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Abstract

Secure use of the BGLEI[7] aggregate signature schemedristegsto the aggregation of distinct mes-
sages (for the basic scheme) or per-signer distinct mesgggyehe enhanced, prepend-public-key version
of the scheme). We argue that these restrictions precltelesting applications, make usage of the schemes
error-prone and are generally undesirable in practiceaVieaw analysis and proof, we show how the restric-
tions can be lifted, yielding the first truly unrestrictecdjaggate signature scheme. Via another new analysis
and proof, we show that the distinct signer restriction angquential aggregate signature schemés bf [15]
can also be dropped, yielding an unrestricted sequentimbggte signature scheme.
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1 Introduction

AGGREGATE SIGNATURES An aggregate signature (AS) scherhk [7] is a digital sigeascheme with the
additional property that a sequeneg, .. ., o, of individual signatures —here; is the signature, under the
underlying base signature scheme, of some messagmder some public keyk,— can be condensed into a
single, compact aggregate signaturthat simultaneously validates the fact that has been signed undgk;
foralli = 1,...,n. There is a corresponding aggregate verification procedsdkes inputpk,, mi),...,
(pk,,,my), o and accepts or rejects. Aggregation is useful to reduceviiditfdand storage, and is especially at-
tractive for mobile devices like sensors, cell phones, d@d$where communication is more power-expensive
than computation and contributes significantly to redudiatery life.

SCHEMES. Boneh et. al[[l7] present an aggregate signature scherad baghe BLS signature scherhé [9]. We
call it 25-1 and represent it succinctly in the first row of Table4ls - 1, however, has some limitations. As the
table shows, the aggregate verification process, on inpits m,), . .., (pk,,, my), o, rejects if the messages
mq,...,my are not distinct. The restriction is crucial because, withi, as shown in[ll7], the scheme is
subject to a forgery attack. The consequence, however,rasstact the ability to aggregate to settings where
the messages signed by the signers are all different. BGtdgjnéze this limitation and suggest a workaround.
Specifically, they say: “It is easy to ensure the messagedistiact: The signer simply prepends her public
key to every message she signs .[1 [7, Section 3.2]. Theqy short of specifying a scheme in full, but
since it is clearly their intention to “reduce to the predaase,” our understanding is that they are advocating
the modified scheme in which the signature of a messagader pk is the BLS signature of thenhanced
messagel! = pk|m under pk while aggregate verification is done by applying the aggeegarification
procedure ofas-1 to (pky, pky|jm1),..., (pk,, pk,|/mn),c. However, if so, in this scheme, which we call
45-2, the aggregate verification process will reject unless titeaeced messageé, ||m, ..., pk,|m, are
distinct. (Why? Because the aggregate verification prooksss-1 rejects unless the messages are distinct,
and the role of the messages is how played by the enhancedgeessThe consequence is that the ability to
aggregate is restricted to settings where the enhancedagesssigned by the signers are all different. That is,
the limitations have been reduced, but not eliminated.

OuUR RESULT We ask whether there exists a truly unrestricted provenrseaggregate signature scheme.
Namely, there should be no distinctness-based restriofi@my kind, whether on messages or enhanced mes-
sages. We show that the answer is yes. Our result is a newt divalysis of the security of enhanced-message
signature aggregation which shows that the distinctnesditton in the aggregate verification processaof-2
—namely that this process rejects if any two enhanced messag the same— can be dropped without com-
promising security. In other words, an unrestricted scheamebe obtained by the natural adaptatiom gt 2

in which the distinctness condition in the verification isply removed and all else is the same. This scheme,
which we denoteas-3, is summarized in the last row of Talfle 1. The fact thats is very close toas-2 is a

plus because it means existing implementations can be gaddhed.

We clarify that the security ofis-3 is not proved in[[]. They prove secure onys-1. The security of
45-2 is a consequence, but the securityaf-3 is not. What we do instead is tirectly analyze security in
the case that signatures are on enhanced messages. Ogrsaegbjicitly uses and exploits the presence of the
prepended public keys to obtain the stronger conclusion4lias (not justas-2) is secure.

MOTIVATION. The limitation of 425-2 —namely that aggregation is restricted to settings wherémeoen-
hanced messages are the same— may seem minor, becausayalistthat a set of signatures to be aggregated
should not contain duplicates, meaning multiple signatung a particular signer of a particular messages.
However, as we now explain, there are in fact several matiwatfor schemes likars -3 where aggregation is
possible even in the presence of duplicates.

Consider a network of sensor nodes, periodically recortiémgperatures in a nuclear reactor or voltage
levels in a power grid and transmitting the information toeater. Ensuring integrity is crucial (if an attacker



Scheme | Sign Aggregate verification process accepts iff

as-1[] | H(m)® e(o,9) =1, e(H(m;),¢"*) andmy, ..., m, all distinct
as-2 [l | H(g®||m)* | e(o,g9) =1, e(H(g*!||m;), g"") andg®* ||my, ..., g*~||m,, all distinct
AS-3 H(g"[m)* | e(o,9) = [[;=y e(H(g" [mi), g™*)

Table 1. The aggregate signature schemes we discuss. eHdébg x Gy — G is a bilinear mapy is a
generator ofGy known to all parties, andl: {0,1}* — G; is a hash function. The second column shows
the signature of a message under public keyy”, generated using secret key In all cases, a sequence of
signatures is aggregated by simply multiplying thenfsin The third column shows under what conditions the
aggregate verification algorithm acceptas a valid aggregate signature of messages . . , m,, under public
keysg®',..., g respectively.

can tamper with the transmitted information it can trigg&lse alarm, or, even worse, prevent a true emergency
situation from being detected) so each node signs its triasgms. These are aggregated by the center to save
storage. (The schemes we are discussing permit on-lineegaton in which one can maintain a current
aggregate and aggregate into it a received signature.) wowiaformation such as temperatures or voltage
levels can certainly repeat over time! Indeed, especialitable conditions, we would expect frequent repeats.
So we would expect to see a single signer (sensor) signingdhree data (measurement) many times. In
general, this can happen any time the data being signedwsidram a small space. In any such situation,
not just messages, but even enhanced messages can repaatlanéstricted aggregate signature scheme is
necessary.

Perhaps an even more important reason to prefer unredtigcteemes is that they are less likely to be
misused and less likely to result in unexpected errors. Apliegdion designer contemplating usings -2
must ask herself whether, in her application, enhancedagessmight repeat. This may not only be hard to
know in advance, but might also change with time. (Expeeehas repeatedly shown that once a piece of
cryptography is deployed, it is used for purposes or apiitina beyond those originally envisaged.) With
an unrestricted scheme, the application designer is fremd the need to worry about whether the setting
of her application meets the restrictions, reducing thencbaf error. In general, application designers and
programmers have a hard enough time as it is to make ermufe of cryptography. Asking them to understand
message distinctness restrictions and anticipate wh#tberapplication meets them is an added burden and
one more place where things can go wrong.

PossIBLE WORKAROUNDS Various ways to get around message distinctness restricthay come to mind,
but these workarounds either do not work or tend to be morept®aor restrictive than direct use of an
unrestricted scheme. For example, one could have the vethitip from its input lis{ pk,, m1), ..., (pk,,, my),

o any pairpk;, m; that occured previously in the list, but then, assumsingas a correct aggregate signature of
the given list, it will not be a correct aggregate signatardlfie truncated list, and verification will fail. Another
possibility is that the aggregator refrain from includimgle aggregate any signature corresponding to a public
key and message whose signature is already in the aggrd®atteggregation may be done on-line, and the
aggregator may know only the current aggregate and the iimgosignature, and have no way to tell whether or
not it is a duplicate. Adding time-stamps or other noncesi@tzer possibility, but complicates the application.
It seems clear that being able to use-3 without any worries about signature or message replicasiempler,
easier and more practical.

RESULTS FORSASs. A sequential aggregate signature (SAS) schémke [15] per@mihore restrictive kind
of aggregation in which the signers must participate in thecgss and use their secret keys. Imagine the



signers forming a chain. In step the i-th signer receives from the previous one a current aggeegaid,
using its secret key, it aggregates into this its own sigeatpassing the new aggregate on to the next signer
in the chain. The output of the final signer is the aggregajeasure. Although clearly less powerful than
general aggregate signature (GAS) schemes —folloviing §8haw use this term for the BGLS-type aggregate
signatures discussed above in order to distinguish them 88Ss— the argument df [l15] is that sequential
aggregation is possible for base signature schemes ot BIbS or may be done more cheaply. Specifically,
Lysyanskaya et al[T15] present a SAS scheme based on ak[ffielaw-free trapdoor permutations.

However, the model and schemes|[ofl[15] also have some lionigt They require that no public key can
appear more than once in a chain. That is, the signers whoaar®fpa signing chain must be distinct. But
in practice there are many reasons to prefer to allow agticegaven when a particular signer signs multiple
messages, meaning when there are loops in the chain ana ek can repeat. Certainly, the previously
discussed motivations are still true. Namely, in applaadi like signing in sensor nets or ad hoc networks,
a particular signer (sensor) will be producing many sigrestiand it would be convenient to allow these to
be aggregated. More importantly, an unrestricted SAS sehisrmore misuse resistant because it does not
require the application designer to try to predict in adeambether or not there will be repeated signers in a
prospective chain. But in fact the restrictions[inl[15] averegreater than the ones far -2, for they say not
only that one cannot aggregate when a particular signes sigrarticular message twice, but that one cannot
aggregate even when a particular signer signs two or moreages that are distinct. This makes the number
of excluded applications even larger, for it is common thpadicular signer needs to sign multiple messages.

Our result —analogous to the GAS case— is a new analysis auaf grat shows that the restrictions
imposed by[[1b] on their schemes can be lifted without imipgcsecurity (that is, verification can just drop
the condition that one reject if there are repeated publs kend security is preserved), yielding unrestricted
schemes. Again, that only a minor modification to the schesimeeded is convenient if existing implementa-
tions need to be updated.

RELATED WORK. Lu et. al. [14] present an SAS scheme for which they canH#tdistinct signer restriction,
as follows. If a signer wishes to add its signature of a mes34g,, to an aggregaté® which already contains
its signatureS,;q on some messagk/,, 4, then it removess,y from S and then adds back in a signature on
the messag@/,.. || M.q. However, their scheme is weaker than the others we havasdisd —ours or those
of [[7, [18]— with regard to some security properties and aléh wegard to efficiency. Specifically, - [L4] use
the certified public key model]L] 6], which reflects the asptiom that signers provide strong ZK proofs of
knowledge of secret keys to the CA at key-registration, aamption that we, following]7,-15], do not make.
Also, in the scheme of[14], public keys are very large, ngni@2 group elements, which is particularly
expensive if public keys have to be transmitted along withdiignatures. In contrast, other schemes have short
public keys. On the other hand, the proofs[ofi[14] are in thadard model, while ours, followin@l[lZ,115], are
in the random oracle model dfl[3].

Interestingly, in a survey paper, Boneh et. Al. [8] presest3, claiming that the results of][7] prove it
secure. However, this appears to be an oversight because,les/e seen, the results of [7] praws -2 secure,
not4s-3. By proving 4$-3 secure via our direct analysis, we are filling the gap andlatifig the claim ofi[B].
Shacham’s Ph.D thesis[[16] notes that the concrete seairihe reduction off[l7] can be slightly improved by
replacing messages with enhanced ones, but he does notsgaimity of4.5-3.

2 Notation and Basic Definitions

NOTATION AND CONVENTIONS. If z is a string, therjz| is the length ofz. We denote byz|| - - - ||z, an
encoding of objects, ..., x, as a binary string from which the constituent objects arqugly recoverable.
Since, in most cases, the objects can themselves be encodithgs whose length is known from the context,

simple concatenation will serve the purposeS'lis a finite set, thenhS| is its size, ands £ $ means that is



chosen at random frori. We lete denote the base of the natural logarithm. An algorithm magabhdomized
unless otherwise indicated. An adversary is an algoritfimt i an algorithm thery <~ A(z1,z2,...) means
thaty is the result of executingl on fresh random coins and inputs, 5, . ... We denote byA(z1, z2,...)]
the set of all possible outputs df on the indicated inputs, meaning all strings that have aipegirobability
of being output byA on inputszy, 22, . ... We letMaps(D) denote the set of all functions with domdjif, 1}*
and rangeD.

DIGITAL SIGNATURE SCHEMES We recall definitions for (standard) signature schernekifithe random-
oracle (RO) modell]3]. A signature schemms = (Kg, Sign, Vf) is specified by three algorithms, the last

deterministic. Via(pk, sk) & Kg, a signer generates its public key and matching secret keyk, where
H: {0,1}* — D is a random oracle whose randkis a parameter of the scheme. Via<- Signt(sk,m)

the signer can generate a signaturen a messagen. A verifier can runVf (pk, m, o) to obtain a bit, withl
indicating accept and reject. The consistency (or correctness) condition is that

Pr [V (pk,m, o) =1 | (pk, sk) < Kg; H & Maps(D) 5 o < Sign"(sk,m) | = 1

for all messages: € {0, 1}*. To capture security (unforgeability under chosen-messstack) we define the
advantage of an adversabyas

AdVITU(B) = Pr| VAT (pk,m,o) =1 | (pk, sk) < Kg; H < Maps(D); (m, o) & BSE (5001 |

To make this meaningful, we only consider adversaries ttedegitimatein the sense that they never queried
the message in their output to their sign oracle. We saynlias (t, gs, g1, €)-secure if no adversaty running

in time at mostt, invoking the signature oracle at magttimes and the random oracle at mggttimes, has
advantage more than

3 Unrestricted General Aggregate Signatures

GAS scHEMES A general aggregate signature (GAS) schemea[7= (Kg, Sign, Agg, AVf) consists of four
algorithms, the last deterministic. The key generationsigding algorithms are exactly as for standard digital
signatures. Viar & Aggt((pky,m1,01), ..., (pk,, mn,0,)), anyone can aggregate a sequence of public key,
message, and signature triples to yield an aggregate aignah verifier can rurAVf ((pky,m1), ..., (pk,,
my), o) to obtain a bit, withl indicating accept and reject.

SECURITY. The security requirement dfl[7] is strong, namely that aveashry find it computationally infea-
sible to produce an aggregate forgery involving an honestesj even when it can play the role of all other
signers, in particular choosing their public keys, and caminm a chosen-message attack on the honest signer.
To capture this, we define the advantage of an advesay

AV (A) = Pr [AVE((pky,ma), ..., (pky,my),0) = 1]
where the probability is over the experiment
(pk, sk) < Kg; H < Maps(D) ; ((pky,m1), ..., (py,mn), o) < ASE" R (ppy

To make this meaningful, we only consider adversaries thategitimatein the sense thatk,; must equal
pk but A cannot have querieth; to its sign oracle. Thus, the honest signer here is the oneevkeys are
pk, sk, and we are asking that the aggregate forgery include sonssage and signature corresponding to
this honest signer, but the adversary never legitimatetginbd a signature of this message. We say #hat
(t, qs, nmax, qH, €)-breaksas if it runs in time at most, invokes the signature oracle at mgstimes, invokes
the hash oracle at mosi; times, outputs a forgery containing at mest., public-key-message pairs, and
has advantage strictly greater thanWe say thatas is (¢, gs, nmax, qu1, €)-Secure if there is no adversary that



(t,qs, Nmax, qi, €)-breaksas .

A significant feature of this definition, highlighted inl [7$,thatA can choosek,, .. ., pk,, as it wishes, in
particular as a function gfk, = pk. Unlike [1,[6,[14], there is no requirement that the adverékmnow” the
secret key corresponding to a public key it produces, aisdhtlakes the system more practical since it avoids the
need for strong zero-knowledge proofs of knowledge [2] afsekeys done to the CA during key-registration.
Our results continue to achieve this strong notion of sécuri

BILINEAR MAPS AND COCDH. LetG, Go, Gy be groups, all of the same prime orgerLete: Gy x Gy —

G be a non-degenerate, efficiently computable bilinear mlap,aalled a pairing. Leg be a generator db-.
For the rest of this section, we regatd , G2, G, e, g as fixed, globally known parameters, and alsalgt
denote the time to perform an exponentiatiorGin Note that following [9[7] we use the asymmetric setting
(G4, G4 are not necessarily equal) and must also assume there axistsmorphism): G, — G;. (The first

is in order to make signatures as short as possible, andd¢badés required for the security proofs.) We define
the advantage of an adversakyn solving the coCDH problem as

Adveocdi(p) = Pr [A(g,ga,h) —ho | hEGriad Zp] .

We say that the coCDH problem (¢, ¢')-hard if no algorithmA running in time at most’ has advantage
strictly more thare’ in solving it. Note that wheris; = G», the coCDH problem becomes the standard CDH
problem inG1, whence the name.

THE BLs SCHEME We recall thes.s standard signature scheme bf [9]. The signer chooses a $egre
& Z,, and computes the corresponding public Kéy— ¢*. LetH : {0,1}* — G; be a random oracle.
The signature of message is 0 = H(m)*, which can be verified by checking thefo, g) = e(H(m), X).
Regarding security, we have the following:

Theorem 3.1 [9]If the coCDH problem i$t’, ¢')-hard, then thes.Ls standard signature scheme(is gs, gu, €)-
secure for any, gs, qu, € satisfying

e > elgs+1)-€¢ and ¢ < t' —teplqu +2gs) .1

THE GAS SCHEMES WE CONSIDER We consider four closely related aggregate signaturensebehat we
denote4s-0,45-1,45-2,45-3. These schemes share common key generation and aggregigoithms,
but differ in their signing and verification algorithms. Alse a random oraclel : {0,1}* — G;. Key
generation is exactly as in thecs scheme: the secret key is an exporrem‘i Z,, and the corresponding public
key is X = ¢g*. Foras-0 and4s-1, the signing algorithm is th&é.s one, namely the signature on message
mis o = H(m)*. ForAas-2 and4s-3, a signature omn under public keyX is o = H(X|m)*. For all
schemes, aggregation is done by simply multiplying theatigres, i.ec = [[; 0; in G;. Verification is

different for each scheme. On inputXy,m,), ..., (X,, m,), o, the verification algorithm ofas-0 accepts
iff e(o,9) = [[;—, e(H(m;),X;). The verification algorithms of the other schemes are degpitt TablelL.
In particular, 45-1 rejects ifmg, ..., m, are not all distinct,as-2 rejects if Xy ||mq, ..., X,|m, are not all

distinct, whileas-3 performs no such checks.

CONSISTENCY CONDITIONS The consistency condition (under what conditions colyeg¢nerated aggre-
gates are accepted by the verifier) differs from scheme tensehand is in fact the place where the restrictions
they make surface in a formal senses-0 and4s-3 meet the natural, strongest possible consistency require-
ment, namely that

Pr [AVfH((pk‘l,ml), ,(Pkymp),0) =1] =
for all positive integersn, all messagesn,...,m, € {0,1}* and all(pkl,skl) -, (pk,,, sky) € [Kgl,
where the probability is over the experiméﬁm— Maps(D) ; o1 & Signf(sk1,m1); -+ ; on & Signt (sk,,



mn); o < Agg™((pky,m1,01), ..., (pk,, mn,0,)). However,4s-1 meets this condition only when, . .. ,
m,, are distinct anda.s-2 whenpk,||mi, ..., pk,|m, are distinct.

DISCUSSION OF SECURITYAn attack provided in[[7] shows thats-o is insecure. In this attack, however, the
forgery output by the adversary contains repeated messagexclude the attack,][7] definges-1, where the
aggregate verification process rejects when messaged.rdpesy are able to show this suffices to guarantee
security, meaning that they proves -1 is secure if the coCDH problem is hard. This is their main lteSthen
they suggest to alleviate the message-distinctnessatestrof 4.5 -1 by having each signer prepend its public
key to the message before signing. However, they appearrtbtavargue the security of the resulting aggregate
signature scheme as a corollary of their main result on therig of 45-1. If so, verification still needs to
check thatX;|m, ..., X,||m, are all distinct (otherwise, the result about -1 does not apply), leading to
the 25-2 scheme.

As we have discussed, however, for practical reasags; is a preferable scheme. But the resultsLof [7]
do not prove it secure. This is a subtle point because therdifte in the schemes seems to be merely in the
presence of duplicates, and duplicating a signature is fmgary. (Anyone can copy a signature.) But that is
not the issue. An example may help to see what the problemugpdse there was an adversarthat, on input
pk = X and without making oracle query, produced a forgery of the foriX, m), (X', m’), (X', m’), o,
for somem’ # m and X’ # X, that was accepted by the verification procedureref3. Since the output of
A contains repeated enhanced messages, the resulis of [0} dtiaw us to rule out the existence Af Yet,
security requires us to do so, because this adversary dagsdasignature undex. (Note this signature is not
a duplicate. The duplicates are under other keys.) Ourtreeulever does rule out such an adversary.

Theorem 3.2 If the coCDH problem igt’, ¢)-hard, then theas-3 aggregate signature scheme(isgs, nmax,
qm, €)-secure for any, gs, nmax, qi, € satisfying

€ > elgg+1)-€ and ¢ < t' —tep(2gu + 2¢s + 3nmax + 1) -1

Our approach to the proof is different from the one used’bydfirove thatas-1 is secure if coCDH is hard.
They gave a direct reduction to coCDH, meaning, given anradvg attackinga s -1 they construct and analyze
an adversary attacking coCDH. But, in so doing, they end ygtichting a lot of the proof of the security of the
B85 scheme as given inl[9]. Instead, we reduce the securityseb to the security ofs~s. That is, we prove
the following:

Lemma 3.3 If the BLs standard signature scheme(is, ¢, gy, € )-secure then theLs-3 aggregate signature
scheme igt, gs, nmax, qu, €)-secure for any, gs, nmax, qu, € satisfying

626/ ) QSSQ/S_nmax 5 QHSQi{ and tSt/_tcxp'(QH"i'nmax"i'l)-l

TheorenZ3R follows easily from LemniaB.3 and Theofem 3.1r @edular approach yields a simple proof
even though we obtain a somewhat stronger result.

An interesting element of the proof of Lemifdal3.3 is that ibies reducing the security of one random
oracle model scheme to another one. We will be given a fokgagainst thea s -3 that queries a random oracle.
We need to build an adversaByagainst3.s. But B is itself given a random oracle. The idea is tBatvill
answer some oA queries via its own random oracle and directly simulate thers. The full proof follows.

Proof of Lemmal[33: Given a forgerA that (¢, gs, nmax, qu, €)-breaksas -3, consider the following forger
B against thes.s standard signature schem@.is given public keyX* = ¢*" as input, and has access to a
random oraclél () and a signing oracl8ign,, (v*,-) = Hg.5(-)* . It runsA on inputX* and responds
to its H 45-5 () andSign 45-;(x*, -) oracle queries using the subroutines in Fidure 1.

WhenA submits a query/ to its random oraclél ,;-;(-), the forgerB executedi-siv(M ). We note here that
in some cases the subroutiflesim can in turn submit queries ®'s random oracléi;, ;. WhenA submits a



SubroutineH-stvm (M) Subroutine€S1GN-sIM(m)
If (3m : M = X*||m) then returnH ;. (M) ReturnSign,, s (z*, X*||m)
Else IfHT[M] = L theny[M] & Z, ; HT[M] — t(g)"M!

ReturnHT[M]

Figure 1: The subroutines fd@ to simulate the random oraclé,;-;(-) and the sign oracl8ign ;- (z*, ).
Above,HT andy are associative arrays assumed initially to have valwyerywhere.

querym to its sign oracléSign ,-;(x*, -), the forgerB executesSiGN-siM(m). Eventually,A halts and outputs

aforgery(Xy,m1),...,(Xn, my),o. Now B defines the sets:
I = {Z|XZ:X*andmZ:m1}

J = {Z\X,:X*andm,#ml}

K = {i| X;#X*}.

Clearly, we have that U J U K = {1,...,n} and that/, J, K are disjoint. Since\ is legitimate, we know
that X; = X* and thus/ is non-empty. We can assume without loss of generality that p, because
otherwiseB can trivially forge and output &.s signature undeX * in time O(nt.x,) via exhaustive search
for *. This means thal| € Z}, and hence has an inverse modplthat we denote by. Now for each
i € J, our adversar executesSIGN-SIM(m;) to obtaing; « Signg,,  (z*, X*||m;). For each € K, it calls
its subroutineH-sivm (X, ||m;), thereby ensuring that[X;||m;] is defined, lets;; «— y[X;||m;], and then lets
o; — ¥(X;)¥, which we note is thes,s signature ofX;||m; under public keyX;. Finally, B lets

* N
My — X*|miand o1« (0 [Tic juxoi 1) ; (1)
and outputg M, 01) as its forgery.

For the analysis, we first argue thatAfs forgery is valid therB's forgery is valid too. Assuming the former,
the verification equation ofis-3 tells us that

e(o,g9) = He(Hﬂj-.%(XiHmi)aXi)
i=1

= [Te(as (X mi), X*) - ] e(Haes (X (Imi) » X*) - [T e as-s(Xillmi) , Xi)

i€l ieJ ieK
* \ |1
= e(Hy (X*m), X)) -TJeloi, 9)- [ eloi . X0) 2)
ieJ €K
* \ |1
= e(Hy (X¥m1), X )‘ » H e(o;, g) .
ieJUK

Above, [2) is true becauseg, as computed above I is thes.s signature ofX;||m; under public keyX;, for
all: € JuU K. We then applied the verification equation of thes scheme. Now we see thatdf is defined
by (@) then, from the above and the fact thét- / = 1 (mod p) we have

e(o1,9) = e(o,9) H e(oi,9)”"

e JUK
% A\ |1 d _
= e(Hars (X*|m1) , )T T elor, 9 [ elong)™
e JUK e JUK
= e(H’BLS(Ml)7 X*) )



which means that; is a valid3.s signature of message/; under public keyX*.

Furthermore, it is easy to see that the answersBhabvided to the oracle queries Afare distributed identi-
cally to the ones thak would have obtained from its oracles in the game definingdtsatage. The last thing
we need to check is th&tis legitimate, meaning did not quefy; to its Sign,,; («*, -) oracle. But it did not do

so while answeringign ;- (z*, -) oracle queries oB because the latter, being legitimate itself, did not query
my to itsSign 455 (x*, -) oracle. NowB also calledSign,, (z*, -) on X*||m; for all i € J, but the definition of

J implies that heren; # m,. Putting everything together, we gaidvic™#(B) > Adv?e& " (A).

BLS AS=3

Finally, we analyze the resource usagdsofFor gg, we note thaB makes sign queries in only two situations:
(1) wheneveA makes a sign query, so doBsand (2) oncé\ outputs a forgeryB makes J| < n,.x additional
sign queries. Fogy, it is easy to see th& makes at most the same number of random oracle querigg,to
as A makes toH ,;-;. Fort, notice thatB (1) answersyy random oracle queries, each of which results in
a call toH-s1mm, (2) possibly makes.,,., more calls toH-sim after A outputs its forgery, and (3) computes
one exponentiation in the last step to conved forgery into its own. Thus, the claimed running time bound
follows, and the proof is completdl

4 Unrestricted Sequential Aggregate Signatures

SAS SCHEMES A sequential aggregate signature (SAS) schemke §#5] = (Kg, SASign, SAVf) consists

of three algorithms, the last deterministic. The key geim@maalgorithm is exactly as for standard digital
signatures. The first signer computes a signature on messayecallingo — SASign'!(sk,m). Subsequent
signers ruro & SASign®(sk,m, o', (pky,m1), ..., (pk,,mn)), Wheren > 0, to aggregate their signature on
a message: into a given sequential aggregate signatdreorresponding to a sequence of public-key-message
pairs. A verifier can ruSAVf ((pk,,m1), ..., (pk,,my), o), wheren > 0, to obtain a bit, with 1 indicating
accept and 0 reject.

SECURITY. The security of a SAS scheme in the random oracle model nexjtiat it be computationally
infeasible for an adversary to produce a sequential aggrégegery involving an honest signer, even when it
can play the role of all other signers and can mount a chossssage attack on the honest signer. Formally,
the advantage of an adversakys

AdvETSE I (A) — Pr[SAVET(pky,ma), ..., (phyy ). 0) = 1]

where the probability is over the experiment
(pk, sk) < Kg; H < Maps(D) ; ((pky,m1), ..., (py, i), o) < ASASE (SE ) ()

To make this meaningful, we impose thabelegitimatein the sense that there exists {1,...,n} such that
pk; = pk and there exists ne;_; € {0,1}* such thatA submitted queryn;,o;_1, (pky,m1),...,(pk;_1,
m;_1) to the signing oracle. Thus, the honest signer here is thevbiose keys arek, sk, and we are asking
that the sequential aggregate forgery include some messagsignature corresponding to this honest signer,
but the adversary never legitimately obtained a sequeatigiegate signature of this message. We sayAhat
(t, gs, nmax, g1, €)-breakssas if it runs in time at most, invokes its signing oracle at magi times, invokes
its random oracle at mogj; times, has advantage strictly greater thamand there are at most,,., public
keys involved in either its forgery or any of its queries t® signing or random oracles. We say tats is
(t, qs, max, qH, €)-Secure if there is no adversary thiatgs, nmax, qu, €)-breakssas.

The security requirement we are making is stronger than riieeod [T%]. One can view their definition as
asking for the same condition but for a more restricted (lmatlass of adversaries, namely ones whose output
must not contain repeated public keys and who may not subwjitjaeries containing repeating public keys



Alg SASignt((m, 7= 1), m, o, (71, m1), . .., (Tn,my)) | Alg SAVER (71, mq), ..., (Tn, mp), 0)
If n=0thenoy «— 1 |If 71,...,m, not all different then Return|0
If SAVER (71, m1),. .., (0, ), 00) # 1 Op — 0O
then ReturnL Fori=mn,...,1do
h — H(my|[[ma]| ... |7nllma||w]|m) If Test(m;) = 0then Return 0
o—n Yh- o) h; — H(my||ma]| ... ||mw||m;)
Returno 0i—1 — mi(0y) - hi_1
If o9 = 1then Return 1 else Return 0

Figure 2: The sequential aggregation and verification #lgos of s45-1. Removing the framed text yields
545-0.

to the signing oracle. We will show that a construction psmmbin [15] remains secure even under our more
stringent definition.

CERTIFIED CLAW-FREE TRAPDOOR PERMUTATIONS The schemes we consider use a family of certified claw-
free trapdoor permutations over a gro(ipl[15]. Let us reballdefinitions. LeG be a multiplicative group. A
family of certified claw-free trapdoor permutatiohsover G is a 4-tuple(Gen, Eval, Inv, Test) of algorithms,

all but the first being deterministic. Viar, 7, 7 1) £ Gen, one can generate (the descriptions of) a pair
of permutationsr,7 on G and (the trapdoor information describing) the inverse paation 7—!. For all
(m, 7, 1) € [Gen] and allz € G, the evaluation algorithrival, on inputsr, z, returnsr(x) in time at most
T11, and on inputst, = returns7(x) in time at mostly;, whereTy; is a number associated Ib The inversion
algorithmInv takes inputr—! andy € G and returnsr—!(y) in time at mostTi;. The mapTest takes input
any stringz’ and, in time at mosf1y, returns a bit, this being if and only if Eval(#’,-) is a permutation on

G whose computation takes time at m@st. We assume the time for multiplication, inversion, and siamap
random elements if¥ is also at most ;. We define the advantage of an algoritBnm finding a claw inll as

Advi™(B) = Pr [ﬂ(m) —7(y) | (m,7 1Y) & Gen; (z,y) & B(ﬂ,f)] .

We say thatll is (¢, ¢)-claw-free if there is no adversafy that runs in time at most yet has advantage
strictly more thare’. From now on we will confound the permutations and their dpsons, writing(x) for
Eval(m, z), and so on.

THE SAS SCHEMES WE CONSIDER The s45-1 scheme of[[15] associated to a family of certified claw-
free trapdoor permutationd works as follows. Each signer generates a key ppir, sk) by computing
(m, 7,7 Y) & Gen; pk «— 7 sk «— (w7 '). LetH : {0,1}* — G be a random oracle. The sequen-
tial aggregation and verification algorithms are descrineeigure[2.

Thesas-1 scheme was proposed and proven securg_in [15]. We considethesa5-0 scheme that is
identical to thesas-1 scheme, except that the boxed distinctness test in thecagifin algorithm in Figurgl2
is dropped. (Note that this also affects the signing alboribecause it invokes the verification algorithm as a
subroutine.)

CONSISTENCY CONDITIONS Similar to general aggregate signatures, the consistergition for sequential
aggregate signatures differs from scheme to schegmg-0 meets the natural, strongest possible consistency
requirement, namely that

Pr [SAVfH((pk17m1)7 ctty (pknvmn)v Un) = 1] =1

for all positive integers: and all messages:y, ..., m,, € {0,1}*, the probability being in the experiment
where we selecH < Maps(D) : (pky, sk1),...,(pk,,sk,) € [Kg], then selectr; < SASign"(sk1,



my); o9 & SASign®l(sko, mo, o1, (pky,m1)); -+ ; On & SASign®(sky, my, o1, (pky,m1),. .., (pk, 1,
mp—1)). However,s4s-1 meets this condition only whepk, . . ., pk,, are distinct.

DISCUSSION OF SECURITY Lysyanskaya et al[T15] make no claims regarding the sgcofithe s45-0
scheme. Unlike the case of tbrs-1 general aggregate signature scheme, there does not seenatodasy
attack when the distinctness condition is dropped. At tleesame, the security proof of [15] clearly ceases
to go through for thesa5-0 scheme, because the simulation of signatures and the wéyrtfegy is exploited
explicitly rely on all public keys being distinct. One mayetkfore rightfully wonder what the reason for this
restriction is, and whether it is strictly necessary.

OuR RESULT. The following implies that the distinctness restrictianthe s45-1 scheme can safely be
dropped:

Theorem 4.1 If the family of certified claw-free trapdoor permutatiofiss (¢, ¢')-claw-free, then theas-o0
sequential aggregate signature schemé jgs, nmax, qi, €)-secure for any, gs, nmax, qi, € satisfying

€ > e(gs+1)-€ and t <t —nmax-(qu +gs+2)-O(Tn) . |

We achieve this result through a number of refinements to ebariy proof of [15] that allow us to either
simulate signatures for queries with multiple occurrenckthe target public key, or to directly exploit the
aggregate signature provided by the adversary in a signgtiary to find a claw for the underlying permutation.

INSTANTIATING s45-0 WITH RSA. RSA does not directly give rise to a family of certifiedgdoor permu-
tations. (Each instance comes with its own modulus, so fffateht instances are over different groups. Also
it is not clear in general how to test that a given number islia RSA exponent relative to a given modulus.)
An RSA-based instantiation ¢f25-0 can however be obtained by using the family of certified clese-trap-
door permutations froni[13]. This comes at the cost of efficje however, as a permutation evaluation now
takes two RSA exponentiations. Another option is to usertiegkes in [I5], which either require the signers
to be ordered by increasing moduli, or add one bit to the sigador each signer. To ensure the certification,
they suggest that can be chosen to be a prime larger tiénAlternatively, one can use arbitraeysuch that
ged(e, p(IN)) = 1 at the cost of longer public keys as proposedin [10]. As tleigoperation, one must use
addition (modul!N! when using[[18] or moduldV when using the techniques 6f]15]) since multiplication is
only a group operation ovefy,.

GAMES. Our proof of TheoreniZl1 will use code-based game-playdjgdnd we begin by recalling some
background from[]4]. A game —look at Figué 4 for examples—s halnitialize procedure, procedures to
respond to adversary oracle queries, aidrelize procedure. A gamé is executed with an adversafy as
follows. First,Initialize executes, and its outputs are the inputd td hen the latter executes, its oracle queries
being answered by the corresponding procedurés. /henA terminates, its output becomes the input to the
Finalize procedure. The output of the latter, denoed, is called the output of the game, and we let¥=-y”
denote the event that this game output takes valuighe boolean flagad is assumed initialized toalse, and
cooD will always denote the event that it is never setime. (This event is defined in all games.) Games
G, G; areidentical untilbad if their code differs only in statements that follow the segtof bad to true. For
examples, games), G; of Figure[4 are identical untbad. The following is one version of the Fundamental
Lemma of [4].

Lemma4.2 [4]LetG;, G, be identical untilbad games, and\ an adversary. Then

Pr[GZA:>1 A GOOD] = Pr[Gﬁ\:ﬂ A GOOD] |

PrROOF OF THEOREMEl. We say that an adversafyagainsts4s-o is simplifiedif it has the following
properties, where denotes the public key input ®andz ! its inverse:
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A never repeats a query to itk-oracle.

Any H-query ofA has the formry ||mq|| - - - |7y ||, fOr somen > 1, somery, ..., 7, such thaflest(r;) =
1foralll <i<n,and someny,...,m, € {0,1}*.

3. If Amakes aqueryn,1,0,, (T1,m1), ..., (7, my,) to SASign ((x,7=1), - ) then it previously made
H-querym |[mal| - - ||l [mn || ]| mn1.
If A outputs((m1,m1),..., (7T, my,), o) then it previously madél-querym||mq|| - - - || || 7.

5. If A makesH-query mi||m1] - - ||| m. then it previously madél-query mi||mi| - - - || mp_1]mn_1.
(And hence, inductively, has already queried|m|| - - - ||7;||m; forall 1 <i <n — 1, in this order.)

6. If A makes a queryn,.i,on, (m1,m1),...,(7,, my,) to SASign®((x,7=1),---) thenSAVF ((r1,m;),
ooy (T, my), 0,) = 1. i such thatr; = .

7. If A makes a queryn,ii,on, (m1,m1),..., (7, my,) to SASignt((r,7=1),---) then for everyi ¢
{1,...,n} such thatr; = m, it is the case thaA previously queriedn;, o;_1, (71, m1), ..., (mi—1,mi—1)
to SASignt! ((zr, 7=1),---).

There are two stages in our proof. First, we transform a gadwreraryA’ attackings4s-o into a simplified

adversanA attackings4s-o without loss in advantage although at some cost in resaurces

Lemma 4.3 LetA’ be an adversary thdt, s, nmax, g1, €)-breakssa.s-0. Then, we can construct a simplified
adversaryA that (t*, gs, nmax, ¢y, €)-breakssas-o where

t* = t+ nmax(QH +gs + 1) . O(TH) ) q;I - nmax(QH +gs + 1) . I
Next, we construct an adversaBywhich enlistsA’s help in breaking the familyI underlyingsas-o:

Lemma 4.4 Let A be a simplified adversary th&t*, gs, nmax, ¢j;, €)-breakss4s-o0. Then, we can construct
an adversanB attackingII such that

Ad seq-agg-uf A
AchHIaW(B) > VSJZLS-O ( )
e(gs + 1)

and the running time dB is at most that oA plus (¢f; + 1) - O(T1). |

: ®3)

TheorenTZ1 follows directly from these two lemmas. We noacped to prove the lemmas. A convention
made in writing code is that all array elements are assumarditially be | .

Proof of LemmalZ3: The adversanA has access to oraclés and SASign'!. On input a public keyr, it
begins by initializingS to (. It then runsA’(r), answering hash and sign oracle querie#\ofia the subrou-
tines H-sim and S1GN-siM, respectively, of FigurEl3. Note that these subroutinesAaloracles. Wher\’
halts with some output(ry,m;), ..., (7, my), 0y,), adversanA calls H-siv (7 ||mq || - - - |7 [|m., ), outputs
((m1,mq),..., (T, my),0n), and halts. Let us now explain how this ensures thaias the properties listed
above without loss in advantage as comparedl'to

Propertydlis achieved becaugestores a$iT|[x| the answer td1-queryx of A, and, if this query is repeated,
returnsHT[z] without re-querying the oraclé\ answergi-queryz of A’ via its ownH oracle only when: has
the formmy ||mq|| - - - ||7n||m, with Test(m;) = 1 for all 1 < i < n, and, otherwise, itself picks a random value
to play the role of the answer. This ensures propBrtyet will not decrease the advantagefobecause the
algorithms ofs2.$-0 never invoke thél oracle on inputs not of the above form. Properf@esdd are obtained
by havingA make the extral-query if necessary. Propeffiis provided by having\ query all appropriate un-
queried prefixes of &l-query ||m1]| - - - |7, |lm, before querying the latter. Algorithi®ASignt(7=1,-.-)
returns_L on inputm,, 1,0, (71, m1), ..., (7, my) UNleSSSAVFR (1, my), ..., (7, myn),0,) = 1, SO We
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SubroutineH-siv(x)
If 3n,m,..., T, m1,...,my, such that
—n>1landz = my||mq] - ||mn]mn
—-Vi:1<i<n:m;e€{0,1}* andTest(m;) =1
Then
Fori=1,...,ndoQ; — mi|mal---|mllm;; If HT[Q;] = L thenHT[Q;] «— H(Q:)
Else IfHT[z] = L thenHT[z] < G

ReturnHT[x]

SubroutineSIGN-SIM (1,11, Oy (T1,M01), -+, (T, M)

Tpyl < 75 00 < 1

Fori=1,...,n+ 1doIf Test(m;) = 0 thenreturnL ; Q; < my||mq]| - - ||m:|mi

y — H-sM(Qr 1)
Fori=mn,...,1 doo;_q «— 7TZ'(O'Z‘) . HT[Qi]_l
If o9 # 1 then returnl

S — SU{(mpi1,0m, (m1,m1), ..., (Tn,mpn))}
Fori=1,...,ndo
fm=m and(mi,oi_l, (wl,ml), ey (wi_l,mi_l)) ¢ S then Outpul((m,ml), ceey (m,mi),ai)
Ont1 — SASign ((m, 771, mps1, op, (m1,m1), - .., (T, m0))
Returno,,+1

Figure 3: Subroutines for adversahy

haveA do this test and refrain from making the query unless the ansnone, providing properf§ Propertyd
is the most interesting, and an important element in dealiitig loops in signing chains. To explain hotv

provides it, suppos@’ made a queryn, 1, o,, (71, m1), ..., (7., my) to SASign™ ((z,7=1),---) such that
for somel < i < n it was the case that; = = but A did not previously queryn;,o;_1, (71, m1),...,
(mi—1,mj—1) 10 SASignH((ﬂ, 771),---). ThenA, rather than making quemt,, 11, oy, (11, m1), .. ., (T, Mmy)

to SASign ((m, 1), ---), outputs((ry,m1), ..., (m;, m;), ;) as its forgery and halts. Propefifells us that
SAVfH((m,ml),...,(m,mi),ai) = 1, and the fact thaf did not previously queryn;,o;_1, (71, m1),...,
(mi—1,mi_1) to SASign® ((m, 7~ 1), - - - ) means thah remains legitimate. So this can only increase the advan-
tage ofA compared to that of’. |

Proof of Lemmal[£4: We consider the games of Figdre 4. The array eblr|[m1]| - - - |7 ||m.] plays
the role of H(m||m1]|--- ||mn|lmn). The notationc < {0,1} means that is assigned) with probabil-

ity 0 and 1 with probability 1 — 4, whered € [0, 1] is a parameter whose value will be chosen ldfer [11].
These games rely on some of the propertied ¢isted above. For example, when answerliigqueryQ,, =
m1||mal - - - ||7n]|mn, propertyd allows us to assumHT|[Q,,—1], and thus als@[Q,,—1], are already defined,
whereQ,,_1 = w1 ||m1| - - - |7n_1|lmn_1. Similarly, property@tells us that the relevaiT[-] entries are de-
fined at the time &ASign'!((w,7~1),---) query is made. ProperBtell us that the relevarii'T[-] entries are
defined at the time Finalize is run, and the legitimacyaélls us thats computed at line 130 is well-defined in
the sense that the set over which the minimum is taken is nptyemotice thatG; usesr—! but Gy does not.

Let us say that &l-querymi|/mi]| - - - ||mn||m,) is simulation signedf ¢[@Q;] = 0 for all 1 < i < n, where
Q; = mi||ma|| - - - || |lm;. Then line 112 tells us that, in both, andG,, we have:
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Initialize GameGy /[G]
100 (7,7, 7 1) <& Gen; ofe] —1; 85— 0
101 Returnm

On H-query 71 ||mq]| - - - ||7n]|mn
110 Qn—l — 7T1H777,1” T ”7Tn—1”mn—1 ; Qn — 7T1H777,1” T ”7Tn”mn ; U[Qn] & G

111 If m, = 7 thenc[Q,] < {0,1} elsec[Q,] — 0

112 If ¢[@,] = 0 thenHT[Q,,] « 7. (0[Qn]) - 0[Qn_1]""! elseHT[Q,] «+ 7(o[Qn]) - o[Qn_1]""
113 ReturnHT[Q,,]

On SASignH((w, 7T_1), <+ )-qQuery My i1, 0n, (T1,m1),5 ooy (T, M)
120 S — SU{(mps1,0n, (m1,m1), ..., (T, mp))}; Tpy1 < 75 09 < 1
121 Fori=1,...,n+1doQ; «— 771Hm1|] ce HmHmZ

122 opi1 = 0[Qnt]
123 If (37 :1<i<n+1:cQ;]=1)thenbad < true;
124 Returno,4

On+1 < 77_1(0'n ) HT[Qn—i—l])‘

Finalize((my,m1),. .., (mn, my),0)

130 s« min{i | 1 <i<n, m=mandvr: (m;, 7, (71,m1),...,(m—1,mi—1)) € S }
131 o, «— O

132 Fori=n,...,1doQ; « mi|m1| - ||m||m;; oi_1 « mi(o;) - HT[Q;]

133 If o = 1 thend < 1 elsed «+ 0

134 If (37 :1<i<s—1:c[Qi] =1)thenbad «+ true
135 If ¢[Qs] = 0 thenbad « true

136 w « (05, 0[Qs))

137 Returnd

Figure 4: Gamé>, includes the boxed statement, while ga@gdoes not. Also, notice thak; usesr—!, but
Gy does not.

Claim 1. Let my||mq|| - - - || ||y ) be a simulation signed hash query, and@et= 71 ||m4|| - - - ||7;||m; for
0 <4 <n.Thenforalll <i < nwe haver[Q;] =7, (c[Q;_1] - HT[Q;]). O

Claim 2.Letw = (05, 0[Qs]) be as per line 136 andlas per line 133. Then
Prin(os) =7(0]Qs])] > Pr[d=1 A GooD],
where both probabilties are over the executiodgfwith A.

Proof. If coob holds then line 134 tells us that ||| - - - |[7s—1]/ms—1 is simulation signed. Il = 1 then
from Claim 1 and line 132 we get; = o[Q;] forall 1 < i < s — 1, and, in particulargs_1 = o[Qs—_1]. If
GooD holds then line 135 implieg Q] = 1, and then line 112 implieHT[Q,] = 7(0[Qs]) - o[Qs_1]~*. Thus
we have

m(os) = ms(os) = HT[Qs] - 051 = ﬁ(U[QS])’U[QS—l]_l 051 = T(0]Qs]) . O
Now define adversar againstlI as follows. On inputsr, 7, it initializes o[¢] < 1 andS « (. It then runsA

on inputr, answering its oracle queries as per the code of gamaVhenA halts,B runs the Finalize code of
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Initialize GamdGs|/ G3
200 (m, 7,7 1) & Gen; S —0)
201 Returnz

On H-query 7y ||ma|| - - - ||7n]|mn

210 Qp — mi|ima-- - ||mwnmn

211 If 1, = 7 thenc[Q,] <~ {0,1} elsec[Q,] — 0
212 HT[Q,] < G

213 ReturnHT[Q,]

On SASignH((w, 7T_1), <+ )-qQuery myi1, On, (T1,m1),5 ooy (T, M)
220 S — SU{(mps1,0n, (m1,m1),. .., (T, mn))} 5 Tpy1 — 75 09 — 1
221 Fori=1,...,n+1doQ; < m|mal|...||m|m;

222 If ¢[Qn+1] = 1 thenbad « true

223 ‘ If (3i:1<i<mn:c]Q]=1)thenbad « true‘
224 opy1 — 7 Hom - HT[Qn1])

225 Returno,iq

Finalize((my,m1), ..., (mp, my),0)

230 s« min{i | 1 <i<n, m=mandVr: (m; 7, (71, m1),...,(mi—1,mi—1)) €S}
231 op — 0O

232 Fori=mn,...,1doQ; « my||mal|---||mi||m;; oi1 < m(0;) - HT[Q;] 1

233 If g = 1thend < 1 elsed «+ 0

234 ‘If (Fi:1<i<s—1:c[Q;]=1)thenbad « true‘
235 If ¢[Qs] = 0 thenbad « true

236 Returnd

Figure 5: Gamé,, includes the boxed statements whilg does not.

Gy on input the output oA\. It outputsw and halts. Note thaB is based orty, rather thanz; and thus does
not need to knowr—!. Then by Claim 2 we have

Adv{™(B) > Pr [GOA =1 A GOOD} . ()
However,GGy andG; are identical-untibad games, and so Lemriia$.2 implies that

Pr|(Gh=1 A GOOD} = Pr[G{\:ﬂ A GOOD} : (5)

Claim 3.1n the execution of7; with A, all oracle queries of the latter are answered correctly.

Proof. First consider &l-query@,, = m1||m1|| - - - ||m||m». The random choice of|Q,,] at line 110, together
with the fact thatr,, 7™ are permutations, then implies thET'[Q,,] is uniformly distributed, meaning the
answer to this query is exactly as would be given by a rand@ul@r Next consider ﬁASignH((ﬂ, a1, )-
querymyy1, op, (71, m1), ..., (7, my). We consider two cases. @1 = mi||ma|l ... ||mn||mn||7]|mps1

is simulation signed then Claim 1 tells us that the vail€®,,.] returned is correct. Otherwise, the value
ont1 returned is computed by the boxed statement at line 123 acmtrisct because it is computed just as in
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Initialize GameG,

400 (m, 7,7 1) & Gen; S 0
401 Returnm

On H-query m|[m || - - - [|mn[[mn

410 HT[my||mq]| - - [|mn]|mn) &G

411 ReturnHT [y ||mq ]| - - - |75 ]| mn]

On SASign'! (7, 7=1), - )-query my, 1, o, (71, m1), - .+, (T, M)
420 S — SU{(mpt1,0n, (m1,m1), ..., (Tp,mpn))}; 00— 1

421 oyt 1 Hon  HT[mylmal| - [l || mn || 7]|12044])

422 Returno,,+1

Finalize((my,m1),. .., (mn, my),0)

430 s« min{i | 1<i<n, m=mandVr: (m;, 7, (m1,m1),...,(Ti—1,mi—1)) € S}
431 oy «— O

432 Fori=mn,...,1 dOQZ “— 7T1Hm1|| s ||7T2H’I’)’LZ ; 0i—1 < 7Ti(0'i) . HT[QZ]_l

433 If og = 1thend «+ 1 elsed « 0

434 For all 7 ||m}]| - - - ||m]||m; such thad Tz} ||m) || - - - |7} ||m;] # L do

435 If ) = thenc[r} | - |fnflmi] < {0, 1} elsecl [m} |- ! lf] — O

436 Forall (mj, 0}, (7, m}),..., (7, m;)) € Sdo

437 |If c[ay||my]| ... ||m]||m;||7||m; ] = 1 thenbad « true

438 If c[Qs] = 0 thenbad « true
439 Returnd

Figure 6: Games,.

SASign*!((m,7~1),---). Here we use properf, which tells us that,,_; was correct.0

Claim 3 implies that
Pr[G’f:ﬂ A GOOD} = Pr[G§:>1 A GOOD} : (6)

where game?s is in Figure[b. Gamé&r, directly answers all oracle queries correctly, meaning gssin the
game defining the advantage Af Additionally it splits up the setting dfad as done by line 123 af/; into
lines 222, 223. Next we claim that

Pr[Gé\:ﬂ A GOOD} = Pr[GQ:ﬂ A GOOD} . (7)

To justify this, we explain why lines 223, 234 ¢6i, are redundant and can simply be dropped to arrive at
Gs. First consider line 223. Supposf);] = 1 for somel < ¢ < n. Then it must be that; = =, since,
otherwise, due to line 21%[Q;] can only bed. But then propertyd says thatA must have previously made

SASignH((w, 7T_1), s )-querymi, Oi—1, (7T1, ml), ey (772'—1, mi_l). If so, line 222 would have sékd at the
time this query was made. Now consider line 234. The defmitibs and line 211 tell us that if there is a
1 <4 < s —1such thatc[@;] = 1 then it must be that; = = and (m;, 7, (71, m1), ..., (mi—1,mi—1)) €

S for somer. But then, againpad would have been set by line 222 wh6ASign™ (7,7~ 1), ---)-query
mi, 7, (m1,my), . .., (mi—1,m;—1) was made.
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In Game(, the responses to oracle queries do not depend on the vatbe ffdgbad. Thus, the choices of
c[-] and the setting dbad can be postponed, meanidg is equivalent to gamé&’, of Figure[®. In this game,
the random choices of-] are made after the game outplis determined, so clearly the events’¥ = 1” and
GooD are independent. Thus we have

Pr|{GS=1 A Goop| = Pr G4A:>1/\GOOD]

= Pr _G4A:>1] -Pr[Goon]

— pr|Gt= 1] -Pr [G4A doesn't sebad | . (8)

The outputd of G% is 1 exactly whenA succeeds in forgery, meaning

Pr [Gf} = 1] — AdvETrET () 9)
On the other hand
Pr [Gj} doesn't sebad ] = 5% . (1-0). (10)

We now select € [0, 1] to maximize the functiorf (0) = 6% (1 — §), which yieldso = 1 —1/(¢s + 1) and we

have
1 s 1 1
0 . (1=0) = (1-— . > . 11
( ) < QS+1> gs+1 = e(gs+1) (1)

Putting togethe{4)[d5)X6 X7 L1(8L] (9L 410), abdl(2dp get [B). The running time d is that ofA plus an
overhead ofgj; + 1) - O(7111) due to line 112.1
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