
Conjunctive, Subset, and Range Queries on Encrypted Data

Dan Boneh ∗

dabo@cs.stanford.edu

Brent Waters
bwaters@csl.sri.com

Abstract

We construct public-key systems that support comparison queries (x ≥ a) on encrypted
data as well as more general queries such as subset queries (x ∈ S). These systems also support
arbitrary conjunctive queries (P1∧· · ·∧P`) without leaking information on individual conjuncts.
We present a general framework for constructing and analyzing public-key systems supporting
queries on encrypted data.

1 Introduction

Queries on encrypted data are easiest to explain with an example. Consider a creditcard payment
gateway that observes a stream of encrypted transactions, say encrypted under Visa’s public key.
The gateway needs to flag all transactions satisfying a certain predicate P . Say, all transactions
whose value is over $ 1000. Storing Visa’s secret key on the gateway is a bad idea for both security
and privacy concerns. Instead, Visa wishes to give the gateway a token TKP that enables the gate-
way to identify transactions satisfying P without learning anything else about these transactions.
Of course, generating the token TKP will require Visa’s secret key.

As another example, consider a mail server that receives a stream of email messages encrypted
under the recipients public key. If the email message satisfies a certain predicate P the mail server
should forward the email to the recipient’s pager. If the email satisfies some other predicate P ′ the
server should just discard the email. Otherwise, the server should place the email in the recipient’s
inbox. The recipient does not want to give the mail server the full private key. Instead, she wants
to give the server two tokens TKP and TKP ′ enabling the server to test for the predicates P and
P ′ without learning any other information about the email.

Our goal is to build a public-key system that supports a rich set of query predicates. In our
payment gateway example one can imagine comparison queries such as (value > 1000) or even
conjunctions such as (value > 1000) and (TransactionTime > 5pm). The gateway should learn no
information other than the value of the conjunctive predicate. In case a conjunction P1∧P2 is false,
the gateway should not learn which of the two conjuncts P1 or P2 is false. In our second example
involving a mail server one can imagine testing for subset queries such as (sender ∈ S) where S is
a set of sender emails. Conjunctive queries such as (sender ∈ S) and (subject = urgent) also make
sense. Perhaps in the distant future, when highly complex queries on encrypted data are possible,
one can imagine running an anti-virus/anti-spam predicate on encrypted emails. The mail server
learns nothing about incoming encrypted email other than its spam status.

∗Supported by NSF and the Packard Foundation.

1

Unfortunately, until now, only simple equality queries on encrypted data were possible. Song et
al. [17] developed a mechanism for equality tests on data encrypted with a symmetric key system.
Boneh et al. [6] constructed equality tests in the public-key settings.

Our results. We present a general framework for analyzing and constructing searchable public-
key systems for various families of predicates. We then construct public-key systems that support
comparison queries (such as greater-than) and general subset queries. We also support arbitrary
conjunctions. We evaluate our results based on ciphertext size and token size. Let T = {1, 2, . . . , n}
and suppose we encrypt a tuple x = (x1, . . . , xw) ∈ Tw. Say x1 is a transaction value, x2 is a card
expiration date, and so on. The following table summarizes our results at a high level.

Ciphertext Token
Query Type Source Size Size
Equality query: (xi = a) for any a ∈ T [17, 15, 6, 1] O(1) O(1)
Comparison query: (xi ≥ a) for any a ∈ T [9, 10]1 O(

√
n) O(

√
n)

Subset query: (xi ∈ A) for any A ⊆ T This paper O(n) O(n)

Equality conjunction: (x1 = a1) ∧ . . . ∧ (xw = aw) This paper O(w) O(w)
Comparison conjunction: (x1 ≥ a1) ∧ . . . ∧ (xw ≥ aw) This paper O(nw) O(w)
Subset conjunction: (x1 ∈ A1) ∧ . . . ∧ (xw ∈ Aw) This paper O(nw) O(nw)

Here (a1, . . . , aw) is an arbitrary vector that defines a conjunctive equality or a comparison pred-
icate. Similarly, A1, . . . , Aw are arbitrary subsets of {1, . . . , n} that define a conjunctive subset
query predicate. We emphasize that when a conjunction predicate is false, the system does not
leak which of the w conjuncts caused it.

Prior to these results the best systems for comparison and subset queries were the trivial brute-
force systems discussed in Section 3. For comparison queries these systems generate a ciphertext
of size O(nw) and for subset queries they generate a ciphertext of size O(2nw). Note that even
without conjunction, namely for w = 1, our subset query construction generates ciphertexts that
are exponentially shorter than the best known previous solution (O(n) vs. O(2n)).

The main tool used in these constructions is a new primitive we call Hidden Vector Encryption
or HVE for short. This primitive can be viewed as an extreme generalization of Anonymous Identity
Based Encryption (AnonIBE) [6, 1, 11]. We show how HVE implies all the results in the table.

Are there public key systems that support larger classes of predicates? Ultimately, one would
like a public-key system that supports searches for any predicate computable by a shallow circuit.
Presently, this appears to be a difficult open problem.

Related work. Equality tests on encrypted data were considered in [17, 6]. Equality searches
on an encrypted audit log were proposed in [18]. Equality tests in the symmetric key settings are
closely related to oblivious RAM techniques [15, 12]. Equality tests in the public key settings are
closely related to Anonymous Identity Based Encryption (AnonIBE) [1, 11]. Conjunctive equality
queries were first studied in [13]. Equality searches on streaming data that hide the requested
predicate were discussed in [16] and [3]. Efficient equality searches in databases were recently
presented in [2].

1Both papers [9, 10] focus on traitor tracing, but as we observe in Appendix C, their approach directly gives a
comparison searching system without conjunctions.

2

2 Definitions

We begin by defining a general framework for queries on encrypted data. Let Σ be a finite set of
binary strings. A predicate P over Σ is a function P : Σ→ {0, 1}. We say that S ∈ Σ satisfies the
predicate if P (S) = 1.

2.1 Searchable encryption

Let Φ be a set of predicates over Σ. A Φ-searchable public key system comprises of the following
algorithms:

Setup(λ) A probabilistic algorithm that takes as input a security parameter and outputs a public
key PK and secret key SK.

Encrypt(PK, S,M) Encrypts the plaintext pair (S, M) using the public key PK. We view S ∈ Σ
as the searchable field, called an index, and M ∈M as the data.

GenToken(SK, 〈P 〉) Takes as input a secret key SK and the description of a predicate P ∈ Φ. It
outputs a token TKP .

Query(TK, C) Takes a token TK for some predicate P ∈ Φ as input and a ciphertext C. It
outputs a message M ∈M or ⊥. Roughly speaking, if C is an encryption of (S, M) then the
algorithm outputs M when P (S) = 1 and outputs ⊥ otherwise. The precise requirement is
captured in the query correctness property below.

Correctness. The system must satisfy the following correctness property:

• Query correctness: For all (S, M) ∈ Σ×M and all predicates P ∈ Φ:

Let (PK,SK) R← Setup(λ), C
R← Encrypt(PK, S,M), and TK R← GenToken(SK, 〈P 〉).

If P (S) = 1 then Query(TK, C) = M .

If P (S) = 0 then Pr[Query(TK, C) = ⊥] > 1− ε(λ) where ε(λ) is a negligible function.

Suppose that given a ciphertext C ← Encrypt(PK, S,M) we are only interested in testing
whether a predicate P (S) is satisfied. In this case the message space M can be set to a singleton,
say M = {true}. Algorithm Query(TK, C) will return true when P (S) = 1 and ⊥ otherwise. A
larger message spaceM is useful if TK is intended to unlock some M ∈M whenever the predicate
P (S) = 1. For example, when the transaction value is over 1000$ we may want the payment
gateway to obtain more information about the transaction. Otherwise, the gateway should learn
nothing.

Notice that a Φ-searchable system does not provide a Decrypt algorithm that uses SK to decrypt
a ciphertext C and outputs (S, M). One can always add this capability by also encrypting (S, M)
under a standard public key system. There is no need for the searchable system to explicitely
provide this capability.

3

σ1 σ2 σ3 σ41 n

x y z

Figure 1: Tokens for σ1, σ2, σ3, σ4 given to the adversary

An example – comparison queries. Before defining security, we first give a motivating example
using comparison queries. Let Σ = {1, . . . , n} for some integer n. For σ ∈ {1, . . . , n} let Pσ be the
following comparison predicate:

Pσ(x) =

{
1 if x ≥ σ,
0 otherwise

Let Φn = {P1, . . . , Pn} be the set of all n comparison predicates. Suppose the adversary has the
tokens for predicates Pσ1 , Pσ2 , . . . , Pσw where σ1 < σ2 < · · · < σw. Lets x, y, z be some integers
as in Figure 1. Clearly the adversary can distinguish Encrypt(PK, x,m) from Encrypt(PK, y,m)
using the token for the predicate Pσ2 . However, the adversary should not be able to distinguish
Encrypt(PK, y,m) from Encrypt(PK, z, m). Indeed, separating an encryption of y from an encryp-
tion of z is information that should not be exposed by the tokens at the adversary’s disposal. Our
definition of security captures this property using the general framework.

2.2 Security

We define security of a Φ-searchable system E using a query security game that captures the
intuition that tokens TK reveal no unintended information about the plaintext. The game gives the
adversary a number of tokens and requires that the adversary cannot use these tokens to deduce
unintended information. The game proceeds as follows:

• Setup. The challenger runs Setup(λ) and gives the adversary PK.

• Query phase 1. The adversary adaptively outputs descriptions of predicates P1, P2, . . . , Pq1 ∈
Φ. The challenger responds with the corresponding tokens TKi ← GenToken(SK, 〈Pi〉). We
refer to such queries as predicate queries.

• Challenge. The adversary outputs two pairs (S0,M0) and (S1,M1) subject to two restric-
tions:

– First, Pi(S0) = Pi(S1) for all i = 1, 2, . . . , q1.
– Second, if M0 6= M1 then Pi(S0) = Pi(S1) = 0 for all i = 1, 2, . . . , q1.

The challenger flips a coin β ∈ {0, 1} and gives C∗
R← Encrypt(PK, Sβ,Mβ) to the adversary.

The two restrictions ensure that the tokens given to the adversary do not trivially break the
challenge. The first restriction ensures that tokens given to the adversary do not directly dis-
tinguish S0 from S1. The second restriction ensures that the tokens do not directly distinguish
M0 from M1.

• Query phase 2. The adversary continues to adaptively request tokens for predicates
Pq1+1, . . . , Pq ∈ Φ, subject to the two restrictions above. The challenger responds with the
corresponding tokens TKi ← GenToken(SK, 〈Pi〉).

4

• Guess The adversary returns a guess β′ ∈ {0, 1} of β.

We define the advantage of adversaryA in attacking E as the quantity QUAdvA = |Pr[β′ = β]−1/2|.

Definition 2.1. We say that a Φ-searchable system E is secure if for all polynomial time adver-
saries A attacking E the function QUAdvA is a negligible function of λ.

Another example – equality queries. Let Σ be some finite set. For σ ∈ Σ let Pσ(x) be an
equality predicate, namely

Pσ(x) =

{
1 if x = σ,
0 otherwise

Let Φeq = {Pσ for all σ ∈ Σ}. Then a Φeq-searchable encryption supports equality queries on
ciphertexts. It is easy to see that a secure Φeq-searchable encryption is also an anonymous IBE
system [6, 1, 11] — an Identity Based Encryption system where a ciphertext reveals no useful
information about the identity that was used to create it. This should not be too surprising since it
was previously shown [6, 1] that anonymous IBE is sufficient for equality searches. A Φeq-searchable
encryption system (Setup,Encrypt,GenToken,Query) gives an anonymous IBE as follows:

• SetupIBE(λ) runs Setup(λ) and outputs IBE parameters PK and master key SK.
• EncryptIBE(PK, I,M) where I ∈ Σ outputs Encrypt(PK, I,M).
• ExtractIBE(SK, I) where I ∈ Σ outputs TKI ← GenToken(SK, 〈PI〉).
• DecryptIBE(TKI , C) outputs Query(TKI , C).

The correctness property ensures that if C is the result of Encrypt(PK, I,M) then Query(TKI , C)
will output M since PI(I) = 1. It is not difficult to see that the Φeq-security game ensures semantic
security for both the message and the identity. Hence, the resulting system is an anonymous IBE.

By considering larger classes of predicates Φ we obtain more general searching capabilities. The
challenge is then to build secure encryption schemes that are Φ-searchable for the most general Φ
possible.

Chosen ciphertext security. Definition 2.1 easily extends to address chosen ciphertext attacks
(CCA), but we do not pursue that here.

2.3 Selective security

We will also need a slightly weaker security definition in which the adversary commits to the search
strings S0, S1 at the beginning of the game. Everything else remains the same. The game proceeds
as follows:

• Setup. The adversary outputs two strings S0, S1 ∈ Σ. The challenger runs Setup(λ) and
gives the adversary PK.

• Query phase 1. The adversary adaptively outputs descriptions of predicates P1, P2, . . . , Pq1 ∈
Φ. The only restriction is that

Pi(S0) = Pi(S1) for all i = 1, 2, . . . , q1 (1)

The challenger responds with the corresponding tokens TKi ← GenToken(SK, 〈Pi〉).

5

• Challenge. The adversary outputs two messages M0,M1 ∈ M subject to the restriction
that:

if M0 6= M1 then Pi(S0) = Pi(S1) = 0 for all i = 1, 2, . . . , q1 (2)

The challenger flips a coin β ∈ {0, 1} and gives C∗
R← Encrypt(PK, Sβ,Mβ) to the adversary.

• Query phase 2. The adversary continues to adaptively request query tokens for predicates
Pq1+1, . . . , Pq ∈ Φ, subject to the two restrictions (1) and (2). The challenger responds with
the corresponding tokens TKi ← GenToken(SK, 〈Pi〉).

• Guess The adversary returns a guess β′ ∈ {0, 1} of β.

The advantage of adversary A in attacking E is the quantity sQU AdvA = |Pr[β′ = β]− 1/2|.

Definition 2.2. We say that a Φ-searchable system E is selectively secure if for all polynomial
time adversaries A attacking E the function sQU AdvA is a negligible functions of λ.

3 The Trivial Construction

Let Σ be a finite set of binary strings. We build a Φ-searchable public key system ETR, for any set of
(polynomial time computable) predicates Φ. We refer to this system as the brute force Φ-searchable
system.

The brute force system. Let E = (Setup′,Encrypt′,Decrypt′) be a public-key system. Let
Φ = {P1, P2, . . . , Pt} The Φ-searchable system ETR is defined as follows:

Setup(λ) Run Setup′(λ) t times to obtain

PK← (PK1, . . . ,PKn) and SK← (SK1, . . . ,SKn)

Output PK and SK.

Encrypt(PK, S,M) For i = 1, . . . , t define:

Ci
R←

{
Encrypt′(PKi, M) if Pi(S) = 1,
Encrypt′(PKi, ⊥) otherwise.

Output C ← (C1, . . . , Ct). Note that the length of C is linear in n.

GenToken(SK, 〈P 〉) Here 〈P 〉, the description of predicate Φ, is the index i of Pi in Φ.
Output TK← (i, SKi).

Query(TK, C) Let C = (C1, . . . , Ct) and TK = (i,SKi). Output Decrypt′(SKi, Ci).

The following lemma proves security of this construction. The proof is a straightforward hybrid
argument and is given in Appendix A

Lemma 3.1. The system ETR above is a secure Φ-searchable encryption system assuming E is a
semantically secure public key system against chosen plaintext attacks.

6

3.1 A third example — conjunctive comparison predicates

Suppose Σ = {1, . . . , n}w for some n, w. Let Φn,w be the set of predicates

Pa1...aw(x1, . . . , xw) =

{
1 if xi ≥ ai for all i = 1, . . . , w,
0 otherwise

for all ā = (a1 . . . aw) ∈ {1, . . . , n}w. Then |Φn,w| = nw.
The trivial system in this case produces ciphertexts of length O(nw). Essentially, the system

uses a unary encoding of the w columns and assigns a private key to each cell in this n by w matrix.
We will construct a much better system in Section 6.

4 Background on pairings and complexity assumptions

Our goal is to construct Φ-searchable systems for a large class of predicates Φ that is much better
than the trivial construction. To do so we will make use of bilinear maps.

4.1 Bilinear groups of composite order

We review some general notions about bilinear maps and groups, with an emphasis on groups of
composite order. We follow [8] in which composite order bilinear groups were first introduced.

Let G be a an algorithm called a group generator that takes as input a security parameter
λ ∈ Z>0 and outputs a tuple (p, q, G, GT , e) where p, q are two distinct primes, G and GT are two
cyclic groups of order n = pq, and e is a function e : G2 → GT satisfying the following properties:

• (Bilinear) ∀u, v ∈ G, ∀a, b ∈ Z, e(ua, vb) = e(u, v)ab.

• (Non-degenerate) ∃g ∈ G such that e(g, g) has order n in GT .

We assume that the group action in G and GT as well as the bilinear map e are all computable in
polynomial time in λ. Furthermore, we assume that the description of G and GT includes generators
of G and GT respectively.

To summarize, G outputs the description of a group G of order n = pq with an efficiently
computable bilinear map. We will use the notation Gp, Gq to denote the respective subgroups of
order p and order q of G.

4.2 The bilinear Diffie-Hellman assumption

First we review the standard Bilinear Diffie-Hellman assumption, but in groups of composite order.
For a given group generator G define the following distribution P (λ):

(p, q, G, GT , e) R← G(λ), n← pq, gp
R← Gp, gq

R← Gq

a, b, c
R← Zn

Z̄ ←
(
(n, G, GT , e), gq, gp, ga

p , gb
p, gc

p

)
T ← e(gp, gp)abc

Output (Z̄, T)

7

For an algorithm A, define A’s advantage in solving the composite bilinear Diffie-Hellman
problem for G as:

cBDH AdvG,A(λ) :=
∣∣∣∣Pr[A(Z̄, T) = 1]− Pr[A(Z̄, R) = 1]

∣∣∣∣
where (Z̄, T) R← P (λ) and R

R← GT .

Definition 4.1. We say that G satisfies the composite bilinear Diffie-Hellman assumption (cBDH)
if for any polynomial time algorithm A we have that cBDH AdvG,A(λ) is a negligible function of λ.

4.3 The composite 3-party Diffie-Hellman assumption

Our construction also makes use of a natural assumption in composite bilinear groups. For a given
group generator G define the following distribution P (λ):

(p, q, G, GT , e) R← G(λ), n← pq, gp
R← Gp, gq

R← Gq

R1, R2, R3
R← Gq

a, b, c
R← Zn

Z̄ ←
(
(n, G, GT , e), gq, gp, ga

p , gb
p, gab

p ·R1, gabc
p ·R2

)
T ← gc

p ·R3

Output (Z̄, T)

For an algorithm A, define A’s advantage in solving the composite 3-party Diffie-Hellman
problem for G as:

C3DH AdvG,A(λ) :=
∣∣∣∣Pr[A(Z̄, T) = 1]− Pr[A(Z̄, R) = 1]

∣∣∣∣
where (Z̄, T) R← P (λ) and R

R← G.

Definition 4.2. We say that G satisfies the composite 3-party Diffie-Hellman assumption (C3DH)
if for any polynomial time algorithm A we have that C3DH AdvG,A(λ) is a negligible function of λ.

5 Hidden Vector Encryption

We construct a Φ-searchable encryption system for a general class of equality predicates. We call
such systems Hidden Vector Systems or HVEs for short. We then show in Section 6 that our HVE
system leads to comparison and subset queries far more efficient than the trivial system.

5.1 HVE Definition

Let Σ be a finite set and let ∗ be a special symbol not in Σ. Define Σ∗ = Σ∪ {∗}. The star ∗ plays
the role of a wildcard or “don’t care” value. In our applications we typically set Σ = {0, 1}.

8

For σ = (σ1, . . . , σ`) ∈ Σ`
∗ define a predicate PHVE

σ over Σ` as follows. For x = (x1, . . . , x`) ∈ Σ` set:

PHVE
σ (x) =

{
1 if for all i = 1, . . . , ` : (σi = xi or σi = ∗),
0 otherwise

In other words, the vector x matches σ in all the coordinates where σ is not ∗.
Let ΦHVE = {PHVE

σ for all σ ∈ Σ`
∗}. We refer to ` as the width of the HVE.

Definition 5.1. A Hidden Vector System (HVE) over Σ` is a selectively secure ΦHVE-searchable
encryption system.

The case ` = 1 degenerates to the example discussed in Section 2.2 where we showed equivalence
to anonymous IBE [6, 1, 11]. For larger ` we obtain a more general concept that is much harder to
build. In particular, the wildcard character ∗ — which is essential for the applications we have in
mind — makes it challenging to construct a ΦHVE-searchable system. We construct an HVE with
the following parameters:

CT-size = O(`) and TK-size = O(weight(σ))

where weight
(
σ = (σ1, . . . , σ`)

)
is the number of coordinates where σi 6= ∗.

5.2 Construction

For our particular HVE construction we will let Σ = Zm for some integer m. We set Σ∗ = Zm∪{∗}.
Our HVE system works as follows:

Setup(λ) The setup algorithm first chooses random primes p, q > m and creates a bilinear group
G of composite order n = pq, as specified in Section 4.1. Next, it picks random elements

(u1, h1, w1), . . . , (u`, h`, w`) ∈ G3
p , g, v ∈ Gp , gq ∈ Gq.

and an exponent α ∈ Zp. It keeps all these as the secret key SK.

It then chooses 3` + 1 random blinding factors in Gq:

(Ru,1, Rh,1, Rw,1), . . . , (Ru,`, Rh,`, Rw,`) ∈ Gq and Rv ∈ Gq.

For the public key, PK, it publishes the description of the group G and the values

gq, V = vRv, A = e(g, v)α,

 U1 = u1Ru,1, H1 = h1Rh,1, W1 = w1Rw,1
...

U` = u`Ru,`, H` = h`Rh,`, W` = w`Rw,`

The message space M is set to be a subset of GT .

Encrypt(PK, I ∈ Z`
m, M ∈M ⊆ GT) Let I = (I1, . . . , I`) ∈ Z`

m. The encryption algorithm
works as follows:

• choose a random s ∈ Zn and random Z, (Z1,1, Z1,2), . . . , (Z`,1, Z`,2) ∈ Gq. (The algo-
rithm picks random elements in Gq by raising gq to random exponents from Zn.)

9

• Output the ciphertext:

C =
(

C ′ = MAs, C0 = V sZ,

 C1,1 = (UI1
1 H1)sZ1,1, C1,2 = W s

1 Z1,2
...

C`,1 = (UI`
` H`)sZ`,1, C`,2 = W s

` Z`,2

)

GenToken(SK, I∗ ∈ Σ`
∗) The key generation algorithm will take as input the secret key and an

`-tuple I∗ = (I1, . . . , I`) ∈ {Zm ∪ {∗}}`. Let S be the set of all indexes i such that Ii 6= ∗.
To generate a token for the predicate PHVE

I∗ choose random (ri,1, ri,2) ∈ Z2
p for all i ∈ S and

output:

TK =
(
I∗, K0 = gα

∏
i∈S(uIi

i hi)ri,1w
ri,2

i , ∀i ∈ S : Ki,1 = vri,1 , Ki,2 = vri,2

)
Query(TK, C) Using the notation in the description of Encrypt and GenToken do:

• First, compute

M ← C ′ /

(
e(C0,K0) /

∏
i∈S

e(Ci,1,Ki,1) e(Ci,2,Ki,2)

)
(3)

• If M 6∈ M output ⊥. Otherwise, output M .

Correctness Before proving security we first show that the system satisfies the correctness prop-
erty defined in Section 2.1. Let (I,M) be a pair in Σ` ×M and let B∗ ∈ Σ`

∗. This B∗ defines a
predicate PB∗ in ΦHVE.

Let (PK,SK) R← Setup(λ), C
R← Encrypt(PK, I,M), and TK R← GenToken(SK, B∗).

• If PB∗(I) = 1 then a simple calculation shows that Query(TK, C) = M .

• If PB∗(I) = 0 we show that Pr[Query(TK, C) = ⊥] ≥ 1− |M|
n

where the probability is over the random bits used to create the ciphertext. Hence, if |M| is
sufficiently small compared to n then the probability that Pr[Query(TK, C) 6= ⊥] is negligible.

Let I = (I1, . . . , I`) ∈ Σ and let B∗ = (B1, . . . , B`) ∈ Σ`
∗. Let S be the set of all indexes i

such that Bi is not a wildcard ∗ at index i. Since PB∗(I) = 0 we know that there is some
i ∈ S such that Bi 6= Ii. Then the decryption equation (3) contains a factor

e(C0,K0) / e(Ci,1,Ki,1) e(Ci,2,Ki,2) = e(v, ui)(Bi−Ii)·sri,1

which is a uniformly distributed value in (GT)q and is independent of the rest of the equation.
Hence equation (3) evaluates to a value indistinguishable from random in GT . It follows that
Pr[Query(TK, C) = ⊥] ≥ 1− |M|

n as required.

Extensions In our description above we limited the index space Σ to be Zm. We can expand
this space to all of {0, 1}∗ by taking a large enough m to contain the range of a collision-resistant
hash function. Then Encrypt(PK, I ∈ ({0, 1}∗)`, M ∈ GT) first hashes all the coordinates of I
into Zm using the collision reistant hash and the applies the Encrypt algorithm described above.

10

5.3 Proof of Security

We prove our scheme selectively secure (as defined in Section 2.3) under the composite 3-party
Diffie-Hellman assumption and the bilinear Diffie-Hellman assumption. We give the high-level
arguments of the proof in this section and defer the proofs of some lemmas to the appendix.

Suppose the adversary commits to vectors L0, L1 ∈ Σ` at the beginning of the game. Let X be
the set of indexes i such that L0,i = L1,i and X be the set of indexes i such that L0,i 6= L1,i.

The proof uses a sequence of 2` + 2 games to argue that the adversary cannot win the original
security game of Section 2.3 which we denote by G. We begin by slightly modifying the game G
into a game G′. Games G and G′ are identical except for how the challenge ciphertext is generated.
In G′ if M0 6= M1 then the adversary multiplies the challenge ciphertext component C ′ by a random
element of GT,p. The rest of the ciphertext is generated as usual. Additionally, if M0 = M1 then
the challenge ciphertext is generated correctly.

Lemma 5.2. Assume that the Bilinear Diffie-Hellman assumption holds. Then for any polynomial
time adversary A the difference of advantage of A in game G and game G′ is negligible.

The proof is in Appendix B.1.
Next, we define a game G̃. In this game the adversary will give two challenge messages, M0,M1.

If M0 6= M1 then the challenger outputs a random element of GT as the C ′ component of the
challenge ciphertext. The rest of ciphertext is constructed as normal. If M0 = M1 the challenger
outputs the challenge ciphertext as normal.

Lemma 5.3. Assume that the Composite 3-party Diffie-Hellman assumption holds. Then for any
polynomial time adversary A the difference of advantage of A in game G′ and game G̃ is negligible.

The proof is in Appendix B.2.
Finally, we define two sequences of hybrid games Gj and G′

j for j = 1, . . . , |X|. We define the
game Gj as follows. Let X̃ be j lowest indexes in X. In the challenge ciphertext the challenger
creates C0 and Ci,1, Ci,2 as normal for all i /∈ X̃. However, for all i ∈ X̃ the challenger creates
Ci,1, Ci,2 as completely random group elements in G. Additionally, if M0 6= M1 then C ′ is replaced
by a completely random element from GT (otherwise it is created as normal).

We define a game G′
j as follows. Let X̃ be the j lowest indexes in X and let δ be the (j + 1)-th

index in X. In the challenge ciphertext the challenger creates C0 and Ci,1, Ci,2 as normal for all
i /∈ X̃ and i 6= δ. For all i ∈ X̃ the challenger creates Ci,1, Ci,2 as completely random group elements
in G. For i = δ the challenger chooses a random s′ and creates

Cδ,1 = (uIδ
p hp)s′g

zδ,1
q , Cδ,2 = gs′

p g
zδ,2
q .

Additionally, if M0 6= M1 then C ′ is replaced by a completely random element from GT (otherwise
it is created as normal).

Observe that for all i in X̃ the challenge identity contains no information about Lβ,i. Therefore
the adversary’s advantage in game G|X| is 0. Additionally, game G0 is equivalent to G̃. We state
the following two lemmas whose proofs are given in Appendix B.3 and B.4.

Lemma 5.4. Assume the Composite 3-party Diffie-Hellman assumption holds. Then for any poly-
nomial time adversary A the difference of advantage of A in game Gj and game G′

j is negligible.

11

Lemma 5.5. Assume the Composite 3-party Diffie-Hellman assumption holds. Then for any poly-
nomial time adversary A the difference of advantage of A in game G′

j and game Gj+1 is negligible.

It now follows that if the Composite 3-party Diffie-Hellman and Bilinear Diffie-Hellman assump-
tions hold then no polynomial-time adversary can break our scheme with non-negligible advantage.
This follows from the sequence of hybrid games starting with the original game G:

G, G̃, G′
0, G1, G1′ , G2, G2′ , . . . , G|X|.

The adversary’s advantage in the game G|X| is 0 and the difference in adversary’s advantage be-
tween any two consecutive hybrid games is negligible by the lemmas above. Hence, no polynomial
adversary can win game G with non-negligible advantage.

6 Applications of HVE

We show how HVE leads to efficient systems for subset queries and conjunctive comparison queries.
Throughout the section we let Σ01 = {0, 1} and Σ01∗ = {0, 1, ∗}.

Conjunctive comparison queries. In Section 3.1 we defined conjunctive comparison queries
and the predicate family Φn,w. We use HVE to build a Φn,w-searchable encryption system with
ciphertext size O(nw) and token size O(w).

Let (SetupHVE, EncryptHVE, GenTokenHVE, QueryHVE) be a secure HVE over Σnw
01 . Thus, the

width of this HVE is ` = nw. We construct a Φn,w-searchable system as follows:

• Setup(λ) is the same as SetupHVE(λ).

• Encrypt(PK, S,M) where S = (x1, . . . , xw) ∈ {1, . . . , n}w. Build a vector σ(S) = (σi,j) ∈ Σnw
01

as follows:

σi,j =

{
1 if xi ≥ j,
0 otherwise

(4)

Then output EncryptHVE(PK, σ(S), M) which gives a ciphertext of size O(nw). For example,
for w = 2 and S = (x1, x2) the vector σ(S) looks like:

0 · · · 0 1 1 · · · 1 0 · · · 0 1 1 · · · 1
1 x1 n 1 x2 n

σ(S) = ∈ {0, 1}2n

• GenToken(SK, 〈Pā〉) where ā = (a1, . . . , aw) ∈ {1, . . . , n}w. Define σ∗(ā) = (σi,j) ∈ Σnw
01∗ as

follows:

σi,j =

{
1 if xi = j,
∗ otherwise

(5)

Output TKā
R← GenTokenHVE(SK, σ∗(ā)) which gives a token of size O(w). For example, for

w = 2 and ā = (x1, x2) the vector σ∗(ā) looks like:

∗ · · · ∗ 1 ∗ · · · ∗ ∗ · · · ∗ 1 ∗ · · · ∗
1 x1 n 1 x2 n

σ∗(ā) = ∈ {0, 1, ∗}2n

12

• Query(TKā, C) output QueryHVE(TKā, C)

To argue correctness and security, observe that for a predicate Pā ∈ Φn,w and an index S ∈
{1, . . . , n}w we have that: Pā(S) = 1 if and only if PHVE

σ∗(ā)(σ(S)) = 1. Therefore, correctness and
security follow from the properties of the HVE. We thus obtain the following immediate theorem.

Theorem 6.1. (Setup,Encrypt,GenToken,Query) is a selectively secure Φn,w-searchable system
assuming (SetupHVE,EncryptHVE,GenTokenHVE,QueryHVE) is an HVE over Σn

01w.

Conjunctive range queries. We note that a system that supports comparison queries can also
support range queries. To search for plaintexts where x ∈ [a, b] the encryptor encrypts the pair
(x, x). The predicate then tests x ≥ a ∧ x ≤ b.

6.1 Subset queries

Next we show how to search for general subset predicates. Let T be a set of size n. For a subset
A ⊆ T we define a subset predicate as follows:

PA(x) =

{
1 if x ∈ A

0 otherwise

We wish to support searches for any subset predicate. More generally, we wish to support searches
for conjunctive subset predicates over Tw. That is, let σ = (A1, . . . , Aw) be a w-tuple where Ai ∈ T
for all i = 1, . . . , w. Then σ is an elements of (2T)w. Define the predicate Pσ : Tw → {0, 1} as
follows:

Pσ

(
(x1, . . . , xw)

)
=

{
1 if xi ∈ Ai for all i = 1, . . . , w,
0 otherwise

Let Φ = { Pσ for all σ ∈ (2T)w}. Note that Φ is huge — its size is 2nw.
The Φ-searchable system is as follows:

• Encrypt(PK, S,M) where S = (x1, . . . , xw) ∈ Tw. Build a vector σ(S) = (σi,j) ∈ Σnw
01 as:

σi,j =

{
1 if xi 6= j,
0 otherwise

(6)

Then output EncryptHVE(PK, σ(S),M). The ciphertext size is O(nw) as was the case for
comparison queries.

• GenToken(SK, 〈Pα〉) where α = (A1, . . . , Aw). Define σ∗(α) = (σi,j) ∈ Σnw
01∗ as follows:

σi,j =

{
1 if j 6∈ Ai,
∗ otherwise

(7)

Output TKα
R← GenTokenHVE(SK, σ∗(α)). The token size is O(nw) which is bigger than

tokens for comparison queries.

13

• Setup and Query are the same algorithms from the HVE system, as for comparison queries.

It is easiest to see how this works in the one dimensional settings, namely w = 1. We encrypt a
value x ∈ T using an HVE vector

1 · · · 1 0 1 · · · 1
1 x n

σ(x) = ∈ {0, 1}n

Consider a predicate PA where, for example, A = {2, 3, n} ⊆ T . We generate a token for PA by
calling GenTokenHVE(SK, σ∗(A)) using the HVE vector

1 ∗ ∗ 1 1 · · · 1 ∗
1 2 3 4 5 n

σ∗(A) = ∈ {∗, 1}n

The main point is that x ∈ A if and only if PHVE

σ∗(A)(σ(x)) = 1. Therefore, correctness and security
follow from the properties of the HVE. We obtain a secure system for subset queries for arbitrary
subsets.

Theorem 6.2. (Setup,Encrypt,GenToken,Query) is a selectively secure Φ-searchable system as-
suming (SetupHVE,EncryptHVE,GenTokenHVE,QueryHVE) is an HVE over Σnw

01 .

Note that the trivial system of Section 3 for subset queries produces ciphertexts of size O(2n).
The construction above generates ciphertexts of size O(n).

7 Extensions

Privacy for search queries. In some cases one may want the token TKP not to identify which
predicate P is being queried. For example, in the anti-spam example from the introduction, the
user may not want to reveal his anti-spam predicate to the server. A similar problem was studied
by Ostrovsky and Skeith [16] and is related to Private Information Retrieval [14]. For public-key
systems supporting comparison queries this is clearly not possible since, given TKP the server can
identify the threshold in P with a simple binary search. It is an open problem to convert our system
to a symmetric-key system where TKP does not expose P . One approach is to simply keep the
public key secret from the server. This, however, is not sufficient in our system.

Validating ciphertexts. Throughout the paper we assumed that the encryptor is honestly cre-
ating ciphertexts as specified by the encryption system. For some applications discussed in the
introduction (e.g. spam filtering) this may not be the case. By creating malformed ciphertexts an
attacker may generate false-positive or false-negatives for the server using the tokens.

Fortunately, in many settings, such as a payment gateway or spam filter, this is easily avoidable.
One technique is to do the following. The authority who has SK will also publish a regular public-
key PK1 and ask the encryptor to (i) encrypt the message S with both the searchable system and
with PK1. The resulting ciphertext is the pair C =

(
Encrypt(PK, S, 0), EncryptPKE(PK1, S)

)
.

When the authority (e.g. visa) receives a ciphertext C = (C0, C1) it recovers S from C1. It then
uses SK to test that C0 was in fact created from the message S. If not then the transaction is
rejected immediately. Similarly, for anti-spam, if this test fails the email would be immediately
rejected as spam. In doing so, the authority ensures that a malformed ciphertext did not fool the
server.

14

Hence, Φ-searchable systems should also provide an algorithm Test(C,S, M, SK) that outputs
true when C was generated from the message (S, M) and false otherwise. Our HVE system supports
this type of test. Alternatively, one could require the encryptor to prove that his ciphertext is well
formed, for example to prove that C0 is consistent with C1. This can be done using non-interactive
proof techniques [4, 5], but as mentioned above, often there is no need for this.

8 Conclusion

In public key systems supporting queries on encrypted data a secret key can produce tokens for
testing any supported query predicate. The token lets anyone test the predicate on a given cipher-
text without learning any other information about the plaintext. We presented a general framework
for analyzing security of searching on encrypted data systems. We then constructed systems for
comparisons and subset queries as well as conjunctive versions of these predicates.

The underlying tool behind these new constructions is a primitive we call HVE. The one-
dimensional version of HVE (namely ` = 1) is essentially an Anonymous IBE system. For large `
we obtain a new concept that is extremely useful for a large variety of searching predicates. We
note that by setting ` = 1 in our HVE construction we obtain a new simple anonymous IBE system
secure without random oracles.

This work posses many challenging open problems. For example, the best non-conjunctive (i.e.
w = 1) comparison system we currently have requires ciphertexts of size O(

√
n) where n is the

domain size. In principal it should be possible to improve this to O(log n), but this is currently a
wide open problem that will require new ideas. Similarly, for non-conjunctive subset queries the
best we have requires ciphertexts of size O(n). Again, can this be improved to O(log n)? Our results
mostly focus on conjunction. Are there similar results for disjunctive queries? More generally, what
other classes of predicates can we search on?

References

[1] Michel Abdalla, Mihir Bellare, Dario Catalano, Eike Kiltz, Tadayoshi Kohno, Tanja Lange,
John Malone-Lee, Gregory Neven, Pascal Paillier, and Haixia Shi. Searchable encryption
revisited: Consistency properties, relation to anonymous ibe, and extensions. In CRYPTO,
pages 205–222, 2005.

[2] Mihir Bellare, Alexandra Boldyreva, and Adam O’Neill. Efficiently-searchable and determin-
istic asymmetric encryption. http://eprint.iacr.org/2006/186, 2006.

[3] John Bethencourt, Dawn Song, and Brent Waters. New constructions and practical applica-
tions for private stream searching. In Proceeding of 2006 IEEE Symposium on Security and
Privacy, 2006.

[4] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge and its appli-
cations (extended abstract). In STOC, pages 103–112, 1988.

[5] Manuel Blum, Alfredo De Santis, Silvio Micali, and Giuseppe Persiano. Noninteractive zero-
knowledge. SIAM J. Comput., 20(6):1084–1118, 1991.

15

[6] D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiano. Public key encryption with
keyword search. In Proceedings of Eurocrypt ’04, 2004.

[7] Dan Boneh and Xavier Boyen. Efficient selective-ID identity based encryption without random
oracles. In Proceedings of Eurocrypt 2004, LNCS, pages 223–238. Springer-Verlag, 2004.

[8] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-dnf formulas on ciphertexts. In Joe
Kilian, editor, Proceedings of Theory of Cryptography Conference 2005, volume 3378 of LNCS,
pages 325–342. Springer, 2005.

[9] Dan Boneh, Amit Sahai, and Brent Waters. Fully collusion resistant traitor tracing with short
ciphertexts and private keys. In Eurocrypt ’06, 2006.

[10] Dan Boneh and Brent Waters. A fully collusion resistant broadcast trace and revoke system
with public traceability. http://crypto.stanford.edu/dabo/pubs.html, 2006.

[11] Xavier Boyen and Brent Waters. Anonymous hierarchical identity-based encryption (without
random oracles). http://eprint.iacr.org/2006/085, 2006.

[12] O. Goldreich and R. Ostrovsky. Software protection and simulation by oblivious rams. JACM,
1996.

[13] Philippe Golle, Jessica Staddon, and Brent R. Waters. Secure conjunctive keyword search over
encrypted data. In ACNS, pages 31–45, 2004.

[14] Eyal Kushilevitz and Rafail Ostrovsky. Replication is not needed: Single database,
computationally-private information retrieval. In FOCS, pages 364–373, 1997.

[15] R. Ostrovsky. Software protection and simulation on oblivious RAMs. PhD thesis, M.I.T,
1992. Preliminary version in STOC 1990.

[16] Rafail Ostrovsky and William Skeith. Private searching on streaming data. In Proceedings of
Crypto 2005, LNCS. Springer, 2005.

[17] D. Song, D. Wagner, and A. Perrig. Practical techniques for searches on encrypted data. In
Proceedings of the 2000 IEEE symposium on Security and Privacy (S&P 2000), 2000.

[18] B. Waters, D. Balfanz, G. Durfee, and D. Smetters. Building an encrypted and searchabe
audit log. In Proceedings of NDSS ’04, 2004.

[19] Brent Waters. Efficient identity-based encryption without random oracles. In Ronald Cramer,
editor, Proceedings of Eurocrypt 2005, LNCS. Springer, 2005.

A Proof of Lemma 3.1

We prove that the trivial system presented in Section 3 is secure.

Proof. Showing that QUAdvA is a straight forward hybrid argument. Let A be an adversary playing
the query security game. For i = 1, . . . , n + 1 we define experiment number i as follows:

16

• The challenger runs Setup(λ) to obtain

PK← (PK1, . . . ,PKn) and SK← (SK1, . . . ,SKn)

It gives PK to A. Next, A is given the tokens for any predicates of its choice.

• Then A outputs two pairs (S0,M0) and (S1,M1) subject to the restrictions of the query
security game challenge phase. For j = 1, . . . , n the challenger constructs the following
ciphertexts:

Cj
R←

Encrypt′(PKj , M0) if Pj(S0) = 1 and j ≥ i,
Encrypt′(PKj , M1) if Pj(S1) = 1 and j < i,
Encrypt′(PKj , ⊥) otherwise

The challenger gives C ← (C1, . . . , Cn) to A.

• The adversary continues to adaptively request query tokens subject to the restrictions of the
query security game. Finally, A outputs a bit β′ ∈ {0, 1} which we denote by EXP

(i)
QU[A].

A standard argument shows that

2 · QUAdvA =
∣∣∣EXP

(1)
QU[A]− EXP

(n+1)
QU [A]

∣∣∣ ≤ n∑
i=1

∣∣∣EXP
(i)
QU[A]− EXP

(i+1)
QU [A]

∣∣∣
But

∣∣∣EXP
(i)
QU[A]− EXP

(i+1)
QU [A]

∣∣∣ is clearly negligible assuming E is semantically secure against chosen
plaintext attacks.

B Proofs for HVE Construction

Suppose the adversary commits to vectors L0, L1 ∈ Σ` at the beginning of the game. Let X be
the set of indexes i such that L0,i = L1,i and X be the set of indexes i such that L0,i 6= L1,i. The
adversary can issue predicate queries to request a token for any predicate PHVE

L where L ∈ Σ`
∗. Let

S be all the indexes for which L is not a wildcard. We distinguish between three types of queries.

Type 1 For all S ∩ X = ∅. That is the predicate does not check any of the indexes in which
the challenge tuples differ. These queries can only be made if in the eventual challenge stage
M0 = M1.

Type 2 Case 1 is not met and there exists an i ∈ S ∩X such that Li 6= L0,i and Li 6= L1,i

Type 3 Case 1 and Case 2 are both not met and there exists an i ∈ S ∩ X such that and
Li 6= L0,i = L1,i.

These cases are mutually exclusive (by definition) and complete.

17

B.1 Proof of Lemma 5.2

We prove our lemma by supposing that a poly-time adversary A has non-negligible difference ε
between its advantage in game G and its advantage in game G′. We build a simulator that plays
the Bilinear Diffie-Hellman game with advantage ε.

The challenger first creates Bilinear Diffie-Hellman challenge as:

(p, q, G, GT , e) R← G(λ), n← pq, gp
R← Gp, gq

R← Gq

a, b, c
R← Zn

Z̄ ←
(
(n, G, GT , e), gq, gp, ga

p , gb
p, gc

p

)
T ← e(gp, gp)abc

It then randomly decides whether to give (Z̄, T ′ = T) or (Z̄, T ′ = R) where R is a random element
in GT .

We create the following simulation:

Init The attacker gives the simulator two identities L0, L1. The challenger then flips the coin β
internally.

Setup The simulator first chooses random (Ru,1, Rh,1, Rw,1), . . . , (Ru,`, Rh,`, Rw,`) ∈ G3
q , Rv ∈ Gq

and random t1, x1, y1, . . . , t`, x`, y` ∈ Zn.
The simulator first publishes the group description and gq, V = gpRv. It lets A = e(ga

p , gb
p).

Finally, for all i it creates:

Ui = (gb
p)

tiRu,i,Hi = (gb
p)
−tiLβ,igyi

p Rh,i,Wi = gxi
p Rw,i

We observe that the parameters are distributed identically to the real scheme.

Query 1 The adversary will make private key queries to the simulator. The way they are handled
depends upon the type of query. Suppose the adversary queries for a key I, where the set of indexes
that are non-wild cards is denoted as S.

Type 1 If the adversary issue a Type 1 query, the simulator simply aborts and takes a random
guess. The reason for this is by our definition if a type one query is made then the challenge
messages M0,M1 will be equal. However, in this case the games G and G′ are identical, so
there can be no difference in the adversary’s advantage when he makes this type of a challenge.
Therefore, we can just take a random guess.

Type 2 and Type 3 We handle Type 2 and Type 3 queries in the same manner. The primary
intuition is that neither a Type 2 or Type 3 query can distinguish the challenge ciphertext.
Suppose the adversary queries for a vector I and let γ be an (arbitrary) index where Iγ 6= Lβ,γ .

The simulator first chooses random ri,1, ri,2 ∈ Zn∀i ∈ S. Next it creates:

K0 = (
∏
i∈S

(gb
p)

ri,1(Ii−Lβ,i)tig
ri,1yi
p g

ri,2xi
p)

18

Additionally, it creates:

∀i ∈ S/{γ} : Ki,1 = (ga
p)ri,1 ,Ki,2 = (ga

p)ri,2

Finally, it creates:
Kγ,1 = g

rγ,1
p (ga

p)−1/(Iγ−Lβ,γ)Kγ,2 = g
rγ,2
p

The argument for the well-formness of the keys is similar to that of the Boneh-Boyen [7]
Identity-Based Encryption system.

Challenge The adversary first gives the simulator messages M0,M1. If M0 = M1 we can abort
the simulation and take a random guess for the reason given above.

The simulator chooses random Z ∈ Gq (Z1,1, Z1,2), . . . , (Z`,1, Z`,2) ∈ G2
q (this can be done since

the simulator has gq). and outputs the challenge as follows:

C ′ = MβT ′C0 = gcZ, ∀ : Ci,1 = (gc)yiZi,1, Ci,2 = (gc)xiZi,2.

If T ′ is forms a tuple, then the simulator is playing game G, otherwise it is playing game G′.

Query Phase 2 Same as Query Phase 1.

Guess The adversary outputs a guess β′. If β = β′ output 0 otherwise output 1. By our
assumption the probability that the adversary guesses β correctly in game Gj has a non-negligible
ε difference from that of it guessing it correctly in game G′

j . However, it is in game G′ if and only
if the challenger gave the simulator R instead of T . Therefore the simulator has advantage ε in the
Bilinear Diffie-Hellman game.

B.2 Proof of Lemma 5.3

We begin by reviewing an assumption called the Bilinear Subgroup Decision problem that was
introduced by Boneh, Sahai, and Waters [9] and is implied by the Composite 3-Party Diffie-Hellman
assumption.

For a given group generator G define the following distribution P (λ):

(p, q, G, GT , e) R← G(λ), n← pq, gp
R← Gp, gq

R← Gq

Z̄ ← ((n, G, GT , e), gq, gp,)

T ← GT,p

For an algorithm A, define A’s advantage in solving the Bilinear subgroup assumption for G as:

BSD AdvG,A(λ) :=
∣∣∣∣Pr[A(Z̄, T) = 1]− Pr[A(Z̄, R) = 1]

∣∣∣∣
where (Z̄, T) R← P (λ) and R

R← G.

19

Definition B.1. We say that G satisfies the Bilinear Subgroup Decision assumption if for any
polynomial time algorithm A we have that BSD AdvG,A(λ) is a negligible function of λ.

It is easy to see that the Composite 3-Party Diffie-Hellman assumption implies the Bilinear
Subgroup Decision assumption. 2 For simplicity we will use the Decision Subgroup assumption
directly in our proof. We suppose that there exist an adversary with non-negligible difference in
advantage ε between winning the game G′ and the game G̃.

We build a simulator that takes in a Bilinear Subgroup challenge (Z̄, T ′). The simulation
proceeds as follows.

Init The attacker gives the simulator two identities L0, L1. The challenger then flips the coin β
internally.

Setup The simulator setups up the parameters as would the real setup algorithm. All the simu-
lator needs to do this is gp and gq from the assumption.

Query Phase 1 The simulator answers queries as the real authority would. One small difference
is that the simulator chooses exponents from Zn instead of Zp. However, this doesn’t change
anything since the both the simulator and a real authority will raise element from Gp to the
exponents.

Challenge

Challenge The adversary first gives the simulator messages M0,M1. If M0 = M1 then the
adversary simply encrypts the message to the identity Lβ. Otherwise, the simulator creates the
challenge ciphertext of message Mβ to Lβ exactly as normal with the exception that C ′ is multiplied
by T ′.

If T ′ is forms a tuple, then the simulator is playing game G′, otherwise it is playing game G̃.

Query Phase 2 Same as Query Phase 1.

Guess The adversary outputs a guess β′. If β = β′ output 0 otherwise output 1. By our
assumption the probability that the adversary guesses β correctly in game G′ has a non-negligible
ε difference from that of it guessing it correctly in game G̃. However, it is in game G̃ if and only
if the challenger gave the simulator R instead of T . Therefore the simulator has advantage ε in
the Bilinear Subgroup Decision game which implies an advantage of ε in the Composite 3-Party
Diffie-Hellman game.

2One first reverses the labellings of p, q in the Composite 3-Party Diffie-Hellman assumption. Next, we can use the
pairing to create an element that will be a random in GT,p if and only if we were give a well formed tuple. Otherwise
the element is random one in GT .

20

B.3 Proof of Lemma 5.4

We prove our lemma by supposing that a poly-time adversary A has non-negligible difference ε
between its advantage in game Gj and its advantage in game G′

j for some index j. We build a
simulator that plays the Composite 3-Party Diffie-Hellman game with advantage ε.

The challenger first creates a 3-Party challenge as:

(p, q, G, GT , e) R← G(λ), n← pq, gp
R← Gp, gq

R← Gq

R1, R2, R3
R← Gq

a, b, c
R← Zn

Z̄ ←
(
(n, G, GT , e), gq, gp, ga

p , gb
p, Γ = gab

p ·R1, Y = gabc
p ·R2

)
T ← gc

p ·R3

It then randomly decides whether to give (Z̄, T ′ = T) or (Z̄, T ′ = R) where R is a random element
in G.

We create the following simulation:

Init The attacker gives the simulator two identities L0, L1. The challenger then flips the coin β
internally.

Setup Let δ be the j + 1-th index in X.
The simulator first chooses random (Ru,1, Rh,1, Rw,1), . . . , (Ru,`, Rh,`, Rw,`) ∈ G3

q and random
t1, x1, y1, . . . , t`, x`, y` ∈ Zn.

The simulator first publishes the group description and gq, V = Γ. It picks a random α′ ∈ Zn

and lets A = e(Γ, gp)α′
. It next creates

Uδ = (gb
p)

tδRu,δ,Hδ = (gb
p)
−tδLβ,δgyδ

p Rh,δ,Wδ = gxδ
p Rw,δ

Finally, for all i 6= δ it creates:

Ui = (gb
p)

tiRu,i,Hi = (gb
p)
−tiLβ,iΓyiRh,i,Wi = ΓxiRw,i

We observe that the parameters are distributed identically to the real scheme.

Query 1 The adversary will make private key queries to the simulator. The way they are handled
depends upon the type of query. Suppose the adversary queries for a key I, where the set of indexes
that are non-wild cards is denoted as S.

Type 1 If δ /∈ S then the simulator first chooses random ri,1, ri,2 ∈ Zn∀i ∈ S. Next it creates:

K0 = gα
p

∏
i∈S

g
ri,1(Ii−Lβ,i)ti
p (ga

p)ri,1yig
ri,2xi
p

Additionally, it creates:
∀i ∈ S : Ki,1 = (ga)ri,1 ,Ki,2 = g

ri,2
p

21

Type 2 Suppose δ ∈ S, but Iδ 6= L0,δ and Iδ 6= L1,δ. The simulator first chooses random
ri,1, ri,2 ∈ Zn∀i ∈ S. Next it creates:

K0 = (
∏

i∈S/{δ}

g
ri,1(Ii−Lβ,i)ti
p (ga

p)ri,1yig
ri,2xi
p)grδ,1(Iδ−Lβ,δ)tδxδ

p

Additionally, it creates:

∀i ∈ S/{δ} : Ki,1 = (ga)ri,1 ,Ki,2 = g
ri,2
p

Finally, it creates:

Kδ,1 = (ga
p)xδrδ,1g

xδrδ,2
p ,Kδ,2 = (ga

p)−yδrδ,1(gyδ
p (gb

p)
tδ(Iδ−Lβ,δ))−rδ,2

The keys are distributed as if the randomness for the δ component was:

r̃δ,1 = rδ,1xδ/b + rδ,2xδ/(ab) (mod p)

r̃δ,2 = −yδrδ,1/b− (yδ/ab + tδ(Iδ − Lβ,δ)/a)rδ,2 (mod p)

Since, r̃δ,1, r̃δ,2 are independent the keys generated from the simulation are identical to that
of the real scheme.

Type 3 Suppose δ ∈ S and Iδ = Lβ,δ, but there exists an (arbitrary) index γ ∈ S such that
Iγ 6= Lβ,γ .

The simulator first chooses random ri,1, ri,2 ∈ Zn∀i ∈ S. Next it creates:

K0 = (
∏

i∈S/{δ}

g
ri,1(Ii−Lβ,i)t1
p (ga

p)ri,1yig
ri,2xi
p)grδ,1yδyγ

p

Additionally, it creates:

∀i ∈ S/({δ} ∪ {γ}) : Ki,1 = (ga
p)ri,1 ,Ki,2 = g

ri,2
p

Kδ,1 = g
−rδ,2xδ
p (gb

p)
−rδ,1(Iγ−Lβ,γ)tγ ,Kδ,2 = g

rδ,2yδ
p

Kγ,1 = (ga
p)rγ,1g

yδrδ,1
p ,Kγ,2 = g

rγ,2
p

The keys are distributed as if the randomness for the δ, γ components was:

r̃δ,1 = −rδ,2xδ/(ab)− rδ,1tγ(Iγ − Lβ,γ)/a (mod p)

r̃δ,2 = rδ,2yδ/(ab) (mod p)

r̃γ,1 = rγ,1/b + yδrδ,1/(ab) (mod p)

Since, r̃δ,1, r̃δ,2, r̃γ,1 are independent the keys generated from the simulation are identical to that
of the real scheme.

22

Challenge The adversary first gives the simulator messages M0,M1. Let Xj be the first j indexes
in X. The simulator chooses random Z ∈ Gq (Z1,1, Z1,2), . . . , (Z`,1, Z`,2) ∈ G2

q (this can be done
since the simulator has gq). and outputs the challenge as follows:

C0 = Y Z, Cδ,1 = T ′yδZδ,1, Cδ,2 = T ′xδZδ,2, ∀i s.t. i 6= δ and i /∈ Hj : Ci,1 = Y yiZi,1, Ci,2 = Y xiZi,2.

For all i ∈ Hj the simulator chooses random elements in G for Ci,1, Ci,2. If M0 = M1 the simulator
creates C ′ as C ′ = e(Y, gp)α′

M0, otherwise it chooses a random group element for C ′.
If T ′ is forms a tuple, then the simulator is playing game Hj , otherwise it is playing game H ′

j .

Query Phase 2 Same as Query Phase 1.

Guess The adversary outputs a guess β′. If β = β′ output 0 otherwise output 1. By our
assumption the probability that the adversary guesses β correctly in game Gj has a non-negligible
ε difference from that of it guessing it correctly in game G′

j . However, it is in game G′
j if and only

if the challenger gave the simulator R instead of T . Therefore the simulator has advantage ε in the
Composite 3-Party Diffie-Hellman game.

B.4 Proof of Lemma 5.5

We prove our lemma by supposing that a poly-time adversary A has non-negligible difference ε
between its advantage in game G′

j and its advantage in game Gj+1 for some index j. We build a
simulator that plays the Composite 3-Party Diffie-Hellman game with advantage ε.

The challenger first creates a 3-Party challenge as:

(p, q, G, GT , e) R← G(λ), n← pq, gp
R← Gp, gq

R← Gq

R1, R2, R3
R← Gq

a, b, c
R← Zn

Z̄ ←
(
(n, G, GT , e), gq, gp, ga

p , gb
p, Γ = gab

p ·R1, Y = gabc
p ·R2

)
T ← gc

p ·R3

It then randomly decides whether to give (Z̄, T ′ = T) or (Z̄, T ′ = R) where R is a random element
in G.

We create the following simulation:

Init The attacker gives the simulator two identities L0, L1. The challenger then flips the coin β
internally.

Setup Let δ be the j + 1-th index in X. The simulator first chooses random

R ∈ Gq, (Ru,1, Rh,1, Rw,1), . . . , (Ru,`, Rh,`, Rw,`) ∈ G3
q ,

ν ∈ Zn and random t1, x1, y1, . . . , t`, x`, y`.

23

The simulator first publishes the group description and gq, V = gpR. It picks a random α′ ∈ Zn

and lets A = e(gp, gp)α′
. It next creates It next creates

Uδ = (gb
p)

tδRu,δ,Hδ = (gb
p)
−tδLβ,δgyδ

p Rh,δ,Wδ = ΓRw,δ

Finally, for all i 6= δ it creates:

Ui = (gb
p)

tiRu,i,Hi = (gb
p)
−tiLβ,igyi

p Rh,i,Wi = gxi
p Rw,i

We observe that the parameters are distributed identically to the real scheme.

Query 1 The adversary will make private key queries to the simulator. The way they are handled
depends upon the type of query. Suppose the adversary queries for a key L, where the set of indexes
that are non-wild cards is denoted as S.

Type 1 If δ /∈ S then the simulator first chooses random ri,1, ri,2 ∈ Zn∀i ∈ S. Next it creates:

K0 =
∏
i∈S

(gb
p)

ri,1(Ii−Lβ,i)tig
ri,1yi
p g

ri,2xi
p

Additionally, it creates:
∀i ∈ S : Ki,1 = (gp)ri,1 ,Ki,2 = g

ri,2
p

Type 2 Suppose δ ∈ S, but Iδ 6= L0,δ and Iδ 6= L1,δ. The simulator first chooses random
ri,1, ri,2 ∈ Zn∀i ∈ S.

Next it creates:

K0 = (
∏

i∈S/{δ}

(gb
p)

ri,1(Ii−Lβ,i)tig
ri,1yi
p g

ri,2xi
p)(ga

p)rδ,1yδ(gb
p)

rδ,2(Iδ−Lβ,δ)tδg
rδ,2yδ
p

Additionally, it creates:

∀i ∈ S/{δ} : Ki,1 = (gp)ri,1 ,Ki,2 = g
ri,2
p

Finally it creates:
Kδ,1 = (ga

p)rδ,1g
rδ,2
p ,Kδ,2 = g

−tδ(Iδ−Lβ,δ)rδ,1
p

The keys are distributed as if the randomness for the δ component was:

r̃δ,1 = arδ,1 + rδ,2 (mod p)

r̃δ,2 = −tδ(Iδ − Lβ,δ)rδ,1 (mod p)

Since, r̃δ,1, r̃δ,2 are independent the keys generated from the simulation are identical to that
of the real scheme.

24

Type 3 Suppose δ ∈ S and Iδ = Lβ,δ, but there exists an (arbitrary) index γ ∈ S such that
Iγ 6= Lβ,γ .

The simulator first chooses random ri,1, ri,2 ∈ Zn∀i ∈ S.

Next it creates:

K0 = (
∏

i∈S/{δ}

(gb
p)

ri,1(Ii−Lβ,i)tig
ri,1yi
p g

ri,2xi
p)(gb

p)
rδ,2(Iδ−Lβ,δ)tδg

rδ,2yδ
p

Additionally, it creates:

∀i ∈ S/({γ} ∪ {δ} : Ki,1 = (gp)ri,1 ,Ki,2 = g
ri,2
p

Finally it creates:

Kδ,1 = g
rδ,2
p (ga

p)rγ,1yδ/yδ ,Kδ,2 = g
−tγ(Iγ−Lβ,γ)rδ,1
p

Kγ,1 = (gp)rγ,1(ga
p)rδ,1 ,Kγ,2 = g

rγ,2
p

The keys are distributed as if the randomness for the δ, γ components was:

r̃δ,1 = rδ,2 + arδ,1yγ/yγ (mod p)

r̃δ,2 = −tγrδ1(Iγ − Lβ,γ) (mod p)

r̃γ,1 = rγ,1 + arδ,1 (mod p)

Since, r̃δ,1, r̃δ,2, r̃γ,1 are independent the keys generated from the simulation are identical to that
of the real scheme.

Challenge The adversary first gives the simulator messages M0,M1. Let Xj be the first j
indexes in X. The simulator chooses random Z ∈ Gq (Z1,1, Z1,2), . . . , (Z`,1, Z`,2) ∈ G2

q It also
chooses random s′ ∈ Zn. It outputs the challenge as follows:

C0 = gs′
p Z,Cδ,1 = T yδZδ,1, Cδ,2 = Y xδZδ,2, ∀i s.t. i 6= δ and i /∈ Hj : Ci,1 = gs′yi

p Zi,1, Ci,2 = gs′xi
p Zi,2.

For all i ∈ Hj the simulator chooses random elements in G for Ci,1, Ci,2. If M0 = M1 the simulator
creates C ′ as C ′ = e(gp, gp)s′α′

M0, otherwise it chooses a random group element for C ′.
If T is forms a tuple, then the simulator is playing game H ′

j , otherwise it is playing game Hj+1.

Query Phase 2 Same as Query Phase 1.

Guess The adversary outputs a guess β′. If β = β′ output 0 otherwise output 1. By our
assumption the probability that the adversary guesses β correctly in game G′

j has a non-negligible
ε difference from that of it guessing it correctly in game Gj+1. However, it is in game Gj+1 if and
only if the challenger gave the simulator R instead of T . Therefore the simulator has advantage ε
in the Composite 3-Party Diffie-Hellman game.

25

C Comparison queries with
√

n size ciphertext

In this section we focus on the comparison searching problem discussed in Section 3.1 for the special
case w = 1, namely the case considered in Figure 1. We let n denote the domain size. Recall that
the trivial system in this case achieves ciphertext size O(n) as does the system based on Hidden
Vector Encryption.

Here, we briefly describe a construction that achieves ciphertext size of
√

n. Boneh, Sahai,
and Waters [9] recently described a tracing traitors system where ciphertext size is

√
n where n

is the number of users in the system. There construction is based on a general primitive called
PLBE (Private Linear Broadcast Encryption). Boneh and Waters [10] recently generalized the
construction to obtain a trace and revoke system with ciphertexts having the same size. Their
generalization is based on a construction for Augmented Broadcast Encryption (ABE). Setting the
recipient set S to S = {1, . . . , n} in an ABE system results in a public variant of PLBE which we
call public-PLBE. The definition of a public-PLBE is implicit in [10]. For completeness, we give
the complete definition in Appendix D here. The main result in [10] is an ABE system with the
following parameters:

CT-size = Key-size = PK-size = O(
√

n)

This gives a public-PLBE with similar parameters (by setting S = {1, . . . , n}). We denote the
algorithms in the BW public-PLBE by (SetupPKLBE,EncryptPKLBE,DecryptPKLBE). We also note
that the PLBE of [9] can be easily extended as in [10] to obtain a public-PLBE with parameters

Key-size = O(1) , CT-size = PK-size = O(
√

n)

In Section 3.1 we defined the set of comparison predicates Φn,w. We show that for w = 1, any
secure public-PLBE gives a Φn,1-searchable encryption as follows:

Setup(λ) Run SetupPKLBE(n, λ) to obtain a public key PK and n secret keys (SK1, . . . ,SKn).
Output PK and SK := (SK1, . . . ,SKn).

Encrypt(PK, s, M) where s ∈ {1, . . . , n}. Output C
R← EncryptPKLBE(PK, s, M).

GenToken(SK, 〈P 〉) A predicate P ∈ Φn,1 is a number i ∈ {1, . . . , n}. Output TK← (i,SKi).

Query(TK, C) Let TK = (i,SKi). Run DecryptPKLBE(i,SKi, C).

Using a public-PLBE we thus obtain a Φn,1-searchable public key encryption where ciphertext size
in
√

n. Security follows easily from the properties of public-PLBE.

Theorem C.1. The Φn,1-searchable encryption system is secure assuming the underlying public-
PLBE is secure.

D Definition of public-PLBE

Boneh and Waters [10] define a primitive called Augmented Broadcast Encryption (ABE) which
they use to build a trace and revoke system. Setting the recipient set S to S = {1, . . . , n} in an
ABE results in a concept we call public-PLBE. For completeness, we include the full definition
here.
A public-PLBE is a restricted broadcast system comprising of the following algorithms:

26

SetupPKLBE(N,λ) A probabilistic algorithm that takes as input N , the number of users in the
system, and a security parameter λ. The algorithm runs in polynomial time in λ and outputs
a public key PK and private keys SK1, . . . ,SKN , where SKu is given to user u.

EncryptPKLBE(PK, i,M) Takes as input a public key PK, an integer i satisfying 1 ≤ i ≤ N+1, and
a message M . It outputs a ciphertext C. This ciphertext is intended for users {i, i+1, . . . , N}.

DecryptPKLBE(j,SKj , C) Takes as input the private key SKj for user j and a ciphertext C. The
algorithm outputs a message M or ⊥.

The system must satisfy the following correctness property: for all i, j ∈ {1, . . . , N + 1} (where
j ≤ N), and all messages M :

Let (PK, (SK1, . . . ,SKN)) R← SetupPKLBE(N,Λ) and C
R← EncryptPKLBE(PK, i,M).

If j ≥ i then DecryptPKLBE(j, SKj , C) = M .

Security. We define security of an PKLBE system using two games. The first game is a message
hiding game and says that a ciphertext created using index i = N + 1 is unreadable by anyone.
The second game is an index hiding game and captures the intuition that a broadcast ciphertext
created using index i reveals no non-trivial information about i. We will consider all these games
for a fixed number of users, N .

Game 1. The first game, called the Message Hiding Game says that an adversary cannot
break semantic security when encrypting using index i = N + 1. The game proceeds as follows:

• Setup The challenger runs the SetupPKLBE algorithm and gives the adversary PK and all
secret keys {SK1, . . . ,SKN}.

• Challenge The adversary outputs two equal length messages M0,M1. The challenger flips a
coin β ∈ {0, 1} and sets C

R← EncryptPKLBE(PK, N + 1,Mβ). The challenger gives C to the
adversary.

• Guess The adversary returns a guess β′ ∈ {0, 1} of β.

We define the advantage of adversary A in winning the game as MH AdvA = |Pr[β′ = β]− 1/2|.

Game 2. The second game, called the Index Hiding Game says that an adversary cannot
distinguish between an encryption to index i and one to index i+1 without the key SKi. The game
takes as input a parameter i ∈ {1, . . . , N} which is given to both the challenger and the adversary.
The game proceeds as follows:

• Setup The challenger runs the SetupPKLBE algorithm and gives the adversary PK and the
set of private keys

{
SKj s.t. j 6= i

}
.

• Challenge The adversary outputs a message M . The challenger flips a coin β ∈ {0, 1} and
computes C

R← EncryptPKLBE(PK, i + β, M). The challenger returns C to the adversary.

27

• Guess The adversary returns a guess β′ ∈ {0, 1} of β.

We define the advantage of adversary A as the quantity IH AdvA[i] = |Pr[β′ = β]− 1/2|. In words,
the game captures the fact that even if all users other than i collude they cannot distinguish whether
i or i + 1 was used to create a ciphertext C.

With this games we define a secure PKLBE as follows.

Definition D.1. We say that an N -user public-PLBE system is secure if for all polynomial time
adversaries A we have that MH AdvA and IH AdvA[i] for i = 1, . . . , N , are negligible functions of λ.

28

