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Abstract

Most cryptographic primitives require randomness (for example, to generate their secret keys). Usu-
ally, one assumes that perfect randomness is available, but, conceivably, such primitives might be built
under weaker, more realistic assumptions. This is known to be true for many authentication applica-
tions, when entropy alone is typically sufficient. In contrast, all known techniques for achieving privacy
seem to fundamentally require (nearly) perfect randomness. We ask the question whether this is just a
coincidence, or, perhaps, privacy inherently requires true randomness?

We completely resolve this question for the case of (information-theoretic) private-key encryption,
where parties wish to encrypt a b-bit value using a shared secret key sampled from some imperfect
source of randomness S . Our main result shows that if such n-bit source S allows for a secure
encryption of b bits, then one can deterministically extract roughly (b − log n) nearly perfect random
bits from S . Further, this bound is nearly tight: there exist sources S allowing one to perfectly encrypt
(log n− loglog n) bits, but not to deterministically extract even a single slightly unbiased bit.

Hence, to a large extent, true randomness is inherent for encryption: either the key length must
be exponential in the message length b, or one can deterministically extract nearly b almost unbiased
random bits from the key. In particular, the one-time pad scheme is essentially “universal”.
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1 Introduction

Randomness is important in many areas of computer science. It is especially indispensible in cryptography:
secret keys must be random, any many cryptographic taks, such as public-key encryption, secret sharing
or commitment, require randomness for every use. Typically, one assumes that all parties have access to a
perfect random source, but this assumption is at least debatable, and the question what kind of imperfect
random sources can be used in various applications has attracted a lot of attention.

Extraction. The easiest such class of sources consists of extractable sources for which one can deter-
ministically extract nearly perfect randomness, and then use it in any application. Although examples of
such non-trivial sources are known [vN51, Eli72, Blu86, LLS89, CGH+85, BBR88, AL93, CDH+00, DSS01,
KZ03, TV00], most natural sources, such as the so called entropy sources,1 [SV86, CG88, Zuc96] are easily
seen to be non-extractable. One can then ask a natural question whether perfect randomness is indeed
inherent for the considered application, or perhaps one can do with weaker, more realistic assumptions.
Clearly, the answer depends on the application.

Positive Results. For one such application domain, a series of celebrated results [VV85, SV86, CG88,
Zuc96, ACRT99] showed that entropy sources are sufficient for simulating probabilistic polynomial-time
algorithms — namely, problems which do not inherently need randomness, but which could potentially
be sped up using randomization. Thus, extremely weak imperfect sources can still be tolerated for this
application domain. This result was later extended to interactive protocols by Dodis et al. [DOPS04].

Moving to cryptographic applications, entropy sources are typically sufficient for authentication appli-
cations, since entropy is enough to ensure unpredictability. For example, in the non-interactive (i.e., one-
message) setting Maurer and Wolf [MW97] show that, for a sufficiently high entropy rate (specifically, more
than 1/2), entropy sources are indeed sufficient for unconditional one-time authentication (while Dodis and
Spencer [DS02] showed that smaller rate entropy sources are not sufficient to authenticate even a single bit).
Moreover, in the interactive setting, Renner and Wolf [RW03] show information-theoretic authentication
protocols capable of tolerating any constant-fraction entropy rate. Finally, Dodis et al. [DOPS04] consider
the existence of computationally secure digital signature (and thus also message authentication) schemes,
and, under (necessarily) strong, but plausible computational assumptions, once again show that entropy
sources are enough to build such signature schemes. From a different angle, [DS02] also show that for all
entropy levels (in particular, below 1/2) there exist “severely non-extractable” imperfect sources which are
nevertheless sufficient for non-trivial non-interactive authentication. Thus, good sources for authentication
certainly do not require perfect randomness.

Randomness for Privacy? The situation is much less clear for privacy applications, whose security
definitions include some kind of indistinguishability. Of those, the most basic and fundamental is the
question of (private-key) encryption, whose definition requires that the encryptions of any two messages
are indistinguishable. (Indeed, this will be the subject of this work.)

With one exception (discussed shortly), all the known results indictate that true randomness might
be inherent for privacy applications, such as encryption. First, starting with the Shannon’s one-time
scheme [Sha49], all the exisiting methods for building secure encryptions schemes, as well as other privacy
primitives, crucially rely on perfect randomness somewhere in their design. And this is true even in the
computational setting. Second, attempts to build secure encryption schemes (and other privacy primitives)

1Informally, entropy sources guarantees that every distribution in the family has a non-trivial amount of entropy (and
possibly more restrictions), but do not assume independence between different symbols of the source. In this sense they are
the most general sources one would wish to tolerate, since cryptography clearly requires entropy.
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based on known “non-extractable” sources, such as various entropy sources, provably failed, indicating that
such sources are indeed insufficient for privacy. For example, McInnes and Pinkas [MP90] showed that
unconditionally secure symmetric encryption cannot be based on entropy sources, even if one is restricted to
encrypting a single bit. This result was subsequently strengthened by Dodis et al. [DOPS04], who showed
that entropy sources are not sufficient even for computationally secure encryption (as well as essentially
any other task involving “privacy”, such as commitment, zero-knowledge and others).

The only reassuring result in the other direction is the work of Dodis and Spencer [DS02], who considered
the setting of symmetric encryption, where the shared secret key comes from an imperfect random source,
instead of being truly random. In this setting, they constructed a particular non-extractable imperfect
source, nevertheless allowing one to perfectly encrypt a single bit. On a surface, this might seem to solve
our question in the negative, suggesting that true randomness is not inherently required, at least for secure
encryption. However, this conclusion is somewhat rushed (and will actually be disproved by our results).
Indeed, we typically care about encrypting considerably more than a single bit. In such cases, it is certainly
unreasonable to expect that, say, encryption of b bits will necessarily imply extraction of exactly b bits
(which was indeed disproved by [DS02] for b = 1). One would actually expect that an implication, if true,
would lose at least a few bits (perhaps depending on the statistical distance ε from the uniform distribution
that we want our extraction to achieve).

For example, a source consisting of a single uniform distribution on N = 2b(1 + ε) values clearly allows
one to perfectly encrypt b bits (via masking the message by adding to it the secret key modulo N). However,
it is a simple exercise that any extractor attempting to extract more that (b− log

(

1
ε

)

) bits would have a
contant statistical distance from the uniform distribution.2 On the other hand, this example certainly does
not show that such random source has no “true randomness” in it, because it does: first, it is a uniform
distribution (albeit not on an even power of 2 values), and, second, one can trivially extract almost b bits
which are statistically close to uniform (concretely, b− log

(

1
ε

)

bits of statistical distance ε from uniform).

In particular, the results of [DS02] leave open the following extreme possibilities: (a) perhaps any source
encrypting already two bits must be extractable; or (b) perhaps there exists an n-bit source allowing one
to perfectly encrypt almost n bits, and yet not to extract even a single bit. Clearly, possibility (a) would
show that true randomness is inherent for encryption, while possibility (b) that it is not. As we will see
shortly, both (a) and (b) happen to be false, but our point is that the results of [DS02] regarding one-bit
encryption and extraction do not answer what we feel is the “real” question for private-key encryption:

Assume some imperfect source allows for a secure encryption of b bits.
Does it neccesarily allow for extraction of at least one (and, hopefully, close to b) nearly perfect bits?

Our Result. We completely resolve the above question. Our main result shows that if an n-bit source
S allows for a secure encryption (even slightly biased), then one can deterministically extract roughly
(b − log n) nearly perfect random bits from S .3 Moreover, this bound is essentially tight: there exists
imperfect sources allowing one to perfectly encrypt b ≈ log n − loglog n bits, from which one cannot

2In the extreme case b = 1, this says that a uniform distribution on {0, 1, 2} allows one to encrypt a bit, but not to extract a
bit, which is obvious. Indeed, the actual contribution of [DS02] was not to show that the separation between one bit encryption
and one bit extraction exists — as we just saw, this is trivial — but to show (a) a very strong level of separation and, more
difficultly, (b) that the separation holds even if one additionally requires all the distributions in the imperfect source to have
high entropy.

3A bit more precisely, b − log n − 2 log
`

1
ε

´

bits within statistical distance (ε + δ) from uniform, where δ is the bias of the
encryption scheme; see Theorem 1(a).
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deterministically extract even a single slightly unbiased bit (see Theorem 1(b)).4 Hence, to a large extent,
true randomness is inherent for (information-theoretic) private-key encryption:

Either the key length n must be exponential in the message length b, or
One can deterministically extract nearly b almost unbiased random bits from the key.

In particular, in the case when b is large enough, so that it is infeasible to sample more than 2b (imperfect)
bits for one’s secret key, our result implies the following. In order to build a secure b-bit encryption scheme,
one must come up with a source of randomness from which can anyway deterministically extract almost
b nearly random bits! Notice, since such extracted bits can then be used as a one-time pad, we get that
any b-bit encryption scheme can in principle be converted to a “one-time-pad-like” scheme capable of
encrypting nearly b bits! In this sense, our results show that, for the purpose of information-theoretically
encrypting a “non-trivial” number of bits, the one-time pad scheme is essentially “universal”.5

Organization. We define the needed notation in Section 2, which also allows us to formally state our
main result (Theorem 1). In Section 3 we prove that encryption of b bits using an n-bit key implies
extraction of roughly b − log n random bits. In Section 4, which is the main technical section (and is
further split into subsections), we show that encryption of up to (log n− loglog n) bits does not necessarily
imply extraction of even a single bit. Finally, in Section 5 we conclude and state some open problems.

2 Notation and Definitions

We use calligraphic letters, like X , to denote finite sets. The corresponding large letter X is then used to
denote a random variable over X , while the lowercase letter x — a particular element from X . UX denotes
the uniform distribution over X . A source S over X is a set of distributions over X . We write X ∈ S to
state that S contains a distribution X.

The statistical distance SD(X1, X2) between two random variables X1, X2 is

SD(X1, X2) =
1

2

∑

x∈X

∣

∣ Pr[X1 = x]− Pr[X2 = x]
∣

∣ (1)

If SD(X1, X2) ≤ ε, this means that no (even computationally unbounded) distinguisher D can tell apart a
sample from X1 from a sample from X2 with an advantage greater than ε.

Definition 1 A random variable R over R is ε-fair if SD(R, UR) ≤ ε. Given a source S over some set
K, a function Ext : K → R is an (S , ε)-extractor if for all K ∈ S , Ext(K) is ε-fair:

SD(Ext(K), UR) ≤ ε (2)

If such Ext exists for S , we say that S is (R, ε)-extractable. ♦

Definition 2 An encryption scheme E over message space M, key space K and ciphertext space C is a
pair of algorithms Enc : K×M→ C and Dec : K×C →M, which for all keys k ∈ K and messages m ∈M
satisfies Dec(k,Enc(k, m)) = m.

4This result can also be seen as a non-trivial extension of the separation result of [DS02] from 1-bit to (roughly) (log n)-bit
encryption. Indeed, without the entropy constraints, our proof is considerably more involved than that of [DS02].

5Of course, it is completely possible that the deterministic extractor that we show exists is much less efficient than the
original encryption scheme. Moreover, we do lose log n + 2 log

`

1
ε

´

bits by such turning of our scheme into a “one-time pad”.
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Given a source S over K, we say that the encryption scheme E is (S , δ)-secure if for all messages
m1, m2 ∈M and all distributions K ∈ S we have

SD(Enc(K, m1), Enc(K, m2)) ≤ δ (3)

If S admits some (S , δ)-secure encryption E over M, we say that S is (M, δ)-encryptable.
When δ = 0, we say that E is perfect on S , and S is perfectly encryptable (onM). ♦

Throughout we will use the following capital letters to denote the cardinalities of various sets: key set
cardinality |K| = N , message set cardinality |M| = B, ciphertext set cardinality |C| = S, and extraction
space cardinality |R| = L. Although our results are general, for historical reasons it is customary to
translate the results into “bit-notation”. To accomodate these conventions, we let b = log B, ℓ = log L,
n = log N (here and elsewhere, all the logarithms are base 2), and will use the terms “b-bit encryption”,
“ℓ-bit extraction” or “n-bit key” with the obvious meanings attached. Moreover, we will slightly abuse the
terminology and say that a source S is (1) n-bit if it is over a set K and |K| = N ; (2) (ℓ, ε)-extractable
if it is (R, ε)-extractable and |R| = L, and (2) (b, δ)-encryptable if it is (M, δ)-encryptable and |M| = B.
Clearly, when b, ℓ or n are integers, this terminology is consistent with our intuitive understanding.

With this in mind, our main result can be restated as follows:

Theorem 1 Secure encryption of b bits with an n-bit key requires nearly perfect randomness (in fact,
almost b random bits!) if and only if b is greater than log n. More precisely,

(a) ∀ε > 0, if S is (b, δ)-encryptable, then S is (b−log n−2 log
(

1
ε

)

, ε+δ)-extractable. Thus, encryption
of b > log n bits implies extraction of roughly (b− log n) nearly perfect bits.

(b) For any b ≤ log n− loglog n−2,6 there exists S which is (b, 0)-encryptable, but not (1, ε)-extractable,

where ε = 1
2 − 2

(2b− n

2b ) ≥ 1
2 −

1
16n2 . Thus, even perfect encryption of nearly log n bits does not imply

extraction of even a single slightly unbiased bit.

3 Encryption ⇒ Extraction if b > log n

In this section we prove the implication given in Theorem 1(a), which shows that encryption of b bits implies
extraction of nearly b bits. Assume E = (Enc, Dec) is (S , δ)-secure over message space M, ciphertext
space C and key space K. Let ℓ = b− log n− 2 log

(

1
ε

)

, L = 2ℓ = Bε2/ log N , and R be an arbitrary set of
cardinality L. Also, for convenience let us identify the message space M with {0, . . . , B − 1}.

We construct our extractor Ext : K → R in two steps. First we construct a special “ciphertext packing”
function f : C → R. One can view such f as throwing ciphertexts (or “balls”) c into “bins” f(c). Pretend
we have the needed packing f . Now let us fix any key k ∈ K and see where (necessarily distinct)7 ciphertexts
Enc(k, 0), . . . ,Enc(k, B − 1) end up under our packing f . To see this, given any bin r ∈ R, let Xk,r(f)
denote the number of messages m ∈M whose “balls” Enc(k, m) were thrown into bin r; i.e., m’s such that
f(Enc(k, m)) = r. Since there are B balls and L bins, on average every bin should contain roughly B/L
ciphertext balls Enc(k, m). Of course, depending on f , in reality some bins will have slightly more, and
some slightly less than B/L ciphertexts under key k. What will determine a suitable f for us is exactly
the fact that every bin should have very close to B/L ciphertexts.

6The formula also holds for b = log n − loglog n − 1, but yields a slightly smaller ε = 1
2
− 1

4 log n
.

7This follows from the fact that all decryptions Dec(k, Enc(k, m)) = m are distinct.
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Lemma 1 For our setting of |R| = L, there exists a packing f : C → R such that for all k ∈ K and r ∈ R
we have

∣

∣

∣

∣

Xk,r(f)−
B

L

∣

∣

∣

∣

≤ 2ε ·
B

L
(4)

Proof: We prove the lemma by showing that the probability that a random f does not satisfy the condition
above is less than 1. Therefore, there exists an f which satisfies the condition.

Let us fix a particular key k ∈ K and a particular output bin r ∈ R. Then the number Xk,r(f) is a
random variable (over the choice of f) which counts the number of messages m such that f(Enc(k, m)) = r.
We can rewrite Xk,r(f) = X0 + . . . + XB−1, where the indicator variable Xm is 1 if f(Enc(k, m)) = r,
and 0 otherwise. Since f is random and all balls Enc(k, 0), . . . ,Enc(k, B − 1) are distinct, all Xm’s are
independent and Pr[Xm = 1] = 1/L. Thus, E[Xk,r(f)] = B/L, and using the standard Chernoff’s bound
(e.g., see [Sho05], theorem 6.13.iii), we get

Pr

[
∣

∣

∣

∣

Xk,r(f)−
B

L

∣

∣

∣

∣

≥ 2ε ·
B

L

]

≤ 2 · e−2ε2B/L (5)

Recalling that we set L = Bε2/ log N , the above probability is at most 2/N2. Taking now the union bound
over all k ∈ K and r ∈ R, we get that the probability that random f fails for any k and r is at most
2L/N < 1, as needed.

Corollary 2 For our setting of |R| = L, there exists a packing f : C → R such that for all distributions
K on K, we have

SD(f(Enc(K, UM)), UR) ≤ ε (6)

Proof: Fix f satisfying Equation (4) in Lemma 1, and let Xk,r = Xk,r(f). Then for any k and r, it is easy
to see that Equation (4) can be rewritten as follows:

Pr
UM

[f(Enc(k, UM)) = r] =
Xk,r

B
∈

[

(1− 2ε) ·
1

L
, (1 + 2ε) ·

1

L

]

(7)

Now, take any distribution K and let pk = Pr[K = k]. Then we get 8

SD(f(Enc(K, UM)), UR) =
1

2

∑

r

∣

∣

∣

∣

∣

∑

k

pk · Pr
UM

[f(Enc(k, UM)) = r]−
1

L

∣

∣

∣

∣

∣

=
1

2

∑

r

∣

∣

∣

∣

∣

∑

k

pk ·

(

Pr
UM

[f(Enc(k, UM)) = r]−
1

L

)

∣

∣

∣

∣

∣

≤
1

2

∑

r

∑

k

pk ·

∣

∣

∣

∣

Pr
UM

[f(Enc(k, UM)) = r]−
1

L

∣

∣

∣

∣

Eq.(7)

≤
1

2

∑

r

∑

k

pk ·
2ε

L
= ε

8The derivation below is simply the general relation between the ℓ1- and ℓ∞-norms. See also Remark 1.
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So far we only used the fact the E is correctly decryptable, but did not use the security of E un-
der the source S . Recall, the (S , δ)-security of E implies that for any K ∈ S and m ∈ M we have
SD(Enc(K, 0), Enc(K, m)) ≤ δ. Since this holds for any m, it also holds for any distribution M on m,
including the uniform distribution UM:

SD(Enc(K, 0), Enc(K, UM)) ≤ δ (8)

We can finally collect all the pieces together. We fix f given by Corollary 2 and extend the ciphertext
packing f to an extractor Ext : K → R by simply setting Ext(k) = f(Enc(k, 0)). We now claim that Ext is
an (S , ε + δ)-extractor. Take any K ∈ S . Then, by the triangle inequality,

SD(Ext(K), UR) = SD(f(Enc(K, 0)), UR)

≤ SD(f(Enc(K, 0)), f(Enc(K, UM))) + SD(f(Enc(K, UM)), UR)

Finally, the first term is at most δ by Equation (8), since the application of f can only reduce the
statistical distance, while the second term is at most ε directly from Equation (6). This means that for all
K ∈ S , SD(Ext(K), UR) ≤ δ + ε, which completes the proof.

Remark 1 Assume the encryption scheme E satisfies a slightly stronger property (which is always satisfied
by perfect encryption with δ = 0). Namely, for every K ∈ S , every messages m1, m2 ∈ M and every
ciphertext c ∈ C, we have

|Pr[Enc(K, m1) = c]− Pr[Enc(K, m2) = c]| ≤ 2δ · Pr[Enc(K, m2) = c]

then we would prove the existence of extractor Ext such that for every K ∈ S and every r ∈ R,

Pr[Ext(K) = r] ∈

[

1− (ε + δ)

L
,
1 + (ε + δ)

L

]

4 Encryption 6⇒ Extraction if b < log n− loglog n

In this section we prove the non-implication given in Theorem 1(b), which shows that even perfect encryp-
tion of nearly log n bits does not necessarily imply extraction of even a single bit. For that we need to
define a specific b-bit encryption scheme E = (Enc, Dec) and a source S , such that S is perfect on E , but
“non-extractable”. The proof will proceed in several stages.

4.1 Defining Good Encryption E

As the first observation, we claim that we only need to define the encryption scheme E , and then let the
source S = S (E) be the set of all key distributions K making E perfect:

S (E) = {K | ∀ m1, m2 ∈M, c ∈ C ⇒ Pr[Enc(K, m1) = c] = Pr[Enc(K, m2) = c]}

Indeed, S (E) is the largest source which is (b, 0)-encryptable by means of E , so it is the hardest one to
extract even a single bit from. We call distributions in S (E) perfect (for E).

Although we are not required to do so, let us intuitively motivate our choice of E before actually defining
it. For that it is very helpful to view our key space K in terms of the encryption scheme E as follows. Given
any E = (Enc, Dec), we identify each key k ∈ K with an ordered B-tuple of ciphertexts (c1, . . . , cB), where
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Enc(k, m) = cm. Technically, some B-tuples might repeat for several keys, but it is easy to see that such
“repeated” keys will only complicate our job.9 More interestingly, some B-tuples might not correspond to
valid keys. For example, this is the case when ci = cj for some i 6= j, since then encryptions of i and j
are the same under this key. Intuitively, however, the larger is the set of valid B-tuples of ciphertexts, the
more variety we have in the set of perfect distributions S (E), and the harder it would be to extract from
S (E). This suggests that every B-tuple (c1, . . . , cB) of ciphertexts should correspond to a potential key,
except for the necessary constraint that all the cm’s must be distinct to allow unique decryption.

A bit more formally, we assume that N can be written as N = S(S − 1) . . . (S −B + 1) for some integer
S.10 Then we define the set C = {1, . . . S} to be the set of ciphertexts, M = {1, . . . , B} be the set of
plaintexts, and view the key set K as the set of distinct B-tuples over C:

K = {k = (c1, . . . cB) | ∀ i 6= j ⇒ ci 6= cj}

We then define Enc((c1 . . . cB), m) = cm, while Dec((c1, . . . , cB), c) to be the (necessarily unique) m such
that cm = c, and arbitrarily if no such m exists. Notice, N < SB, so that S > N1/B, which is strictly
greater than B when b < log n − loglog n. Thus, S contains enough ciphertexts to allow for B distinct
encryptions.

Excluding 0-monochromatic Distributions. Let us now take an arbitrary bit extractor Ext : K →
{0, 1} and argue that it is not very good on the set of perfect distributions S (E). We say that a distribution
K is 0-monochromatic if Pr[Ext(K) = 0] = 1. Clearly, if the set of perfect distributions S (E) contains a
0-monochromatic distribution K, then SD(Ext(K), U1) = 1

2 (here and below, U1 is the uniform distribution
of {0, 1}), and we would be done. Thus, for the remainder of the proof we assume that S (E) does not
contain a 0-monochromatic distribution. The heart of the proof then will consist of designing a perfect
encryption distribution K such that

Pr[Ext(K) = 0] ≤
B2

S
(9)

Once this is done, recalling that S > N1/B = 2n/2b
we immediately get

SD(Ext(K), U1) =

∣

∣

∣

∣

1

2
− Pr[Ext(K) = 0]

∣

∣

∣

∣

≥
1

2
− 2

(2b− n

2b )

as claimed by Theorem 1(b). Thus, we concentrate on building a perfect distribution K satisfying Equa-
tion (9). For that, we need to (1) characterize perfect distributions using linear algebra; (2) use this
characterization to understand the implication of the lack of 0-monochromatic perfect distributions; and
(3) use this implication to construct the required perfect distribution K. We do so in the next three
subsections.

4.2 Characterizing Perfect Distributions

Let K be any distribution on K. Given a key k = (c1 . . . cB), let pk = x(c1...cB) = Pr[K = (c1 . . . cB)] and
p be the N -dimensional column vector whose k-th component is equal to pk. Notice, being a probability
vector, we know that

∑

pk = 1 and p ≥ 0 (which is a shorthand for pk ≥ 0 for all k). Conversely, any such
x defines a unique distribution K.

9We omit the argument, since it is not very illuminating. Essentially, such keys force us to consider more extractors when
arguing lack of extraction, without expanding the “geometry” of perfect key distributions.

10If not, take largest S such that N ≥ S(S − 1) . . . (S − B + 1), and work on the subset of N ′ = S(S − 1) . . . (S − B + 1)
keys, but this will not change our bounds.
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Assume now that K is a perfect encryption distribution for E . This adds several more constraints on p.
Specifically, a necessary and sufficient condition for a perfect encryption distribution is to require that for
all c ∈ C and all m > 1, we have

Pr[c1 = c | (c1 . . . cB)← K] = Pr[cm = c | (c1 . . . cB)← K] (10)

We can translate this into a linear equation by noticing that the left probability is equal to
∑

{(c1...cB):c1=c} p(c1...cB),
while the second — to

∑

{(c1...cB):cm=c} p(c1...cB). Thus, Equation (10) can be rewritten as

∑

{(c1...cB):c1=c}

p(c1...cB) −
∑

{(c1...cB):cm=c}

p(c1...cB) = 0 (11)

We can then rewrite all these constraints on p into a more compact notation by defining a constraint matrix
V = {vi,j}, which has (1+(B−1)S) rows (corresponding to the constraints) and N columns (corresponding
to keys). The first row of V will consist of all 1’s: v1,k = 1 for all k ∈ K. This would later correspond
to the fact that

∑

pk = 1. To define the rest of V , which would correspond to (B − 1)S constraints
from Equation (11), we first make our notation more suggestive. We index the N columns of V by tuples
(c1, . . . cB), and the remaining (B− 1)S rows of V by tuples (m, c), where m ∈ {2, . . . B} and c ∈ {1 . . . S}.
Then, we define

v(m,c),(c1,...,cB) =







1, c = c1,
−1, c = cm,
0, otherwise.

(12)

Now, Equation (11) simply becomes
∑

k v(m,c),k · pk = 0. Finally, we define a (1 + (B − 1)S)-column
vector e by e1 = 1 and ei = 0 for i > 1. Combining all this notation, we finally get

Lemma 3 An N -dimensional real vector p defines a perfect distribution K for E if and only if V p = e
and p ≥ 0.

4.3 Using the Lack of 0-Monochromatic Distributions

Next, we use Lemma 3 to understand our assumption that no perfect distribution K is 0-monochromatic
with respect to Ext. Before that, we remind a well known Farkas Lemma (e.g., see [Str80]):

Farkas Lemma. For any matrix A and column vector e, the linear system Ax = e has no solution x ≥ 0
if and only if there exists a row vector y s.t. yA ≥ 0 and ye < 0.

Now, let Z = {k | Ext(k) = 0} be the set of “0-keys” under Ext, and let A denotes (1 + (B − 1)S)× |Z|-
matrix equal to the constraint matrix V restricted its |Z| columns in Z. Take any real vector p such that
pk = 0 for all k 6∈ Z. By Lemma 3, p corresponds to a (necessarily 0-monochromatic) perfect distribution
K if and only if V p = e and p ≥ 0. But since pk = 0 for all k 6∈ Z, the above conditions are equivalent
to saying that the |Z|-dimensional restriction x = p|

Z
of p to its coordinates in Z satisfies Ax = e and

x ≥ 0. Conversely, any x satisfying the above constraints defines a 0-monochromatic perfect distribution
p by letting p|

Z
= x and pk = 0 for k 6∈ Z.

Thus, Ext defines no 0-monochromatic perfect distributions if and only if the constraints Ax = e and
x ≥ 0 are unsatisfiable. But this is exactly the precondition to the Farkas’ Lemma above! Using the Farkas
Lemma on our A and e, we get the existence of the (1 + (B − 1)S)-dimensional row vector y such that
yA ≥ 0 and ye < 0. Just like we did for the rows of V , we denote the first element of y by y1, and use
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the notation y(m,c) to denote the remaining elements of y. We now translate the constraints yA ≥ 0 and
ye < 0 using our specific choices of A and e.

Notice, since e1 = 1 and ei = 0 for i > 1, it means that ye = y1, so the constraint that ye < 0 is
equivalent to y1 < 0. Next, recalling that A is just the restriction of V to its columns in Z, and that the
first row of V is the all-1 vector, we get that yA ≥ 0 is equivalent to saying that for all (c1, . . . , cB) ∈ Z
we have

y1 +
∑

m>1

∑

c

y(m,c) · v(c1,...,cB) ≥ 0 (13)

Notice, since y1 < 0, this equation implies that the double sum above is strictly greater than 0. Thus,
recalling the definition of v(c1,...,cB) given in Equation (12), we conclude that for all k = (c1, . . . , cB), such
that Ext(k) = 0, we have

∑

m>1

(

y(m,c1) − y(m,cm)

)

> 0 (14)

The last equation finally allows us to derive the implication we need:

Theorem 2 Assume Ext defines no 0-monochromatic perfect distributions. Then there exist real numbers
{

y(m,c) | m ∈ {2 . . . B} , c ∈ {1 . . . S}
}

such that the following holds. If a key k = (c1, . . . , cB) is such that

y(m,c1) − y(m,cm) ≤ 0 for all m > 1, (15)

then Ext(k) = 1.

Proof: Summing Equation (15) for all m > 1 we get a contradiction to Equation (14), which means that
Ext(k) 6= 0; i.e., Ext(k) = 1.

4.4 Building Non-Extractable yet Perfect K

We are ready to collect all the pieces together. We need to define a special perfect distribution K which
contains many keys satisfying Equation (15), meaning that Ext(K) is very biased towards 1. We will
construct such K having a very special form.

Definition 3 Assume π1, . . . , πd : C → C are d permutations over the ciphertext space C = {1 . . . S}. We
say that π1, . . . , πd are d-valid if for every c ∈ C, and distinct i, j ∈ {1 . . . d}, we have πi(c) 6= πj(c). ♦

The reason for this terminology is the following. Given any B-valid π1, . . . , πB, where recall that B =
|M|, we can define S valid keys k1, . . . , kS ∈ K by kc = (π1(c), . . . , πB(c)), where the B-validity constraint
precisely ensures that all the B ciphertexts inside kc are distinct, so that kc is a legal key in K. Now, we
denote by K(π1,...,πB) the uniform distribution over these S keys k1, . . . , kS .

Lemma 4 If π1, . . . , πB are B-valid permutations, then K(π1,...,πB) is a perfect encryption distribution.

Proof: For any message m, Enc(K(π1,...,πB), m) is equivalent to outputting πm(UC), where UC is the uniform
distribution over C. Since each πm is a permutation over C, this is equivalent to UC . Thus, encryption of
every message m yields a truly random ciphertext c ∈ C, which means that K(π1,...,πB) is perfect.

Choosing Good Permutations. We will construct our perfect distribution K = K(π1,...,πB) by carefully
choosing a B-valid family (π1, . . . , πB) such that Ext(K) is very biased towards 1. We start by choosing
π1 to be the identity permutation π1(c) = c (for all c), and proceed by defining π2 . . . πB iteratively. After
defining each πd, we will maintain the following invariants which clearly hold for the base case d = 1:
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(i) π1, . . . , πd are d-valid.

(ii) There exists a large set Td of “good” ciphertexts (where, initially, T1 = C) of size qd > S − d2, which
satisfies the following equation for all c ∈ Td and 1 < m ≤ d:11

y(m,c) − y(m,πm(c)) ≤ 0 (16)

Now, assuming inductively that we have defined π1 = id, π2, . . . , πd which satisfy properties (i) and (ii)
above, we will construct πd+1 still satisfying (i) and (ii).

This inductive step is somewhat technical, and we will come back to it in the next subsection. But first,
assuming it is true, we show that we can easily finish our proof. Indeed, we apply the induction for B − 1
iterations and get B permutations π1, . . . , πB satisfying properties (i) and (ii) above. Then, property (i)
and Lemma 4 imply that K(π1,...,πB) is a perfect encryption distribution. On the other hand, property (ii)
and the definition of kc = {c, π2(c), . . . , πB(c)} imply that any key kc ∈ TB satisfies Equation (15). Thus,
by Theorem 2 we get that Ext(kc) = 1 for every c ∈ TB. Since, |TB| > S −B2, we get that at most B2 out
of S keys kc extract to 0. Thus, since K(π1,...,πB) is uniform over its S keys, we get

Pr[Ext(K(π1,...,πB)) = 0] ≤
B2

S

which shows Equation (9) and completes our proof (modulo the inductive step).

4.5 Completing the Inductive Step

We start by recalling some basic facts about bipartite graphs, which we will need soon. A (balanced)
bipartite graph G is given by two vertex sets L and R of cardinality S and an edge set E = E(G) ⊆ L×R.
A matching P in G is a subset of node-disjoint edges of E. P is perfect if |P | = S. In this case every i ∈ L
is matched to a unique j ∈ R and vice versa.

We say that a subset L′ ⊆ L is matchable (in G) if there exists a matching P containing L′ as the set
of its endpoints in L. In this case we also say that L′ is matchable with R′, where R′ ⊆ R is the set of
P ’s endpoints in R. (Put differently, L′ is matchable with R′ precisely when the subgraph induced by L′

and R′ contains a perfect matching.) The famous Hall’s marriage theorem gives a necessary and sufficient
condition for L′ to be matchable.

Hall’s Marriage Theorem. L′ is matchable if and only if every subset A of L′ contains at least |A|
neighbors in R. Notationally, if N (A) denotes the set of elements in R containing an edge to A, then L′

is matchable iff |N (A)| ≥ |A|, for all A ⊆ L′.

We will only use the following two special cases of Hall’s theorem.

Corollary 5 Assume every vertex v ∈ L ∪ R has degree at least S − d: degG(v) ≥ S − d. Then, for any
L′ ⊂ L and R′ ⊂ R of cardinality 2d, we have that L′ is matchable with R′.

Proof: Let us consider the 2d× 2d bipartite subgraph G′ of G induced by L′ and R′. Clearly, that every
vertex v ∈ L′ ∪ R′ has degree at least d in G′, since each such v is not connected to at most d opposite

11To get some intuition, we will see shortly that “good” ciphertexts c will lead to keys kc satisfying Equation (15), so that
Ext(kc) = 1 by Theorem 2.
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vertices in the entire G, let alone G′. We claim that L′ meets the conditions of the Hall’s theorem in G′.
Consider any non-empty A ⊆ L′. If |A| ≤ d, then any vertex v in A had degG′(v) ≥ d ≥ |A| neighbors,
so |N (A) ≥ |A|. If d < |A| ≤ 2d, let us assume for the sake of contradiction that |N (A)| < |A|. Consider
now any vertex v ∈ R\N (A). Such v exists as |N (A)| < |A| ≤ 2d = |R′|. Then no element in A can be
connected to v, since v 6∈ N (A). Thus, the degree of v can be at most 2d−|A| < d, which is a contradiction.

Corollary 6 Assume L contains a subset L′ = {c1, . . . , cℓ} such that degG(ci) ≥ i, for 1 ≤ i ≤ ℓ. Then L′

is matchable in G. In particular, G contains a matching of size at least ℓ.

Proof: We show that L′ satisfies the conditions of Hall’s theorem. Assume A = {ci1 , . . . , cia}, where
1 ≤ i1 < i2 < . . . < ia ≤ ℓ. Notice, this means ij ≥ j for all j. Then the neighbors of A at least include
the neighbors of ia, so that |N (A)| ≥ degG(cia) ≥ ia ≥ a = |A|.

Mapping Induction into a Matching Problem. We now return to our induction. Recall, we are
given permutations π1 = id, π2, . . . , πd satisfying properties (i) and (ii), and need to construct πd+1 also
satisfying (i) and (ii). We translate this task into some graph matching problem, starting with the property
(i) first.

For every c ∈ C, we define the “forbidden” set Fc = {c, π2(c), . . . , πd(c)}. Then, the (d + 1)-validity
constraint (i) is equivalent to requiring πd+1(c) 6∈ Fc for all c ∈ C. Next we define a bipartite “constraint
graph” G on two copies L and R of C containing all the non-forbidden edges: (c, c′) ∈ E(G) if and only if
c′ 6∈ Fc. We observe two facts about G. First,

Claim 1 Every vertex v ∈ L∪R has degree at least S − d: degG(v) ≥ S − d. In particular, by Corollary 5
every two 2d-element subsets of L and R are matchable with each other in G.

Proof: This claim is obvious for v ∈ L as |Fv| = c. It is also true for v ∈ R, since any value v ∈ R is
forbidden by exactly d (necessarily distinct) elements v, π−1

2 (v), . . . , π−1
d (v).

Second, any perfect matching P of G uniquely defines a permutation π on S elements such that P =
{(c, π(c))}c∈L. Since, by definition, π(c) 6∈ Fc, it is clear that this π will always satisfy constraint (i). Thus,
we only need to find a perfect matching P for G which will define a permutation πd+1 satisfying condition
(ii).

Notice, our inductive assumption implies the existence of a subset Td of L (recall, L is just a copy of
C) of size qd > S − d2 such that Equation (16) is satisfied for all c ∈ Td and 1 < m ≤ d. Irrespective of
the permutation πd+1 we will construct later, we will restrict Td+1 to be a subset of Td. This means that
Equation (16) will already hold for all c ∈ Td+1 and 1 < m ≤ d. Thus, we will only need to ensure this
equation for m = d + 1; i.e., that for all c ∈ Td+1

y(d+1,c) − y(d+1,πd+1(c)) ≤ 0 (17)

This constraint motivates us to define a subgraph G′ of our constraint graph G as follows. As edge
(c, c′) ∈ E(G′) if and only if (c, c′) ∈ E(G) (i.e., c′ 6∈ Fc) and y(d+1,c) − y(d+1,c′) ≤ 0. In other words,
we only leave edges (c, c′) which would satisfy Equation (17) if we were to define πd+1(c) = c′. The key
property of G′ turns out to be

Lemma 7 G′ contains a matching P ′ of size at least S − d.
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Proof: We will use Corollary 6. Let us sort the vertices v1 . . . vS of L and R in the order of non-decreasing
y(d+1,·) values; i.e.

y(d+1,v1) ≤ y(d+1,v2) ≤ . . . ≤ y(d+1,vS)

Then, the edge (vi, vj) satisfies y(d+1,vi) − y(d+1,vj) ≤ 0 whenever i ≤ j. Thus, such (vi, vj) belongs to G′ if
and only if it also belongs to the larger constraint graph G; i.e., vj 6∈ Fvi

. But since each vi has at most d
forbidden edges in G, and | {j | j ≥ i} | = S− i+1, we have that degG′(vi) ≥ (S− i+1)− d. In particular,
degG′(vS−d) ≥ 1, . . . , degG′(v1) ≥ S− d. By Corollary 6, {vS−d, . . . , v1} is matchable in G′, completing the
proof.

Finishing the Proof. Finally, we can collect all the pieces together and define a good matching P in
G (corresponding to πd+1). With an eye on satisfying property (ii), we start with a large (but not yet
perfect) matching P ′ of G′ of size at least S− d, guaranteed by Lemma 7. Ideally, we would like to extend
P ′ to some perfect matching in the full graph G, by somehow matching the vertices currently unmatched
by P ′. Unfortunately, we do not know how to argue that such extension is possible, since there are at most
d vertices unmatched, and we can only match arbitrary sets of size at least 2d by Claim 1. So we simply
take an arbitrary sub-matching P ′′ of P ′ of size S− 2d, just throwing away any |P ′|− (S− 2d) edges of P ′.

Notice, P ′′ is also a matching of G which has exactly 2d unmatched vertices on both sides. By Claim 1,
we know that we can always match these missing vertices, and get a perfect matching P of the entire G.
We finally claim that this perfect matching P defines a permutation πd+1 on C satisfying properties (i) and
(ii).

Property (i) is immediate since P is a perfect matching of G. As for property (ii), let L′ denote the
S − 2d endpoints of P ′′ in L. Now, every c ∈ L′ satisfies Equation (17), since this is how the graph G′

was defined and (c, πd+1(c)) ∈ P ′′ ⊆ E(G′). Thus, we can inductively define Td+1 = Td ∩L′ and have Td+1

satisfy property (ii). We only need to argue that Td+1 is large enough, but this is easy. Since L′ misses
only 2d ciphertexts, we get by induction that

|Td+1| ≥ |Td| − 2d > S − d2 − 2d > S − (d + 1)2

completing the induction and the whole proof.

5 Conclusions and Open Problems

We study the question if true randomness is inherent for achieving privacy, and show a largely positive
answer for the case of information-theoretic private-key encryption. Needless to say, many exciting ques-
tions are still open. First, we ignored the issue of efficiency. Could it be that a source allowing for efficient
encryption always allows for efficient extraction? On another front, although private-key encryption is the
simplest and most fundamental “privacy application”, our work leaves open the question if other “privacy
applications” inherently require true randomness as well. Perhaps 2-out-2 secret sharing (which is strictly
implied by private-key encryption [DPP06]) is a good candidate where our information-theoretic techniques
might be applicable. More challengingly, what about computationally secure primitives, such as public-key
encryption, commitment and zero-knowledge, which will require a completely new technique?

Finally, we hope that our result and techniques will stimulate further interest in understanding the
extent to which cryptographic primitives can be based on imperfect randomness.
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