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Abstract. Recently, Boneh, Gentry, and Waters ’05 presented an efficient broadcast encryption,
and Boneh, Sahai, and Waters ’06 presented an efficient traitor tracing scheme. The former
broadcast encryption result contains both a simpler chosen plaintext secure version and a more
complicated but chosen ciphertext secure version. The latter traitor tracing scheme is only chosen
plaintext secure. In this paper, we use the twin encryption technique of Naor and Yung ’90 to
add chosen ciphertext security to both papers. By“twinning”, we extend the simpler chosen
plaintext secure broadcast encryption to achieve chosen ciphertext security, and we extend the
chosen plaintext secure traitor tracing to achieve chosen ciphertext security. We also extend both
schemes to versions corresponding to threshold encryption which we call ”broadcast threshold
encryption” and ”threshold-traitor tracing”, i.e. tracing of threshold traitors. In these schemes,
any θ un-revoked users can decrypt while θ − 1 users cannot. The tracing is to a set of θ users.
We call this set a ”threshold-traitor”. Our broadcast threshold encryption is collusion resistant.
Our threshold-traitor tracing is collusion resistant in its traceability.

1 Introduction

In a broadcast encryption, a center publishes a public key and distributes private keys to a
number of users, and then can efficiently broadcast confidential messages to all users. In public
key broadcast encryption, anyone can use to public key to broadcast. For each broadcast, an
arbitrary set of users can be revoked of their decryption priviledges.

Broadcast encryption schemes often come with a traitor tracing scheme, where an adver-
sary capable of decryption can be traced to at least one of the broadcast decryption keys
it actually possesses. In public traitor tracing, no trapdoor is needed to trace the traitor, so
anyone can do it. In black-box traitor tracing, the adversary is modelled as a black box such
that none of its intermediate computations are observable and only inputs and outputs can
be observed and interacted with.

Recently, Boneh, Gentry, and Waters [1] presented an efficient broadcast encryption, and
Boneh, Sahai, and Waters [2] presented an efficient traitor tracing scheme. The broadcast
encryption result [1] contains both a simpler chosen plaintext secure version and a more
complicated but chosen ciphertext secure version. The traitor tracing scheme [2] is only chosen
plaintext secure. In this paper, we use the twin encryption technique of Naor and Yung
[10] to add chosen ciphertext security to both papers. By twinning, we extend the simpler
chosen plaintext secure broadcast encryption to achieve chosen ciphertext security, and we
extend the chosen plaintext secure traitor tracing to achieve chosen ciphertext security. We
also extend both schemes to versions corresponding to threshold encryption which we call
broadcast threshold encryption and threshold-traitor tracing, i.e. tracing of threshold traitors.
In these schemes, any θ users can decrypt while θ − 1 users cannot. Tracing is to a set of
un-revoked users. We call this set a threshold-traitor.
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Our Contributions are (N is the number of users, θ the threshold):
1. Boneh, Gentry, and Waters [1] included a simple chosen plaintext secure broadcast encryp-

tion and a more complicated chosen ciphertext secure broadcast encryption. We use Naor
and Yung’s twin encryption technique to add chose ciphertext security to [1]’s first simpler
broadcast encryption scheme. The ciphertext (resp. private key for each user, public key)
size remains O(1) (resp. O(1), O(N)).

2. Boneh, Gentry, and Waters [1] presented a chosen plaintext secure traitor tracing scheme.
We use Naor and Yung’s twin encryption technique to add chosen ciphertext security to
it. The ciphertext (resp. private key for each user, public key) size remains O(

√
N) (resp.

O(1), O(
√
N)).

3. We introduce the study of broadcast threshold encryption where the decryption required
an arbitrary set of θ unrevoked users. We also construct one by modifying out broadcast
encryption above. The ciphertext (resp. private key for each user, public key) size is O(1)
(resp. O(N θ−1), O(N θ)).

4. We introduce the study of threshold-traitor tracing (tracing of threshold traitor), where
the decryption requires an arbitrary set of θ unrevoked users, and the tracing is to a set
of θ users, which we call a threshold-traitor. We construct one by extending our traitor
tracing scheme above. The ciphertext (resp. private key for each user, public key) size is
O(N θ/2) (resp. O(N θ−1), O(N θ/2)).

[1]’s broadcast encryption is collusion resistant against semantic indistinguishability attack-
ers. So is our broadcast threhold encryption, in the single inconsistent player model. [2]’s
traitor tracing is a non-revoking traitor tracing and is collusion resistant against traceability
attackers. So is our threshold-traitor tracing, in the single inconsistent player model.

Our intuitions about twin encryption: Broadcast encryption [10] is an effective and
versatile method for upgrading a chosen plaintex secure encryption scheme to a chosen cipher-
text secure one. It is simple to use. Just prepare two key pairs, encrypt the plaintext twice
using the two keys, and then include a (zero-knowledge) proof that the ”twin ciphertexts”
decrypt to the same plaintext. Its security reduction is also easy, piggybacking on that of
the chose plaintext encryption it upgrades. The notorious drawback is inefficiency. The proof
that twin ciphertexts decrypt to the same can be long. Much more than just doubling the
ciphertext length and encoding and decryption complexities. The increase is especially large
when proofs of the the commit-challenge-response type is used.

In this paper, we use the twin encryption technique to upgrade the chosen plaintext
secure broadcast encryption in [1] (resp. the chosen plaintext secure traitor tracing in [2]) to
chosen ciphertext secure ones. Fortunately, the ciphertext length (resp. encoding complexity,
decoding complexity) only about doubles. We attribute our luck to two reasons: (1) The use of
gap Diffie-Hellman (GDP) groups in the scheme. (2) The luck of the original schemes in [1, 2].
Elaborations: (1) The proof that twin ciphertexts decrypt to the same plaintext involves only
proving DDH (Decisional Diffie-Hellman) tuples, i.e. proving that certain tuples (a, b, c, d) are
of the form (g, gx, h, hx). In the GDH group, such relations can be verified without additional
transmissions such as commits, challenges, or responses. (2) Encrypting twice carefully in
the broadcast encryption of [1] already contains sufficient relations to ensure that the twin
ciphertexts decrypt to the same plaintext. Encrypting twice in the traitor tracing scheme
of [2] is not sufficient, but only a small amount of additional ciphertext makes it sufficient.
Summarizing (1) and (2), the ciphertext length increase in our result is modest. Consequently,
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the computational complexity to compute the encryption (resp. the decryption) only increases
only modestly.

Our intuitions about thresholding: We construct our broadcast threshold encryption
(resp. threshold-traitor tracing) by a piggyback technique on the non-threshold predescessor.
Let N ′ =

(
N
θ

)
. A non-threshold broadcast encryption for N ′ users is used to construct a

broadcast threshold encryption of N users and threshold θ as follows. Each group of θ de-
cryptors is given a distinct group serial number φ, 1 ≤ φ ≤ N ′. The φ-th user secret key
uskφ in the N ′-user non-threshold broadcast encryption is (θ, θ)-secret-shared to all members
of group φ in the Setup Stage. To broadcast threshold encrypt to users in S, just broadcast
(non-threshold) encryption to all users φ1, · · · , φk, k =

(|S|
θ

)
, where each φ` corresponds to

a θ-size subset of S. Due to the structure of the user secret key in [1], uskφ = gα
φ
, collu-

sion attack on our broadcast threshold encryption is as hard as that on the (non-threshold)
broadcast encryption that it is based on.

Related results. In 1993, Fiat and Naor [4] explored broadcast encryption. Naor, et al.
[9] presented a revoking and tracing scheme. [7, 3, 6] presented further results. Other broad-
cast encryption results: please see the excellent Related Work in [1]. For traitor tracing see
the excellent Related Work in [2]. For threshold encryption, see Helger Lipmaa’s links at
http://www.cs.ut.ee/ lipmaa/crypto/link/threshold. Some papers on twin encryption and its
applications are [5, 8, 11]

2 Security Model

We follow the security model of broadcast encryption (resp. traitor tracing) from [1] (resp.
[2], except to add the threshold version. Brief summaries below.

2.1 Broadcast threshold encryption

A broadcast threshold encryption is a tuple (Setup, Encrypt, Decrypt) where

– Setup(λs, N , θ)7→ (pk, usk1, · · · uskN ). Upon inputs the security parameter λs, the number
of users N , and the threshold θ, outputs a public key pk, and user private keys uski,
1 ≤ i ≤ N .

– Encrypt(pk, M , S) 7→ ctxt. Upon inputs message M , public key pk, and a set of users
S ⊂ {1, · · · , N}, encrypt.

– Decrypt(S, i1, uski1 , · · · , iθ, uskiθ , ctxt, pk) 7→ M or InvalidCiphertext. Upon inputs pk, a
user set S ⊂ {1, · · · , N}, θ distinct users in S and their private keys, decrypt.

Correctness. For any S ⊂ {1, · · · , N}, any distinct i1, · · · , iθ ∈ S, any M , we have
Decrypt(S, i1, uski1 , · · · , iθ, uskiθ , Encrypt(pk,M, S), pk) = M

Game IND
1. Init. Adversary A outputs a set Sga ⊂ {1, · · · , N} it will not corrupt.
2. Setup. Simulator B runs Setup. Gives all uski, i /∈ Sga, to A.
3. Queries In arbitrary interleaf, A makes qD queries to the Decryption Oracle DO.
4. Gauntlet At a certain point and in arbitrary interleaf with queries to DO, A issues a

message M1, and a set of θ − 1 users S′ga = {i1, · · · , iθ−1} ⊂ {1, · · · , N} \ Sga, to B. B
select random message M0, flips a fair coin b, and sends the gauntlet ciphertext ctxtga =
Encrypt(pk,Mb, Sga ∪ S′ga).
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5. Guess At the end, A sends b̂, its estimate of b.

A wins if b̂ = b and A has never queried ctxtga to DO. Its advantage is its probability of
winning minus 1/2.

Definition 1. A broadcast threshold encryption is qD-CCA secure if it is correct, and no
PPT algorithm has a non-negligible advantage in Game IND. It is CPA secure if it is 0-CCA
secure.

2.2 Threshold-traitor tracing

A (non-revoking) threshold-traitor tracing is a tuple (Setup, Encrypt, Decrypt, Trace) where

– Setup(λs, N , θ)7→ (pk,TK, usk1, · · · uskN ). Note TK is the tracing key.
– Encrypt(pk, M) 7→ ctxt.
– Decrypt(i1, uski1 , · · · , iθ, uskiθ , ctxt, pk) 7→ M or InvalidCiphertext.
– TraceD(TK, ε). Upon inputs a black-box pirate decoder D, tracing key TK, and a proba-

bility parameter ε, 0 < ε < 1, output a family S = {TT1, · · · , TT`}. ∈ {1, · · · , N}θ. Each
TTi, consisting of θ distinct users, is called a threshold-traitor.

Remark: We adopt [2]’s model of traitor tracing which is non-revoking. Any set of θ distinct
users can always decrypt.

Correctness. For any distinct i1, · · · , iθ ∈ {1, · · · , N}, anyM , we haveDecrypt(i1, uski1 , · · · , iθ, uskiθ ,
Encrypt(pk,M), pk) = M

Game IND for semantic security
1. Init. Adversary A outputs a set Sga ⊂ {1, · · · , N} it will not corrupt.
2. Setup. Simulator B runs Setup. Gives all uski, i /∈ Sga, to A.
3. Queries In arbitrary interleaf, A makes qD queries to the Decryption Oracle DO.
4. Gauntlet At a certain point and in arbitrary interleaf with queries to DO, A issues a

message M1. B select random message M0, flips a fair coin b, and sends the gauntlet
ciphertext ctxtga = Encrypt(pk,Mb).

5. Guess At the end, A sends b̂, its estimate of b.

A wins if b̂ = b and it has never queried ctxtga to DO. Its advantage is its probability of
winning minus 1/2.

Tracing Game
1. Adversary A outputs a colluder set T ⊂ {1, · · · , N}.
2. Simulator B runs Setup. Gives all uski, i ∈ T , to A.
3. A outputs a pirate decoder D.
4. B runs TraceD(TK, ε) to obtain S.

We say A wins if both following conditions hold:

1. D is useful, i.e. Pr{D(Encrypt(pk,M)) = M} ≥ ε for random M .
2. S is either empty or not a subset of T θ.

The advantage of A is his probability of winning.

Definition 2. A threshold-traitor tracing is qD-CCA-secure if it is correct, qD-CCA secure,
no PPT algorithm has a non-negligible advantage in Game IND, and no PPT algorithm has
a non-negligible advantage in the Tracing Game. It is CPA-secure if it is 0-CCA secure.
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3 Intractability assumptions

Let ê : G1 × G1 → GT be a bilinear map, where G and GT are cyclic groups of prime order
q1, g is a generator of G1, and ê(ua, vb) = ê(u, v)ab for all u, v ∈ G1, and all a, b ∈ Z.

Definition 3. Let ê : G1 × G1 → GT be a pairing. The decisional `-BDHE (Bilinear Diffie-
Hellman Exponent) problem is, given G1-elements h, g, gα, · · · , gα`, gα`+2

, · · · , gα2`
, distin-

guish ê(g, h)α
`+1

versus random. The decisional `-BDHE (Bilinear Diffie-Hellman Exponent)
assumption is that no PPT algorithm can solve a random instance of the `-BDHE problem
with probability non-negligibly over half.

Definition 4. Let G be a group of prime order p. The decisional three-party Diffie-Hellman
(D3DH) problem is , given G1-elements g, A = ga, B = gb, C = gc, distinguish gabc from
random. The D3DH assumption is that no PPT algorithm can solve a random instance of the
D3DH problem with probability non-negligibly over half.

Definition 5. The subgroup decisional (SD) problem is , given a group G, its order n = pq,
where p, q are distinct unknown primes, G-elements gp, g, h where order(gp) = p, order(g) =
n, and order(h) has half-half probability of being p or n, distinguish whether order(h) = p. The
subgroup decisional (SD) assumption is that no PPT algorithm can solve a random instance
of the SD problem with probability non-negligibly over half. The bilinear subgroup decisional
(BSD) problem (resp. assumption) is the version when there is a pairing G×G→ GT and h
is replaced by an element of GT whose order equals p or n with half-half probability.

4 Chosen ciphertext secure broadcast encryption

We construct the captioned scheme, and give a security reduction.
Setup Upon input the security paramater λs, generate a pairing ê : G1 × G1 → GT ,

where order(G1) = q1 which is a prime. Generate random g ∈ Gp, α, γ1, γ2 ∈ Zq1 . Compute
v1 = gγ1 , v2 = gγ2 . Denote N the number of users and θ the threshold. Let s1 = N + 1 and
f1(i) = i, f2(j) = s1 − j, f3(i, j) = f1(i) + f2(j) = s1 − j + i. Let yi = gα

i
. The public key

is pk = (ê, N, θ, g, v1, v2, y1, · · · , yN , yN+2, · · · , y2N ). The private decryption key for User i is
uski = (gγ1αi , gγ2αi)

Encryption. Let Symm be a secure symmetric cipher, N ′ ≤ N , S = {i1, · · · , iN ′}, 1 ≤
i1 < · · · < iN ′ ≤ N . Upon inputs pk, M and a set of θ users S, randomly choose t and output
the ciphertext ctxt = (ctxt0, ctxt1, ctxt2, ctxt3) where

ctxt0 = gt, ctxt1 = vt1
∏
j∈S y

t
f2(j), ctxt2 = vt2

∏
j∈S y

t
f2(j),

ctxt3 = SymmK(M) where K = ê(g, g)tα
s1 = ê(gα

f1(`)
, gα

f1(s1−1−`)
)t

Decryption Upon inputs pk, S ⊂ {1, · · · , N}, i ∈ S, uski, ctxt, confirm

ê(ctxt0, v1

∏
j∈S

yf2(j)) = ê(g, ctxt1), ê(ctxt0, v2

∏
j∈S

yf2(j)) = ê(g, ctxt2) (1)

If not all confirmed, output InvalidCiphertext and abort. Else compute

K = ê(gα
f1(i)

, ctxt1)/ê(ctxt0, uski,1
∏

j′∈S\{i}

yf3(i,j′)) (2)
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and output M = Symm−1
K (ctxt3).

The size of the ciphertext (resp. the private key for each user, the public key) is O(1)
(resp. O(1), O(N)). Security reduction below.

Theorem 1. The above broadcast encryption is correct. It is CCA secure provided the Deci-
sional BDHE Assumption holds.

Proof Sketch: The proof of the chosen ciphertext security of a twin encryption is typically
simple, and it reduces to the same intractability assumption of the chosen plaintext secure
encryption it is based on. In the initialization, the Simulator S is set up to have either of
the twin decryption keys. To service the Decryption Oracle, S simply uses the key it has
to decrypt any legitimate ciphertext. Due to symmetry, the adversary A cannot distinguish
exactly which of the twin keys S possesses. So in the end-game extraction, A has a 50-50
chance of being extracted w.r.t. the other decryption key that S does not have.

The ”twin ciphertexts” are (ctxt0, ctxt1, ctxt3) and (ctxt0, ctxt2, ctxt3). It is crucial to
deduct that either of the twin ciphertexts decrypt to the same plaintext, as follows. Let
t = logg ctxt0, then Equation (1) implies ctxt1 = v1

∏
j yf2(i,j) and ctxt2 = v2

∏
j yf2(i,j).

Consequently the same session key K and plaintext M are recovered using Eq. (2) as is, or
using it with ctxt1 replaced by ctxt2. Remaining proof details are left to the full paper. ut

5 Broadcast threshold encryption

We construct the captioned scheme, and give a security reduction.
Setup Upon input the security paramater λs, generate a pairing ê : G1×G1 → GT , where

order(G1) = q1 which is a prime. Generate random g ∈ G1, α, γ,∈ Zq1 . Compute v = gγ .
Denote N the number of users and θ be the threshold value. Let N θ < 2−4q1 < s1 < 2−2q1.
Let s1 = N θ + 1 and adopt the shorthand notations i = (i1, · · · , iθ) and j = (j1, · · · , jθ) for
1 ≤ i1 < · · · < iθ ≤ N .

Let SS denote a secret sharing scheme and let SS(θ, i, k, s) denotes the k-th participant’s
share of the secret s where the threshold equals θ, the participants are i. We require that in
SS the secret is recovered by the commonplace ”linear combining”

s =
∏

1≤k≤θ
SS(θ, i, k, s)cbn(θ,i,k)

where cbn(·) is the combining coefficient. Let f1(i) =
∑

1≤k≤θ ikN
k−1, f2(j) = s1 − f1(j),

f3(i, j) = f1(i) + f2(j), S1 = {i}, Y1 = {f1(i)}, Y2 = {f2(j)}, Y3 = {f3(i, j)}. The public key is

pk = (ê, q0, N, θ, s1, g, v, {gα
k

: k ∈ Y1 ∪ Y2 ∪ Y3, k 6= s1}, cbn(·))

The private decryption key for User i is

{SS(θ, i, k, gγbα
f1(i)

) : b ∈ {1, 2}, i = ik for some k}

i.e. all secret pieces that User i is a participant of SS.
Encryption Let N ′ ≤ N θ, S = {i1, · · · , iN ′}, 1 ≤ i1 < · · · < iN ′ ≤ N , let Upon input

the public key param and message M and a set of θ users S, randomly choose t and output
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ciphertext ctxt = (ctxt0, ctxt1, ctxt2) where

ctxt0 = gt

ctxtb = vtb
∏

j∈S1∩Sθ
ytf2(j), b ∈ {1, 2}

ctxt3 = SymmK(M), K = yts1

Decryption Upon input param, S ⊂ {1, · · · , N}, i ∈ S, uski, and ctxt, verify ê(ctxtb, g) =
ê(ctxt0, vb

∏
j∈S1∩Sθ yf2(j)) for b = 1, 2. If not verified, output InvalidCiphertext and abort. Else

output M = Symm−1
K (ctxt2) where

K = ê(yf1(i), g
tγ1

∏
j∈S1∩S

ytf2(j)) · ê(ctxt0, yf1(i))
−1

ê(ctxt0,
∏

(j)∈(S1∩Sθ)\{(i)}

yf3(i,j))
−1

The second term above is computed by the recovery protocol of SS as follows

ê(ctxt0, yf1(i)) =
∏

1≤k≤θ
ê(ctxt0, SS(θ, i, k, yf1(i)))

cbn(θ,i,k) (3)

with each participating threshold decoder ik contributing one GT element ê(ctxt0, SS(θ, i, k,
yf1(i)).

The size of the ciphertext (resp. the private key for each user, the public key) is O(1) (resp.
O(N θ−1), O(N θ)). Note the above is a piggyback scheme on the non-threshold broadcast
scheme of Section 4 in the following sense: Each group of θ users denoted by i is mapped to
a distinct group serial number f1(i). Then the N θ-user instantiation of Section 4’s scheme is
used. To revoke users T ⊂ {1, · · · , N} in the broadcast threshold encryption, simply revoke all
groups i which intersects T . From this piggyback perspective, the following security theorem
is relatively easy and details are left to the full paper.

Theorem 2. Assume the secret sharing scheme is secure. The above threshold broadcast en-
cryption is correct. It is CCA secure provided the Decisional BDHE Assumption holds.

6 Chosen ciphertext secure (non-revoking) traitor tracing

We construct the captioned scheme, and give security reductions. We follow the convention
in [2] to specify the PLBE (Private Linear Broadcast Encryption) which specializes to the
broadcast encryption in the traitor tracing. PLBE is a sort of linearly revoking broadcast
encryption, where users can be linearly ordered such that the only revocations allowed are on
the first k users in that order.

Setup. N = m2. Generate pairing ê : G1 ×G1 → GT , where order(G1) = n = pq and p, q
are primes. Generate subgroups Gp,Gq C G1 with order(Gp) = p and order(Gq) = q. Select
random gp, hp ∈ Gp, gq, hq ∈ Gq. Set g = gpgq, h = hphq ∈ G1. Select random r1, · · · , rm, c1,
· · · , cm, α1, · · · , αm, r̄1, · · · , r̄m, c̄1, · · · , c̄m ∈ Zn, β ∈ Zq. The public key PK consists of:

ê, n, g, h, E = gβ, G1 = ê(gq, gq)βα1 , · · · , Gm = ê(gq, gq)βαm ,

E1 = gβr1q , · · · , Em = gβrmq , Ē1 = gβr̄1q , · · · , Ēm = gβr̄mq ,

F1 = hβr1q , · · · , Fm = hβrmq , F̄ 1 = hβr̄1q , · · · , F̄m = hβr̄mq ,

H1 = gc1 , · · · ,Hm = gcm , H̄1 = gc̄1 , · · · , H̄m = gc̄m ,
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The private key for user (x, y) is Kx,y = (gαxgrxcy , gαxgr̄xc̄y). (To ensure honesty, publish a
proof of the correct formation of PK, and send a proof of the correct formation of Kx,y to
user (x, y).)

TrEncrypt(PK,M , (i, j)): Select random t, w1, · · · , wm, s1, · · · , sm, v1,1, v1,2, v1,3, v1,4,
v1,5, v1,6, · · · , vi−1,1, vi−1,2, vi−1,3, vi−1,4, vi−1,5, vi−1,6, ∈ Zn. For each row x, compute and
send row ciphertext components (Rx, R̃x, Ax, Bx, R̄x, R̂x, Dx):

if x > i : Rx = gsxrxq , R̃x = hsxrxq , Ax = gsxtq , Bx = M ê(gq, g)αxsxt,

R̄x = gsxr̄xq , R̂x = hsxr̄xq , Dx = gsxq

if x = i : Rx = gsxrx , R̃x = hsxrx , Ax = gsxt, Bx = M ê(g, g)αxsxt,
R̄x = gsxr̄x , R̂x = hsxr̄x , Dx = gsx

if x < i : Rx = gvx,1 , R̃x = hvx,1 , Ax = gvx,2 , Bx = ê(g, g)vx,3 ,
R̄x = gvx,4 , R̂x = gvx,5 , Dx = gvx,6

For each column y compute and send the following column ciphertext components

if y ≥ j : Cy = gcythwy , C̃y = gwy , C̄y = gc̄ythwy

if y < j : Cy = gcythwyg
zp,y
p , C̃y = gwy , C̄y = gc̄ythwyg

zp,y
p

Encrypt(PK,M): Select random t, w1, · · · , wm, s1, · · · , sm ∈ Zn. For each row x, compute
and send the following row ciphertext components

Rx = Esxx , R̃x = F sxx , Ax = Esxt, Bx = MGsxtx ,

R̄x = Ē
sx
x , R̂x = F̄

sx
x , Dx = gsxq ,

For each column y compute and send the following column ciphertext components

Cy = Ht
yh

wy , C̃y = gwy , C̄y = H̄
t
yh

wy

Decrypt(x, y,Kx,y, ctxt): Verify, for each row x and each column y satisfying x > i, or
x = i and y ≥ j, that

ê(Rx, F ) = ê(R̃x, Ex), ê(R̄x, F̄ x) = ê(R̂x, Ēx), ê(Rx, Ēx) = ê(R̄x, Ex),
ê(Cy, h) = ê(C̃y, h), ê(C̄y, h) = ê(C̄y, h),

ê(Ax,Hy) = ê(Dx, Cy), ê(Ax, H̄y) = ê(Dx, C̄y)
(4)

If not all verified, output InvalidCiphertext and abort. Else output

M = Bxê(Rx, Cy)ê(Kx,y,1, Ax)−1ê(R̃x, C̃y)−1

Tracing. We use the black-box tracing in [2]. For each user (i, j), produce a number of
encryptions and ask the adversary A to decrypt. If A can correctly decrypt with non-negligible
probability, then (i, j) is a suspect. At the conclusion, select a random suspect to output. If
no suspect is found, output NoSuspect.

Theorem 3. Assume the secret sharing scheme is CCA secure provided the D3DH (decisional
3-party Diffie Hellman) assumption, the SD (subgroup decision) assumption, and the (BCD)
bilinear subgroup decision assumption all hold.
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Proof Sketch. The proof is similar to that in [2]. The modification for twinning is straight-
forward. Proof for twin encryption is typically simple. The security reduction is to the same
assumption as that of the chosen plaintext scheme that it is based on. However, we do note
that merely ”twinning” [2]’s broadcast encryption part is not sufficient to ensure that twin
ciphertexts decrypt to the same plaintext. More relations are needed. To combat this prob-
lem, we have added the ciphertext components denoted by Dx. With the inclusion of Dx’s
in the ciphertext, the verification relations Eq (4) imply that twin ciphertexts decrypt to the
same. Another crucial aspect of the proof beyond twin encryption considerations is to show
that traitor tracing is not compromised by adding Dx’s. Details are left to our future full
paper. ut

Efficiency. The size of our ciphertext (resp. private key for each user, public key) remains
the same as those in [2]. It is O(

√
N) (resp. O(1), O(

√
N)).

7 Threshold-traitor tracing

We construct the captioned scheme, without revoking capabilities, and reduce its chosen
ciphertext security to intractability assumptions. Our technique is a piggyback technique
on the non-threshold traitor tracing scheme of Section 6, much like the broadcast threshold
encryption scheme in Section 5 is a piggyback ride on its non-threshold version in Section 4.
Here is an outline:

Each group of θ distinct users i = (i1, · · · , iθ) is given a unique group serial number
f1(i). The Setup of the (non-threshold) traitor tracing of Section 6 with N ′ = nθ users is
used to setup public and non-threshold private keys. The private key of the f1(i)-th non-
threshold user’s private key is (θ, θ)-secret shared to members of the group corresponding to
i, namely i1, · · · , iθ. To encrypt for the threshold version with N users, use the non-threshold
encryption with N ′ users. To decrypt for the threshold version, an arbitrary group of θ users
i = (i1, · · · , iθ) collaborate to recover the group secret, which equals the f1(i)-th non-threshold
user’s private key, and equals gα

f1(i)
as in Section 5, is N ′-user non-threshold scheme. The

secret sharing scheme is required to have a ”linear combining” as in Eq. (3) which allows each
partipants to contribute its computations without revealing secrets. Therefore, the Setup,
Encrypt, and Decrypt can be accomplished by the above piggyback technique.

Tracing For each θ-user group i = (i1, · · · , iθ), generate a number of messages, encrypt
them and test if the black-box pirate decoder box can decrypt with probability above ε. If so,
i is a suspect. Else, it is not. At the conclusion, output all suspect i.

The size of the ciphertext (resp. the private key for each user, the public key) is O(N θ/2)
(resp. O(N θ−1), O(N θ/2)).

Theorem 4. Assume the secret sharing scheme is CCA secure provided the D3DH (decisional
3-party Diffie Hellman) assumption, the SD (subgroup decision) assumption, and the (BCD)
bilinear subgroup decision assumption all hold.

8 Discussions and Conclusions

We have used the twin encryption technique [10] to upgrade the simpler broadcast encryption
in [1] (resp. the (non-revoking) traitor tracing in [2]) from chosen plaintext security to chose
ciphertext security. We have also introduced the studies of broadcast threshold encryption
and threshold-traitor tracing.
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It remains open problem to improve the private key size in our threshold schemes, and to
upgrade to revoking traitor tracing.
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