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1 Introduction

Group signature [1] is motivated by enabling members of a group to sign on
behalf of the group without leaking their own identities, and at the same time
the signer’s identity can be discovered by the group manager (GM) when a
dispute occurs.

In brief, a group signature scheme is a signature scheme that has multiple
secret keys corresponding to a single public key. A group signature should at
least include the following five algorithms: Setup, Join, GSig, GVer and Open.
Setup is executed by the group manager (GM); Join is an interactive protocol
between a group member and GM or a separate issuing authority (IA); GSig is
an algorithm run by any group member; any one can execute GVer to check the
validity of a given group signature; Open is used by GM or a separate opening
authority (OA) to find the identity of the signer given a group signature.

Various applications have been found for group signature schemes, such as
anonymous authentication, internet voting and bidding. But wide implementa-
tion of group signatures in the real world has been prevented because of some
factors, among which is efficient membership revocation as pointed out in [2].

Nontrivial resolutions to membership revocation have been proposed with
regard to specific group signature schemes. The resolutions can be classified into
two categories. One is based on witness [3–5], another is based on revocation list
(RL) [6, 7]. Resolutions based on witness is advantageous over the latter in that
growing revocation lists are not needed to maintain, but in some applications
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RL based revocations are more suitable because they admit shorter signature
size [8].

RL Based Revocation. In this category, a natural resolution is to let GM
issue a revocation list of identities (public membership keys) RL, any group
member proves in a zero-knowledge way that his identity hidden in the group
signature is not equal to any one in RL[6]. The drawback is that signature size
is linearly dependent on the size of RL.

[7] improved the above approach resulting in a scheme that signature size
and computation are constant while the complexity of GVer is linearly depen-
dent on the size of RL. In this resolution, GM publishes a RL which includes
Vi = f(pcerti), i.e., evaluations of one way function f on partial certificate in-
formation pcerti which is unique to each group member. In signing a message,
member i includes a random R, and T = f ′(Vi, R) (f ′ is another one way func-
tion which may equal f) in the group signature. Verifiers check if T = f ′(Vi, R)
by trying every Vi in the current RL.

The idea of [7] is followed by [8, 9] etc., and is named verifier-local revocation
(VLR) and formalized in [8]. Nakanishi et. al. [9], however, pointed out previous
VLR schemes have a drawback of backward linkability, and proposed another
VLR scheme based on [8] with the feature of backward unlinkability (BU), i.e.,
group signatures generated by the same group member is unlinkable except him-
self and GM, even after this member has been revoked (his/her revocation token
is published).

Contributions. We propose a new computational complexity assumption
from bilinear map, and a new standard signature, two new verifier-local revoca-
tion group signature, one without backward unlinkability, another with backward
unlinkability, based on our assumption. The proposed group signature schemes
are more efficient both in signature length and signature generation/verification
than previous ones.

Organization. Our new complexity assumption and the new standard signa-
ture are described in Section 3. The proposed new group signatures from bilinear
map are presented in Section 5, with corresponding security proofs provided in
Appendixes.

2 Preliminaries

Suppose that G1 = 〈g〉, G2 = 〈g̃〉 and G3 are multiplicative cyclic groups of prime
order p, there exists an efficient non-degenerate bilinear map e : G1×G2→G3,
i.e., e(ua, vb) = e(u, v)ab for any u ∈ G1, v ∈ G2, a, b ∈ Zp, and e(g, g̃) 6= 1.

Definition 1 (LRSW Assumption [10]) Suppose G1, G2, G3 are defined as
above and generated by a setup algorithm. Let X̃ = g̃x, Ỹ = g̃y, Ox,y(.) be
an oracle that, on input a value m ∈ Z∗p , outputs a triple (a, ay, ax+mxy) for
a randomly chosen a ∈ G1. Then for any probabilistic polynomial time (PPT)
bounded adversary A, the following probability is negligible:
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Pr{(p,G1, G2, G3, e) ← Setup(1k);x R←− Z∗p ; y R←− Z∗p ; X̃ = g̃x; Ỹ = g̃y; (m,a, b, c) ←
AOx,y (g, g̃, e, X̃, Ỹ ) : m ∈ Z∗p \Q ∧ a ∈ G1 ∧ b = ay ∧ c = ax+mxy} < ε, where Q
is the set of queries that A has made to Ox,y(.).

Definition 2 (DDH) In the bilinear groups G1, G2 defined above, for any PPT
bounded probabilistic algorithm A, the following probability is negligible:

Pr{A(ga, gb, gab) = 1} − Pr{A(ga, gb, gc) = 1} < ε.
The probability is taken over the coin of A and random choice of a, b, c ∈ Z∗p .

Notations. PK{(α, β, ...) : R(α, β, ...)}. denotes a proof of knowledge, in which
a prover can show that he knows the values of (α, β, ...) satisfying the relation
R(α, β, ...).

SK{(α, β, ...) : R(α, β, ...)}{m}. denotes a signature of knowledge [11], a non-
interactive version of the above proof of knowledge transformed in Fiat-Shamir
method [12].

Because the easiness of transformation between PK and SK, they might be
mentioned interchangeably in the sequel. We let VSK denote the corresponding
verification of SK.

x
R←− S denotes x is chosen uniformly at random from the set S. x

$←− A(., ., .)
denotes x is generated from executing algorithm A where random variables are
chosen uniformly at random. Gk, (Z∗p )k denote a k tuple from G and Z∗p respec-
tively. |M | denotes the binary length of string M , |S| denotes the number of
elements in the set S.

3 A New Complexity Assumption

The idea of Assumption 1 comes from an effort to reduce the items in LRSW
Assumption from three to two, so that the signature size based on the assumption
will be shortened. After an analysis of all possible (gr, gf(r,x,y,m)), where f(.) =
c0rx + c1ry + c2xy, ci ∈ {0, 1,m} for i = 0, 1, 2, we found it seems unforgeable
when (c0, c1, c2) ∈ {(1,m, 1), (m, 1,m)}, and actually they are interchangeable
to each other.

Assumption 1 (Our New Assumption) Suppose G1, G2, G3 are defined as
in Section 2 and generated by a setup algorithm. Let X = gx, Y = gy, X̃ = g̃x,
Ỹ = g̃y, x 6= y, Ox,y(.) be an oracle that, on input a value m ∈ Z∗p , outputs a
pair (gr, gr(x+my)+xy) for a randomly chosen r ∈ Z∗p \ {1}. Then for any PPT
bounded adversary A, the following probability is negligible:

Pr[(p,G1, G2, G3, e, g, g̃) ← Setup(1k);x R←− Z∗p ; y R←− Z∗p ;X = gx;Y =
gy; X̃ = g̃x; Ỹ = g̃y; (m,a, b) ← AOx,y (p, g, g̃, e, X, Y, X̃, Ỹ ) : m ∈ Z∗p\Q ∧ a =
gr ∧ a /∈ {1G1 , g} ∧ b = gr(x+my)+xy] < ε,

where Q is the set of queries that A has made to Ox,y(.), 1G1 is the unit
element of G1.

Assumption 1 is hard in generic groups, i.e.,
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Theorem 1. Let x ∈ Z∗p , y ∈ Z∗p and maps ξ1, ξ2, ξ3 are chosen at random.
Let A be an algorithm that solves the assumption in the generic group model,
making a total of polynomial number QG queries to the oracles computing the
group action in G1, G2, G3, and the oracle computing the bilinear pairing e, and
the oracle Ox,y(.) as described in the above definition. Then the probability ε that
AOx,y (p, ξ1(1), ξ2(1), ξ1(x), ξ1(y)), ξ2(x), ξ2(y) outputs (m, ξ1(r), ξ1(r(x + my) +
xy)) is bounded as follows:

ε ≤ O(Q2
G/p).

The proof (see Appendix A) follows similar proofs in [13, 14]. The relationship
among Assumption 1, LRSW, and Strong Diffie-Hellman assumption [14] are
still not clear. A new standard signature scheme can be obtained based on this
assumption.

Scheme 1 Let G1, G2, G3 and bilinear map e be the same as described in
Section 2 and Assumption 1.
– KeyGen. Select (x, y) R←− Z∗p × Z∗p , x 6= y, set X = gx, Y = gy, X̃ = g̃x,

Ỹ = g̃y. The secret key is (x, y), public key is (X, Y, X̃, Ỹ , g, g̃, e, p).
– Sign. Given a message m ∈ Z∗p , its signature is (U, V ), where U = gr, V =

gr(x+my)+xy, r
R←− Z∗p \ {1}.

– Verify. Given a signature (U, V ) of m, check if e(V, g̃) = e(U, X̃Ỹ m)e(X, Ỹ ).
If the equation holds, then accept (U, V ) as a valid signature of m, otherwise
reject it as invalid.

Lemma 1. Signature scheme 1 is existentially unforgeable under Assumption
1.

For a message m ∈ {0, 1}∗ other than Z∗p , apply a hash function H : {0, 1}∗ →
Z∗p to m, then run Sign and Verify on H(m). Note that in algorithm Sign,
Assumption 1 and the proposed VLR group signatures in the sequel, it is required
r > 1, and further more r should be large enough to foil naive attacks against
Discrete Logarithm, e.g., repeatedly multiply g to match a given gr.

4 Definition of Verifier-Local Revocation Group
Signature

We provide a variant definition of VLR group signature from [8, 9] as follows.

Definition 3 (VLR Group Signature) A VLR group signature scheme GS
is a digital signature scheme comprising the following algorithms:

- Setup: an algorithm to get group public key gpk and group secret key gsk =
(ik), where ik is secret key of IA. Each user, for example i, to join in the
group has its user secret key and user public key pair (ski, pki). A publishable
revocation list RL is maintained and initialized empty; a registration table
Reg, kept secret to IA and OA, is initialized empty. Let the current time
period be j, initialized to 0.
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- Join: a probabilistic interactive protocol between IA and a user, in the end,
user i obtains its group signing key gski. Generally gski = (mski,mpki),
where member secret key mski is selected jointly by i and IA, and kept
secret to i, member public key of i or member certificate mpki is generated
by IA. If Join is successful mpki is added into Reg.

- Revoke: To revoke member i at time period j, IA generates revocation token
grti,j , adds it to RLj .

- GSig: a probabilistic algorithm on input (gski, j, m), where gski is the group
signing key of a member in the group, returns σ as a group signature on m
at time period j.

- GVer: a deterministic algorithm on input (gpk, RLj , j, m, σ), where σ is pur-
ported to be a group signature on m at time period j when the revocation
list is RLj , returns 1 to accept the group signature as valid or 0 to deny the
group signature as invalid.

- Open: on input a message-signature pair (m, j, σ), Reg, returns (i, π) indicat-
ing i is the purported identity of the group member who signed the signature
when i > 0, or none of the members has generated σ when i = 0, and π is a
proof of this claim.

- Judge: on input of (gpk,RLj , j, m, σ, i, π, pki), return 1 to accept the claim
of π, or 0 to deny the claim.

- If j is constant, GS is a VLR group signature w/o backward unlinkability,
otherwise it is a VLR scheme with backward unlinkability.

In the following paragraphs, we investigate a formal adversary model of VLR
group signature based on [15, 8, 9].

Firstly we define the oracles similar to [15]. It is assumed that several global
variables are maintained by the oracles: HU , a set of honest users; CU , a set
of corrupted users; GSet, a set of message signature pairs; and Chlist, a list of
challenged message signature pairs. Note that not all the oracles will be available
to adversaries in defining a certain security feature.

AddU (i): If i ∈ HU ∪CU , the oracle returns ⊥, else adds i to HU , executes
algorithm Join.

CrptU (i, pk): If i ∈ HU ∪ CU , the oracle returns ⊥, else sets pki = pk,
CU ← CU ∪ {i}, and awaits an oracle query to SndToI.

SndToI (i,Min): If i /∈ CU , the oracle returns ⊥; else it plays the role of IA
in algorithm Join replying to Min, a string sent from user i.

SndToU (i,Min): If i ∈ HU ∪CU , the oracle returns ⊥, else it plays the role
of user i in algorithm Join, HU ← HU ∪ {i}.

USK (i): If i ∈ HU , the oracle returns ski and gski, CU ← CU ∪ {i},
HU ← HU \ {i}; else returns ⊥.

RReg(i): The oracle returns regi, the record in the registration table Reg
corresponding to user i.

WReg(i, s): The oracle sets regi = s if i has not been added in reg.
Revoke(i, j): The oracle returns revocation token grtij of member i at time

period j.
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GSig(i,j,m): If i /∈ HU , the oracle returns ⊥, else returns a group signature
σ on m by user i at time period j. GSet ← GSet ∪ {(i, j, m, σ)}.

Ch(b, i0, i1, m, j): If i0 /∈ HU ∪CU or i1 /∈ HU ∪CU , the oracle returns ⊥,
else generates a valid group signature σ with ib being the signer at time period
j. Chlist ← Chlist ∪ {(m, j, σ)}.

Open(m, j, σ): If (m, j, σ) ∈ Chlist, the oracle returns ⊥, else if (m, j, σ) is
valid, the oracle returns output of Open(Reg, m, j, σ).

CrptIA: The oracle returns the secret key ik of IA.
CrptOA: The oracle returns the registration table Reg.
We say an oracle is over another oracle if availability of the oracle implies

functions of another oracle. For example, WReg is over RReg since the adversary
can try to remember everything it has written to Reg ; CrptIA is over CrptU,
SndToI since knowledge of ik enables the adversary to act as the two oracles
itself; CrptIA is also over CrptOA; CrptOA is over Open and RReg since OA
has access to Reg. Note that we do not let CrptIA over WReg so as to provide
flexibility when accesses to the database Reg are granted by an independent
DBA (database administrator).

Correctness. For any adversary that is not computationally restricted, a
group signature generated by an honest group member is always valid; algorithm
Open will always correctly identify the signer given the above group signature;
the output of Open will always be accepted by algorithm Judge.

Selfless-anonymity. This concept is named in [8]. Imagine a PPT ad-
versary A, whose goal is to distinguish the signer of a group signature σ ←
Ch(b, i0, i1,m, J) at time period J between i0, i1 ∈ HU , where i0, i1,m, J are
all chosen by A itself.

Naturally the adversary A might want to get the group signing keys of some
other honest group members except i0, i1 (through oracle USK ); it might want to
obtain some group signatures signed by i0, i1 at the time period J(through oracle
GSig); it might want to see some outputs of OA (through oracle Open except
(J,m, σ)); it might also try to corrupt some group members by running Join with
IA (through oracles CrptU and SndToI ); it might observe the communication
of some honest members joining in (through SndToU if IA is corrupted, not
available otherwise); it might want to write to Reg (through oracles WReg); it
might want to revoke some honest group members except i0, i1. Obviously A
should not be allowed to corrupt OA and IA and request to RReg, and it is also
forbidden from requesting revocation token of i0, i1 before the challenged time
period J (including J).

A VLR group signature GS is selfless-anonymous if the probability for any
PPT adversary to win is negligible, i.e., the value of Advanon

GS,A defined below is
negligible.

Advanon
GS,A(k) = Pr[Expanon−1

GS,A (k) = 1]− Pr[Expanon−0
GS,A (k) = 1],

where experiments Expanon−b
GS,A (k) are defined as in Table 1.

Traceability. Imagine a PPT adversary A, whose goal is to produce a valid
group signature (m,σ) at time period j and a corresponding revocation list
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Experiment Expanon−b
GS,A (k), b ∈ {0, 1}

(gpk, ik)
$←− Setup(1k); CU ← ∅, HU ← ∅, Chlist ← ∅;

d
$←− A(gpk : Open, CrptU, SndToI, USK, Ch(b, ., ., .), GSig, WReg, Revoke),

Return d.

Table 1. Selfless-anonymity.

RLj , the output of Open points to a non-existent and unrevoked member or an
existing corrupted member but can not pass Judge.

Naturally the adversary A might corrupt some group members by running
Join with IA (through oracles CrptU and SndToI ); it might want to see some
outputs of OA (through oracle Open); it might want to read from (through ora-
cles RReg); or A might corrupt OA directly (through oracle CrptOA). Obviously
A should not be allowed to corrupt IA and query WReg. Note that A might not
bother to query about honest group members for they are of little help for it.

A VLR group signature GS is traceable if the probability for any PPT adver-
sary to win is negligible, i.e., the value of Advtrace

GS,A defined below is negligible.

Advtrace
GS,A(k) = Pr[Exptrace

GS,A(k) = 1],

where experiment Exptrace
GS,A(k) is defined as in Table 2.

Experiment Exptrace
GS,A(k)

(gpk, ik)
$←− Setup(1k); CU ← ∅, HU ← ∅;

(m, σ, j, RLj)
$←− A(gpk : CrptOA, CrptU, SndToI).

If GVer(gpk, RLj , j, m, σ) = 0, return 0, else (i, π) ← Open(Reg, j, m, σ).
If i = 0 or (Judge(gpk, RLj , j, m, σ, i, π, pki) = 0 and i ∈ CU) then return 1, else return 0.

Table 2. Traceability.

Non-frameability. Imagine a PPT adversary A, whose goal is to produce
a valid group signature (m,σ) at time period j and a corresponding revocation
list RLj , the output of Open points to an existing unrevoked honest member ih
and the result passes Judge.

Naturally the adversary A might want to get the group signing keys of some
group members (through oracle USK); it might want to obtain some group
signatures signed by some honest group members (through oracle GSig); it might
want to see some outputs of OA (through oracle Open); it might also try to
corrupt some group members by running Join with IA (through oracles CrptU
and SndToI ); it might observe the communication of some honest members
joining in (through SndToU if CrptIA is queried, not available otherwise); it
might wait until more group members has joined in (through AddU ); it might
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want to write to or read from Reg (through oracles WReg, RReg); or A might
corrupt OA or IA directly (through oracle CrptOA and CrptIA). Obviously A
should not be allowed to query CrptU (ih), SndToI (ih,.), USK (ih).

A VLR group signature GS is non-frameable if the probability for any PPT
adversary to win is negligible, i.e., the value of Advnf

GS,A defined below is negli-
gible.

Advnf
GS,A(k) = Pr[Expnf

GS,A(k) = 1],

where experiment Expnf
GS,A(k) is defined as in Table 3 after taking consideration

of “over” relationship between oralces.

Experiment Expnf
GS,A(k)

(gpk, ik)
$←− Setup(1k); CU ← ∅, HU ← ∅, GSet ← ∅;

(m, σ, j, RLj , i, π)
$←− A(gpk : CrptIA, CrptOA, SndToU, GSig, USK, WReg).

If GVer(gpk, RLj , j, m, σ) = 0, return 0.
Else if i ∈ HU and Judge (gpk, RLj , j, m, σ, i, π, pki) = 1
and (i, j, m, .) /∈ GSet, return 1, else return 0.

Table 3. Non-frameability.

Definition 4 A VLR group signature scheme is secure if it is selfless-anonymous,
traceable and non-frameable.

4.1 VLR Group Signature with Backward Unlinkability

The following model and definitions conform to [9].

Definition 5 (BU-VLR group signature) A BU-VLR group signature, i.e.,
a group signature scheme with verifier-local revocation and backward unlinka-
bility simultaneously consists of the following algorithms. We suppose the max-
imum number of group members is n and the total time period is T .
– KGen(n, T ): A probabilistic algorithm to generate group public key gpk,

secret key gski for each group member i ∈ [1, n], and revocation tokens grtij
for each member i at time period j.

– GSig(gpk, j, gski,m): A probabilistic algorithm that produces a signature σ
on message m ∈ {0, 1}∗ at time period j by group member i who possesses
the secret key gski.

– Revoke(RLj , grtij): If i is to be revoked for the time period j, the group
manager adds grtij to the revocation list of time period j, i.e., RLj ←
RLj ∪ {grtij}.

– GVer(gpk, j, RLj , σ,m): A deterministic algorithm executable by anyone to
generate a one bit b. If b = 1, it means σ is a valid group signature on m by
some valid member (whose revocation token does not exist in RLj); if b = 0,
it means otherwise.
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KGen corresponds to algorithms Setup and Join. Open is omitted since GM
can run GVer against unpublished revocation tokens to find a group member
match.

Definition 6 (Correctness) A BU-VLR group signature is correct if for all
(gpk, gsk, grt) ← KGen(n, T ), all j ∈ [1, T ], all i ∈ [1, n], and all m ∈ {0, 1}∗,
GVer(gpk, j, RLj ,GSig(gpk, j, gski,m),m) = 1 ↔ grtij /∈ RLj .

Definition 7 (BU-Anonymity) A BU-VLR group signature has BU-anonymity
if any PPT bounded probabilistic adversary A only has probability of 1

2 + ε (ε
is negligible), i.e., with advantage of ε, to win in the following game.
– Setup: An instance of the BU-VLR group signature is established and gpk,

gsk, grt are generated by a challenger, A is given only gpk.
– Queries:

• Signing queries: A is allowed to request a signature on any message m
for any group member i at time period j.

• Corruption: A is allowed to request the secret key of any group member
i, i.e., gski.

• Revocation: A is allowed to request the revocation token of any group
member i at any time period j, i.e., grtij .

– Challenge: A outputs some (m, i0,i1, J) on the conditions that group mem-
bers i0 and i1 have not been corrupted, and their revocation tokens have
not been requested before time period J (including J). The challenger ran-
domly selects φ ∈ {0, 1} and responds with a group signature on m by group
member iφ at time period J .

– Restricted queries: A is allowed to continue queries of Signing, Corruption
and Revocation, except that i0 and i1 are forbidden in Corruption queries,
and their Revocation queries are not allowed before time period J and cur-
rent time period that A is to generate output (including J and current time)

– Output: A has to output a one bit value φ′, and wins if φ′ = φ.

Definition 8 (Traceability) A BU-VLR group signature has traceability if
any PPT bounded probabilistic adversary A only has negligible probability ε to
win in the following game.
– Setup: An instance of the BU-VLR group signature is established and gpk,

gsk, grt are generated by a challenger, A is given gpk, grt. A set U is
initialized empty.

– Queries:
• Signing queries: A is allowed to request a signature on any message m

for any group member i at time period j.
• Corruption: A is allowed to request the secret key of any group member

i, i.e., gski, i is added into U .
– Output: A has to output (m∗, j∗, RL∗j∗ , σ∗), and it wins if (1) GVer(gpk,

j∗, RL∗j∗ , σ∗, m∗)= 1, and (2) σ∗ is traced to a group member outside of
U \ RLj∗ or failure, and (3) A has not obtained σ∗ in signing queries on
message m∗ for this group member at time period j∗.
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5 Proposed VLR Group Signature

Brief Idea. Actually a group signature can be viewed as a proof of knowledge
of a standard signature signed by an authority ([11], [16], [17], [18], [19], [4],
[10], [20]), so every standard signature can be employed to construct a group
signature scheme [21], the point is how to obtain an efficient group signature
scheme, and not every standard signature will result in efficient construction.

Scheme 1, however, has two features that make it a suitable candidate for
group signature.
– For any signature (U ,V ) of m, any one can derive a new signature (U ′,V ′)

of the same message: U ′ = Ugr′ , V ′ = V Xr′Y mr′ , where r′ R←− Z∗p . Every
random derivation is independent from each other.

– The generation of (U ,V ) can be done even when m is not revealed: U = gr,
V = Crgrx+xy, where C = Y m.
The brief idea of Scheme 2 is: let group member i choose his secret key si,

commit it (without information theoretic hiding) to Ci = Y si . IA, as the signer
of Scheme 1, signs blindly on si, i.e., outputs (Ui, Vi) as a member certificate of
i. Group member i firstly generates a proof of knowledge of (si, Ui, Vi), when he
is asked to produce a group signature of a message, then randomize his member
certificate according to the first feature, now what left is to prove his knowledge
of si, which has standard and efficient resolution already [22].

The brief idea of Scheme 3 follows the above idea. Additionally a revocation
tag e(gsi , hj)δ, gδ (δ R←− Z∗p ) as well as a proof of knowledge of (si, δ) is appended
to the end of a group signature, where hj is chosen at the beginning of time
period j by the revocation authority (IA or OA), and published along with the
revocation list at that time RLj . The method is the same of [9], but our resulted
scheme is about 23% shorter in signature length.

5.1 The Scheme without Backward Unlinkability

Scheme 2 utilizes a trusted third party TP in case OA might be corrupted. If
OA is fully trusted, then the scheme can be simplified by eliminating TP and
signature of i on Ai, without invalidating corresponding proofs. Note that we
omit the index of time period in the following description because it is a VLR
scheme without backward unlinkability.

Scheme 2 (Our Proposal w/o BU) Let G1, G2, G3 and bilinear map e :
G1×G2→G3 be defined as in Section 2.
– Setup: Group secret key is (x, y) R←− Z∗p ×Z∗p , x 6= y, public key is (g, g̃, e, X =

gx, Y = gy, X̃ = g̃x, Ỹ = g̃y, p, h
R←− G2). A hash function H : {0, 1}∗ → Z∗p .

A registration table Reg is maintained and initialized empty.
A signature scheme S is selected, which is similar to the scheme in [23]:

S.KeyGen: Select z
R←− Z∗p as a secret key, set pk = gz ∈ G1 as a public key.

S.Sign: To sign a message m ∈ G2, calculate σ = mz as the signature.
S.Verify: To verify a given message-signature pair (m, σ), check if e(g, σ)=e(pk, m).
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A third trusted party TP is also selected. Each user i has to generate his
public key pki and secret key ski = zi of S, and register them to TP before
joining in the group. TP will publish the users’ public key and corresponding
identity i.

– Join: A user i interacts with IA to obtain his certificate in a private channel
as follows:

User → IA: User i selects s̃i
R←− Z∗p , sends C̃i = Y s̃i along with a proof of knowledge of s̃i to IA.

User ← IA: IA verifies that the proof of knowledge is correct, then selects r1
R←− Z∗p so that

Ci = C̃iY
r1 is different from all values already stored in Reg. It also selects αi

R←− Z∗p ,
computes Ui = gαi , Vi = (XCi)

αigxy and returns (r1, Ui, Vi) to i.
User → IA: User i computes si = s̃i+r1, checks if e(Vi, g̃)=e(Ui, X̃Ỹ si)e(X, Ỹ ), accepts (Ui, Vi) as

his member certificate if the above equation holds. User i also generates a S signature
on Ai = Ỹ si , i.e., σi = Ai

zi , and a proof of equality [24, 25] of logeY Ai and logY Ci,
sends (Ai, σi) to IA.

IA: IA checks if (Ai, σi) is valid under pki, stores it in Reg if that is the case.
– GSig: Member i (in possession of member certificate (Ui, Vi) and secret key

si) generates a group signature σ on message m as follows.

Firstly, calculate U ′ = Uig
r′ , V ′ = ViX

r′Y sir
′
, where r′ R←− Z∗p .

Secondly, generate a signature of knowledge of si, i.e.,
τ=SK1{si: e(U ′, Ỹ )si=e(V ′, g̃)e(U ′Y, X̃)−1}{m}, which is standard, i.e., τ=(s, c),
where c=H(e(U ′, Ỹ )k1 ,V ′,X,Y ,X̃,Ỹ ,m), s = k1+csi, k1

R←− Z∗p . It can be proved
sound and of honest verifier zero-knowledge exactly as in [22, 20, 26] etc.
The group signature of m signed by i is σ = (U ′, V ′, τ).

– GVer: A verifier does the following checks, given a group signature σ =
(U ′, V ′, τ) of m:

Firstly, check the validity of τ = (s, c) by running VSK1(τ), which is also standard,
i.e., verify if c = H(e(U ′, Ỹ )s[e(U ′Y, X̃)−1e(V ′, g̃)]−c, V ′, X, Y, X̃, Ỹ ,m), return 1 if
that is the case, 0 otherwise.
Secondly, check if there is a A ∈ RL that e(V ′, g̃) = e(U ′, X̃A)e(X, Ỹ ), return 0 if
that is the case, 1 otherwise.
σ is valid if both checks return 1.

– Open: The identity of the signer of a given group signature (m,U ′, V ′, τ) can
be opened as follows.

Check if e(V ′, g̃) = e(U ′, X̃Ai)e(X, Ỹ ) for some Ai stored in Reg.
If Ai satisfies the above equation, generates π, a proof of knowledge of (Ai, σi), i.e., let
Wα = σih

α, Wβ = Aβ
i , (α, β) R←− Z∗p ×Z∗p , π = PK2{(α, β) : [e(V ′, g̃)e(U ′Y, X̃)−1]β =

e(U ′,Wβ) ∧ e(g, Wα)βe(g, h)−αβ = e(pki,Wβ)}.
If no record in Reg satisfy the above equation, set i = 0, π = NULL.
Here pki is the S public key of the revealed member i, which are bound
together with i by TP. The detail of PK2 is provided in Appendix B. The
output of Open is (i, π).
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Note that IA can also open a group signature. IA checks if there exists a Ai

stored in Reg that e(U ′, X̃Ai) = e(V ′/gxy, g̃), it retrieves the matching Ai

and generates π, a proof of knowledge of (xy, Ai, σi) if that is the case. This
method can only be executed by IA knowing x, y, the former method can be
done by any opening authority assigned by IA, if only the OA has access to
Reg. Thus our scheme has a kind of flexibility.

– Judge: This algorithm judges the correctness of output of Open by checking
π.

– Revoke: To revoke a group member i, IA or OA just publishes the correspond-
ing Ai in RL.

The security results of Scheme 2 are as follows.

Theorem 2 (Traceability). Scheme 2 is traceable in random oracle model
under Assumption 1.

The proof is in Appendix C.

Theorem 3 (Non-frameability). Scheme 2 is non-frameable in random ora-
cle model under Discrete Logarithm assumption in group G3 which implies Dis-
crete Logarithm is hard in G1, G2 too.

The proof is standard and similar to those of [26] etc., because a valid group
signature of Scheme 2 is in fact a zero-knowledge proof of knowledge of si that
e(V ′, g̃) = e(U ′, X̃Ỹ si)e(X, Ỹ ), and si is never exposed to others including IA
and OA.

Theorem 4 (Selfless-anonymity). Scheme 2 is selfless-anonymous in ran-
dom oracle model under DDH assumption in G1.

The theorem is implied by by the following lemma with proof in Appendix D.

Lemma 2. Suppose an adversary A breaks the selfless-anonymity of Scheme 2
with advantage ε after qH hash queries, qsig signature queries, then there exists
an algorithm B breaking DDH assumption with advantage ε

2 ( 1
n −

qHqsig

p ), where
n is the total number of group members.

Open with Complexity O(1). An alternative construction of obtaining
Open with complexity independent with size of revocation list is to encrypt Y si

using the linear encryption scheme based on Linear Diffie-Hellman Assumption
[4], i.e., select (α, β) R←− Z∗p ×Z∗p and compute T1 = uα, T2 = vβ , T3 = Y siwα+β ,
where u, v, w ∈ G1 are among the group public keys, and OA owns x1, x2 that
w = ux1 = vx2 as secret keys.

The group signature by member i is (Ui
′, Vi

′r, T1, T2, T3) plus a proof of
knowledge of (α, β, si, r) accordingly. The resulted signature length is 1704 bits,
equal to [4].
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5.2 The Scheme with Backward Unlinkability

Our proposal Scheme 2 can be extended to include backward unlinkability in
the same method as in [9], see the following description.

Scheme 3 (Our Proposal w/ BU) Let G1, G2, G3 and bilinear map e :
G1×G2→G3 be defined as in Section 2.
– Setup: Same as Scheme 2, except that h is missing from the group public key.
– Join: Same as Scheme 2.
– GSig: Member i (in possession of certificate (Ui, Vi) and secret key si) gener-

ates a group signature σ of message m at time period j as follows.

Calculate U ′ = Uig
r′ , V ′ = ViX

r′Y sir
′
, where r′ R←− Z∗p .

Select δ
R←− Z∗p , calculate S = e(gsi , hj)δ, T = gδ.

Generate a signature of knowledge of (si, δ, siδ), i.e.,
τ = SK2{α, β, γ : e(U ′, Ỹ )α = e(V ′, g̃)e(U ′Y, X̃)−1 ∧ T = gβ ∧ S = e(g, hj)γ ∧ Tα = gγ}{m},
which is standard, i.e., τ = (sα, sβ , sγ , c), where
c = H(e(U ′, Ỹ )kα , gkβ , e(g, hj)kγ , T kα/gkγ , U ′, V ′, S, T, X, Y, X̃, Ỹ ,m), (kα, kβ , kγ) R←− Z∗p

3,
and sα = kα + csi, sβ = kβ + cδ, sγ = kγ + csiδ.
The group signature of m signed by i at time period j is σ = (U ′, V ′, S, T, τ).

– GVer: A verifier does the following checks, given a group signature σ =
(U ′, V ′, S, T, τ) on m at time period j:

Firstly, check the validity of τ=(sα, sβ , sγ , c) by running VSK2(τ), which is also stan-
dard, i.e., verify that if c=H(e(U ′, Ỹ )sα [e(U ′Y, X̃)e(V ′, g̃)−1]c, g/T c, e(g, hj)sγ /Sc, T sα/gsγ ,
U ′, V ′, S, T, X, Y, X̃, Ỹ , m), return 1 if that is the case, 0 otherwise.
Secondly, check if there is a B ∈ RL that S = e(T, B), return 0 if that is the case, 1
otherwise.
σ is valid if both checks return 1.

– Revoke: To revoke a group member i at time period j ∈ [1, t], IA or OA
selects and publishes a unique hj = Ỹ rj (rj

R←− Z∗p ) for each time period j,
and publishes the corresponding Bij = A

rj

i , hsi
j in RL, where Ai is obtained

from member i during algorithm Join, and stored in Reg.
– Open and Judge: Same as Scheme 2.

The correctness of Scheme 3 is easy to verify. The traceability and non-
frameability follow from that of Scheme 2. What remains to analyze is selfless-
anonymity in the case of backward unlinkability, i.e., BU-anonymity [9].

Theorem 5. Scheme 3 is selfless-anonymous in random oracle model under
DDH assumption in G1.

The theorem is implied by the following lemma (proved in Appendix E).

Lemma 3. Suppose an adversary A breaks the selfless-anonymity of Scheme 3
with advantage ε, after qH hash queries, qS signature queries, then there exists
an algorithm B breaking DDH assumption in G1 with advantage ε

2 ( 1
n − qHqS

p ).
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Our scheme has the feature of being BU-enabled and non-frameable at the
same time. [9] can also be extended to satisfy the two requirements simultane-
ously just as how the basic scheme is enhanced with strong exculpability in [4],
at the cost of longer signature length because knowledge of an extra exponent
has to be proved.

5.3 The Scheme without Random Oracles

Our new assumption 1 can be used to construct an efficient group signature
without Random Oracles (RO) following [13].

Scheme 4 (Our Proposal w/o RO) Let G1, G2, G3 and bilinear map e :
G1×G2→G3 be defined as in Section 2.
– Setup:

GroupSetup. Group secret key is (x, y) R←− Z∗p × Z∗p , x 6= y, public key is (g,
g̃, e, X = gx, Y = gy, X̃ = g̃x, Ỹ = g̃y, p). The group manager or IA also
maintain a database Reg.

UserKeyGen. Each user selects random sk ∈ Z∗p and random h ∈ G1, and
outputs its public key pk = (h, e(h, g̃)sk).

– Join: User i holding its secret key ski and public key pki = (hi, e(hi, g̃)ski)
run interactively with IA.

User → IA: User i submits its public key pki, the user provides a zero-knowledge proof of knowl-
edge of the corresponding ski using any extractable proof technique (see [13] for a
discussion of such proof techniques).

User → IA: User i submits its tracing information Qi = g̃ski to IA. Let pki = (p1, p2), if e(p1, Qi) =
p2, and Qi is new in Reg, IA stores Qi in the database Reg ; otherwise IA aborts.

User → IA: User i sends A = gski to IA.
User ← IA: IA computes f1 = gr, f2 = gr(x+my)+xy and sends them to the user. User accepts

them if e(f2, g̃) = e(f1, X̃Ỹ ski)e(X, Ỹ ). At the end of the protocol, the user obtains
the following member certificate (f1, f2).

– GSig: Member i (in possession of certificate (f1, f2) and secret key ski) gen-
erates a group signature σ of message m as follows.

The user re-random its certificate by computing a1 = f1g
r, a2 = f2X

rY skir, where
r

R←− Z∗p .
Next, the user chooses a random v ∈ Z∗p and sets a3 = aski

1 , a4 = av
1.

The user generates a BB signature [14] on v using its secret key ski, i.e., a5 = g̃
1

ski+v .
The user treats the value v as its one-time signing key and computes a BB signature
on m using its secret key v, i.e., a6 = g̃

1
v+m .

The group signature of m signed by i is σ = (a1, a2, a3, a4, a5, a6).
– GVer: A verifier does the following checks, given a group signature σ =

(a1, a2, a3, a4, a5, a6) on m:
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Firstly, check that (a1, a2) is a valid signature on loga1
a3 under Scheme 1, i.e., if

e(a2, g̃) = e(a3, X̃Ỹ )e(X, Ỹ ) holds.
Secondly, check if a5 is a valid BB signature on loga1

a4 for public key (a1, g̃, a3), i.e.,
if e(a3a4, a5) = e(a1, g̃) holds.
In the end, check if a6 is a valid BB signature on m for public key (a1, g̃, a4), i.e., if
e(a4a

m
1 , a6) = e(a1, g̃) holds.

– Open: IA checks whether e(a3, g̃) = e(a1, Qi) for each Qi in Reg.
– VerifyOpen: Firstly, IA checks whether δ is a valid group signature by running

GVer. Next, IA checks if there exists a Qi ∈ Reg that e(p1, Qi) = p2. If both
conditions are satisfied, then IA proceeds to convince a verifier that user i,
whose public key is (p1, p2), is really the signer by either one of the following
ways.
• Total Anonymity Revocation: IA simply publish Qi, so that verification of

e(p1, Qi) = p2 and e(a3, g̃) = e(a1, Qi) are available to anyone, with user
i losing anonymity on any group signature it could generate thereafter.

• Partial Anonymity Revocation: IA engage a zero-knowledge proof of knowl-
edge of Q ∈ G2 that e(p1, Q) = p2 and e(a3, g̃) = e(a1, Q).

5.4 Efficiency Comparison

To implement our schemes, a group where DDH is hard and an efficient bilinear
map is defined is required. A natural selection is non-supersingular elliptic curves
defined on finite field, with MOV degree, i.e., embedding degree, larger than one,
because distortion map which is the only tool solving DDH on an elliptic curve
nowadays does not exist in these curves according to [27], and MNT curves
happen to satisfy the requirements and can be constructed systematically [28].
So our schemes are realizable on MNT curves. Scheme of [13] has the same
requirement as ours, while schemes of [9, 8] are also realizable on supersingular
elliptic curves besides MNT curves.

The following table is a performance comparison of known VLR schemes in
signature size, i.e., length of σ in bits, and computations required in algorithms
GSig and GVer, i.e., multi-exponentiations (denoted as ME) number in G1 and
bilinear map (denoted as BM) number. Note that computations that permit
preprocessing are not counted.

Note that the computation estimations are made according to [8], i.e., p is
about 170 bits, elements of G1 are 171 bits, and elements of G3 are 1020 bits,
achieving a security level similar to 1024 bits RSA. In case [13] and Scheme 4,
elements of G2 are chosen about 3 times that of G1.
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|σ| (bits) GSig Comp. GVer Comp. Back.-Unlink. Non-Frame.

[9] 2893 10 ME+1 BM 6 ME+(2 + |RL|) BM Yes No

[13] 2052 8 ME 1 ME+(9 + 2|RL|) BM No Yes

[8] 1192 8 ME+2 BM 6 ME+(3 + |RL|) BM No No

[29] 2044 10 ME+ 1 BM 6 ME+(2 + |RL|) BM Yes No

Scheme 2 682 3 ME 2 ME+(3 + |RL|) BM No Yes

Scheme 3 2213 8 ME 5 ME+(2 + |RL|) BM Yes Yes

Scheme 4 1710 6 ME 1 ME+(6 + 2|RL|) BM No Yes
Table 4. A Comparison of Some VLR Group Signature Schemes.
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A Proof of Theorem 1

Proof. Consider an algorithm B that interacts with A in the following game. B
maintains two lists of pairs L1 = {(F1,i, ξ1,i) : i = 0, ..., τ1−1}, L2 = {(F2,i, ξ2,i) :
i = 0, ..., τ2 − 1}, L3 = {(F3,i, ξ3,i) : i = 0, ..., τ3 − 1}, such that at step τ in the
game, we have τ1 + τ2 + τ3 = τ +6. The F1,i, F2,i, F3,i are polynomials in Zp[x],
the ξ1,i, ξ2,i, ξ3,i are set to unique random strings in {0, 1}∗.

We start the game at step τ = 0 with τ1 = 3, τ2 = 3, τ3 = 0, they corresponds
to F1,0 = 1, F1,1 = x, F1,2 = y, F2,0 = 1, F2,1 = x, F2,2 = y, and the random
strings ξ1,0, ξ1,1, ξ1,2, ξ2,0, ξ2,1, ξ2,2.
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B simulates the following oracles that Amay query. Let τv denote the number
of queries to oracle Ox,y by A, and initialize τv = 1.
Group action: A inputs two group elements ξ1,i, ξ1,j where 0 ≤ i, j ≤ τ1, and a

request to multiply/divide. B sets F1,τ1 ← F1,i±F1,j accordingly. If F1,τ1 =
F1,u for some u ∈ {0, ..., τ1 − 1}, then B sets ξ1,τ1 = ξ1,u; otherwise it sets
ξ1,τ1 to a random string in {0, 1}∗ \ {ξ1,0, ..., ξ1,τ1−1}. Finally B returns ξ1,τ1

to A, adds (F1,τ1 , ξ1,τ1)to L1 and increments τ1. Group actions for G2, G3

is handled similarly.
Pairing: A inputs two group elements ξ1,i and ξ2,j , where 0 ≤ i ≤ τ1, 0 ≤ j ≤ τ2.

B sets F3,τ3 ← F1,i · F2,j . If F3,τ3 = F3,u for some u ∈ {0, ..., τ3 − 1}, then
B sets ξ3,τ3 = ξ3,u; otherwise it sets ξ3,τ3 to a random string in {0, 1}∗ \
{ξ3,0, ..., ξ3,τ3−1}. Finally B returns ξ3,τ3 to A, adds (F3,τ3 , ξ3,τ3)to L3 and
increments τ3.

Oracle Ox,y: A inputs mτv ∈ Z∗p . B chooses a new variable vτv and sets F1,τ1 ←
vτv

, F1,τ1+1 ← vτv
(x + mτv

y) + xy. For t ∈ {0, 1}, if F1,τ1+t = F1,u for
some u ∈ {0, ..., τ1 − 1 + t}, then B sets ξ1,τ1+t = ξ1,u; otherwise it sets
ξ1,τ1+t to a random string in {0, 1}∗ \ {ξ1,0, ..., ξ1,τ1−1+t}. Finally B returns
(ξ1,τ1 , ξ1,τ1+1) to A and adds (F1,τ1 , ξ1,τ1), (F1,τ1+1, ξ1,τ1+1) to L1, τ1 is
incremented 2, τv is incremented 1.
Eventually A stops and outputs (m, ξ1,a, ξ1,b), where m ∈ Z∗p \ {m1, ..., mτv

}
and 0 ≤ a, b ≤ τ1.

Analysis of A’s Output. For A’s output to be always correct, then F1,b −
F1,a.(x + my) − xy = 0 for any (x, y, v1, ..., vτv

), where F1,a (F1,b) corresponds
to ξ1,a (ξ1,b). We now argue that it is impossible for A to achieve this.

F1,i has the following form according to the description above:
F1,i = c0,i + c1,ix+ c2,iy +

∑
k fk,ivk +

∑
k dk,i[vk(x+mky)+xy], where

∑
k

denotes
∑

1≤k≤τv
for simplicity.

It follows that
F1,b−F1,a(x+my)−xy = c0,b +(c1,b− co,a)x+(c2,b−mc0,a)y +

∑
k fk,bvk +∑

k(dk,b− fk,a)vkx+
∑

k(dk,bmk− fk,am)vky +(
∑

k dk,b− c2,a−mc1,a− 1)xy−
c1,ax2−∑

k dk,avkx2−∑
k(mk−m)dk,avkxy− (

∑
k dk,a)x2y− (

∑
k dk,am)xy2−

mc2,ay2 −∑
k dk,amkmvky2.

For the above function to be zero for any (x, y, v1, ..., vτv
), all the coefficients

are to be zero, then

dk,a = 0, fk,b = 0, dk,b = fk,a, dk,bmk = fk,am (1)

c0,b = 0, c1,b = c0,a, c2,b = mc0,a, c1,a = 0, c2,a = 0,
∑

k

dk,b = c2,a + mc1,a + 1.

(2)
We have dk,b = fk,a = 0 from (1) because m 6= mk for any k. We also have∑

k dk,b = 1 from (2), which is a contradiction. Thus we conclude that A’s
success depends solely on his luck when (x, y, v1, ..., vτv

) is instantiated.
Analysis of B’s Simulation. At this point B chooses random (x∗, y∗, v∗1 ,

..., v∗τv
). B now tests if its simulation was perfect by checking (3) and (5), i.e., if

the instantiation (x∗, y∗, v∗1 , ..., v∗τv
) does not create any equality relation among
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the polynomials that was not revealed by the random strings provided to A. B
also tests whether or not A’s output was correct by checking (6).

F1,i(x∗, y∗, {v∗k})− F1,j(x∗, y∗, {v∗k}) = 0, for some i, j s.t. F1,i 6= F1,j (3)

F2,i(x∗, y∗)− F2,j(x∗, y∗) = 0, for some i, j s.t. F2,i 6= F2,j (4)

F3,i(x∗, y∗, {v∗k})− F3,j(x∗, y∗, {v∗k}) = 0, for some i, j s.t. F3,i 6= F3,j (5)

F1,b(x∗, y∗, {v∗k})− F1,a(x∗, y∗, {v∗k})(x∗ + my∗)− x∗y∗ = 0 (6)

Thus A’s overall success is bounded by the probability that any of the above
equation holds.

We observe that F1,i is non-trivial polynomial of degree at most 2, F2,i at
most 1, F3,i at most 4, the function of (6) at most 3.

For fixed i, j, the first case occur with probability ≤ 2/p, the second case
≤ 1/p, the third case ≤ 4/p. The fourth case happens with probability ≤ 3/p.
Summing over all (i, j) pairs in each case, we bound A’s overall success probabil-
ity ε ≤ (

τ1
2

)
2
p +

(
τ2
2

)
1
p +

(
τ3
2

)
4
p + 3

p , i.e. ε ≤ O(Q2
G/p), since τ1 + τ2 + τ3 ≤ QG +6.

B Detail of PK2 in Scheme 2

The detail of the proof of knowledge
π = PK2{(α, β) : [e(V ′, g̃)e(U ′Y, X̃)−1]β = e(U ′,Wβ)∧e(g, Wα)βe(g, h)−αβ =

e(pki,Wβ)}:
- Prover selects (k1, k2)

R←− Z∗p × Z∗p , calculates R1 = [e(V ′, g̃)e(U ′Y, X̃)−1]k1 ,
R2 = e(g, Wα)k1e(g, h)−k2 , and sends R1, R2 to Challenger. Challenger replies
with a random c

R←− Z∗p .
- Prover calculates s1 = k1 +cβ, s2 = k2 +cαβ, and sends them to Challenger.
- Challenger checks whether the following equations are satisfied:

R1 = [e(V ′, g̃)e(U ′Y, X̃)−1]s1e(U ′,Wβ)−c,
R2 = e(g, Wα)s1e(g, h)−s2e(pki,Wβ)−c.

Challenger accepts (s1, s2) if the above check passes, rejects it otherwise.
The following Lemma can be proved similarly to corresponding Lemmas or

Theorems in [10, 20, 5].

Lemma 4. The above interactive protocol π is statistical honest verifier zero-
knowledge and sound, under Discrete Logarithm assumption in group G1, G2

and G3.

Proof. Zero-knowledge is easy to see. The soundness is as follows:
Soundness: By resetting Prover under the same random inputs, an honest

verifier can get (s1, s2, c) and (s′1, s
′
2, c

′) where s′j 6= sj , j = 1, 2, c′ 6= c.
Let ∆sj = sj − s′j , j = 1, 2, ∆c = c′ − c, then

[e(V ′, g̃)e(U ′Y, X̃)−1]∆s1 = e(U ′,Wβ)∆c,
e(g, Wα)∆s1e(g, h)−∆s2 = e(pki,Wβ)∆c.

Set β′ = ∆s1/∆c mod p, α′ = ∆s2/∆s1 mod p, then Wα = σih
α′ , Wβ = Aβ′

i ,
it follows that (Ai, σi) is easy to decide.
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C Proof of Theorem 2

C.1 Preliminaries

Lemma 5 (Generalized Forking Lemma [30]). Consider a PPT algorithm
P, a PPT predicate Q, and a hash function H with range {0, 1}k thought of as
a random oracle. The predicate Q satisfies that Q(x) = > ⇒ {x = (ρ1, c, ρ2) ∧
c = H(ρ1)}. P is allowed to ask queries on H and R, where R is a process that
given (t, c) reprograms H so that H(t) = c, and it is assumed that P behaves in
such a way that queries (t, c) to R adhere to the following conditions:
– c is uniformly distributed over {0, 1}k.
– The probability of the occurrence of a specific t = t0 is upper bounded by

2/2k.
Suppose that PH,R(param) returns a x such that Q(x) = > with non-negligible
probability ε ≥ 10(qR + 1)(qR + qH)/2k, where qR, qH are numbers of queries to
R and H respectively. Then there exists a PPT P ′ so that if y ← P ′(param) it
holds with probability 1/9 that (1) y = (ρ1, c, ρ2, c

′, ρ′2), (2) Q(ρ1, c, ρ2) = > and
Q(ρ1, c

′, ρ′2) = >, (3) c 6= c′. The probabilities are taken over the choices for
H, the random coin tosses of P and the random choice of the public parameters
param.

C.2 Proof of Theorem 2

Proof. Suppose A is an adversary breaking the traceability of Scheme 2, we can
construct an adversary B breaking Assumption 1 as follows:

B is given X, Y ∈ G1, X̃, Ỹ ∈ G2, bilinear map e, and G3, as well as an
oracle Ox,y. The task of B is to figure out a triple (m,U ,V ), where U = gr,
V = gr(x+my)+xy and m is never queried to Ox,y. B transfers (g, g̃, e, X, Y , X̃,

Ỹ , p, h
R←− G2) to A as public keys, sets CU ← ∅, HU ← ∅, Reg ← ∅, and

answers queries from A as follows.
– When A queries CrptU (i, pk), B sets the user public key pki = pk, CU ←

CU ∪ {i}.
– When A queries SndToI (i,Min), where Min = C̃i, A should run an inter-

active proof of knowledge of s̃i that C̃i = Y s̃i with B, in which B provides
a random challenge c1. Now B rewinds A and provides a second random
challenge c2 6= c1. s̃i can be extracted due to the soundness of the above
proof of knowledge. The detail of the rewind technique is referred to Section
6 of [26].
B then chooses si

R←− Z∗p , sets r1 = si − s̃i, sends si to Ox,y, which outputs
a pair (Ui, Vi). B returns (r1, Ui, Vi) to A as a reply.
A can obtain si = s̃i + r1, and should send a Ai = Ỹ si and σi (a S signature
on Ai), as well as a proof of equality of logeY Ai and logY C̃iY

r1 to B. B
checks that (Ai, σi) is valid under public key pki, and stores (Ai, σi) in Reg
if that is the case.

– When A queries CrptOA, B returns Reg={(Ai, σi)}.
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– When A queries random oracle H, B chooses a random c ∈ Z∗p and replies
consistently, i.e., if it is a duplicate query, B always replies with the same
random value chosen for the first query.

In the end, if A wins with non-negligible probability, which means A outputs a
(m, U , V , c, s, RL) that OA can not find the identity of the signer (Case 1), or
OA can find the identity of the signer, but can not prove that to a judger (Case
2), i.e.,

Case 1
c = H(e(U, eY )s[e(UY, eX)e(V, g̃)−1]c,

V, X, Y, eX, eY , m),

e(V, g̃) 6= e(U, eXAj)e(X, eY ), ∀Aj ∈ RL.

e(V, g̃) 6= e(U, eXAi)e(X, eY ), ∀Ai ∈ Reg.

Case 2
c = H(e(U, eY )s[e(UY, eX)e(V, g̃)−1]c, V, X, Y, eX, eY , m),

e(V, g̃) 6= e(U, eXAj)e(X, eY ), ∀Aj ∈ RL,

e(V, g̃) = e(U, eXAi)e(X, eY ), ∃Ai ∈ Reg,
i has been queried to CrptU,
and (i, π) ← Open (Reg, m, U, V, s, c),
Judge(RL, i, π) = 0.

The latter case is negligible because the soundness and correctness of Open,
and existential unforgeability of the standard signature S. So with a non-negligible
probability, A will output a (m, U , V , c, s, RL) satisfying the former condition.

Apply Lemma 5 to A, where GVer is the predicate, B will get a A′ that
outputs (m, U , V , c, s, RL) and (m, U , V , c′ 6= c, s′, RL). Thus B can get
si = s−s′

c−c′ that e(V, g̃) = e(U, X̃Ỹ si)e(X, Ỹ ), where Ỹ si /∈ Reg, i.e., si is never
queried to oracle Ox,y, and (U, V ) must has the form of (gr, gr(x+siy)+xy) for
some r ∈ Z∗p , thus Assumption 1 is broken.

D Proof of Lemma 2

Proof. B is given (A,B, Z), where A = ga, B = gb, Z = gab or Z = gc, (a, b, c) R←−
Z∗p

3. The task of B is to distinguish which is the case for Z, i.e., output a guess
ω′ ∈ {0, 1} of ω, where ω = 1 denotes Z = gab and ω = 0 denotes Z = gc. B
solves the challenge by interacting with A as follows.

B simulates Setup as follows:
1. B sets group public key: X = gx, Y = gy, X̃ = g̃x, Ỹ = g̃y, h

R←− G2,
where (x, y) R←− Z∗p × Z∗p .

2. Suppose the total number of group members is n, B picks i∗ R←− [1, n],
sets si∗ = a, Ui∗ = gr, Vi∗ = XAyrgxy, Ai∗ = A, σi∗ = Az

i∗ , pki∗ = gz, where
(r, z) R←− Z∗p × Z∗p , HU ← {i∗}, Reg ← {(Ai∗ , σi∗)}.

• When A queries CrptU (i, pk), if i /∈ HU ∪ CU , B sets the user public key
pki = pk, CU ← CU ∪ {i}.

• When A queries SndToI (i,Min), where Min = C̃i, A should run an in-
teractive proof of knowledge of s̃i that C̃i = Y s̃i with B, in which B provides
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a random challenge c1. Now B rewinds A and provides a second random chal-
lenge c2 6= c1. s̃i can be extracted due to the soundness of the above proof of
knowledge. The detail of the rewind technique is referred to Section 6 of [26].

B then chooses si
R←− Z∗p , sets r1 = si − s̃i, sends si to Ox,y, which outputs

a pair (Ui, Vi). B returns (r1, Ui, Vi) to A as a reply.
A can obtain si = s̃i + r1, and should send a Ai = Ỹ si and σi (a S signature

on Ai), as well as a proof of equality of logeY Ai and logY C̃iY
r1 to B. B checks

that (Ai, σi) is valid under public key pki, and stores (Ai, σi) in Reg if that is
the case.

• When A queries random oracle H, B answers randomly and consistently.
• When A queries USK (i), if i 6= i∗, B replies with (si, Ui, Vi) and CU ←

CU ∪ {i}; if i = i∗, B aborts and outputs a random guess ω′ ∈R {0, 1}.
• When A queries Revoke(i) for revocation token of i, if i 6= i∗, B responds

with Ai; if i = i∗, B aborts and outputs a random guess ω′ ∈R {0, 1}.
•WhenA queries GSig(i,m) for a signature on m signed by member i 6= i∗, B

generates the signature exactly as algorithm GSig since the secret key (si, Ui, Vi)
is known; if i = i∗, B calculates U ← Ui∗g

r′ , V ← Vi∗(Aygx)r′ , where r′ R←− Z∗p ,
and simulates a proof of knowledge of a. In case duplicate hash queries haven
been made, B aborts and outputs a random guess ω′ ∈R {0, 1}.

• When A queries Open(m,σ), B does exactly as in algorithm Open, since
it knows the content of Reg.

• When A queries WReg(i, .), B sets Regi = s if i has not been recorded in
Reg.

• When A queries Ch(.,i0, i1,m), i0, i1 should never have been queried to
USK and Revoke, B picks φ

R←− {0, 1} with uniform probability, if iφ 6= i∗ or
i∗ /∈ {i0, i1}, B aborts and outputs a random guess ω′ ∈R {0, 1}, otherwise
generates the following challenge

U = B, V = BxZygxy, τ, (7)

where τ is a simulation of SK1{siφ
: e(U, Ỹ )siφ = e(V, g̃)e(UY, X̃)−1}{m}.

If Z = gab, then U = gb, V = gb(x+a)y+xy, the challenge is a real group
signature on m by iφ.

If Z = gc, then V is independent with i0 or i1, there is no better method for
A to win than guessing φ totally.

A outputs φ′ ∈ {0, 1} after it is given the challenge (7). B outputs ω′ = 1 if
φ′ = φ (implying Z = gab), outputs ω′ = 0 otherwise (implying Z = gc).

The advantage of A is defined as Advanon
A = Pr{φ′ = 1|φ = 1} − Pr{φ′ =

1|φ = 0}. The advantage of B is defined as Advddh
B = Pr{ω′ = 1|ω = 1}−Pr{ω′ =

1|ω = 0}. It follows that

Advddh
B = (Pr{ω′ = 1|abort, ω = 1} − Pr{ω′ = 1|abort, ω = 0})Pr{abort}

= (Pr{φ′ = φ|ω = 1} − Pr{φ′ = φ|ω = 0})Pr{abort}
=

1
2
Advanon

A Pr{abort} ≥ ε

2
(
1
n
− qHqsig

p
),
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where Pr{abort} ≥ 1
n −

qHqsig

p because abort happens if only B has chosen the
right random i∗ from [1, n], φ from {0, 1} and duplicate hash requests have not
occurred.

E Proof of Lemma 3

Proof. B is given (A,B, Z) ∈ G3
1, where A = ga, B = gb, Z = gab or Z = gc,

(a, b, c) R←− Z∗p
3. The task of B is to distinguish which is the case for Z, i.e.,

output a guess ω′ ∈ {0, 1} of ω, where ω = 1 denotes Z = gab and ω = 0 denotes
Z = gc. B solves the challenge by interacting with A as follows.

B simulates Setup as follows: B sets group public key: X = gx, Y = gy,
X̃ = g̃x, Ỹ = g̃y, where (x, y) R←− Z∗p × Z∗p . Suppose the total number of group

members is n, total time period is t, B picks i∗ R←− [1, n], and sets si∗ = a, Ui∗ =
gr, Vi∗ = XAyrgxy, Ai∗ = A, σi∗ = Az

i∗ , pki∗ = gz, where (r, z) R←− Z∗p × Z∗p ,
HU ← {i∗}, Reg ← {(Ai∗ , σi∗)}.

At the beginning of time period j ∈ [1, t], B calculates hj = Ỹ rj , rj
R←− Z∗p .

•When A queries CrptU (i, pk), if i /∈ HU ∪ CU , B sets the user public key
pki = pk, CU ← CU ∪ {i}.

• When A queries SndToI (i,Min), where Min = C̃i, A should run an in-
teractive proof of knowledge of s̃i that C̃i = Y s̃i with B, in which B provides
a random challenge c1. Now B rewinds A and provides a second random chal-
lenge c2 6= c1. s̃i can be extracted due to the soundness of the above proof of
knowledge. The detail of the rewind technique is referred to Section 6 of [26].

B then chooses si
R←− Z∗p , sets r1 = si − s̃i, sends si to Ox,y, which outputs

a pair (Ui, Vi). B returns (r1, Ui, Vi) to A as a reply.
A can obtain si = s̃i + r1, and should send a Ai = Ỹ si and σi (a S signature

on Ai), as well as a proof of equality of logeY Ai and logY C̃iY
r1 to B. B checks

that (Ai, σi) is valid under public key pki, and stores (Ai, σi) in Reg if that is
the case.

• When A queries random oracle H, B answers A’s hash queries randomly
and consistently.

•When A queries GSig(m, i, j), where i 6= i∗, B can generate the signature
because it knows the member secret key of i.

When i = i∗, B can generate the signature correctly except not knowing si∗ ,
so it can simulate a proof of knowledge of si∗ .

In case duplicate hash queries haven been made, B aborts and outputs a
random guess ω′ ∈R {0, 1}.

•When A queries USK (i), B replies (si, Ui, Vi) when i 6= i∗, B aborts and
outputs a random guess ω′ R←− {0, 1} when i = i∗.

•When A queries Revoke(i, j), B computes and returns the revocation token
of i at time period j according to the following formula

Bij , hsi
j =

{
gsirjy, i 6= i∗

Arjy, i = i∗
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•When A queries Ch(m, i0, i1, j), i0, i1 should never have been queried to
USK and Revoke at time period j. B picks φ

R←− {0, 1} randomly, if iφ 6= i∗,

aborts and outputs a random guess ω′ R←− {0, 1}. Otherwise, B generates the
following challenge

U = Br′ , V = Br′xZr′ygxy, S = e(A, g̃)yr′′rj , T = Br′′ , τ,

where (r′, r′′) R←− Z∗p × Z∗p , τ is a simulated proof of (a, br′′, abr′′).
If Z = gab, the challenge is a valid group signature signed by i∗ at time j in

random oracle model.
If Z = gc, the challenge is a valid group signature signed by a group member

î whose secret key sî = c/b at time period j, which is non-preferable for guessing
i0 or i1, there is no better method for A to win than guessing φ totally.

B outputs ω′ = 1 if φ′ = φ (implying Z = gab), outputs ω′ = 0 otherwise
(implying Z = gc). Thus Advddh

B = 1
2Advanon

A Pr{abort} ≥ ε
2 ( 1

n−
qHqsig

p ), because
abort happens if only B has chosen the right random i∗ from [1, n], φ from {0, 1}
and duplicate hash requests have not occurred.


