
Unrestricted Aggregate Signatures

Mihir Bellare1 Chanathip Namprempre2 Gregory Neven3

June 2006

Abstract

Secure use of the BGLS [7] aggregate signature schemes is restricted to the aggregation of distinct mes-
sages (for the basic scheme) or per-signer distinct messages (for the enhanced, prepend-public-key version
of the scheme). We argue that these restrictions preclude interesting applications, make usage of the schemes
error-prone and are generally undesirable in practice. Viaa new analysis and proof, we show how the restric-
tions can be lifted, yielding the first truly unrestricted aggregate signature scheme. Via another new analysis
and proof, we show that the distinct signer restriction on the sequential aggregate signature schemes of [15]
can also be dropped, yielding an unrestricted sequential aggregate signature scheme.

1 Department of Computer Science & Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California
92093, USA. Email:mihir@cs.ucsd.edu. URL: http://www-cse.ucsd.edu/users/mihir.

2 Electrical Engineering Department, Thammasat University, Rangsit Campus, Klong Luang, Patumtani, Thailand 12121. Email:
nchanath@engr.tu.ac.th. URL: http://www.engr.tu.ac.th/∼nchanath.

3 Department of Electrical Engineering, Katholieke Universiteit Leuven, Kasteelpark Arenberg 10, B-3001 Heverlee-
Leuven, Belgium and Département d’Informatique, Ecole Normale Supérieure, 45 rue d’Ulm, 75005 Paris, France. Email:
Gregory.Neven@esat.kuleuven.be. URL: http://www.neven.org.

mihir@cs.ucsd.edu
mailto:mihir@cs.ucsd.edu
http://www-cse.ucsd.edu/users/mihir
nchanath@engr.tu.ac.th
mailto:nchanath@engr.tu.ac.th
http://www.engr.tu.ac.th/~nchanath
Gregory.Neven@esat.kuleuven.be
mailto:Gregory.Neven@esat.kuleuven.be
http://www.neven.org

1 Introduction

AGGREGATE SIGNATURES. An aggregate signature (AS) scheme [7] is a digital signature scheme with the
additional property that a sequenceσ1, . . . , σn of individual signatures —hereσi is the signature, under the
underlying base signature scheme, of some messagemi under some public keypk i— can be condensed into a
single, compact aggregate signatureσ that simultaneously validates the fact thatmi has been signed underpk i

for all i = 1, . . . , n. There is a corresponding aggregate verification process that takes input(pk 1,m1), . . . ,
(pkn,mn), σ and accepts or rejects. Aggregation is useful to reduce bandwidth and storage, and is especially at-
tractive for mobile devices like sensors, cell phones, and PDAs where communication is more power-expensive
than computation and contributes significantly to reducingbattery life.

SCHEMES. Boneh et. al. [7] present an aggregate signature scheme based on the BLS signature scheme [9]. We
call it AS -1 and represent it succinctly in the first row of Table 1.AS -1 , however, has some limitations. As the
table shows, the aggregate verification process, on inputs(pk1,m1), . . . , (pkn,mn), σ, rejects if the messages
m1, . . . ,mn are not distinct. The restriction is crucial because, without it, as shown in [7], the scheme is
subject to a forgery attack. The consequence, however, is torestrict the ability to aggregate to settings where
the messages signed by the signers are all different. BGLS recognize this limitation and suggest a workaround.
Specifically, they say: “It is easy to ensure the messages aredistinct: The signer simply prepends her public
key to every message she signs ...” [7, Section 3.2]. They stop short of specifying a scheme in full, but
since it is clearly their intention to “reduce to the previous case,” our understanding is that they are advocating
the modified scheme in which the signature of a messagem underpk is the BLS signature of theenhanced
messageM = pk‖m underpk while aggregate verification is done by applying the aggregate verification
procedure ofAS -1 to (pk 1, pk 1‖m1), . . . , (pkn, pkn‖mn), σ. However, if so, in this scheme, which we call
AS -2 , the aggregate verification process will reject unless the enhanced messagespk1‖m1, . . . , pkn‖mn are
distinct. (Why? Because the aggregate verification processof AS -1 rejects unless the messages are distinct,
and the role of the messages is now played by the enhanced messages.) The consequence is that the ability to
aggregate is restricted to settings where the enhanced messages signed by the signers are all different. That is,
the limitations have been reduced, but not eliminated.

OUR RESULT. We ask whether there exists a truly unrestricted proven-secure aggregate signature scheme.
Namely, there should be no distinctness-based restrictionof any kind, whether on messages or enhanced mes-
sages. We show that the answer is yes. Our result is a new, direct analysis of the security of enhanced-message
signature aggregation which shows that the distinctness condition in the aggregate verification process ofAS -2
—namely that this process rejects if any two enhanced messages are the same— can be dropped without com-
promising security. In other words, an unrestricted schemecan be obtained by the natural adaptation ofAS -2
in which the distinctness condition in the verification is simply removed and all else is the same. This scheme,
which we denoteAS -3 , is summarized in the last row of Table 1. The fact thatAS -3 is very close toAS -2 is a
plus because it means existing implementations can be easily patched.

We clarify that the security ofAS -3 is not proved in [7]. They prove secure onlyAS -1 . The security of
AS -2 is a consequence, but the security ofAS -3 is not. What we do instead is todirectly analyze security in
the case that signatures are on enhanced messages. Our analysis explicitly uses and exploits the presence of the
prepended public keys to obtain the stronger conclusion that AS -3 (not justAS -2) is secure.

MOTIVATION . The limitation ofAS -2 —namely that aggregation is restricted to settings where notwo en-
hanced messages are the same— may seem minor, because all it says is that a set of signatures to be aggregated
should not contain duplicates, meaning multiple signatures by a particular signer of a particular messages.
However, as we now explain, there are in fact several motivations for schemes likeAS -3 where aggregation is
possible even in the presence of duplicates.

Consider a network of sensor nodes, periodically recordingtemperatures in a nuclear reactor or voltage
levels in a power grid and transmitting the information to a center. Ensuring integrity is crucial (if an attacker

1

Scheme Sign Aggregate verification process accepts iff

AS -1 [7] H(m)x
e(σ, g) =

∏

n

i=1
e(H(mi), g

xi) andm1, . . . ,mn all distinct

AS -2 [7] H(gx‖m)x
e(σ, g) =

∏

n

i=1
e(H(gxi‖mi), g

xi) andgx1‖m1, . . . , g
xn‖mn all distinct

AS -3 H(gx‖m)x
e(σ, g) =

∏

n

i=1
e(H(gxi‖mi), g

xi)

Table 1: The aggregate signature schemes we discuss. Heree: G1 × G2 → GT is a bilinear map,g is a
generator ofG2 known to all parties, andH: {0, 1}∗ → G1 is a hash function. The second column shows
the signature of a messagem under public keygx, generated using secret keyx. In all cases, a sequence of
signatures is aggregated by simply multiplying them inG1. The third column shows under what conditions the
aggregate verification algorithm acceptsσ as a valid aggregate signature of messagesm1, . . . ,mn under public
keysgx1 , . . . , gxn respectively.

can tamper with the transmitted information it can trigger afalse alarm, or, even worse, prevent a true emergency
situation from being detected) so each node signs its transmissions. These are aggregated by the center to save
storage. (The schemes we are discussing permit on-line aggregation in which one can maintain a current
aggregate and aggregate into it a received signature.) However, information such as temperatures or voltage
levels can certainly repeat over time! Indeed, especially in stable conditions, we would expect frequent repeats.
So we would expect to see a single signer (sensor) signing thesame data (measurement) many times. In
general, this can happen any time the data being signed is drawn from a small space. In any such situation,
not just messages, but even enhanced messages can repeat andan unrestricted aggregate signature scheme is
necessary.

Perhaps an even more important reason to prefer unrestricted schemes is that they are less likely to be
misused and less likely to result in unexpected errors. An application designer contemplating usingAS -2
must ask herself whether, in her application, enhanced messages might repeat. This may not only be hard to
know in advance, but might also change with time. (Experience has repeatedly shown that once a piece of
cryptography is deployed, it is used for purposes or applications beyond those originally envisaged.) With
an unrestricted scheme, the application designer is freed from the need to worry about whether the setting
of her application meets the restrictions, reducing the chance of error. In general, application designers and
programmers have a hard enough time as it is to make error-free use of cryptography. Asking them to understand
message distinctness restrictions and anticipate whethertheir application meets them is an added burden and
one more place where things can go wrong.

POSSIBLE WORKAROUNDS. Various ways to get around message distinctness restrictions may come to mind,
but these workarounds either do not work or tend to be more complex or restrictive than direct use of an
unrestricted scheme. For example, one could have the verifier drop from its input list(pk1,m1), . . . , (pkn,mn),
σ any pairpk i,mi that occured previously in the list, but then, assumingσ was a correct aggregate signature of
the given list, it will not be a correct aggregate signature for the truncated list, and verification will fail. Another
possibility is that the aggregator refrain from including in the aggregate any signature corresponding to a public
key and message whose signature is already in the aggregate.But aggregation may be done on-line, and the
aggregator may know only the current aggregate and the incoming signature, and have no way to tell whether or
not it is a duplicate. Adding time-stamps or other nonces is another possibility, but complicates the application.
It seems clear that being able to useAS -3 without any worries about signature or message replicationis simpler,
easier and more practical.

RESULTS FORSASS. A sequential aggregate signature (SAS) scheme [15] permits a more restrictive kind
of aggregation in which the signers must participate in the process and use their secret keys. Imagine the

2

signers forming a chain. In stepi, the i-th signer receives from the previous one a current aggregate, and,
using its secret key, it aggregates into this its own signature, passing the new aggregate on to the next signer
in the chain. The output of the final signer is the aggregate signature. Although clearly less powerful than
general aggregate signature (GAS) schemes —following [8] we now use this term for the BGLS-type aggregate
signatures discussed above in order to distinguish them from SASs— the argument of [15] is that sequential
aggregation is possible for base signature schemes other than BLS or may be done more cheaply. Specifically,
Lysyanskaya et al. [15] present a SAS scheme based on certified [5] claw-free trapdoor permutations.

However, the model and schemes of [15] also have some limitations. They require that no public key can
appear more than once in a chain. That is, the signers who are part of a signing chain must be distinct. But
in practice there are many reasons to prefer to allow aggregation even when a particular signer signs multiple
messages, meaning when there are loops in the chain and public keys can repeat. Certainly, the previously
discussed motivations are still true. Namely, in applications like signing in sensor nets or ad hoc networks,
a particular signer (sensor) will be producing many signatures and it would be convenient to allow these to
be aggregated. More importantly, an unrestricted SAS scheme is more misuse resistant because it does not
require the application designer to try to predict in advance whether or not there will be repeated signers in a
prospective chain. But in fact the restrictions in [15] are even greater than the ones forAS -2 , for they say not
only that one cannot aggregate when a particular signer signs a particular message twice, but that one cannot
aggregate even when a particular signer signs two or more messages that are distinct. This makes the number
of excluded applications even larger, for it is common that aparticular signer needs to sign multiple messages.

Our result —analogous to the GAS case— is a new analysis and proof that shows that the restrictions
imposed by [15] on their schemes can be lifted without impacting security (that is, verification can just drop
the condition that one reject if there are repeated public keys, and security is preserved), yielding unrestricted
schemes. Again, that only a minor modification to the scheme is needed is convenient if existing implementa-
tions need to be updated.

RELATED WORK. Lu et. al. [14] present an SAS scheme for which they can lift the distinct signer restriction,
as follows. If a signer wishes to add its signature of a messageMnew to an aggregateS which already contains
its signatureSold on some messageMold, then it removesSold from S and then adds back in a signature on
the messageMnew‖Mold. However, their scheme is weaker than the others we have discussed —ours or those
of [7, 15]— with regard to some security properties and also with regard to efficiency. Specifically, [14] use
the certified public key model [1, 6], which reflects the assumption that signers provide strong ZK proofs of
knowledge of secret keys to the CA at key-registration, an assumption that we, following [7, 15], do not make.
Also, in the scheme of [14], public keys are very large, namely 162 group elements, which is particularly
expensive if public keys have to be transmitted along with the signatures. In contrast, other schemes have short
public keys. On the other hand, the proofs of [14] are in the standard model, while ours, following [7, 15], are
in the random oracle model of [3].

Interestingly, in a survey paper, Boneh et. al. [8] presentAS -3 , claiming that the results of [7] prove it
secure. However, this appears to be an oversight because, aswe have seen, the results of [7] proveAS -2 secure,
notAS -3 . By provingAS -3 secure via our direct analysis, we are filling the gap and validating the claim of [8].
Shacham’s Ph.D thesis [16] notes that the concrete securityof the reduction of [7] can be slightly improved by
replacing messages with enhanced ones, but he does not claimsecurity ofAS -3 .

2 Notation and Basic Definitions

NOTATION AND CONVENTIONS. If x is a string, then|x| is the length ofx. We denote byx1‖ · · · ‖xn an
encoding of objectsx1, . . . , xn as a binary string from which the constituent objects are uniquely recoverable.
Since, in most cases, the objects can themselves be encoded as strings whose length is known from the context,
simple concatenation will serve the purpose. IfS is a finite set, then|S| is its size, ands

$

← S means thats is

3

chosen at random fromS. We lete denote the base of the natural logarithm. An algorithm may berandomized
unless otherwise indicated. An adversary is an algorithm. If A is an algorithm theny

$

← A(x1, x2, . . .) means
thaty is the result of executingA on fresh random coins and inputsx1, x2, We denote by[A(x1, x2, . . .)]
the set of all possible outputs ofA on the indicated inputs, meaning all strings that have a positive probability
of being output byA on inputsx1, x2, We letMaps(D) denote the set of all functions with domain{0, 1}∗

and rangeD.

DIGITAL SIGNATURE SCHEMES. We recall definitions for (standard) signature schemes [12] in the random-
oracle (RO) model [3]. A signature schemeDS = (Kg,Sign,Vf) is specified by three algorithms, the last

deterministic. Via(pk , sk)
$

← Kg, a signer generates its public keypk and matching secret keysk , where

H: {0, 1}∗ → D is a random oracle whose rangeD is a parameter of the scheme. Viaσ
$

← SignH(sk ,m)
the signer can generate a signatureσ on a messagem. A verifier can runVfH(pk ,m, σ) to obtain a bit, with1
indicating accept and0 reject. The consistency (or correctness) condition is that

Pr
[

VfH(pk ,m, σ) = 1 | (pk , sk)
$

← Kg ; H
$

← Maps(D) ; σ
$

← SignH(sk ,m)
]

= 1

for all messagesm ∈ {0, 1}∗. To capture security (unforgeability under chosen-message attack) we define the
advantage of an adversaryB as

Adv
uf-cma
DS (B) = Pr

[

VfH(pk ,m, σ) = 1 | (pk , sk)
$

← Kg ; H
$

← Maps(D) ; (m,σ)
$

← BSignH(sk ,·),H
]

.

To make this meaningful, we only consider adversaries that are legitimatein the sense that they never queried
the message in their output to their sign oracle. We say thatDS is (t, qS, qH, ǫ)-secure if no adversaryB running
in time at mostt, invoking the signature oracle at mostqS times and the random oracle at mostqH times, has
advantage more thanǫ.

3 Unrestricted General Aggregate Signatures

GAS SCHEMES. A general aggregate signature (GAS) scheme [7]AS = (Kg,Sign,Agg,AVf) consists of four
algorithms, the last deterministic. The key generation andsigning algorithms are exactly as for standard digital
signatures. Viaσ

$

← AggH((pk 1,m1, σ1), . . . , (pkn,mn, σn)), anyone can aggregate a sequence of public key,
message, and signature triples to yield an aggregate signature. A verifier can runAVfH((pk 1,m1), . . . , (pkn,
mn), σ) to obtain a bit, with1 indicating accept and0 reject.

SECURITY. The security requirement of [7] is strong, namely that an adversary find it computationally infea-
sible to produce an aggregate forgery involving an honest signer, even when it can play the role of all other
signers, in particular choosing their public keys, and can mount a chosen-message attack on the honest signer.
To capture this, we define the advantage of an adversaryA as

Adv
agg-uf
AS

(A) = Pr
[

AVfH((pk 1,m1), . . . , (pkn,mn), σ) = 1
]

where the probability is over the experiment

(pk , sk)
$

← Kg ; H
$

← Maps(D) ; ((pk 1,m1), . . . , (pkn,mn), σ)
$

← ASignH(sk ,·),H(pk) .

To make this meaningful, we only consider adversaries that are legitimate in the sense thatpk1 must equal
pk but A cannot have queriedm1 to its sign oracle. Thus, the honest signer here is the one whose keys are
pk , sk , and we are asking that the aggregate forgery include some message and signature corresponding to
this honest signer, but the adversary never legitimately obtained a signature of this message. We say thatA

(t, qS, nmax, qH, ǫ)-breaksAS if it runs in time at mostt, invokes the signature oracle at mostqS times, invokes
the hash oracle at mostqH times, outputs a forgery containing at mostnmax public-key-message pairs, and
has advantage strictly greater thanǫ. We say thatAS is (t, qS, nmax, qH, ǫ)-secure if there is no adversary that

4

(t, qS, nmax, qH, ǫ)-breaksAS .
A significant feature of this definition, highlighted in [7],is thatA can choosepk2, . . . , pkn as it wishes, in

particular as a function ofpk1 = pk . Unlike [1, 6, 14], there is no requirement that the adversary “know” the
secret key corresponding to a public key it produces, and this makes the system more practical since it avoids the
need for strong zero-knowledge proofs of knowledge [2] of secret keys done to the CA during key-registration.
Our results continue to achieve this strong notion of security.

BILINEAR MAPS AND COCDH. LetG1,G2,GT be groups, all of the same prime orderp. Let e: G1 ×G2 →
GT be a non-degenerate, efficiently computable bilinear map, also called a pairing. Letg be a generator ofG2.
For the rest of this section, we regardG1,G2,GT , e, g as fixed, globally known parameters, and also lettexp

denote the time to perform an exponentiation inG1. Note that following [9, 7] we use the asymmetric setting
(G1,G2 are not necessarily equal) and must also assume there existsan isomorphismψ: G2 → G1. (The first
is in order to make signatures as short as possible, and the second is required for the security proofs.) We define
the advantage of an adversaryA in solving the coCDH problem as

Adv
co-cdh(A) = Pr

[

A(g, ga, h) = ha | h
$

← G1 ; a
$

← Zp

]

.

We say that the coCDH problem is(t′, ǫ′)-hard if no algorithmA running in time at mostt′ has advantage
strictly more thanǫ′ in solving it. Note that whenG1 = G2, the coCDH problem becomes the standard CDH
problem inG1, whence the name.

THE BLS SCHEME. We recall theBLS standard signature scheme of [9]. The signer chooses a secret key
x

$

← Zp and computes the corresponding public keyX ← gx. Let H : {0, 1}∗ → G1 be a random oracle.
The signature of messagem is σ = H(m)x, which can be verified by checking thate(σ, g) = e(H(m),X).
Regarding security, we have the following:

Theorem 3.1 [9]If the coCDH problem is(t′, ǫ′)-hard, then theBLS standard signature scheme is(t, qS, qH, ǫ)-
secure for anyt, qS, qH, ǫ satisfying

ǫ ≥ e(qS + 1) · ǫ′ and t ≤ t′ − texp(qH + 2qS) .

THE GAS SCHEMES WE CONSIDER. We consider four closely related aggregate signature schemes that we
denoteAS -0 ,AS -1 ,AS -2 ,AS -3 . These schemes share common key generation and aggregationalgorithms,
but differ in their signing and verification algorithms. Alluse a random oracleH : {0, 1}∗ → G1. Key

generation is exactly as in theBLS scheme: the secret key is an exponentx
$

← Zp and the corresponding public
key isX = gx. ForAS -0 andAS -1 , the signing algorithm is theBLS one, namely the signature on message
m is σ = H(m)x. For AS -2 andAS -3 , a signature onm under public keyX is σ = H(X‖m)x. For all
schemes, aggregation is done by simply multiplying the signatures, i.e.σ =

∏n
i=1 σi in G1. Verification is

different for each scheme. On inputs(X1,m1), . . . , (Xn,mn), σ, the verification algorithm ofAS -0 accepts
iff e(σ, g) =

∏n
i=1 e(H(mi),Xi). The verification algorithms of the other schemes are depicted in Table 1.

In particular,AS -1 rejects ifm1, . . . ,mn are not all distinct,AS -2 rejects ifX1‖m1, . . . ,Xn‖mn are not all
distinct, whileAS -3 performs no such checks.

CONSISTENCY CONDITIONS. The consistency condition (under what conditions correctly generated aggre-
gates are accepted by the verifier) differs from scheme to scheme, and is in fact the place where the restrictions
they make surface in a formal sense.AS -0 andAS -3 meet the natural, strongest possible consistency require-
ment, namely that

Pr
[

AVfH((pk1,m1), . . . , (pkn,mn), σ) = 1
]

= 1

for all positive integersn, all messagesm1, . . . ,mn ∈ {0, 1}
∗ and all (pk1, sk1), . . . , (pkn, skn) ∈ [Kg],

where the probability is over the experimentH
$

← Maps(D) ; σ1
$

← SignH(sk1,m1) ; · · · ; σn
$

← SignH(skn,

5

mn) ; σ
$

← AggH((pk 1,m1, σ1), . . . , (pkn,mn, σn)). However,AS -1 meets this condition only whenm1, . . . ,
mn are distinct andAS -2 whenpk1‖m1, . . . , pkn‖mn are distinct.

DISCUSSION OF SECURITY. An attack provided in [7] shows thatAS -0 is insecure. In this attack, however, the
forgery output by the adversary contains repeated messages. To exclude the attack, [7] defineAS -1 , where the
aggregate verification process rejects when messages repeat. They are able to show this suffices to guarantee
security, meaning that they proveAS -1 is secure if the coCDH problem is hard. This is their main result. Then
they suggest to alleviate the message-distinctness restriction ofAS -1 by having each signer prepend its public
key to the message before signing. However, they appear to want to argue the security of the resulting aggregate
signature scheme as a corollary of their main result on the security of AS -1 . If so, verification still needs to
check thatX1‖m1, . . . ,Xn‖mn are all distinct (otherwise, the result aboutAS -1 does not apply), leading to
theAS -2 scheme.

As we have discussed, however, for practical reasons,AS -3 is a preferable scheme. But the results of [7]
do not prove it secure. This is a subtle point because the difference in the schemes seems to be merely in the
presence of duplicates, and duplicating a signature is not aforgery. (Anyone can copy a signature.) But that is
not the issue. An example may help to see what the problem is. Suppose there was an adversaryA that, on input
pk = X and without making oracle querym, produced a forgery of the form(X,m), (X ′,m′), (X ′,m′), σ,
for somem′ 6= m andX ′ 6= X, that was accepted by the verification procedure ofAS -3 . Since the output of
A contains repeated enhanced messages, the results of [7] do not allow us to rule out the existence ofA. Yet,
security requires us to do so, because this adversary does forge a signature underX. (Note this signature is not
a duplicate. The duplicates are under other keys.) Our result however does rule out such an adversary.

Theorem 3.2 If the coCDH problem is(t′, ǫ′)-hard, then theAS -3 aggregate signature scheme is(t, qS, nmax,
qH, ǫ)-secure for anyt, qS, nmax, qH, ǫ satisfying

ǫ ≥ e(qS + 1) · ǫ′ and t ≤ t′ − texp(2qH + 2qS + 3nmax + 1) .

Our approach to the proof is different from the one used by [7]to prove thatAS -1 is secure if coCDH is hard.
They gave a direct reduction to coCDH, meaning, given an adversary attackingAS -1 they construct and analyze
an adversary attacking coCDH. But, in so doing, they end up duplicating a lot of the proof of the security of the
BLS scheme as given in [9]. Instead, we reduce the security ofAS -3 to the security ofBLS . That is, we prove
the following:

Lemma 3.3 If theBLS standard signature scheme is(t′, q′S, q
′
H
, ǫ′)-secure then theAS -3 aggregate signature

scheme is(t, qS, nmax, qH, ǫ)-secure for anyt, qS, nmax, qH, ǫ satisfying

ǫ ≥ ǫ′ , qS ≤ q
′
S − nmax , qH ≤ q

′
H and t ≤ t′ − texp · (qH + nmax + 1) .

Theorem 3.2 follows easily from Lemma 3.3 and Theorem 3.1. Our modular approach yields a simple proof
even though we obtain a somewhat stronger result.

An interesting element of the proof of Lemma 3.3 is that it involves reducing the security of one random
oracle model scheme to another one. We will be given a forgerA against theAS -3 that queries a random oracle.
We need to build an adversaryB againstBLS . But B is itself given a random oracle. The idea is thatB will
answer some ofA queries via its own random oracle and directly simulate the others. The full proof follows.

Proof of Lemma 3.3: Given a forgerA that (t, qS, nmax, qH, ǫ)-breaksAS -3 , consider the following forger
B against theBLS standard signature scheme.B is given public keyX∗ = gx∗

as input, and has access to a
random oracleHBLS (·) and a signing oracleSignBLS (x

∗, ·) = HBLS (·)
x∗

. It runsA on inputX∗ and responds
to itsHAS -3 (·) andSignAS -3 (x

∗, ·) oracle queries using the subroutines in Figure 1.

WhenA submits a queryM to its random oracleHAS -3 (·), the forgerB executesH-sim(M). We note here that
in some cases the subroutineH-sim can in turn submit queries toB’s random oracleHBLS . WhenA submits a

6

SubroutineH-sim(M)
If (∃m : M = X∗‖m) then returnHBLS (M)

Else IfHT[M] = ⊥ theny[M]
$

← Zp ; HT[M]← ψ(g)y[M]

ReturnHT[M]

SubroutineSign-sim(m)
ReturnSignBLS (x

∗,X∗‖m)

Figure 1: The subroutines forB to simulate the random oracleHAS -3 (·) and the sign oracleSignAS -3 (x
∗, ·).

Above,HT andy are associative arrays assumed initially to have value⊥ everywhere.

querym to its sign oracleSignAS -3 (x
∗, ·), the forgerB executesSign-sim(m). Eventually,A halts and outputs

a forgery(X1,m1), . . . , (Xn,mn), σ. Now B defines the sets:

I = { i | Xi = X∗ andmi = m1 }
J = { i | Xi = X∗ andmi 6= m1 }
K = { i | Xi 6= X∗ } .

Clearly, we have thatI ∪ J ∪ K = {1, . . . , n} and thatI, J,K are disjoint. SinceA is legitimate, we know
thatX1 = X∗ and thusI is non-empty. We can assume without loss of generality thatn < p, because
otherwiseB can trivially forge and output aBLS signature underX∗ in timeO(ntexp) via exhaustive search
for x∗. This means that|I| ∈ Z

∗
p, and hence has an inverse modulop that we denote byl. Now for each

i ∈ J , our adversaryB executesSign-sim(mi) to obtainσi ← SignBLS (x
∗,X∗‖mi). For eachi ∈ K, it calls

its subroutineH-sim(Xi‖mi), thereby ensuring thaty[Xi‖mi] is defined, letsyi ← y[Xi‖mi], and then lets
σi ← ψ(Xi)

yi , which we note is theBLS signature ofXi‖mi under public keyXi. Finally, B lets

M1 ← X∗‖m1 and σ1 ←
(

σ ·
∏

i∈ J∪K σ−1
i

)l
, (1)

and outputs(M1, σ1) as its forgery.

For the analysis, we first argue that ifA’s forgery is valid thenB’s forgery is valid too. Assuming the former,
the verification equation ofAS -3 tells us that

e(σ, g) =

n
∏

i=1

e
(

HAS -3 (Xi‖mi) , Xi

)

=
∏

i∈I

e
(

HBLS (X
∗‖m1) , X

∗
)

·
∏

i∈J

e
(

HBLS (X
∗‖mi) , X

∗
)

·
∏

i∈K

e
(

HAS -3 (Xi‖mi) , Xi

)

= e
(

HBLS (X
∗‖m1) , X

∗
)|I|
·
∏

i∈J

e(σi , g) ·
∏

i∈K

e(σi , Xi) (2)

= e
(

HBLS (X
∗‖m1) , X

∗
)|I|
·

∏

i∈J∪K

e(σi , g) .

Above, (2) is true becauseσi, as computed above byB, is theBLS signature ofXi‖mi under public keyXi, for
all i ∈ J ∪K. We then applied the verification equation of theBLS scheme. Now we see that ifσ1 is defined
by (1) then, from the above and the fact that|I| · l ≡ 1 (mod p) we have

e(σ1, g) = e(σ, g)l ·
∏

i∈J∪K

e(σi, g)
−l

= e
(

HBLS (X
∗‖m1) , X

∗
)|I|·l mod p

·
∏

i∈J∪K

e(σi , g)
l ·

∏

i∈J∪K

e(σi, g)
−l

= e
(

HBLS (M1) , X
∗
)

,

7

which means thatσ1 is a validBLS signature of messageM1 under public keyX∗.

Furthermore, it is easy to see that the answers thatB provided to the oracle queries ofA are distributed identi-
cally to the ones thatA would have obtained from its oracles in the game defining its advantage. The last thing
we need to check is thatB is legitimate, meaning did not queryM1 to itsSignBLS (x

∗, ·) oracle. But it did not do
so while answeringSignAS -3 (x

∗, ·) oracle queries ofB because the latter, being legitimate itself, did not query
m1 to itsSignAS -3 (x

∗, ·) oracle. NowB also calledSignBLS (x
∗, ·) onX∗‖mi for all i ∈ J , but the definition of

J implies that heremi 6= m1. Putting everything together, we getAdv
uf-cma
BLS

(B) ≥ Adv
agg-uf
AS -3 (A).

Finally, we analyze the resource usage ofB. ForqS, we note thatB makes sign queries in only two situations:
(1) wheneverA makes a sign query, so doesB, and (2) onceA outputs a forgery,B makes|J | ≤ nmax additional
sign queries. ForqH, it is easy to see thatB makes at most the same number of random oracle queries toHBLS

asA makes toHAS -3 . For t, notice thatB (1) answersqH random oracle queries, each of which results in
a call toH-sim, (2) possibly makesnmax more calls toH-sim after A outputs its forgery, and (3) computes
one exponentiation in the last step to convertA’s forgery into its own. Thus, the claimed running time bound
follows, and the proof is complete.

4 Unrestricted Sequential Aggregate Signatures

SAS SCHEMES. A sequential aggregate signature (SAS) scheme [15]SAS = (Kg,SASign,SAVf) consists
of three algorithms, the last deterministic. The key generation algorithm is exactly as for standard digital
signatures. The first signer computes a signature on messagem by callingσ ← SASignH(sk ,m). Subsequent

signers runσ
$

← SASignH(sk ,m, σ′, (pk 1,m1), . . . , (pkn,mn)), wheren > 0, to aggregate their signature on
a messagem into a given sequential aggregate signatureσ′ corresponding to a sequence of public-key-message
pairs. A verifier can runSAVfH((pk 1,m1), . . . , (pkn,mn), σ), wheren ≥ 0, to obtain a bit, with 1 indicating
accept and 0 reject.

SECURITY. The security of a SAS scheme in the random oracle model requires that it be computationally
infeasible for an adversary to produce a sequential aggregate forgery involving an honest signer, even when it
can play the role of all other signers and can mount a chosen-message attack on the honest signer. Formally,
the advantage of an adversaryA is

Adv
seq-agg-uf
SAS

(A) = Pr
[

SAVfH((pk 1,m1), . . . , (pkn,mn), σ) = 1
]

where the probability is over the experiment

(pk , sk)
$

← Kg ; H
$

← Maps(D) ; ((pk 1,m1), . . . , (pkn,mn), σ)
$

← ASASignH(sk ,···),H(pk) .

To make this meaningful, we impose thatA be legitimatein the sense that there existsi ∈ {1, . . . , n} such that
pk i = pk and there exists noσi−1 ∈ {0, 1}

∗ such thatA submitted querymi, σi−1, (pk 1,m1), . . . , (pk i−1,
mi−1) to the signing oracle. Thus, the honest signer here is the onewhose keys arepk , sk , and we are asking
that the sequential aggregate forgery include some messageand signature corresponding to this honest signer,
but the adversary never legitimately obtained a sequentialaggregate signature of this message. We say thatA

(t, qS, nmax, qH, ǫ)-breaksSAS if it runs in time at mostt, invokes its signing oracle at mostqS times, invokes
its random oracle at mostqH times, has advantage strictly greater thanǫ, and there are at mostnmax public
keys involved in either its forgery or any of its queries to its signing or random oracles. We say thatSAS is
(t, qS, nmax, qH, ǫ)-secure if there is no adversary that(t, qS, nmax, qH, ǫ)-breaksSAS .

The security requirement we are making is stronger than the one of [15]. One can view their definition as
asking for the same condition but for a more restricted (smaller) class of adversaries, namely ones whose output
must not contain repeated public keys and who may not submit any queries containing repeating public keys

8

Alg SASignH((π, π−1),m, σn, (π1,m1), . . . , (πn,mn))

If n = 0 thenσ0 ← 1

If SAVfH((π1,m1), . . . , (πn,mn), σn) 6= 1
then Return⊥

h← H(π1‖m1‖ . . . ‖πn‖mn‖π‖m)
σ ← π−1(h · σn)
Returnσ

Alg SAVfH((π1,m1), . . . , (πn,mn), σ)

If π1, . . . , πn not all different then Return 0
σn ← σ
For i = n, . . . , 1 do

If Test(πi) = 0 then Return 0
hi ← H(π1‖m1‖ . . . ‖πi‖mi)

σi−1 ← πi(σi) · h
−1
i

If σ0 = 1 then Return 1 else Return 0

Figure 2: The sequential aggregation and verification algorithms ofSAS -1 . Removing the framed text yields
SAS -0 .

to the signing oracle. We will show that a construction proposed in [15] remains secure even under our more
stringent definition.

CERTIFIED CLAW-FREE TRAPDOOR PERMUTATIONS. The schemes we consider use a family of certified claw-
free trapdoor permutations over a group [15]. Let us recall the definitions. LetG be a multiplicative group. A
family of certified claw-free trapdoor permutationsΠ overG is a 4-tuple(Gen,Eval, Inv,Test) of algorithms,

all but the first being deterministic. Via(π, π, π−1)
$

← Gen, one can generate (the descriptions of) a pair
of permutationsπ, π on G and (the trapdoor information describing) the inverse permutation π−1. For all
(π, π, π−1) ∈ [Gen] and allx ∈ G, the evaluation algorithmEval, on inputsπ, x, returnsπ(x) in time at most
TΠ, and on inputsπ, x returnsπ(x) in time at mostTΠ, whereTΠ is a number associated toΠ. The inversion
algorithm Inv takes inputπ−1 andy ∈ G and returnsπ−1(y) in time at mostTΠ. The mapTest takes input
any stringπ′ and, in time at mostTΠ, returns a bit, this being1 if and only if Eval(π′, ·) is a permutation on
G whose computation takes time at mostTΠ. We assume the time for multiplication, inversion, and sampling
random elements inG is also at mostTΠ. We define the advantage of an algorithmB in finding a claw inΠ as

Adv
claw
Π (B) = Pr

[

π(x) = π(y) | (π, π, π−1)
$

← Gen ; (x, y)
$

← B(π, π)
]

.

We say thatΠ is (t′, ǫ′)-claw-free if there is no adversaryB that runs in time at mostt′ yet has advantage
strictly more thanǫ′. From now on we will confound the permutations and their descriptions, writingπ(x) for
Eval(π, x), and so on.

THE SAS SCHEMES WE CONSIDER. The SAS -1 scheme of [15] associated to a family of certified claw-
free trapdoor permutationsΠ works as follows. Each signer generates a key pair(pk , sk) by computing

(π, π, π−1)
$

← Gen ; pk ← π ; sk ← (π, π−1). Let H : {0, 1}∗ → G be a random oracle. The sequen-
tial aggregation and verification algorithms are describedin Figure 2.

TheSAS -1 scheme was proposed and proven secure in [15]. We consider here theSAS -0 scheme that is
identical to theSAS -1 scheme, except that the boxed distinctness test in the verification algorithm in Figure 2
is dropped. (Note that this also affects the signing algorithm because it invokes the verification algorithm as a
subroutine.)

CONSISTENCY CONDITIONS. Similar to general aggregate signatures, the consistencycondition for sequential
aggregate signatures differs from scheme to scheme.SAS -0 meets the natural, strongest possible consistency
requirement, namely that

Pr
[

SAVfH((pk 1,m1), . . . , (pkn,mn), σn) = 1
]

= 1

for all positive integersn and all messagesm1, . . . ,mn ∈ {0, 1}
∗, the probability being in the experiment

where we selectH
$

← Maps(D) ; (pk1, sk1), . . . , (pkn, skn) ∈ [Kg], then selectσ1
$

← SASignH(sk1,

9

m1) ; σ2
$

← SASignH(sk2,m2, σ1, (pk 1,m1)) ; · · · ; σn
$

← SASignH(skn,mn, σn−1, (pk 1,m1), . . . , (pkn−1,
mn−1)). However,SAS -1 meets this condition only whenpk1, . . . , pkn are distinct.

DISCUSSION OF SECURITY. Lysyanskaya et al. [15] make no claims regarding the security of the SAS -0
scheme. Unlike the case of theAS -1 general aggregate signature scheme, there does not seem to be an easy
attack when the distinctness condition is dropped. At the same time, the security proof of [15] clearly ceases
to go through for theSAS -0 scheme, because the simulation of signatures and the way theforgery is exploited
explicitly rely on all public keys being distinct. One may therefore rightfully wonder what the reason for this
restriction is, and whether it is strictly necessary.

OUR RESULT. The following implies that the distinctness restriction in the SAS -1 scheme can safely be
dropped:

Theorem 4.1 If the family of certified claw-free trapdoor permutationsΠ is (t′, ǫ′)-claw-free, then theSAS -0
sequential aggregate signature scheme is(t, qS, nmax, qH, ǫ)-secure for anyt, qS, nmax, qH, ǫ satisfying

ǫ ≥ e(qS + 1) · ǫ′ and t ≤ t′ − nmax · (qH + qS + 2) ·O(TΠ) .

We achieve this result through a number of refinements to the security proof of [15] that allow us to either
simulate signatures for queries with multiple occurrencesof the target public key, or to directly exploit the
aggregate signature provided by the adversary in a signature query to find a claw for the underlying permutation.

INSTANTIATING SAS -0 WITH RSA. RSA does not directly give rise to a family of certified trapdoor permu-
tations. (Each instance comes with its own modulus, so that different instances are over different groups. Also
it is not clear in general how to test that a given number is a valid RSA exponent relative to a given modulus.)
An RSA-based instantiation ofSAS -0 can however be obtained by using the family of certified claw-free trap-
door permutations from [13]. This comes at the cost of efficiency, however, as a permutation evaluation now
takes two RSA exponentiations. Another option is to use techniques in [15], which either require the signers
to be ordered by increasing moduli, or add one bit to the signature for each signer. To ensure the certification,
they suggest thate can be chosen to be a prime larger thanN . Alternatively, one can use arbitrarye such that
gcd(e, ϕ(N)) = 1 at the cost of longer public keys as proposed in [10]. As the group operation, one must use
addition (modulo2|N | when using [13] or moduloN when using the techniques of [15]) since multiplication is
only a group operation overZ∗

N .

GAMES. Our proof of Theorem 4.1 will use code-based game-playing [4], and we begin by recalling some
background from [4]. A game —look at Figure 4 for examples— has anInitialize procedure, procedures to
respond to adversary oracle queries, and aFinalize procedure. A gameG is executed with an adversaryA, as
follows. First,Initialize executes, and its outputs are the inputs toA. Then the latter executes, its oracle queries
being answered by the corresponding procedures ofG. WhenA terminates, its output becomes the input to the
Finalize procedure. The output of the latter, denotedGA, is called the output of the game, and we let “GA⇒y”
denote the event that this game output takes valuey. The boolean flagbad is assumed initialized tofalse, and
good will always denote the event that it is never set totrue. (This event is defined in all games.) Games
Gi, Gj areidentical untilbad if their code differs only in statements that follow the setting of bad to true. For
examples, gamesG0, G1 of Figure 4 are identical untilbad. The following is one version of the Fundamental
Lemma of [4].

Lemma 4.2 [4]LetGi, Gj be identical untilbad games, andA an adversary. Then

Pr
[

GA
i ⇒ 1 ∧ good

]

= Pr
[

GA
j ⇒ 1 ∧ good

]

.

PROOF OF THEOREM 4.1. We say that an adversaryA againstSAS -0 is simplified if it has the following
properties, whereπ denotes the public key input toA andπ−1 its inverse:

10

1. A never repeats a query to itsH-oracle.

2. Any H-query ofA has the formπ1‖m1‖ · · · ‖πn‖mn for somen ≥ 1, someπ1, . . . , πn such thatTest(πi) =
1 for all 1 ≤ i ≤ n, and somem1, . . . ,mn ∈ {0, 1}

∗.

3. If A makes a querymn+1, σn, (π1,m1), . . . , (πn,mn) to SASignH((π, π−1), · · ·) then it previously made
H-queryπ1‖m1‖ · · · ‖πn‖mn‖π‖mn+1.

4. If A outputs((π1,m1), . . . , (πn,mn), σ) then it previously madeH-queryπ1‖m1‖ · · · ‖πn‖mn.

5. If A makesH-query π1‖m1‖ · · · ‖πn‖mn then it previously madeH-query π1‖m1‖ · · · ‖πn−1‖mn−1.
(And hence, inductively, has already queriedπ1‖m1‖ · · · ‖πi‖mi for all 1 ≤ i ≤ n− 1, in this order.)

6. If A makes a querymn+1, σn, (π1,m1), . . . , (πn,mn) to SASignH((π, π−1), · · ·) thenSAVfH((π1,m1),
. . . , (πn,mn), σn) = 1. i such thatπi = π.

7. If A makes a querymn+1, σn, (π1,m1), . . . , (πn,mn) to SASignH((π, π−1), · · ·) then for everyi ∈
{1, . . . , n} such thatπi = π, it is the case thatA previously queriedmi, σi−1, (π1,m1), . . . , (πi−1,mi−1)
to SASignH((π, π−1), · · ·).

There are two stages in our proof. First, we transform a givenadveraryA′ attackingSAS -0 into a simplified
adversaryA attackingSAS -0 without loss in advantage although at some cost in resources:

Lemma 4.3 LetA′ be an adversary that(t, qS, nmax, qH, ǫ)-breaksSAS -0 . Then, we can construct a simplified
adversaryA that (t∗, qS, nmax, q

∗
H
, ǫ)-breaksSAS -0 where

t∗ = t+ nmax(qH + qS + 1) ·O(TΠ) , q∗H = nmax(qH + qS + 1) .

Next, we construct an adversaryB which enlistsA’s help in breaking the familyΠ underlyingSAS -0 :

Lemma 4.4 Let A be a simplified adversary that(t∗, qS, nmax, q
∗
H
, ǫ)-breaksSAS -0 . Then, we can construct

an adversaryB attackingΠ such that

Adv
claw
Π (B) ≥

Adv
seq-agg-uf
SAS -0 (A)

e(qS + 1)
, (3)

and the running time ofB is at most that ofA plus(q∗
H

+ 1) ·O(TΠ).

Theorem 4.1 follows directly from these two lemmas. We now proceed to prove the lemmas. A convention
made in writing code is that all array elements are assumed toinitially be⊥.

Proof of Lemma 4.3: The adversaryA has access to oraclesH andSASignH. On input a public keyπ, it
begins by initializingS to ∅. It then runsA′(π), answering hash and sign oracle queries ofA′ via the subrou-
tinesH-sim andSign-sim, respectively, of Figure 3. Note that these subroutines call A’s oracles. WhenA′

halts with some output((π1,m1), . . . , (πn,mn), σn), adversaryA callsH-sim(π1‖m1‖ · · · ‖πn‖mn), outputs
((π1,m1), . . . , (πn,mn), σn), and halts. Let us now explain how this ensures thatA has the properties listed
above without loss in advantage as compared toA′.

Property1 is achieved becauseA stores asHT[x] the answer toH-queryx of A′, and, if this query is repeated,
returnsHT[x] without re-querying the oracle.A answersH-queryx of A′ via its ownH oracle only whenx has
the formπ1‖m1‖ · · · ‖πn‖mn with Test(πi) = 1 for all 1 ≤ i ≤ n, and, otherwise, itself picks a random value
to play the role of the answer. This ensures property2, yet will not decrease the advantage ofA because the
algorithms ofSAS -0 never invoke theH oracle on inputs not of the above form. Properties3 and4 are obtained
by havingA make the extraH-query if necessary. Property5 is provided by havingA query all appropriate un-
queried prefixes of aH-queryπ1‖m1‖ · · · ‖πn‖mn before querying the latter. AlgorithmSASignH(π−1, · · ·)
returns⊥ on inputmn+1, σn, (π1,m1), . . . , (πn,mn) unlessSAVfH((π1,m1), . . . , (πn,mn), σn) = 1, so we

11

SubroutineH-sim(x)

If ∃n , π1, . . . , πn, m1, . . . ,mn such that
– n ≥ 1 andx = π1‖m1‖ · · · ‖πn‖mn

– ∀i : 1 ≤ i ≤ n : mi ∈ {0, 1}
∗ andTest(πi) = 1

Then
For i = 1, . . . , n doQi ← π1‖m1‖ · · · ‖πi‖mi ; If HT[Qi] = ⊥ thenHT[Qi]← H(Qi)

Else IfHT[x] = ⊥ thenHT[x]
$

← G

ReturnHT[x]

SubroutineSign-sim(mn+1, σn, (π1,m1), . . . , (πn,mn))

πn+1 ← π ; σ0 ← 1

For i = 1, . . . , n+ 1 do If Test(πi) = 0 then return⊥ ; Qi ← π1‖m1‖ · · · ‖πi‖mi

y ← H-sim(Qn+1)

For i = n, . . . , 1 doσi−1 ← πi(σi) · HT[Qi]
−1

If σ0 6= 1 then return⊥
S ← S ∪ {(mn+1, σn, (π1,m1), . . . , (πn,mn))}

For i = 1, . . . , n do
If πi = π and(mi, σi−1, (π1,m1), . . . , (πi−1,mi−1)) 6∈ S then Output((π1,m1), . . . , (πi,mi), σi)

σn+1 ← SASignH((π, π−1),mn+1, σn, (π1,m1), . . . , (πn,mn))

Returnσn+1

Figure 3: Subroutines for adversaryA.

haveA do this test and refrain from making the query unless the answer is one, providing property6. Property7
is the most interesting, and an important element in dealingwith loops in signing chains. To explain howA
provides it, supposeA′ made a querymn+1, σn, (π1,m1), . . . , (πn,mn) to SASignH((π, π−1), · · ·) such that
for some1 ≤ i ≤ n it was the case thatπi = π but A did not previously querymi, σi−1, (π1,m1), . . . ,
(πi−1,mi−1) to SASignH((π, π−1), · · ·). ThenA, rather than making querymn+1, σn, (π1,m1), . . . , (πn,mn)
to SASignH((π, π−1), · · ·), outputs((π1,m1), . . . , (πi,mi), σi) as its forgery and halts. Property6 tells us that
SAVfH((π1,m1), . . . , (πi,mi), σi) = 1, and the fact thatA did not previously querymi, σi−1, (π1,m1), . . . ,
(πi−1,mi−1) to SASignH((π, π−1), · · ·) means thatA remains legitimate. So this can only increase the advan-
tage ofA compared to that ofA′.

Proof of Lemma 4.4: We consider the games of Figure 4. The array entryHT[π1‖m1‖ · · · ‖πn‖mn] plays
the role ofH(π1‖m1‖ · · · ‖πn‖mn). The notationc

δ

← {0, 1} means thatc is assigned0 with probabil-
ity δ and 1 with probability 1 − δ, whereδ ∈ [0, 1] is a parameter whose value will be chosen later [11].
These games rely on some of the properties ofA listed above. For example, when answeringH-queryQn =
π1‖m1‖ · · · ‖πn‖mn, property5 allows us to assumeHT[Qn−1], and thus alsoσ[Qn−1], are already defined,
whereQn−1 = π1‖m1‖ · · · ‖πn−1‖mn−1. Similarly, property3 tells us that the relevantHT[·] entries are de-
fined at the time aSASignH((π, π−1), · · ·) query is made. Property4 tell us that the relevantHT[·] entries are
defined at the time Finalize is run, and the legitimacy ofA tells us thats computed at line 130 is well-defined in
the sense that the set over which the minimum is taken is not empty. Notice thatG1 usesπ−1 butG0 does not.

Let us say that aH-queryπ1‖m1‖ · · · ‖πn‖mn) is simulation signedif c[Qi] = 0 for all 1 ≤ i ≤ n, where
Qi = π1‖m1‖ · · · ‖πi‖mi. Then line 112 tells us that, in bothG0 andG1, we have:

12

Initialize GameG0 / G1

100 (π, π, π−1)
$

← Gen ; σ[ε]← 1 ; S ← ∅
101 Returnπ

On H-query π1‖m1‖ · · · ‖πn‖mn

110 Qn−1 ← π1‖m1‖ · · · ‖πn−1‖mn−1 ; Qn ← π1‖m1‖ · · · ‖πn‖mn ; σ[Qn]
$

← G

111 If πn = π thenc[Qn]
δ

← {0, 1} elsec[Qn]← 0

112 If c[Qn] = 0 thenHT[Qn]← πn(σ[Qn]) · σ[Qn−1]
−1 elseHT[Qn]← π(σ[Qn]) · σ[Qn−1]

−1

113 ReturnHT[Qn]

On SASignH((π, π−1), · · ·)-query mn+1, σn, (π1,m1), . . . , (πn,mn)

120 S ← S ∪ {(mn+1, σn, (π1,m1), . . . , (πn,mn))} ; πn+1 ← π ; σ0 ← 1

121 For i = 1, . . . , n+ 1 doQi ← π1‖m1‖ . . . ‖πi‖mi

122 σn+1 ← σ[Qn+1]

123 If (∃ i : 1 ≤ i ≤ n+ 1 : c[Qi] = 1) thenbad← true ; σn+1 ← π−1(σn · HT[Qn+1])

124 Returnσn+1

Finalize((π1,m1), . . . , (πn,mn), σ)

130 s← min { i | 1 ≤ i ≤ n, πi = π and∀τ : (mi, τ, (π1,m1), . . . , (πi−1,mi−1)) 6∈ S }

131 σn ← σ

132 For i = n, . . . , 1 doQi ← π1‖m1‖ · · · ‖πi‖mi ; σi−1 ← πi(σi) · HT[Qi]
−1

133 If σ0 = 1 thend← 1 elsed← 0

134 If (∃ i : 1 ≤ i ≤ s− 1 : c[Qi] = 1) thenbad← true

135 If c[Qs] = 0 thenbad← true

136 ω ← (σs, σ[Qs])

137 Returnd

Figure 4: GameG1 includes the boxed statement, while gameG0 does not. Also, notice thatG1 usesπ−1, but
G0 does not.

Claim 1. Let π1‖m1‖ · · · ‖πn‖mn) be a simulation signed hash query, and letQi = π1‖m1‖ · · · ‖πi‖mi for
0 ≤ i ≤ n. Then for all1 ≤ i ≤ n we haveσ[Qi] = π−1

n (σ[Qi−1] ·HT[Qi]). 2

Claim 2.Let ω = (σs, σ[Qs]) be as per line 136 andd as per line 133. Then

Pr [π(σs) = π(σ[Qs])] ≥ Pr [d = 1 ∧ good] ,

where both probabilties are over the execution ofG0 with A.

Proof. If good holds then line 134 tells us thatπ1‖m1‖ · · · ‖πs−1‖ms−1 is simulation signed. Ifd = 1 then
from Claim 1 and line 132 we getσi = σ[Qi] for all 1 ≤ i ≤ s − 1, and, in particular,σs−1 = σ[Qs−1]. If
good holds then line 135 impliesc[Qs] = 1, and then line 112 impliesHT[Qs] = π(σ[Qs]) ·σ[Qs−1]

−1. Thus
we have

π(σs) = πs(σs) = HT[Qs] · σs−1 = π(σ[Qs]) · σ[Qs−1]
−1 · σs−1 = π(σ[Qs]) . 2

Now define adversaryB againstΠ as follows. On inputsπ, π, it initializesσ[ε]← 1 andS ← ∅. It then runsA
on inputπ, answering its oracle queries as per the code of gameG0. WhenA halts,B runs the Finalize code of

13

Initialize GameG2 / G3

200 (π, π, π−1)
$

← Gen ; S ← ∅
201 Returnπ

On H-query π1‖m1‖ · · · ‖πn‖mn

210 Qn ← π1‖m1‖ · · · ‖πn‖mn

211 If πn = π thenc[Qn]
δ

← {0, 1} elsec[Qn]← 0

212 HT[Qn]
$

← G

213 ReturnHT[Qn]

On SASignH((π, π−1), · · ·)-query mn+1, σn, (π1,m1), . . . , (πn,mn)

220 S ← S ∪ {(mn+1, σn, (π1,m1), . . . , (πn,mn))} ; πn+1 ← π ; σ0 ← 1

221 For i = 1, . . . , n+ 1 doQi ← π1‖m1‖ . . . ‖πi‖mi

222 If c[Qn+1] = 1 thenbad← true

223 If (∃ i : 1 ≤ i ≤ n : c[Qi] = 1) thenbad← true

224 σn+1 ← π−1(σn · HT[Qn+1])

225 Returnσn+1

Finalize((π1,m1), . . . , (πn,mn), σ)

230 s← min { i | 1 ≤ i ≤ n, πi = π and∀τ : (mi, τ, (π1,m1), . . . , (πi−1,mi−1)) 6∈ S }

231 σn ← σ

232 For i = n, . . . , 1 doQi ← π1‖m1‖ · · · ‖πi‖mi ; σi−1 ← πi(σi) · HT[Qi]
−1

233 If σ0 = 1 thend← 1 elsed← 0

234 If (∃ i : 1 ≤ i ≤ s− 1 : c[Qi] = 1) thenbad← true

235 If c[Qs] = 0 thenbad← true

236 Returnd

Figure 5: GameG2 includes the boxed statements whileG3 does not.

G0 on input the output ofA. It outputsω and halts. Note thatB is based onG0 rather thanG1 and thus does
not need to knowπ−1. Then by Claim 2 we have

Adv
claw
Π (B) ≥ Pr

[

GA
0 ⇒ 1 ∧ good

]

. (4)

However,G0 andG1 are identical-until-bad games, and so Lemma 4.2 implies that

Pr
[

GA
0 ⇒ 1 ∧ good

]

= Pr
[

GA
1 ⇒ 1 ∧ good

]

. (5)

Claim 3. In the execution ofG1 with A, all oracle queries of the latter are answered correctly.

Proof. First consider aH-queryQn = π1‖m1‖ · · · ‖πn‖mn. The random choice ofσ[Qn] at line 110, together
with the fact thatπn, π are permutations, then implies thatHT[Qn] is uniformly distributed, meaning the
answer to this query is exactly as would be given by a random oracle. Next consider aSASignH((π, π−1), · · ·)-
querymn+1, σn, (π1,m1), . . . , (πn,mn). We consider two cases. IfQn+1 = π1‖m1‖ . . . ‖πn‖mn‖π‖mn+1

is simulation signed then Claim 1 tells us that the valueσ[Qn+1] returned is correct. Otherwise, the value
σn+1 returned is computed by the boxed statement at line 123 and iscorrect because it is computed just as in

14

Initialize GameG4

400 (π, π, π−1)
$

← Gen ; S ← ∅
401 Returnπ

On H-query π1‖m1‖ · · · ‖πn‖mn

410 HT[π1‖m1‖ · · · ‖πn‖mn]
$

← G

411 ReturnHT[π1‖m1‖ · · · ‖πn‖mn]

On SASignH((π, π−1), · · ·)-query mn+1, σn, (π1,m1), . . . , (πn,mn)

420 S ← S ∪ {(mn+1, σn, (π1,m1), . . . , (πn,mn))} ; σ0 ← 1

421 σn+1 ← π−1(σn · HT[π1‖m1‖ · · · ‖πn‖mn‖π‖mn+1])

422 Returnσn+1

Finalize((π1,m1), . . . , (πn,mn), σ)

430 s← min { i | 1 ≤ i ≤ n, πi = π and∀τ : (mi, τ, (π1,m1), . . . , (πi−1,mi−1)) 6∈ S }

431 σn ← σ

432 For i = n, . . . , 1 doQi ← π1‖m1‖ · · · ‖πi‖mi ; σi−1 ← πi(σi) · HT[Qi]
−1

433 If σ0 = 1 thend← 1 elsed← 0

434 For allπ′1‖m
′
1‖ · · · ‖π

′
l‖m

′
l such thatHT[π′1‖m

′
1‖ · · · ‖π

′
l‖m

′
l] 6= ⊥ do

435 If π′l = π thenc[π′1‖m
′
1‖ · · · ‖π

′
l‖m

′
l]

δ

← {0, 1} elsec[π′1‖m
′
1‖ · · · ‖π

′
l‖m

′
l]← 0

436 For all (m′
l+1, σ

′
l, (π

′
1,m

′
1), . . . , (π

′
l,m

′
l)) ∈ S do

437 If c[π′1‖m
′
1‖ . . . ‖π

′
l‖m

′
l‖π‖m

′
l+1] = 1 thenbad← true

438 If c[Qs] = 0 thenbad← true

439 Returnd

Figure 6: GameG4.

SASignH((π, π−1), · · ·). Here we use property6, which tells us thatσn−1 was correct.2

Claim 3 implies that

Pr
[

GA
1 ⇒ 1 ∧ good

]

= Pr
[

GA
2 ⇒ 1 ∧ good

]

, (6)

where gameG2 is in Figure 5. GameG2 directly answers all oracle queries correctly, meaning just as in the
game defining the advantage ofA. Additionally it splits up the setting ofbad as done by line 123 ofG1 into
lines 222, 223. Next we claim that

Pr
[

GA
2 ⇒ 1 ∧ good

]

= Pr
[

GA
3 ⇒ 1 ∧ good

]

. (7)

To justify this, we explain why lines 223, 234 ofG2 are redundant and can simply be dropped to arrive at
G3. First consider line 223. Supposec[Qi] = 1 for some1 ≤ i ≤ n. Then it must be thatπi = π, since,
otherwise, due to line 211,c[Qi] can only be0. But then property7 says thatA must have previously made
SASignH((π, π−1), · · ·)-querymi, σi−1, (π1,m1), . . . , (πi−1,mi−1). If so, line 222 would have setbad at the
time this query was made. Now consider line 234. The definition of s and line 211 tell us that if there is a
1 ≤ i ≤ s − 1 such thatc[Qi] = 1 then it must be thatπi = π and(mi, τ, (π1,m1), . . . , (πi−1,mi−1)) ∈
S for someτ . But then, again,bad would have been set by line 222 whenSASignH((π, π−1), · · ·)-query
mi, τ, (π1,m1), . . . , (πi−1,mi−1) was made.

15

In GameG3, the responses to oracle queries do not depend on the value ofthe flagbad. Thus, the choices of
c[·] and the setting ofbad can be postponed, meaningG3 is equivalent to gameG4 of Figure 6. In this game,
the random choices ofc[·] are made after the game outputd is determined, so clearly the events “GA

4 ⇒ 1” and
good are independent. Thus we have

Pr
[

GA
3 ⇒ 1 ∧ good

]

= Pr
[

GA
4 ⇒ 1 ∧ good

]

= Pr
[

GA
4 ⇒ 1

]

· Pr [good]

= Pr
[

GA
4 ⇒ 1

]

· Pr
[

GA
4 doesn’t setbad

]

. (8)

The outputd of GA
4 is 1 exactly whenA succeeds in forgery, meaning

Pr
[

GA
4 ⇒ 1

]

= Adv
seq-agg-uf
SAS -0 (A) . (9)

On the other hand

Pr
[

GA
4 doesn’t setbad

]

= δqS · (1− δ) . (10)

We now selectδ ∈ [0, 1] to maximize the functionf(δ) = δqS(1− δ), which yieldsδ = 1− 1/(qS + 1) and we
have

δqS · (1− δ) =

(

1−
1

qS + 1

)qS

·
1

qS + 1
>

1

e(qS + 1)
. (11)

Putting together (4), (5), (6), (7), (8), (9), (10), and (11), we get (3). The running time ofB is that ofA plus an
overhead of(q∗

H
+ 1) ·O(TΠ) due to line 112.

Acknowledgments

Mihir Bellare was supported by NSF grant CNS-0524765 and a gift from Intel Corporation. Gregory Neven
is a Postdoctoral Fellow of the Research Foundation Flanders (FWO-Vlaanderen), and was supported in part
by the Concerted Research Action (GOA) Ambiorics 2005/11 ofthe Flemish Government and in part by the
European Commission through the IST Programme under Contract IST-2002-507932 ECRYPT.

References

[1] M. Bellare, A. Boldyreva, and J. Staddon. Randomness re-use in multi-recipient encryption schemeas.
In Y. Desmedt, editor,PKC 2003: 6th International Workshop on Theory and Practicein Public Key
Cryptography, volume 2567 ofLecture Notes in Computer Science, pages 85–99. Springer-Verlag, Jan.
2003. (Cited on pages 3 and 5.)

[2] M. Bellare and O. Goldreich. On defining proofs of knowledge. In E. F. Brickell, editor,Advances in
Cryptology – CRYPTO’92, volume 740 ofLecture Notes in Computer Science, pages 390–420. Springer-
Verlag, Aug. 1992. (Cited on page 5.)

[3] M. Bellare and P. Rogaway. Random oracles are practical:A paradigm for designing efficient protocols.
In ACM CCS 93: 1st Conference on Computer and Communications Security, pages 62–73. ACM Press,
Nov. 1993. (Cited on pages 3 and 4.)

16

[4] M. Bellare and P. Rogaway. Code-based game-playing proofs and the security of triple encryption. In
S. Vaudenay, editor,Advances in Cryptology – EUROCRYPT 2006, volume 4004 ofLecture Notes in
Computer Science. Springer-Verlag, May 2006. Available as Cryptology ePrint Report 2005/334.(Cited

on page 10.)

[5] M. Bellare and M. Yung. Certifying permutations: Noninteractive zero-knowledge based on any trapdoor
permutation.Journal of Cryptology, 9(3):149–166, 1996.(Cited on page 3.)

[6] A. Boldyreva. Threshold signatures, multisignatures and blind signatures based on the gap-Diffie-
Hellman-group signature scheme. In Y. Desmedt, editor,PKC 2003: 6th International Workshop on
Theory and Practice in Public Key Cryptography, volume 2567 ofLecture Notes in Computer Science,
pages 31–46. Springer-Verlag, Jan. 2003.(Cited on pages 3 and 5.)

[7] D. Boneh, C. Gentry, B. Lynn, and H. Shacham. Aggregate and verifiably encrypted signatures from
bilinear maps. In E. Biham, editor,Advances in Cryptology – EUROCRYPT 2003, volume 2656 ofLecture
Notes in Computer Science, pages 416–432. Springer-Verlag, May 2003.(Cited on pages 1, 2, 3, 4, 5 and 6.)

[8] D. Boneh, C. Gentry, B. Lynn, and H. Shacham. A survey of two signature aggregation techniques.RSA’s
CryptoBytes, 6(2), Summer 2003.(Cited on page 3.)

[9] D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil pairing. In C. Boyd, editor,Advances
in Cryptology – ASIACRYPT 2001, volume 2248 ofLecture Notes in Computer Science, pages 514–532.
Springer-Verlag, Dec. 2001.(Cited on pages 1, 5 and 6.)

[10] D. Catalano, D. Pointcheval, and T. Pornin. Trapdoor hard-to-invert group isomorphisms and their ap-
plication to password-based authentication.Journal of Cryptology, 2006. To appear, available from
http://www.di.ens.fr/∼pointche/. (Cited on page 10.)

[11] J.-S. Coron. On the exact security of full domain hash. In M. Bellare, editor,Advances in Cryptology
– CRYPTO 2000, volume 1880 ofLecture Notes in Computer Science, pages 229–235. Springer-Verlag,
Aug. 2000. (Cited on page 12.)

[12] S. Goldwasser, S. Micali, and R. L. Rivest. A digital signature scheme secure against adaptive chosen-
message attacks.SIAM Journal on Computing, 17(2):281–308, Apr. 1988.(Cited on page 4.)

[13] R. Hayashi, T. Okamoto, and K. Tanaka. An RSA family of trap-door permutations with a common do-
main and its applications. In F. Bao, R. Deng, and J. Zhou, editors,PKC 2004: 7th International Workshop
on Theory and Practice in Public Key Cryptography, volume 2947 ofLecture Notes in Computer Science,
pages 291–304. Springer-Verlag, Mar. 2004.(Cited on page 10.)

[14] S. Lu, R. Ostrovsky, A. Sahai, H. Shacham, and B. Waters.Sequential aggregate signatures and multisig-
natures without random oracles. In S. Vaudenay, editor,Advances in Cryptology – EUROCRYPT 2006,
volume 4004 ofLecture Notes in Computer Science. Springer-Verlag, May 2006. Available as Cryptology
ePrint Report 2006/096.(Cited on pages 3 and 5.)

[15] A. Lysyanskaya, S. Micali, L. Reyzin, and H. Shacham. Sequential aggregate signatures from trapdoor
permutations. In C. Cachin and J. Camenisch, editors,Advances in Cryptology – EUROCRYPT 2004,
volume 3027 ofLecture Notes in Computer Science, pages 74–90. Springer-Verlag, May 2004.(Cited on

pages 1, 2, 3, 8, 9 and 10.)

[16] H. Shacham.New Paradigms in Signature Schemes. PhD thesis, Stanford University, 2005.(Cited on

page 3.)

17

http://www.di.ens.fr/~pointche/

	Introduction
	Notation and Basic Definitions
	Unrestricted General Aggregate Signatures
	Unrestricted Sequential Aggregate Signatures

