {0, 1}n assumes a concrete-security formaliza-
tion; early formalizations were instead asymptotic. We’ll discuss both. (c) Alternative
terms for collision-resistant are collision-free and collision-intractable.

2 P. Rogaway

adversary that outputs a collision in H. What is meant is that there is no efficient
algorithm known to man that outputs a collision in H. But such a statement
would seem to be unformalizable—outside the realm of mathematics. One can’t
hope to construct a meaningful theory based on what Xiaoyun Wang [29, 30] does
or doesn’t know. Regarding a hash function like SHA-1 as a random element from
a family of hash functions has been the traditional way out of this quandary.

Let us call the problem we’ve been discussing the foundations-of-hashing
dilemma. The question is how to state definitions and theorems dealing with
collision-resistant hashing in a way that makes sense mathematically, yet ac-
curately reflects cryptographic practice. The treatment should respect our un-
derstanding that what makes a hash function collision-resistant is humanity’s
inability to find a collision, not the computational complexity of printing one.

Our contributions. First, we bring the foundations-of-hashing dilemma out
into the open. To the best of our knowledge, the problem has never received
more than passing mention in any paper. Second, we resolve the dilemma. We
claim that an answer has always been sitting right in front of us, that there’s
never been any real difficulty with providing a rigorous treatment of unkeyed
collision-resistant hash-functions. Third, we reformulate three fundamental re-
sults in cryptography (Theorems 1–4) in a significantly new way.

Suppose a protocol Π uses a collision-resistant hash-function H. Conven-
tionally, a theorem would be given whose statement captured the idea that the
existence of an effective adversary A against Π implies the existence of an ef-
fective adversary C (the collision-finder) against H. But this won’t work when
we have an unkeyed H: {0, 1}∗ → {0, 1}n since such an adversary C will always
exist. So, instead, the theorem statement will say that there is an explicitly given
reduction: given an adversary A against Π there is a corresponding, explicitly-
specified adversary C, as efficient as A, for finding collisions in H. So if someone
knows how to break the higher-level protocol Π then they know how to find
collisions in H; and if nobody can find collisions in H then nobody can break Π.
In brief, our solution to the foundations-of-hashing dilemma is to recast results
so as to assert the existence of an explicitly given reductions.

We’ll illustrate this explicit-reduction approach with three well-known ex-
amples. The first is the hash-then-sign paradigm, where a signature scheme is
constructed by hashing a message and then applying an “inner” signature to the
result. Our second example is the construction of an arbitrary-input-length PRF
by hashing and then applying a fixed-input-length PRF. Our third example is the
Merkle-Damg̊ard construction, where a collision-resistant compression-function
is turned into a collision-resistant hash-function. In all cases we will give a sim-
ple theorem that captures the security of the construction despite the use of an
unkeyed formalization for the underlying hash function.

We provide a concrete-security treatment for all the above. Giving our hash
functions a security parameter and then looking at things asymptotically would
only distance us, we feel, from widely-deployed, real-world hash-functions. That
said, we will also point out that unkeyed hash-functions work fine in the asymp-

Formalizing Human Ignorance 3

totic setting for the case of uniform adversaries. One eliminates keys but not
the security parameter, making it the length of the hash-function’s output.

Related work. The rigorous treatment of collision-resistant hash-functions
begins with Damg̊ard [7]. A concrete-security treatment was provided by Bellare,
Rogaway, and Shrimpton [3, 27]. Practical and widely-deployed cryptographic
hash-functions were first developed by Rivest [26] and later constructions, such
as SHA-1 [22], have followed his approach. Bellare et al.’s [1, Theorem 4.2] is an
early example of an explicitly constructive provable-security theorem-statement.
Using a simulator to model what an adversary must know or be able to do is
from Goldwasser, Micali, and Rackoff [14], while black-box reductions come from
Goldreich, Krawczyk, and Oren [11, 12, 23]. Brown [5, see esp. footnote 10] and
Devanbu et al. [10] prove the security of a protocol that employs an unkeyed
hash-function by constructively transforming a successful adversary against it
into a successful collision-finding one. Using such a transformation to evidence
a hash-function-based protocol’s security goes all the way back to early work by
Merkle [17, 19]. The option of speaking about reductions as a way of not having
to key a hash-function is mentioned by Halevi and Krawczyk [16, footnote 5].
In general, it is well understood that one can rephrase provable-security results
as assertions about explicitly given reductions, and a few researchers have also
understood, at some level, that this can be used to make formal sense of unkeyed
collision-resistant hash-functions. What we do in this paper is to raise these ideas
beyond the level of footnotes, offhand comments, and undocumented folklore.

2 Keyed Hash-Functions

We first give a conventional definition, in the concrete-security setting, for a
(keyed) collision-resistant hash-function. Beginning with the syntax, a keyed
hash-function is a pair of algorithms (K,H), the first probabilistic and the sec-
ond deterministic. Algorithm K, the key-generation algorithm, takes no input
and produces a string K, the key. As a special case, K uniformly samples from a
finite set, the key space, also denoted K. Algorithm H takes as input a string K,
the key, and a string X, the message, and it outputs a string of some fixed
length n, the output length, or the distinguished value ⊥. We often write HK(X)
for H(K, X), the output of H in input K and X. We assume there is a set X ,
the message space, such that HK(X) = ⊥ iff X 6∈ X . We assume that X con-
tains some string of length greater than n and that X ∈ X implies every string
of length |X| is in X . We will write a hash function as H: K × X → {0, 1}n,
or simply H, instead of saying “the keyed hash-function (K,H) with message
space X and output length n.” Hash functions and all other algorithms in this
paper are given by code relative to some fixed and reasonable encoding.

We define hash functions as algorithms, not functions, to enable providing
them as input to other algorithms and speaking of their computational complex-
ity. But a hash function H: K×X → {0, 1}n indeed induces a function H from
K × X to {0, 1}n, where K is now the support of the key-generation algorithm,
and usually it is fine to regard the hash function as being this function.

4 P. Rogaway

To measure the collision-resistance of hash function H: K × X → {0, 1}n
let C (for collision-finder) be an adversary, meaning, in this case, an algorithm
that takes in one string (the key) and outputs a pair of strings (the purported
collision). We let the advantage of C in finding collisions in H be the real number

Advcoll
H (C) = Pr[K $←K; (X, X ′) $←C(K) : X 6=X ′ and HK(X)=HK(X ′)]

that measures the chance that C finds a collision in HK = H(K, ·) if a random
key K is provided to it. Above and henceforth we assume that an adversary will
never output a string outside the message space X of the hash function it is
attacking (that is, HK(X) = HK(X ′) = ⊥ never counts as a collision).

As usual, an advantage of 1 means that C does a great job (it always finds
a collision) while an advantage of 0 means that C does a terrible job (it never
finds a collision). Since we are in the concrete-security setting we do not define
any absolute (yes-or-no) notion for H being coll-secure; instead, we regard a
hash function H as good only to the extent that reasonable adversaries C can
obtain only small advantage Advcoll

H (C). In order to obtain a useful theory,
“reasonable” and “small” need never be defined.

Trying to regard functions like SHA-1 as keyed. How can a real-world
hash-function like SHA-1 be seen as fitting into the framework above? One
possibility is that the intended key is the initial chaining vector; the constant
K = 67452301 EFCDAB89 98BADCFE 10325476 C3D2E1F0 can be regarded
as the key. In this case the key space is K = {0, 1}160 and what NIST did in
choosing SHA-1 was to randomly sample from this set. The problem with this
viewpoint is that, first of all, NIST never indicated that they did any such thing.
Indeed the constant K above does not “look” random (whatever that might
mean), and it seems as though the specific constant should hardly matter: likely
any method that would let one construct collisions in SHA-1 with respect to the
actual K-value would work for other K-values, too.

A second way one might regard SHA-1 as keyed is to say that NIST, in
designing SHA-1, considered some universe of hash functions {HK : K ∈ K}
and randomly selected this one hash function, SHA-1, from it. But, once again,
NIST never indicated that they did any such thing; all we know is that they
selected this one hash function. And it’s not clear what K would even be in this
case, or what HK would be for “other” functions in the family.

Fundamentally, both explanations seem disingenuous. They make random
sampling a crucial element to a definition when no random sampling ostensibly
took place. They disregard the basic intuition about what SHA-1 is supposed
to be: a fixed map that people shouldn’t be able to find collisions in. And they
distance the definition from the elegantly simple goal of the cryptanalyst: publish
a collision for the (one) function specified by NIST.

3 Unkeyed Hash-Functions

An unkeyed hash-function is a deterministic algorithm H that takes as input a
string X, the message, and outputs a string of some fixed length n, the output

Formalizing Human Ignorance 5

length, or the distinguished value ⊥. The message space of H is the set X =
{X ∈ {0, 1}∗ : H(X) 6= ⊥}. We assume that X contains some string of length
greater than n and that X ∈ X implies every string of length |X| is in X . We
will write a hash function as H: X → {0, 1}n, or simply H, instead of saying
“the unkeyed hash-function H with message space X and output length n.”

Let C be an adversary for attacking H—meaning, in this case, that C is an
algorithm that, with no input, outputs a pair of strings X and X ′ in X . We let
the advantage of C in finding collisions in H be the real number

Advcol
H (C) = Pr[(X, X ′) $← C : X 6= X ′ and H(X) = H(X ′)]

that measure the chance that C finds a collision. Note the spelling of superscript
col verses the earlier coll (the number of l’s is the number of arguments to H).

Following the discussion in the Introduction, we observe that for any unkeyed
hash-function H there is an efficient algorithm C (it runs in cn time and takes cn
bits to write down, for some small c) for which Advcol

H (C) = 1. We’re not going
to let that bother us.

4 Three Styles of Provable-Security Statements

Provable-security formulations. Let Π be a cryptographic protocol that
employs a (keyed or unkeyed) hash function H. Imagine, for now, that H is the
only cryptographic primitive that Π employs. To prove security of Π using a
reduction-based approach and assuming the collision-resistance of H one would
typically make a theorem statement that could be paraphrased like this:

existential form (C0): If there’s an effective algorithm A for attacking protocol
Π then there’s an effective algorithm C for finding collisions in H.

When cryptographic reductions were first introduced [13], theorems were stated
with this kind of existential-only guarantee. To this day, people almost always
state their provable-security results in such a manner.

Formalizing statement C0 works fine in the keyed setting but not in the
unkeyed one, because, there, the conclusion vacuously holds. But in the unkeyed
setting we can switch to a theorem statement that could be paraphrased as:

code-constructive form (C1): If you know an effective algorithm A for attacking
protocol Π then you know an effective algorithm C for finding collisions in H.

We are asserting the existence of a known “compiler” that turns A into C. Now
your belief in the security of Π stems from the fact that if some human being can
break Π then they can exhibit collisions in H. Statement C1 can be regarded
as a constructive version of C0. Continuing on this trajectory, we could say that
it’s enough to have access to A’s functionality, you don’t actually need the code:

blackbox-constructive form (C2): If you possess effective means A for attacking
protocol Π then you possess effective means C for finding collisions in H.

6 P. Rogaway

Here, “possessing effective means” might mean owning a tamper-resistant device,
or being able to run some big executable program, or it might even mean having
a brain in your head that does some task well. Possessing effective means does
not entail knowing the internal structure of those means; I might not know what
happens within the tamper-resistant device, the big program, or in my own brain.
Statement C2 is stronger than C1 because knowledge of an algorithm implies
access to its functionality, but having access to an algorithm’s functionality does
not imply knowing how it works.

The main observation in this paper is that, in the concrete-security setting,
it’s easy to give provable-security results involving unkeyed hash-functions as
long as you state your results in the code-constructive or blackbox-constructive
format, not the existential format. In the asymptotic setting, all three formats
work fine as long as you stick to uniform adversaries.

In high-level expositions, provable-security results are often summarized in
what would appear to be code-constructive or blackbox-constructive manner;
people say things like “our result shows that if someone can break this signature
scheme then they could factor large composite numbers.” But when we write out
our theorem statements, it has been traditional to adopt the existential format.
Usually the proof is constructive but the theorem statement is not.

Formalizing C1 and C2. In the next section we’ll formalize C1, in an exam-
ple setting, by asking for an explicitly given algorithm C that, given the code
for A, H, and Π, provides us our collision finder C. We’ll likewise formalize C2,
in three example settings, by asking for an explicitly given algorithm C that,
given black-box access to A, H, and Π, is itself our collision finder.

When an algorithm C has black-box access to an algorithm F we write the
latter as a subscript or superscript, CF or CF . We do not allow for C to see or
control the internal coins of F ; when C runs F , the latter’s coins are random
and externally provided. We do not object to C resetting F , so long as fresh
(secret) coins are issued to it each time that it is run.

Resource accounting. Let F be an algorithm (possibly stateful, probabilis-
tic, and itself oracle-querying). The algorithm F might be provided as an oracle
to some other algorithm. Let tF (`) be the maximum amount of time (in a con-
ventional, non-black-box model) to compute F on strings that total ` or fewer
bits (but count the empty string ε as having length 1). We simplify to tF for an
overall maximum. Let `F be the maximum of the total number of bits read or
written by F (over F ’s input, output, oracle queries, and their responses) (but
regard ε as having length 1). Let qF be the maximum number of queries made
by F before it halts (but no less than 2, to simplify theorem statements). We
assume that all algorithms halt after some bounded amount of time. When an
algorithm A calls out to an oracle for F , we charge to A the time to compute F
(even though the internal computation of F seems, to the caller, unit time).

As an example of the above, for a keyless hash-function H: {0, 1}∗ → {0, 1}n
we have that tH(`) is the maximal amount of time to compute H on any sequence
of inputs X1, . . . , Xq comprising ` total bits (where Xi = ε counts as 1-bit). As a
second example, for an adversary A attacking a signature scheme, the number `A

Formalizing Human Ignorance 7

includes the length of the public-key provided to A, the length of the signing
queries that A asks, the length of the signatures A gets in response, and the
length A’s forgery attempt. Since we insisted that A is bounded-time, if it is
provided an overly-long input or oracle response, it should only read (and is
only charged for) a bounded-length prefix.

5 Hash-then-Sign Signatures

The usual approach for digital signatures, going back to Rabin [24], is to sign a
message by first hashing it and then calling an underlying signature scheme. The
purpose of this hash-then-sign approach is two-fold. First, it extends the domain
of the “inner” signature scheme from {0, 1}n to {0, 1}∗ (where the hash-function’s
output is n bits). Second, it may improve security by obscuring the algebraic
structure of the inner signature scheme. We focus only on the first of these
intents, establishing the folklore result that the hash-then-sign paradigm securely
extends the domain of a signature scheme from {0, 1}n to {0, 1}∗. Our purpose
is not only to prove this (admittedly simple) result, but also to illustrate the
explicit-reduction approach for dealing with collision-resistant hash-functions.

First we establish the notation, using concrete-security definitions. A sig-
nature scheme is a three-tuple of algorithms Π = (Gen,Sign,Verify). Algo-
rithm Gen is a probabilistic algorithm that, with no input, outputs a pair of
strings (PK ,SK). (One could, alternatively, assume that Gen takes input of a
security parameter k.) Algorithm Sign is a probabilistic algorithm that, on input
(SK , X), outputs either a string σ

$← Sign(SK , X) or the distinguished value ⊥.
We require the existence of a message space X ⊆ {0, 1}∗ such that, for any SK ,
we have that σ

$← Sign(SK , X) is a string exactly when X ∈ X . We insist that X
contain all strings of a given length if it contains any string of that length. Al-
gorithm Verify is a deterministic algorithm that, on input (PK , X, σ), outputs
a bit. We require that if (PK ,SK) $←Gen and X ∈ X and σ

$← Sign(SK , X)
then Verify(PK , X, σ) = 1. We sometimes write SignSK (X) and VerifyPK (X, σ)
instead of Sign(SK , X) and Verify(PK , X, σ).

Let B be an adversary and Π = (Gen,Sign,Verify) a signature scheme.
Define Advsig

Π (B) = Pr[(PK ,SK) $←Gen : BSignSK (·)(PK) forges] where B is
said to forge if it outputs a pair (X, σ) such that VerifyPK (X, σ) = 1 and B
never asked a query X during its attack.

We now define the hash-then-sign construction. Let H: {0, 1}∗ → {0, 1}n be
an unkeyed hash-function and let Π = (Gen,Sign,Verify) be a signature scheme
with message space of at least {0, 1}n. Define from these primitives the signature
scheme ΠH = (Gen,SignH ,VerifyH) by setting SignH

SK (X) = SignSK (H(X))
and VerifyH

PK (X, σ) = VerifyPK (H(X), σ). The message space for ΠH is {0, 1}∗.
We are now ready to state a first theorem that describes the security of the

hash-then-sign paradigm.

Theorem 1 (hash-then-sign, unkeyed, concrete, C1-form). There ex-
ist algorithms B and C, explicitly given in the proof of this theorem, such

8 P. Rogaway

that for any unkeyed hash-function H: {0, 1}∗ → {0, 1}n, signature scheme
Π = (Gen,Sign,Verify) with message space at least {0, 1}n, and adversary A,
adversaries B = B(〈A,H〉) and C = C(〈A,H, Π〉) satisfy

Advsig
Π (B) + Advcol

H (C) ≥ Advsig
ΠH (A) .

Adversary B runs in time at most tA + tH(`A) + tSign(nqA) + c(`A + nqA) and
asks at most qA queries entailing at most `A + n bits. Adversary C runs in time
at most tA + tGen + tH(`A) + tSign(nqA+n) + c(`A + nqA) lg(qA). Functions B
and C run in time c times the length of their input. The value c is an absolute
constant implicit in the proof of this theorem. ♦

The theorem says that if you know the code for A, H, and Π, then you know the
code for adversary B (that attacks the inner signature scheme) and adversary C
(that attacks the hash function). You know that code because it’s given by
reduction functions B and C. These reduction functions are explicitly specified
in the proof of the theorem. Reduction function B takes in an encoding of A
and H and outputs the code for adversary B. Reduction function C takes in
an encoding of A, H, and Π = (Gen,Sign,Verify) and outputs the code for
adversary C.

One might argue that we don’t really care that B is constructively given—we
might have demanded only that it exist whenever A does. But it seems simpler
and more natural to demand that both adversaries B and C be constructively
given when we are demanding that one adversary be. Besides, it is nicer to
conclude you know a good algorithm to break Π than to conclude there exists
a good algorithm to break Π; it would, in fact, be an unsatisfying proof that
actually gave rise to a non-constructive attack on the inner signature scheme Π.

Theorem 1 does not capture statement C2 because access to the functionality
of adversary A might be more limited than possessing its code. To capture the
intent of statement C2, we can strengthen our theorem as follows:

Theorem 2 (hash-then-sign, unkeyed, concrete, C2-form). There exist
adversaries B and C, explicitly given in the proof of this theorem, such that
for any unkeyed hash-function H: {0, 1}∗ → {0, 1}n, signature scheme Π =
(Gen,Sign,Verify) with message space at least {0, 1}n, and adversary A, we
have that

Advsig
Π (BA,H) + Advcol

H (CA,H,Π) ≥ Advsig
ΠH (A) . (1)

Adversary B runs in time at most tA + tH(`A) + tSign(nqA) + c(`A + nqA) and
asks at most qA queries entailing at most `A + n bits. Adversary C runs in time
at most tA + tGen + tH(`A) + tSign(nqA+n) + c(`A + nqA) lg(qA). The value c is
an absolute constant implicit in the proof of this theorem. ♦

The theorem asserts the existence of an explicitly known forging adversary B
(for attacking Π) and an explicitly known collision-finding adversary C (for
attacking H), at least one of which must do well if the original adversary A does

Formalizing Human Ignorance 9

well (in attacking ΠH). Algorithm C employs A, as well as H, Gen, Sign, and
Verify , in a black-box manner. (Writing Π = (Gen,Sign,Verify) as a subscript
to C means giving each component algorithm as an oracle.) We may not care that
the dependency on H, Gen, Sign, and Verify is black-box, for there is no question
there about having access to the code, but it seems simpler to demand that
all dependencies be black-box when we require one to be. As with Theorem 1,
the final set of lines in Theorem 2 explain that the time and communications
complexity of algorithms B and C is insignificantly more than that of A.

Proof (of Theorem 2 and then Theorem 1). In the following exposition, compu-
tations of A, H, Gen, Sign, and Verify are done via oracle queries.

Construct collision-finding adversary CA,H,Π as follows. It calls Gen to deter-
mine output (PK ,SK) $←Gen. Then it calls adversary A on input PK . When A
makes its ith query, Xi, a request to sign the string Xi, algorithm C calls H

to compute xi = H(Xi), it calls Sign on input xi to compute σi
$← SignSK (xi),

and it returns σi in answer to A’s query. When A halts with output (X∗, σ∗)
algorithm C invokes H to compute x∗ = H(X∗). If x∗ is equal to xi for some
prior i, and X∗ 6= Xi, then algorithm C outputs the collision (xi, x∗) and halts.
Otherwise, algorithm C fails; it outputs an arbitrary pair of strings. The reader
can check that C has the claimed time complexity. The log-term accounts for
using a binary search tree, say, to lookup if x∗ is equal to some prior xi.

Construct forging-adversary BSign
A,H (PK) as follows. Algorithm B, which is

provided a string PK , runs black-box adversary A on input of PK . When A
makes its ith query, Xi, a request for a signature of Xi, algorithm B uses its
oracle H to compute xi = H(Xi). It then uses its Sign-oracle to compute σi ←
Sign(xi). It returns σi in answer to the adversary A. When A halts with output
(X∗, σ∗) algorithm B uses its H-oracle to compute x∗ = H(X∗). Algorithm B
halts with output (x∗, σ∗). The reader can check that B has the claimed time
and communications complexity. (The tSign term is because of our convention
to consistently charge algorithms for their oracle calls.)

We must show (1). Let a be the probability that A, in carrying out its attack
in the experiment defining Advsig

ΠH (A), outputs a valid forgery (X∗, σ∗) where
H(X∗) = H(Xi) for some i. Let b be the probability that A, in carrying out its
attack in the experiment defining Advsig

ΠH (A), outputs a valid forgery (X∗, σ∗)
where H(X∗) 6= H(Xi) for all i. Then a + b = Advsig

ΠH (A). We also have that
Advcol

H (CA,H,Π) ≥ a and Advsig
Π (BA,H) ≥ b, establishing Theorem 2.

As for Theorem 1, the reduction functions B and C are what is spelled out
in the definition of B and C, above, except that computation by code replaces
oracle invocations. (One can now see why we have selected our earlier conventions
about how to charge-out oracle calls: it is convenient that it has no impact on
the running time if one imagines calling an oracle for H, say, verses running that
code oneself.) It is a simple, linear-time algorithm that takes in A and H (which
are code) and outputs B (which is also code), or that produces C from A, H
and each component of Π.

10 P. Rogaway

For the remainder of our examples we will use the stronger, black-box style of
theorem statement corresponding to Statement C2 and Theorem 2.

6 Hash-then-PRF

As a second example of using our framework we consider a symmetric-key ana-
log of hash-then-sign, where now we aim to extend the domain of a pseudo-
random function (PRF) from {0, 1}n to {0, 1}∗. The algorithm, which we con-
sider to be folklore, is to hash the message X and then apply a PRF, setting
FH

K (X) = FK(H(X)) where H: {0, 1}∗ → {0, 1}n is the hash function and
F : K × {0, 1}n → {0, 1}m is the PRF. A special case of this construction is
using a hash function H: {0, 1}∗ → {0, 1}n and an n-bit blockcipher to make an
arbitrary-input-length message authentication code (MAC). A second special-
case is using a hash function H: {0, 1}∗ → {0, 1}2n and the two-fold CBC MAC
of an n-bit blockcipher to make an arbitrary-input-length MAC.

First the definitions, following works like [2]. An (m-bit output) pseudoran-
dom function (PRF) is an algorithm F : K×X → {0, 1}m where K and X are sets
of strings. We assume that there is an algorithm associated to F , which we also
call K, that outputs a random element of K. For X ,Y ⊆ {0, 1}∗ and Y finite, let
Func(X ,Y) be the set of all functions from X to Y. Endow this set with the uni-
form probability distribution for each input. For a PRF F : K×X → {0, 1}m let
Advprf

F (B) = Pr[K $←K : BFK(·)⇒ 1] − Pr[f $← Func(X , {0, 1}m) : Bf(·)⇒ 1].
The following quantifies the security of the hash-then-PRF construction FH .

Theorem 3 (hash-then-PRF, unkeyed, concrete, C2-form). There exist
adversaries B and C, explicitly given in the proof of this theorem, such that
for any unkeyed hash-function H: {0, 1}∗ → {0, 1}n, pseudorandom function
F : K × {0, 1}n → {0, 1}m, and adversary A,

Advprf
F (BA,H) + Advcol

H (CA,H,F) ≥ Advprf
F H (A) . (2)

Adversary B runs in time at most tA + tH(`A) + tF (nqA) + c(`A + nqA + mqA)
and asks at most qA queries entailing at most `A bits. Adversary C runs in time
at most tA + tH(`A)+ c(`A +nqA +mqA + tK) lg(qA). The value c is an absolute
constant implicit in the proof of this theorem. ♦

Proof. Construct collision-finding algorithm CA,H,F as follows. The algorithm
runs adversary A, which is given by an oracle. When A makes its ith oracle
query, Xi, algorithm C uses its H oracle to compute xi = H(Xi) and then, if
xi 6= xj for all j < i, adversary C returns a random yi

$←{0, 1}m in response
to A’s query. If xi = xj for some j < i, adversary C returns yi = yj . When A
finally halts, outputting a bit a, algorithm C ignores a and looks to see if there
were distinct queries Xi and Xj made by A such that xi = xj . If there is such a
pair, algorithm C outputs an arbitrary such pair (Xi, Xj) and halts. Otherwise,
algorithm C fails and outputs an arbitrary pair of strings. The time of C is at

Formalizing Human Ignorance 11

most that which is stated in the theorem. Note that C does not actually depend
on F beyond employing the values n and m.

Construct distinguishing algorithm Bf
A,H as follows. It begins by running

algorithm A, which is given by an oracle. When A makes its ith query, Xi,
algorithm B computes xi = H(Xi) and then asks its f oracle xi, obtaining
return value yi = f(xi). Algorithm B returns yi to A. When A finally halts,
outputting a bit a, algorithm B halts without output a. The resources of B are
as given by the theorem statement.

We have that Advprf
F H (A) −Advprf

F (BA,H) = Pr[AF H
K ⇒ 1] − Pr[AR⇒ 1] −

Pr[BFK

A,H ⇒ 1] + Pr[Bρ
A,H ⇒ 1] where ρ

$← Func(n, m) and R
$← Func({0, 1}∗,m)

and K
$←K. Now, from our definition of B, the first and third addend are

equal, Pr[AF H
K ⇒ 1] = Pr[BFK

A,H ⇒ 1], and so Advprf
F H (A) − Advprf

F (BA,H) =
Pr[Bρ

A,H ⇒ 1]− Pr[AR⇒ 1].
Let C be the event that, during B’s attack, there are distinct queries Xi

and Xj made by B such that H(Xi) = H(Xj). Let c = Pr[C] where the proba-
bility is taken over B’s oracle being a random function ρ

$← Func(n, m). Observe
that, from C’s definition, c = Advcol

H (CA,H,F). Now note that Pr[Bρ
A,H ⇒ 1] −

Pr[AR ⇒ 1] ≤ c because in the second experiment a random m-bit value is
returned for each new Xi and in the first experiment a random m-bit value
is returned for each new Xi except when xi = H(Xi) is identical to a prior
xj = H(Xj). This establishes Equation (2).

A result similar to Theorem 3, but for MACs instead of PRFs, can easily be
established. That is, if H: {0, 1}∗ → {0, 1}n is an unkeyed hash-function and
MAC: {0, 1}n → {0, 1}m is a good MAC [2] then MACH is a good MAC. Here,
as before, MACH is defined by MACH

K(M) = MACK(H(M)). The weaker as-
sumption (F is a good MAC instead of a good PRF) suffices to get the weaker
conclusion (FH is a good MAC).

7 Merkle-Damg̊ard without the Keys

We adapt the Merkle-Damg̊ard paradigm [8, 18] to the unkeyed hash-function
setting. To get a message space of {0, 1}∗ and keep things simple we adopt the
length-annotation technique known as Merkle-Damg̊ard strengthening.

First we define the mechanism. Let H: {0, 1}b+n → {0, 1}n be an unkeyed
hash-function, called a compression function, and define from it the unkeyed
hash-function H∗: {0, 1}∗ → {0, 1}n as follows. On input X ∈ {0, 1}∗, algorithm
H∗ partitions pad(X) = X ‖ 0p ‖ [|X|]b into b-bit strings X1 · · ·Xm where p ≥ 0
is the least nonnegative number such that |X| + p is a multiple of b and where
[|X|]b is |X| mod b encoded as a b-bit binary number. Then, letting Y0 = 0n, say,
define Yi = H(Xi ‖ Yi−1) for each i ∈ [1 ..m] and let H∗(X) return Ym. Note
that Advcol

H (C) = Pr[(X, X ′) $← C : X 6= X ′ and H(X) = H(X ′)] where C

must output X, X ′ ∈ {0, 1}b+n. We now show that if H is a collision-resistant
compression-function then H∗ is a collision-resistant hash-function.

12 P. Rogaway

Theorem 4 (Merkle-Damg̊ard, unkeyed, concrete, C2-form). Fix posi-
tive numbers b and n. There exists an adversary C, explicitly given in the proof
of this theorem, such that for any unkeyed hash-function H: {0, 1}b+n → {0, 1}n
and any adversary A that outputs a pair of string each of length less than 2b,

Advcol
H (CA,H) ≥ Advcol

H∗(A) . (3)

Adversary C runs in time at most tA +(`A/b+4)tH + c(`A + b+n). The value c
is an absolute constant implicit in the proof of this theorem. ♦

Proof. Construct the collision-finding adversary CA,H as follows. It runs the
adversary A, which requires no inputs and halts with and output X, X ′, each
string having fewer than 2b bits. Swap X and X ′, if necessary, so that X is
at least as long as X ′. Adversary C then computes X1 · · ·Xm = pad(X) and
X ′

1 · · ·X ′
m′ = pad(X ′) where each Xi and X ′

j is b-bits long. Using its H-oracle,
adversary C computes Yi-values by way of Y0 = 0n and, for each i ∈ [1 ..m],
Yi = H(Xi ‖ Yi−1). It similarly computes Y ′

j -values, defining Y ′
0 = 0n and Y ′

j =
H(X ′

j ‖Y ′
j−1) for each j ∈ [1..m′]. Now if X = X ′ or Ym 6= Y ′

m′ then adversary C
fails, outputting an arbitrary pair of strings. Otherwise, adversary C computes
the largest value i ∈ [1 ..m] such that Yi = Y ′

i−∆ but Xi ‖Yi−1 6= X ′
i−∆ ‖Y ′

i−1−∆

where ∆ = m−m′. (We prove in a moment that such an i exists.) Adversary C
outputs the pair of strings (Xi ‖ Yi−1, X ′

i−∆ ‖ Y ′
i−1−∆), which collide under H.

We must show that this value of i, above, is well defined. To do so, distinguish
two cases in which the adversary might succeed in finding a collision. For the first
case, |X| 6= |X ′|. In this case the definition of pad (together with the requirement
that |X|, |X ′| < 2b) ensures that Xm 6= X ′

m and so we will have i = m as the
index for a collision. In the second case, |X| = |X ′| and so, in particular, m = m′

and ∆ = 0. Because X 6= X ′ there is a largest value j ∈ [1 ..m] such that
Xj 6= X ′

j . It must be the case that Yj = Y ′
j because the messages X and X ′,

being identical on later blocks, would otherwise yield Ym = Y ′
m. But Xj 6= X ′

j

and Yj = Y ′
j and so j = i satisfies the definition above.

We have shown that whenever A outputs a collision of H∗, adversary CA,H

outputs a collision of H. The running time of CA,H is as claimed (the +4 accounts
for 0-padding and length annotation in the scheme), so we are done.

8 Asymptotic Treatment of Unkeyed Hash Functions

Definition. Since Damg̊ard’s original paper [7], the traditional treatment of
cryptographic hash-functions has been an asymptotic one. In this section we
show that as long as one is willing to ask for security only against uniform
adversaries, we don’t need the keys in the asymptotic formalization of collision-
resistant hash-functions either.

An asymptotic-and-unkeyed hash-function is a deterministic, polynomial-
time algorithm H that takes as input an integer n, the output length, encoded in
unary, and a string X, the message. It outputs either a string of length n or the
distinguished value ⊥. When we say that H is polynomial-time we mean that

Formalizing Human Ignorance 13

it is polynomial-time in its first input. We write Hn for the induced function
H(1n, ·). Define the message space of Hn as Xn = {X ∈ {0, 1}∗ : Hn(X) 6= ⊥}
and that of H as the indexed family of sets 〈Xn : n ∈ N〉. We assume X ∈ Xn

implies every string of length |X| is in Xn, and we assume that Xn contains a
string of length exceeding n.

Let C be an adversary for attacking asymptotic-and-unkeyed hash-function
H, meaning that C is an algorithm (not a family of circuits; we are in the
uniform setting) that, on input 1n, outputs a pair of strings X, X ′ ∈ Xn. We let
the advantage of C in finding collisions in H be the function (of n) defined by

Advcol
H (C, n) = Pr[(X, X ′) $← C(1n) : X 6= X ′ and Hn(X) = Hn(X ′)]

measuring, for each n, the probability that C(1n) finds a collision in Hn. We
say that H is collision-resistant if for every polynomial-time adversary C, the
function Advcol

H (C, n) is negligible. As usual, function ε(n) is negligible if for all
c > 0 there exists an N such that ε(n) < n−c for all n ≥ N .

An asymptotic treatment of hash-then-sign. With a definition in hand it
is easy to give an asymptotic counterpart for hash-then-sign, say. The existential
(C0-style) statement would say that if Π is a secure signature scheme with
message space 〈{0, 1}n : n ∈ N〉 and H is a collision-resistant asymptotic-and-
unkeyed hash-function with message space 〈Xn〉 then ΠH , the hash-then-sign
construction using H and Π, is a secure signature scheme with message space
〈Xn〉. Details follow, beginning with the requisite definitions.

Now in the asymptotic setting [15], a signature scheme is a three-tuple of al-
gorithms Π = (Gen,Sign,Verify). Algorithm Gen is a probabilistic polynomial-
time (PPT) algorithm that, on input 1n, outputs a pair of strings (PK ,SK). Al-
gorithm Sign is a PPT algorithm that, on input (SK , X), outputs either a string
σ

$← Sign(SK , X) or the distinguished value ⊥. For each n ∈ N we require the ex-
istence of a message spaces Xn ⊆ {0, 1}∗ such that, for any SK that may be out-
put by Gen(1n), we have that σ

$← Sign(SK , X) is a string exactly when X ∈ Xn.
We insist that Xn contains all strings of a given length if it contains any string of
that length. Algorithm Verify is a deterministic polynomial-time algorithm that,
on input (PK , X, σ), outputs a bit. We require that if (PK ,SK) $←Gen(1n) and
X ∈ Xn and σ

$← Sign(SK , X) then Verify(PK , X, σ) = 1. We sometimes write
SignSK (X) and VerifyPK (X, σ) instead of Sign(SK , X) and Verify(PK , X, σ).
The message space of Π is the collection 〈Xn : n ∈ N〉. Throughout, an algorithm
is polynomial time if it is polynomial time in the length of its first input. Now
let B be an adversary for a signature scheme Π = (Gen,Sign,Verify) as above.
Then define Advsig

Π (B,n)) = Pr[(PK ,SK) $←Gen(1n) : BSignSK (·)(PK) forges]
where B is said to forge if it outputs a pair (X, σ) such that VerifyPK (X, σ) = 1
and B never asked a query X during its attack. We say that Π is secure (in the
sense of existential unforgeability under an adaptive chosen-message attack) if
for any polynomial-time adversary B the function Advsig

Π (B,n) is negligible.
Let Π = (Gen,Sign,Verify) be a signature scheme (for the asymptotic set-

ting) with message space 〈Mn〉 whereMn ⊇ {0, 1}n. In this case we say that the

14 P. Rogaway

message space of Π is “at least” 〈{0, 1}n〉. Let H be an asymptotic-and-unkeyed
hash-function with message space 〈Xn〉. Then define the hash-then-sign construc-
tion ΠH = (Gen,SignH ,VerifyH) by setting SignH

SK (X) = SignSK (H(X)) and
VerifyH

PK (X, σ) = VerifyPK (H(X), σ). The message space for ΠH is the mes-
sage space for H. The security of the construction is captured by the following
theorem. We omit a proof because it only involves writing down the asymptotic
counterpart to the proof of Theorem 2.

Theorem 5 (hash-then-sign, unkeyed, asymptotic, C0-form). If Π is
a secure signature scheme with message space at least 〈{0, 1}n〉 and H is a
collision-resistant asymptotic-and-unkeyed hash-function having message space
〈Xn〉 then ΠH is a secure signature scheme with message space 〈Xn〉. ♦

Comparing Theorem 5 with Theorem 1 or 2, note that in stepping back to the
asymptotic setting we also reverted to the existential style of theorem statement.
But these choices are independent; one can given explicitly constructive (C1- or
C2-style) theorem statements for the asymptotic setting.

Existence and constructions. We do not investigate the complexity as-
sumption necessary to construct a collision-resistant asymptotic-and-unkeyed
hash-function, but we do regard this as an interesting question. Natural con-
structions and cryptographic assumptions would seem to present themselves by
adapting prior work like that in [7, 28].

9 Discussion

Definitions and theorems using unkeyed hash-functions are no more complex
than their keyed counterparts. For ease of comparison, we recall Damg̊ard’s defi-
nition of a collision-free hash-function in Appendix A [7], and we provide a keyed
treatment of hash-then-sign, in the concrete-security setting, in Appendix B.

Some readers may instinctively feel that there is something fishy about this
paper, even if they can’t quite say what it is. One possible source of uneasi-
ness is that, under our concrete-security treatment, no actual definition was
offered for when an unkeyed hash-function is collision-resistant. But concrete-
security treatments of cryptographic goals never define an absolute notion for
when a cryptographic object is secure. Similarly, it might seem fishy that, in
the asymptotic setting, we restricted attention to uniform adversaries. We prof-
fer that collision-resistance of an unkeyed output-length-parameterized hash-
function makes intuitive sense, but only in the uniform setting. Regardless, we
suspect that the greater part of any sense of unease stems from our community
having internalized the belief that an unkeyed treatment of collision-resistance
just cannot work. In Damg̊ard’s words, Instead of considering just one hash
function, we will consider families of them, in order to make a complexity theo-
retic treatment possible [7]. This refrain has been repeated often enough to have
become undisputed fact. But Damg̊ard’s was thinking in terms of asymptotic
complexity and nonuniform adversaries; when one moves away from this, and

Formalizing Human Ignorance 15

makes a modest shift in viewpoint about what our theorem statements should
say, what was formerly impossible becomes not just possible, but easy.

Going further, one could make the argument that it is historical tradition that
has made our hash functions keyed more than the specious argument (stated in
Section 1) about the infeasibility of formalizing what human beings do not know.
When Damg̊ard defined collision-resistance we already had well-entrenched tra-
ditions favoring asymptotic definitions, non-uniform notions of security, number-
theoretic constructions, general complexity-theoretic assumptions like claw-free
pairs, and existential-format (C0-style) theorem statements. These traditions
point away from the style of treatment given by this paper. In addition, it was
never Damg̊ard’s goal to demonstrate how to do provable-security cryptography
with an unkeyed hash-function H: {0, 1}∗ → {0, 1}n. While such hash functions
were known (eg, [20, 24, 31]), they probably were not looked upon as suitable
starting points for doing rigorous cryptographic work.

One place where the gap seems particularly wide between keyed hash-function
definitions and practical protocols that use cryptographic hash-functions is when
the latter is proven secure in the random-oracle (RO) model [4]. In such a case,
when one replaces the RO-modeled hash-function H by some concrete function
one preserves the function’s domain and range, H: X → Y for X ,Y ⊆ {0, 1}∗.
So replacing a RO by a concrete hash-function always takes you away from the
keyed-hash-function setting. Concretely, one can prove security for hash-then-
sign in the RO model but one can’t instantiate the RO with a keyed hash-function
without modifying the protocol first.

One might argue that what we have done to address the foundations-of-
hashing dilemma, mandating an explicitly-specified reduction, is a sensible way
to state provable-security results in general. After all, if a reduction actually
were non-constructive, it would provide a less useful guarantee. That’s because a
constructive reduction says something meaningful about cryptographic practice
now, independent of mathematical truth. For example, a constructive statement
along the lines “if you know how to break this signature scheme then you know
how to factor huge numbers” tells us that, right now, he who can do the one
task can already do the other. If it takes 100 years until anyone can factor huge
numbers then signature schemes that enjoyed the constructive provable-security
guarantee did protect against forgeries for all those intervening years.

The explicit-reduction approach is largely about language: how, exactly, we
formalize our ideas. Some may interpret this to mean that the topic is insignifi-
cant, being only an issue of language. But language matters. In a case like this,
language shapes our basic ideas, their development, and their utility.

In recent years MD4-family hash functions (MD4, MD5, SHA-0, SHA-1,
RIPEMD) have suffered an onslaught of successful attacks. This paper pro-
vides no guidance in how to recognize or build unkeyed hash-functions for which
mankind will not find collisions. Instead, it illustrates how, when you do have
such a hash function in hand, you can prove the security of a higher-level protocol
that uses it, obtaining the usual benefits of provable-security cryptography.

16 P. Rogaway

Acknowledgments

Some ideas in this paper go back to long-ago discussions with Mihir Bellare. Well
over a decade ago we talked about the significance of making theorem statements
explicitly constructive, which we did, for example, in [1, Theorem 4.2]. Mihir also
provided his typically astute comments on this paper’s first draft. Tom Shrimp-
ton likewise gave a thorough proofreading and critique. Jesse Walker, and others
later on, asked me about the foundations-of-hashing dilemma (of course not in
this language), motivating me to produce this writeup. Andy Okun pointed me
to the work of Carlo Cipolla, who considers human ignorance from a rather
different perspective [6]. Most of this paper was written while the author was
hosted by Chiang Mai University, Thailand. This work was supported by NSF
grant CCR-0208842 and a generous gift from Intel Corporation.

References

1. M. Bellare, R. Guérin, and P. Rogaway. XOR MACs: New methods for message
authentication using finite pseudorandom functions. Full version of CRYPTO ’95
paper. Available on-line from the author’s web page.

2. M. Bellare, J. Kilian, and P. Rogaway. The security of the cipher block chaining
message authentication code. J. of Computer and System Sciences (JCSS), vol. 61,
no. 3, pp. 362–399, 2000. Earlier version in CRYPTO ’94.

3. M. Bellare and P. Rogaway. Collision-resistant hashing: towards making UOWHFs
practical. Advances in Cryptology – CRYPTO ’97, LNCS, Springer, 1997.

4. M. Bellare and P. Rogaway. Random oracles are practical: a paradigm for design-
ing efficient protocols. First ACM Conference on Computer and Communications
Security (CCS ’93), ACM Press, 1993.

5. D. Brown. Generic groups, collision resistance, and ECDSA. Designs, Codes and
Cryptography, vol. 35, no. 1, pp. 119–152, 2005. Also cryptology ePrint report
2002/026.

6. C. Cipolla. Le leggi fondamentali della stupidità (The fundamental laws of human
stupidity). In Allegro ma non troppo con Le leggi fondamentali della stupidità,
Società editrice il Malino, Bologna, 1988.

7. I. Damg̊ard. Collision free hash functions and public key signature schemes. Ad-
vance in Cryptology – EUROCRYPT ’87, LNCS vol. 304, Springer, pp. 203–216,
1987.

8. I. Damg̊ard. A design principle for hash functions. Advances in Cryptology –
CRYPTO ’89, LNCS vol. 435, Springer, 1990.

9. A. De Santis and M. Yung. On the design of provably secure cryptographic hash
functions. Advance in Cryptology – EUROCRYPT ’90, LNCS vol. 473, Springer,
pp. 412–431, 1991.

10. P. Devanbu, M. Gertz, A. Kwong, C. Martel, G. Nuckolls, and S. Stubblebine.
Flexible authentication of XML documents. J. of Computer Security, vol. 12,
no. 6, pp. 841–864, 2004.

11. O. Goldreich and H. Krawczyk. On the composition of zero-knowledge proof sys-
tems. SIAM Journal on Computing, vol. 25, no. 1, pp. 169–192, Feb 1997. pro-
ceedings version in ICALP 1990.

12. O. Goldreich and Y. Oren. Definitions and properties of zero-knowledge proof
systems. J. of Cryptology, vol. 7, no. 1, pp. 1–32, 1994.

Formalizing Human Ignorance 17

13. S. Goldwasser and S. Micali. Probabilistic encryption. J. Comput. Syst. Sci.,
vol. 28, no. 2, pp. 270–299, 1984. Earlier version in STOC 85.

14. S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive
proof systems. SIAM Journal on Computing, vol. 18, no. 1, pp. 186–208, 1989.
Earlier version in STOC 85.

15. S. Goldwasser, S. Micali, and R. Rivest. A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. on Comp., vol. 17, pp. 281–308, 1988.

16. S. Halevi and H. Krawczyk. Strengthening digital signatures by randomized hash-
ing. Manuscript dated 6 June 2006. Proceedings version to appear in Advances in
Cryptology – CRYPTO 96, LNCS, Springer, 2006.

17. R. Merkle. Method of providing digital signatures. US Patent #4,309,569, 1982.
18. R. Merkle. One way hash functions and DES. Advances in Cryptology –

CRYPTO 89, LNCS vol. 435, Springer, pp. 428–446, 1990.
19. R. Merkle. Protocols for public key cryptosystems. Proceedings of the 1980 IEEE

Symposium on Security and Privacy, IEEE Press, pp. 122–134, 1980.
20. S. Matyas, C. Meyer, and J. Oseas. Generating strong one-way functions with

cryptographic algorithm. IBM Tech. Disclosure Bulletin, 27, pp. 5658–5659, 1985.
21. M. Naor and M. Yung. Universal one-way hash functions and their cryptographic

applications. Proceedings of the 21st Annual Symposium on the Theory of Com-
puting (STOC 89), ACM Press, 1989.

22. National Institute of Standards and Technology. FIPS PUB 180-2, Secure Hash
Standard, Aug 1, 2002.

23. Y. Oren. On the cunning power of cheating verifiers: some observations about
zero-knowledge proofs. 28th Annual Symposium on the Foundations of Computer
Science (FOCS 1987), IEEE Press, pp. 462–471, 1987.

24. M. Rabin. Digital signatures. In Foundations of secure computation, R. DeMillo,
D. Dobkin, A. Jones, and R. Lipton, editors, Academic Press, pp. 155–168, 1978.

25. O. Reingold, L. Trevisan, and S. Vadhan. Notions of reducibility between cryp-
tographic primitives. Theory of Cryptography Conference, TCC 2004, LNCS
vol. 2951, Springer, pp. 1–20, 2004.

26. R. Rivest. The MD4 message digest algorithm. Advance in Cryptology –
CRYPTO ’90, LNCS vol. 537, Springer, pp. 303–311, 1991.

27. P. Rogaway and T. Shrimpton. Cryptographic hash-function basics: definitions,
implications, and separations for preimage resistance, second-preimage resistance,
and collision resistance. Fast Software Encryption (FSE 2004), LNCS vol. 3017,
Springer, pp. 371–388, 2004.

28. A. Russell. Necessary and sufficient conditions for collision-free hashing.
Manuscript, 1995.

29. X. Wang, X. Lai, D. Feng, H. Chen, and X. Yu. Cryptanalysis of the hash func-
tions MD4 and RIPEMD. Advances in Cryptology – EUROCRYPT ’05, LNCS
vol. 3494, Springer, pp. 1–18, 2005.

30. X. Wang, Y. Yin, and H. Yu. Finding Collisions in the Full SHA-1. Advances in
Cryptology – CRYPTO ’05, LNCS vol. 3621, Springer, pp. 17–36, 2005.

31. R. Winternitz. A secure one-way hash function built from DES. Proceedings of
the IEEE Symposium on Inf. Security and Privacy, pp. 88-90, IEEE Press, 1984.

A The Traditional Definition of Collision Resistance

In this section we recall, for comparison, the traditional definition for a collision-
resistant hash function, as given by Damg̊ard [7]. The notion is keyed (meaning

18 P. Rogaway

that the hash functions have an index) and asymptotic. Our wording and low-
level choices are basically from [28].

A collection of collision-free hash-functions is a set of maps {hK : K ∈ I}
where I ⊆ {0, 1}∗ and hK : {0, 1}|K|+1 → {0, 1}|K| and where:

1. There is an EPT algorithm K that, on input 1n, outputs an n-bit string
K

$←K(1n) in I.
2. There is an EPT algorithm H that, on input K ∈ I and X ∈ {0, 1}|K|+1,

computes H(K, X) = hK(X).
3. For any EPT adversary A, ε(n) = Pr[K $←K(1n); (X, X ′) $←A(K) : X 6=

X ′ and HK(X) = HK(X ′)] is negligible.

Above, EPT stands for expected polynomial time, and a function ε(n) is negligible
if for every c > 0 there exists an N such that ε(n) < n−c for all n ≥ N . For
simplicity, we assumed that the domain of each hK is {0, 1}|K|+1. This can be
relaxed in various ways.

B Hash-then-Sign with a Keyed Hash-Function

In this section we provide a concrete-security treatment of the hash-then-sign
paradigm using a keyed hash-function instead of an unkeyed one. Our purpose is
to facilitate easy comparison between the keyed and unkeyed form of a theorem.

First we must modify our formalization of the hash-then-sign construction
to account for the differing syntax of a keyed and unkeyed hash function. Let
H: K×{0, 1}∗ → {0, 1}n be a keyed hash-function. Let Π = (Gen,Sign,Verify)
be a signature scheme with message space of at least {0, 1}n. Define from these
the signature scheme ΠH = (GenH ,SignH ,VerifyH) by saying that GenH

samples K
$←K and (PK ,SK) $←Gen and then outputs (〈PK ,K〉, 〈SK ,K〉);

define SignH
〈SK ,K〉(M) = SignSK (HK(M)); and define VerifyH

〈PK ,K〉(M,σ) =
VerifyPK (HK(M), σ). The message space for ΠH is {0, 1}∗. We have reused the
notation ΠH and SignH and VerifyH because the “type” of the hash function H
makes unambiguous what construction is intended.

The proof of the following, little changed from Theorem 2, is omitted.

Theorem 6 (hash-then-sign, keyed, concrete, C0). Let H: K×{0, 1}∗ →
{0, 1}n be a keyed hash-function, let Π = (Gen,Sign,Verify) be a signature
scheme with message space at least {0, 1}n, and let A be an adversary. Then
there exist adversaries B and C such that

Advsig
Π (B) + Advcol

H (C) ≥ Advsig
ΠH (A) .

Adversary B runs in time at most tA + tK + tH(`A) + tSign(nqA) + c(`A + nqA)
and asks at most qA queries entailing at most `A + n bits. Adversary C runs in
time at most tA + tGen + tK + tH(`A) + tSign(nqA+n) + c(`A + nqA) lg(qA). The
value c is an absolute constant implicit in the proof of this theorem. ♦

