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Abstract

In this paper we investigate a security model for Timed-Release En-
cryption schemes with Pre-Open Capability (TRE-PC schemes) proposed
by Hwang, Yum, and Lee. Firstly, we show that the HYL model possesses
a number of defects and fails to model some potentially practical security
vulnerabilities faced by TRE-PC schemes. Secondly, we propose a new
security model for TRE-PC schemes which models the securities against
four kinds of attacker and avoids the defects of the HYL model. We also
work out the complete relations among the security notions defined in the
new model. Thirdly, we introduce the notion of TRE-PC-KEM, which is
a special type of KEM, and show a way to construct a TRE-PC scheme
using a TRE-PC-KEM and a DEM. Finally, we propose an instantiation
of TRE-PC-KEM and prove its security.
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1 Introduction

The concept of Timed-Release Encryption (TRE), i.e. sending a message which
can only be decrypted after a certain release time, is attributed to May [11].
Later on, Rivest, Shamir, and Wagner further elaborated on this concept and
gave a number of its applications including electronic auctions, key escrow,
chess moves, release of documents over time, payment schedules, press releases
and etc. [13]. Bellare and Goldwasser [1] propose that timed release may also
be used in key escrow. Informally, a TRE scheme is a public-key encryption
scheme which achieves the following two goals:

1. An outside attacker cannot decrypt the ciphertext. An outside attacker is
any third-party entity besides the sender and receiver.

2. A legitimate receiver can only decrypt the ciphertext after the release
time.

In the literature, there are two approaches used to construct TRE schemes.
One approach is based on the time-lock puzzle technique which was originally
proposed by Merkle [12] to protect communications against passive adversaries.
This technique was then extended in [1, 5, 13] to construct TRE schemes. The
idea of this approach is that a secret is transformed in such a way that all kinds
of machines (serial or parallel) take at least a certain amount of time to solve
the underlying computational problems (puzzle) in order to recover the secret.
The release time is equal to the time at which the puzzle is released plus the
minimum amount of time that it would take to solve the puzzle. However, this
means that not all users are capable of decrypting the ciphertext at the release
time as they may have different computational power. The other approach is to
use a trusted time server, which, at an appointed time, will assist in releasing
a secret to help decrypt the ciphertext (e.g. [4, 13]). Generally, time-server-
based schemes require interaction between the server and the users, and should
prevent possible malicious behaviour of the time server.

In standard TRE schemes, the receiver can only decrypt the ciphertext at
(or after) the release time. If the sender changes its mind after the ciphertext
is sent, and wishes the receiver to decrypt the message immediately, then the
only thing that the sender can do is to re-send the plaintext to the receiver in
such a way that the receiver can immediately decrypt the message. However,
in some circumstances, we may need a special kind of TRE schemes, in which
a mechanism enables the receiver to decrypt the ciphertext before the release
time without requiring the sender to re-send the plaintext. Recently, Hwang,
Yum, and Lee [10] extended the concept of TRE schemes and proposed a se-
curity model (referred to as the HYL model) for TRE schemes with Pre-Open
Capability (TRE-PC). Informally, a TRE-PC scheme is a public-key encryption
scheme which achieves the following goals:

1. At any time, an outside attacker cannot decrypt the ciphertext,
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2. At (or after) the release time, when the plaintext is intended to be released,
the receiver can decrypt the ciphertext. However, before the release time,
the receiver cannot decrypt the ciphertext.

3. Before the release time, the sender can help the receiver to decrypt the
ciphertext by publishing a pre-open key.

In the HYL model, a trusted time server is required to periodically issue a
timestamp, but real-time interaction between the trusted time server and the
users is not needed.

As a special type of TRE scheme, TRE-PC scheme is always a possible
substitute of standard TRE scheme in all the possible applications where the
latter is used. In fact, we can argue that TRE-PC scheme is more suitable than
the general TRE scheme in many applications where the Pre-Open capacity is
potentially needed. Taking the electronic auction as an example, normally a
group of bidders in an auction seal their bid so that it can be opened after the
bidding period is closed. However, if all of these bidders want to open the bid
at some point before the pre-defined open time, then they may come cross with
some problems if a standard TRE scheme is adopted. For instance, if the TRE
scheme proposed in [4] is used, the trusted time server cannot simply release
the time-specific trapdoor because the information may also be used by other
bids. However, if a TRE-PC scheme is adopted, then the bidders just need
to release their pre-open key to get the job done. Moreover, if the TRE-PC
scheme is sound (defined in Section 3.1) then it is guaranteed that no bidders
can maliciously open a different value which is different from that it originally
sent.

The first contribution of this paper is that we analyse the HYL model and
show that it fails to model some practical attacks faced by TRE-PC schemes.
Specifically, we show that the HYL model has not modeled the attacks imposed
by an outside attacker which knows the time server’s secret key, although it
claimed to achieve this. We further show that the HYL model has not mod-
elled the attacks imposed by a malicious sender which may abuse the protocol
executions.

The second contribution of this paper is that we propose a new security
model for TRE-PC schemes, which models four kinds of potential adversaries:
the malicious outside attacker which does not know the time server’s secret key,
the curious time server (which is one kind of outside attacker), the malicious
sender, and the curious receiver. The proposed model avoids the defects pos-
sessed by the HYL model and provides a valuable framework to evaluate the
security of TRE-PC schemes. Moreover, we work out the complete relations
among the security notions defined in the new model.

The third contribution of this paper is that we introduce the notion of TRE-
PC-KEM, which can be thought of as combining the functionality of a KEM
and a TRE-PC scheme, show a way to construct a TRE-PC scheme using TRE-
PC-KEM and a DEM, and provide the security criteria for the TRE-PC-KEM
and the DEM. In addition, we also propose an instantiation of a TRE-PC-KEM
and prove its security.
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In fact, our work about the TRE-PC construction follows the basic idea of
the KEM-DEM model for hybrid encryption algorithms [6, 14], which splits a
hybrid encryption scheme into two distinct components: an asymmetric Key
Encapsulation Mechanism (KEM) and a symmetric Data Encapsulation Mech-
anisms (DEM). The KEM-DEM has the advantage that it allows the security
requirements of the asymmetric and symmetric parts of the scheme to be com-
pletely separated and studied independently. In addition, it also enables us
to construct public-key encryption schemes by instantiating KEM and DEM
separately. Due to this, this paradigm has been extended to the signcryption
setting by proposing new security criteria for the KEM and the DEM. Some
examples are the work by Dent [8, 9] and the work by Bjørstad and Dent [3]. In
[7] Dent propose a number of generic constructions for provably secure KEMs.
In [2] Bentahar et al. extend the concept of key encapsulation mechanisms
to the primitives of ID-based and certificateless encryption. A TRE-PC-KEM
is indeed a special type of KEM, which is specially designed for the TRE-PC
setting. By exploiting the KEM-DEM model, our construction inherently pos-
sesses similar advantages. However, the KEM-DEM model does not model all
possible hybrid encryption schemes, which implies that there may exist elegant
TRE-PC constructions other than ours.

The rest of this paper is organised as follows. In Section 2 we analyse the
HYL model and schemes. In Section 3 we propose a new security model for
TRE-PC schemes. In Section 4 we investigate the relations among the security
notions developed in Section 3. In Section 5 we describe the notion of TRE-PC-
KEM and define its security. In Section 6 we show a way to construct TRE-PC
schemes using TRE-PC-KEM and DEM, and provide a security analysis for our
construction. In Section 7 we propose an instantiation of TRE-PC-KEM and
provide its security proofs. In Section 8 we conclude this paper.

2 Review of the HYL model and schemes

2.1 Description of the HYL model

In the HYL model [10], two kinds of entities are involved in a TRE-PC scheme:
a trusted time server and users. The trusted time server publishes timestamps
periodically, and every user may act as either a sender or a receiver. The
following two kinds of attacker are claimed to be considered:

• An outside attacker without the receiver’s private key, which models either
a dishonest time server or an eavesdropper who tries to decrypt the legal
receiver’s ciphertext.

• An inside attacker with the receiver’s private key, which models a legal
receiver who tries to decrypt the ciphertext before the release time without
the pre-open key.

In the HYL model, a TRE-PC scheme consists of the following 6 polynomial-
time algorithms:
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• Setup: The setup algorithm takes a security parameter 1ℓ as input, and
returns the master key mk and the system parameters param, where mk

is kept secret by the time server and param is published.

• ExtTS: Run by the trusted time server, this timestamp extraction algo-
rithm takes the system parameters param, the master key mk, and the
release time t as input, and returns the timestamp TSt. The time server
is required to publish TSt at time t.

• GenPK: Run by a user, this key generation algorithm takes a security
parameter 1ℓ and the system parameters param as input, and returns a
public/private key pair (pkr, skr).

• Enc: Run by a sender, this encryption algorithm takes a message m, a
release time t, and a randomly-chosen pre-open secret value v, and returns
a ciphertext C.

• GenRK: Run by a sender, this pre-open key generation algorithm takes the
pre-open secret value v and the release time t as input, and returns the
pre-open key Vt.

• Dec: Run by a receiver, this decryption algorithm runs in two modes.
Before the release time, on input of the pre-open key Vt, the ciphertext C,
and the receiver’s private key, this algorithm returns either the plaintext
or an error message. Otherwise, on the input of the timestamp TSt, the
ciphertext C, and the receiver’s private key, this algorithm returns either
the plaintext or an error message.

In the HYL model, three security properties are modelled, although we show
later that some other security properties (see in Section 3) also need to be mod-
elled. The modelled securities are: the security under a chosen ciphertext attack
against outside adversaries (IND-TR-CCAOS security), the security under a
chosen plaintext attack against outside adversaries (IND-TR-CPAOS security),
and the security under a chosen ciphertext attack against inside adversaries
(IND-TR-CCAIS security).

Definition 1. Suppose A is a polynomial-time outside attacker, then a TRE-
PC scheme E is IND-TR-CCAOS secure if A only has negligible advantage in
the following game.

1. Game setup: The challenger takes a security parameter 1ℓ and runs Setup

to generate the master key mk and the system parameters param. The
challenger also runs GenPK to generate a public/private key pair (pkr, skr).

2. Phase 1: The attacker A takes (pkr, param) as input, and can make the
following queries.

• A makes timestamp extraction queries on any time t. On receiving
a query, the challenger runs the ExtTS and returns the output.
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• A makes decryption queries on (t, C). On receiving a query, the
challenger runs the Dec and returns the output.

3. Challenge: A selects two equal length messages m0, m1 and a release time
t∗. The challenger picks a random bit b, encrypts mb for release at time
t∗, and returns the ciphertext C∗.

4. Phase 2: A can continue to make extraction and decryption queries as
in Phase 1. However, A is not allowed to make a decryption query on
(t∗, C∗).

5. Guess: A outputs a guess bit b′.

In this game the attacker wins the game if b = b′. The attacker’s advantage
is defined to be |Pr[b = b′] − 1

2 |.

Definition 2. A TRE-PC scheme E is said to be IND-TR-CPAOS secure if it
is IND-TR-CCAOS secure against adversaries that make no decryption queries.

In [10] the attack game for IND-TR-CCAIS security is informally defined;
but we reconstruct a formal definition as follows.

Definition 3. Suppose A is a polynomial-time inside attacker, then a TRE-PC
scheme E is IND-TR-CCAIS secure if A only has negligible advantage in the
following game.

1. Game setup: The challenger takes a security parameter 1ℓ and runs Setup

to generate the master key mk and the system parameters param. The
challenger runs GenPK to generate a public/private key pair (pkr, skr).

2. Phase 1: The attacker A takes (pkr, skr, param) as input, and can make
timestamp extraction queries on any time t. On receiving a query, the
challenger runs the ExtTS and returns the output.

3. Challenge: A selects two equal length messages m0, m1 and a release
time t∗, which has not been queried to the ExtTS oracle. The challenger
picks a random bit b, encrypts mb for release at time t∗, and returns the
ciphertext C∗.

4. Phase 2: A continues to make the same kinds of queries as in Phase 1.
However, A is not allowed to make an ExtTS query on the time t∗.

5. Guess: A terminates by outputting a guess bit b′.

In this game the attacker wins the game if b = b′. The attacker’s advantage
is defined to be |Pr[b = b′] − 1

2 |.

7



2.2 Remarks on the HYL model

We have the following remarks on the HYL model.

1. In the HYL model, the decryption process is described by one single al-
gorithm, which, however, works in two different modes depending on the
input. Therefore, it is appropriate to formalise the decryption process
with two independent algorithms.

2. In a security model for TRE-PC schemes, it should be assumed that any
outside attacker will have access to the pre-open key for the challenge ci-
phertext. This models the real-world situation where the outside attacker
observes the release key as it is being sent to the receiver after the sender
chooses to allow the receiver to pre-open the ciphertext. However, in the
HYL model, it is not explicitly specified that the attacker has access to
the pre-open key.

3. In the HYL model, GenRK is formalised but never used in the security
model. One possible way to eliminate this defect is allowing the attacker
to access the GenRK oracle (as a result the above defect can also be elimi-
nated). Alternatively, we can absorb the functionality of GenRK into Enc

by requiring the latter to output both the ciphertext and the pre-open key
(as depicted in the new model).

4. In the HYL model, the Enc algorithm does not take the receiver’s public
key as input, however, it is obvious that the receiver’s public key should
be part of the input. We accept that this is probably just a typographical
error.

5. In the attack game for the IND-TR-CCAIS security, the attacker A is
allowed to make ExtTS queries on any release time t except t∗. However,
in reality a receiver only needs to mount this attack before the release
time t∗ since it will decrypt the ciphertext with the timestamp TSt∗ at
(and after) t∗. Therefore, the attacker A should only be allowed to make
ExtTS queries on any time t which is smaller than the release time t∗.

6. In the HYL model the authors claimed that the outside attacker models
either a dishonest time server or an eavesdropper who tries to decrypt
the legal receiver’s ciphertext. However, a malicious time server has not
been considered in the attack game which is used to evaluate IND-TR-
CCAOS security, because the attacker has no knowledge of the master key
mk. As a result, a TRE-PC scheme, which is proved IND-TR-CCAOS
secure, might be insecure against a malicious attacker which knows the
time server’s secret key.

7. As one of the objectives of a TRE-PC scheme, the sender can enable the
receiver to decrypt a ciphertext before its release time. In some circum-
stances, the sender may wish to make the receiver decrypt a false message
different from which was originally sent, by sending a false pre-open key
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to the receiver. An example attack is shown in Section 2.3. To make
the TRE-PC scheme work properly, the malicious sender should also be
considered in the security model. In the new security model, we define a
TRE-PC scheme to be sound if it is secure against this malicious sender
attack.

2.3 Analysis of the HYL basic scheme

2.3.1 Description of the scheme

In [10] Hwang, Yum, and Lee proposed the following TRE-PC scheme (HYL
basic scheme) which is claimed to be IND-TR-CPAOS and IND-TR-CCAIS
secure. The scheme works as follows.

• Setup: Given a security parameter 1ℓ, the following parameters are gen-
erated:

– two multiplicative groups G1, G2 of prime order q, and a generator
P of G1,

– a polynomial-time computable bilinear map ê : G1 × G1 → G2,

– two hash functions h1 : {0, 1}∗ → G1, h2 : G2 → {0, 1}n for some n,

– a master key s ∈ Zq for the time server, and the public key S = sP .

The message space and the ciphertext space are {0, 1}n and G1 × G1 ×
{0, 1}n, respectively. The parameters param = (q, G1, G2, ê, P, S, n, h1, h2)
are published.

• ExtTS: At the time t, the time server computes Qt = h1(t) and publishes
the timestamp TSt = sQt.

• GenPK: A user runs this algorithm to generate its public/private key pair
(Y, x), where x ∈R Zq and Y = xP .

• Enc: Suppose a sender wishes to send a message m, it first selects a
release time t and a secret value v ∈R Zq, and outputs the ciphertext
C = (rP, vP, m ⊕ h2(gt)) where gt = ê(rY + vS, Qt) and r ∈R Zq.

• GenRK: When the sender wants the ciphertext C to be decrypted before
the release time t, it computes and publishes the pre-open key Vt = vQt.

• Dec: Before the release time, given the pre-open key Vt, the receiver de-
crypts C = (R, V, W ) by computing

m = W ⊕ h2(ê(R, xQt)ê(Vt, S))

Otherwise, given the timestamp TSt, the receiver decrypts C = (R, V, W )
by computing

m = W ⊕ h2(ê(R, xQt)ê(V, TSt))

9



2.3.2 Analysis results

We show that a malicious sender can mount an attack to make the receiver
decrypt a false message, which is not the message the sender originally sent.

Suppose the sender sent the encrypted message C = (rP, vP, m ⊕ h2(gt)),
and then before the release time t, it publishes a false pre-open key V ′

t 6= Vt.
With V ′

t , the receiver will compute the plaintext m′ as:

m′ = m ⊕ h2(gt) ⊕ h2(ê(R, xQt)ê(V
′
t , S))

= m ⊕ h2(ê(R, xQt)ê(Vt, S)) ⊕ h2(ê(R, xQt)ê(V
′
t , S))

It is straightforward to verify that the probability the following equation holds
is negligible

h2(ê(R, xQt)ê(Vt, S)) = h2(ê(R, xQt)ê(V
′

t , S)) ,

so that the probability m = m′ is also negligible.
It should be noted that the the other HYL scheme (referred to the full TRE-

PC scheme), which is claimed to be IND-TR-CCAOS/IS secure in [10], appears

to be resistant to malicious sender attack because the receiver will check the
validity of the plaintext at the end of the decryption.

Besides this security vulnerability, the decryption algorithm of this scheme
does not satisfy the definition in the HYL model. In the decryption algorithm, t

should be included in the inputs because Qt = h1(t) is used in the computation,
however t is not required as an input for the decryption algorithm in the HYL
model. In fact, this inconsistency also occurs in the full TRE-PC scheme.

3 A new security model for TRE-PC schemes

We propose a new security model for the TRE-PC schemes. As in the HYL
model [10], the following two kinds of entities are involved in a TRE-PC scheme:

• The users, every one of which may act as both a sender and a receiver.

• A trusted time server, which is required to publish timestamps period-
ically. We assume that the time server acts properly in generating its
parameters and publishing the timestamps. However, when discussing
the security, we take into account the fact that the time server may be
curious, i.e. it may try to decrypt the ciphertext. Except this, the time
server will do nothing else malicious.

In the proposed model, we consider the following four kinds of adversaries:

• Outside adversaries who do not know the master key of the time server.
In the rest of this paper, the term outside attacker refers to this kind
of attacker, while the term curious time server (see below) refers to the
special kind of outside attacker which knows the master key of the time
server.
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• The curious time server who knows the master key of the time server.

• Legal but curious receivers who try to decrypt the ciphertext before the
release time without the pre-open key.

• Legal but malicious senders who try to make the receiver recover a false
message different from which was originally sent.

Generally, a TRE-PC scheme consists of the following 6 polynomial-time
algorithms.

1. Setup: Run by the time server, this setup algorithm takes a security
parameter 1ℓ as input, and generates a secret master-key mk and the
global parameters param. We assume that all subsequent algorithms takes
param implicitly as an input.

2. GenU: Run by a user, this user key generation algorithm takes a security
parameter 1ℓ as input, and generates a public/private key pair (pkr, skr).

3. ExtTS: Run by the time server, this timestamp extraction algorithm takes
mk and a time t as input, and generates a timestamp TSt for the time t.

4. Enc: Run by a sender, this encryption algorithm takes a message m,
a release time t, and the receiver’s public key as input, and returns a
ciphertext C and its pre-open key VC . It should be noted that initially
the sender should send the ciphertext C in company with the release time t

to the receiver, therefore the receiver can know the release time of C. The
sender stores the the pre-open key VC and publishes it when pre-opening
the ciphertext C.

5. DecRK: Run by the receiver, this decryption algorithm takes a ciphertext
C, the pre-open key VC , and the receiver’s private key as input, and returns
either the plaintext or an error message (⊥). In reality, the receiver can
only run this algorithm after the sender releases the pre-open key VC .

6. DecPK: Run by the receiver, this decryption algorithm takes a ciphertext
C, a timestamp TSt which is determined by the release time accompanied
with C, and the receiver’s private key as input, and returns either the
plaintext or an error message (⊥).

3.1 Soundness of a TRE-PC scheme

As we have pointed out in the previous analysis, a sender may act maliciously
when it tries to pre-open the ciphertext. In order to make a TRE-PC scheme
work properly, this kind of malicious sender attack should be prevented. We
give the following definition of soundness to formalise this property.

Definition 4. A TRE-PC scheme E is sound if any polynomial-time attacker
A only has a negligible probability of winning the following game.
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1. Game setup: The challenger runs Setup to generate the time server’s mas-
ter key mk and the public system parameters: param. The challenger
also runs GenU to generate a public/private key pair (pkr, skr).

2. Challenge: The attacker A runs on the input (pkr, param). At some point,
A generates a ciphertext C∗ for release at t∗ and a pre-open key VC∗ , and
then terminates by outputting (C∗, t∗, VC∗). During its execution, A has
access to the following oracles:

• ExtTS oracle, which, on receiving a query for time t, returns ExtTS(mk, t).

• DecRK oracle, which, on receiving a query for (C, V ′
C), returns DecRK(C, V ′

C , skr).
It should be noted that C and V ′

C may have no relationship with each
other, i.e. V ′

C may not be the pre-open key of C.

• DecPK oracle, which, on receiving a query for (C, t′) where t′ may not
be the release time of C, returns DecPK(C, TSt′ , skr).

Suppose O1 = DecRK(C∗, VC∗ , skr) and O2 = DecPK(C∗, TSt∗ , skr). In this
game A wins if O1 6=⊥, O2 6=⊥, and O1 6= O2.

In fact, the soundness of a TRE-PC scheme is also concerned with the se-
cure transportation of the pre-open key when the sender decides to open the
encrypted message before the pre-defined release time. If the TRE-PC scheme is
sound, then the pre-open key does not need to be integrity protected; otherwise,
the pre-open key should be integrity protected to guarantee that the receiver
will obtain the message which the sender has intended to send.

3.2 Security against malicious outsiders

In this subsection we define the security of a TRE-PC scheme against outside
adversaries which do not know the time server’s master key. Specifically, we de-
fine the security under an adaptive chosen ciphertext attack (IND-TR-CCAOS)
and the security under an adaptive chosen plaintext attack (IND-TR-CPAOS).

Definition 5. A TRE-PC scheme E is IND-TR-CCAOS secure if any two-
stage polynomial-time attacker A = (A1,A2) only has negligible advantage in
the following game.

1. Game setup: The challenger runs Setup to generate the time server’s mas-
ter key mk and the public system parameters param. The challenger also
runs GenU to generate a public/private key pair (pkr, skr).

2. Phase 1: The attacker runs A1 on the input (pkr, param). A1 has access
to the following oracles.

• ExtTS oracle, which, on receiving a query for time t, returns ExtTS(mk, t).

• DecRK oracle, which, on receiving a query for (C, V ′
C), returns DecRK(C, V ′

C , skr).
It should be noted that C and V ′

C may have no relationship with each
other, i.e. V ′

C may not be the pre-open key of C.
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• DecPK oracle, which, on receiving a query for (C, t′), returns DecPK(C, TSt′ , skr).
It should be noted that t′ need not be the legitimate release time for
C.

A1 terminates by selecting two equal length messages m0, m1 and a release
time t∗, and outputting (m0, m1, t

∗). In addition, A1 also outputs some
state information state.

3. Challenge: The challenger picks a random bit b ∈ {0, 1}, and returns
(C∗, VC∗) = Enc(mb, t

∗, pkr).

4. Phase 2: The attacker runs A2 on the input (C∗, VC∗ , state). A2 has
access to the same kinds of oracles as those in Phase 1. But A2 is not
allowed to make the following two queries: a query to the DecPK oracle on
the input (C∗, t∗), and a query to the DecRK oracle on the input (C∗, VC∗).

A2 terminates by outputing a guess bit b′ ∈ {0, 1}.

In this game A wins the game if b = b′, i.e. A’s advantage is defined to be
|Pr[b = b′] − 1

2 |.

Definition 6. A TRE-PC scheme E is IND-TR-CPAOS secure if it is IND-
TR-CCAOS secure against adversaries that make no decryption queries.

3.3 Security against curious time server

In this subsection we define the security of a TRE-PC scheme against the cu-
rious time server. Specifically, we define the security under an adaptive chosen
ciphertext attack (IND-TR-CCATS) and the security under an adaptive chosen
plaintext attack (IND-TR-CPATS).

Definition 7. A TRE-PC scheme E is IND-TR-CCATS secure if any two-
stage polynomial-time attacker A = (A1,A2) only has negligible advantage in
the following game.

1. Game setup: The challenger runs Setup to generate the time server’s mas-
ter key mk and the public system parameters param. The challenger also
runs GenU to generate a public/private key pair (pkr, skr).

2. Phase 1: The attacker runs A1 on the input (mk, pkr, param). A1 has
access to the following oracles.

• DecRK oracle, which, on receiving a query for (C, V ′
C), returns DecRK(C, V ′

C , skr).
It should be noted that C and V ′

C may have no relationship with each
other, i.e. V ′

C may not be the pre-open key of C.

• DecPK oracle, which, on receiving a query for (C, t′), returns DecPK(C, TSt′ , skr).
It should be noted that t′ need not be the legitimate release time for
C.

13



A1 terminates by selecting two equal length messages m0, m1 and a release
time t∗, and outputting (m0, m1, t

∗). In addition, A1 also outputs some
state information state.

3. Challenge: The challenger picks a random bit b ∈ {0, 1}, and returns
(C∗, VC∗) = Enc(mb, t

∗, pkr).

4. Phase 2: The attacker runs A2 on the input (C∗, VC∗ , state). A2 has
access to the same kinds of oracles as those in Phase 1. But A2 is not
allowed to make the following two queries: a query to the DecPK oracle on
the input (C∗, t∗), and a query to the DecRK oracle on the input (C∗, VC∗).

A2 terminates by outputing a guess bit b′ ∈ {0, 1}.

In this game A wins the game if b = b′, i.e. A’s advantage is defined to be
|Pr[b = b′] − 1

2 |.

Definition 8. A TRE-PC scheme E is IND-TR-CPATS secure if it is IND-
TR-CCATS secure against adversaries that make no decryption queries.

3.4 Security against malicious receiver

If a TRE-PC scheme is to be deemed secure, then it should resist attacks in
which the legitimate receiver attempts to decrypt the ciphertext before the
release time and without the pre-open key. In this case, since the attacker will
know the receiver’s private key, it does not make sense to distinguish between
CCA and CPA notions of security. However, for the sake of consistency, we will
use the notion “IND-TR-CPAIS” to describe the security of the scheme against
a malicious receiver (an inside adversary).

Definition 9. A TRE-PC scheme E is IND-TR-CPAIS secure if any two-
stage polynomial-time attacker A = (A1,A2) only has negligible advantage in
the following game.

1. Game setup: The challenger runs Setup to generate the time server’s mas-
ter key mk and the public system parameters param. The challenger also
runs GenU to generate a public/private key pair (pkr, skr).

2. Phase 1: The attacker runs A1 on the input (pkr, skr, param). A1 has
access to the ExtTS oracle, which, on receiving a query for time t, returns
ExtTS(mk, t). A1 terminates by outputting two equal length messages m0,
m1 and a release time t∗ which is larger than all the inputs to the ExtTS

oracle. In addition, A1 also outputs some state information state.

3. Challenge: The challenger picks a random bit b ∈ {0, 1}, computes (C∗, VC∗) =
Enc(mb, t

∗, pkr), and returns C∗.

4. Phase 2: The attacker runs A2 on the input (C∗, state). A2 has access
to the ExtTS oracle, which, on receiving a query for time t < t∗, returns
ExtTS(mk, t).

A2 terminates by outputting a guess bit b′ ∈ {0, 1}.

14
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Figure 1: Relations among the security notions

In this game A wins the game if b = b′, i.e. A’s advantage is defined to be
|Pr[b = b′] − 1

2 |.

4 Relations among security notions

We first give two relation definitions: “A =⇒ B” means that if a scheme is
secure in the sense of A then it is secure in the sense of B; “A =⇒\ B” means
that, even if a scheme is secure in the sense of A , it may not be secure in the
sense of B. In other words, “A =⇒\ B” means that we can construct a scheme
which is secure in the sense of A but not secure in the sense of B. It is clear to
see that the “=⇒” relation is transitive, which means that if A =⇒ B and B
=⇒ C then A =⇒ C.

We prove that the relations described in the following figure hold for the se-
curity notions, where the arrow represents the relation “=⇒” while the hatched
arrow represents the relation “=⇒\ ”. Given these relations, we are able to deduce
the relation between any two security notions.

By the definitions in Section 3, it is easy to see that the following relations
hold.

1. IND-TR-CCATS =⇒ IND-TR-CCAOS =⇒ IND-TR-CPAOS

2. IND-TR-CCATS =⇒ IND-TR-CPATS =⇒ IND-TR-CPAOS

Hence, in the rest of this section we only need to prove that other relations hold
among the security notions.

4.1 Relations between IND-TR-CPATS and IND-TR-CCAOS

We prove that the following relations hold between IND-TR-CPATS and IND-
TR-CCAOS.

• IND-TR-CPATS =⇒\ IND-TR-CCAOS

• IND-TR-CCAOS =⇒\ IND-TR-CPATS
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Theorem 1. If there exists an IND-TR-CPATS secure TRE-PC scheme E,
then there exists a TRE-PC scheme E′ which is IND-TR-CPATS secure but
not IND-TR-CCAOS secure.

Proof. Suppose E = (Setup, GenU, ExtTS, Enc, DecRK, DecPK) is an IND-TR-
CPATS secure TRE-PC scheme, then we can construct a new TRE-PC scheme
E′ = (Setup′, Gen′U, Ext′TS, Enc′, Dec′RK, Dec′PK), where the algorithms are defined
as follows:

• The algorithms Setup′,Gen′U,Ext′TS are defined in the same way as in E.

• Enc′(m, t, pk′
r) = (C||0, VC), where (C, VC) = Enc(m, t, pk′

r).

• Dec′RK(C||b, VC , sk′
r) = DecRK(C, VC , sk′

r), where b ∈ {0, 1}.

• Dec′PK(C||b, TSt, sk
′
r) = DecPK(C, TSt, sk

′
r), where b ∈ {0, 1}.

The validity of this theorem lies in the following two lemmas.

Lemma 1. E′ is IND-TR-CPATS secure.

Proof. Suppose an IND-TR-CPATS attacker B = (B1,B2) has the advantage
δ in attacking E′. We show that there exists an IND-TR-CPATS attacker
A = (A1,A2) for E, which makes use of B as a subroutine, that also has
advantage δ. Hence, we will be able to conclude that δ is negligible as E is
IND-TR-CPATS secure.

The attacker A1 is defined as follows:

1. A1 receives the public parameters param, the public key pkr, and the
master key mk.

2. A1 sets param′ = param, pk′
r = pkr, and mk′ = mk.

3. A1 executes B1 on the input mk′, pk′
r, and param′. B1 terminates by

outputting two equal length messages m0 and m1, a release time t∗, and
some state information state′.

4. A1 terminates by outputting the messages m0 and m1, a release time t∗,
and the state information state = state′.

The challenger will then randomly choose a bit b ∈ {0, 1} and compute the
challenge TRE-PC encryption (C∗, VC∗) = Enc(mb, t

∗, pkr). The attacker A2

is defined as follows:

1. A2 receives the challenge ciphertext C∗, the pre-open key VC∗ , and the
state information state.

2. A2 executes B2 on the input (C∗||0, VC∗ , state). B2 eventually terminates
by outputting a bit b′.

3. A2 terminates by outputting the bit b′.
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It is clear to see that A provides a perfect environment in which B can run, A
is a legitimate IND-TR-CPATS attacker, and A’s advantage equals to δ. Since
E is an IND-TR-CPATS TRE-PC scheme, then δ should be negligible, which
proves the lemma.

Lemma 2. E′ is not IND-TR-CCAOS secure.

Proof. To prove the claim, we only need to show that the an IND-TR-CCAOS
attacker has non-negligible advantage in attacking E′. The attack is quite easy:
On receiving the challenge (C∗||0, VC∗) from the challenger, A2 makes a query to
the oracle DecPK

′ on the input (C∗||1, t∗). It is easy to see that the oracle DecPK
′

returns mb, which allows the attacker to recover the bit b with the probability
1.

As a result, we have proved the theorem.

Theorem 2. If there exists an IND-TR-CCAOS secure TRE-PC scheme E,
then there exists a TRE-PC scheme E′ that is IND-TR-CCAOS secure but not
IND-TR-CPATS secure.

Proof. Suppose that E = (Setup, GenU, ExtTS, Enc, DecRK, DecPK) is an IND-TR-
CCAOS secure TRE-PC scheme and (K, E ,D) is an IND-CPA secure public key
encryption scheme. Consider the TRE-PC scheme E′ where the algorithms are
defined as follows.

1. The Setup′ algorithm takes a security parameter 1ℓ as input, and computes
(param, mk) = Setup(1ℓ) and (pk, sk) = K(1ℓ). The public parameters
are defined to be param′ = (param, pk). The master key is defined to be
mk′ = (mk, sk).

2. The Gen′U algorithm takes a security parameter 1ℓ as input, and computes
(pk′

r, sk
′
r) = GenU(1ℓ).

3. The Ext′TS algorithm take as input mk′ and a release time t, and returns
ExtTS(mk, t).

4. The Enc′ algorithm takes as input a message m, a release time t and the
receiver’s public key pk′

r, and returns a ciphertext C = (C1, C2) and a
pre-open key VC , where:

C1 = E(pk, m)

(C2, VC) = Enc(C1||m, t, pk′
r)

We assume that C1 is drawn from a prefix free set (such as a set of strings
of a fixed length) so that it may be recovered from the arbitrary bitstring
C1||m.
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5. The Dec′RK algorithm takes as input a ciphertext C = (C1, C2), a pre-open
key VC , and a private key sk′

r, and computes

C′
1||m = DecRK(C2, VC , sk′

r) .

If C′
1 6= C1, then the algorithm outputs ⊥. Otherwise it returns m.

6. The Dec′PK algorithm takes as input a ciphertext C = (C1, C2), a times-
tamp TSt, and a private key sk′

r, and computes

C′
1||m = DecPK(C2, TSt, sk

′
r) .

If C′
1 6= C1, then the algorithm outputs ⊥. Otherwise it returns m.

We begin by showing that E′ is IND-TR-CCAOS secure. Consider the
following game played between an attacker B = (B1,B2) and a hypothetical
challenger. The game is parameterised by two bits (b1, b2) ∈ {0, 1}2 and a
security parameter 1ℓ, and runs as follows:

1. Game Setup: The challenger runs Setup′ to generate public parameters
param′ = (param, pk) and a private key mk′ = (mk, sk). The challenger
also runs Gen′U to generate a public/private key pair (pk′

r, sk
′
r).

2. Phase 1: The attacker executes B1 on the input (pk′
r, param′). B1 has

access to the following oracles:

• Ext′TS oracle, which takes as input a release time t and returns Ext′TS(mk, t).

• Dec′RK oracle, which takes as input a ciphertext C and a pre-open
key VC , and returns Dec′RK(C, VC , sk′

r).

• Dec′PK oracle, which takes as input a ciphertext C and a release time
t, and returns Dec′PK(C, TSt, sk

′
r).

B1 terminates by outputting two equal length message m0 and m1, a
release time t∗ and some state information state.

3. Challenge: The challenger computes C∗
1 = E(pk, mb1) and (C∗

2 , VC∗) =
Enc(C∗

1 ||mb2 , t
∗, pk′

r). The challenge ciphertext is the pair C∗ = (C∗
1 , C∗

2 ).
The challenge pre-open key is VC∗ .

4. Phase 2: The attacker executes B2 on the input (C∗, VC∗ , state). B2 has
access to the same oracles as in Phase 1; however, B2 may not query the
Dec′RK oracle on the input (C∗, VC∗) or the Dec′PK oracle on the input
(C∗, t∗). B2 terminates by outputting a guessing bit b for b2.

Let Exp(b1, b2) be the event that B outputs 1 in the above game.

Lemma 3. B’s advantage in winning the IND-TR-CCAOS game is equal to

1

2
|Pr[Exp(0, 0)] − Pr[Exp(1, 1)]|
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Proof. In an IND-TR-CCAOS attack game, the attacker’s advantage is defined
to be |Pr[b = b′]− 1

2 |, where b is the bit randomly selected by the challenger in
constructing the challenge ciphertext, and b′ is the bit output by the attacker
at the end of the game. The probability Pr[b = b′] can be computed as:

Pr[b = b′] = Pr[b = b′|b = 0]Pr[b = 0] + Pr[b = b′|b = 1]Pr[b = 1]

=
1

2
Pr[b′ = 0|b = 0] +

1

2
Pr[b′ = 1|b = 1]

=
1

2
(1 − Pr[b′ = 1|b = 0] + Pr[b′ = 1|b = 1])

=
1

2
+

1

2
(Pr[b′ = 1|b = 1] − Pr[b′ = 1|b = 0])

However, by inspection of the game which defines the event Exp(b1, b2), it is
clear that

Pr[b′ = 1|b = 0] = Pr[Exp(0, 0)] and Pr[b′ = 1|b = 1] = Pr[Exp(1, 1)].

Therefore, the result holds.

We note, by the triangle inequality, that we have that B’s advantage is
bounded by

1

2
|Pr[Exp(0, 0)] − Pr[Exp(0, 1)]| +

1

2
|Pr[Exp(0, 1)] − Pr[Exp(1, 1)]|

Lemma 4. If E is an IND-TR-CCAOS secure TRE-PC scheme, then

|Pr[Exp(0, 0)] − Pr[Exp(0, 1)]|

is negligible as a function of the security parameter 1ℓ.

Proof. We show that there exists an IND-TR-CCAOS attacker A = (A1,A2)
for E, which makes use of B as a subroutine, that has advantage

1

2
|Pr[Exp(0, 0)] − Pr[Exp(0, 1)]| .

Hence, we will be able to conclude that |Pr[Exp(0, 0)] − Pr[Exp(0, 1)]| is neg-
ligible as E is IND-TR-CCAOS secure.

The attacker A1 is defined as follows:

1. A1 receives the public parameters param and the public key pk′
r.

2. A1 computes an encryption key pair (pk, sk) = K(1ℓ).

3. A1 sets param′ = (param, pk).

4. A1 executes B1 on the input pk′
r and param′.
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• If B1 makes a extraction oracle query for a time t, then A1 makes a
similar query to its own extraction oracle and returns the timestamp
TSt to B1.

• If B1 queries the Dec′RK oracle with the ciphertext C = (C1, C2) and
the pre-open key VC , then A1 queries its DecRK oracle on (C2, VC).
It receives C′

1||m from the oracle. If C′
1 6= C1 then A1 returns ⊥ to

B1. Otherwise A1 returns the message m to B1.

• If B1 queries the Dec′PK oracle with the ciphertext C = (C1, C2)
and for the time t, then A1 queries its DecPK oracle on (C2, t). It
receives C′

1||m from the oracle. If C′
1 6= C1 then A1 returns ⊥ to B1.

Otherwise A1 returns the message m to B1.

B1 terminates by outputting two equal length messages m0 and m1, and
some state information state′.

5. A1 computes C∗
1 = E(pk, m0).

6. A1 terminates by outputting the messages C∗
1 ||m0 and C∗

1 ||m1, a release
time t∗ and the state information state = (state′, C∗

1 , pk, sk).

The challenger will then randomly choose a bit b2 ∈ {0, 1} and compute the
challenge TRE-PC encryption (C∗

2 , VC∗) = Enc(mb2 , t
∗, pkr). The attacker A2

is defined as follows:

1. A2 receives the challenge ciphertext C∗
2 , the challenge pre-open key VC∗

and the state information state = (state′, C∗
1 , pk, sk). It sets C∗ = (C∗

1 , C∗
2 ).

2. A2 executes B2 on the input (C∗, VC∗ , state′).

• If B2 makes a extraction oracle query for a time t, then A2 makes a
similar query to its own extraction oracle and returns the timestamp
TSt to B2.

• If B2 queries the Dec′RK oracle with the ciphertext C = (C1, C2) and
the pre-open key VC , then

– If C2 = C∗
2 and VC = VC∗ then A2 returns ⊥ to B2.

– Otherwise A2 queries its DecRK oracle on (C2, VC). It receives
C′

1||m from the oracle. If C′
1 6= C1 then A2 returns ⊥ to B2.

Otherwise A2 returns the message m to B2.

• If B2 queries the Dec′PK oracle with the ciphertext C = (C1, C2) and
for the time t, then

– If C2 = C∗
2 and t = t∗ then A2 returns ⊥ to B2.

– Otherwise A2 queries its DecPK oracle on (C2, t). It receives
C′

1||m from the oracle. If C′
1 6= C1 then A2 returns ⊥ to B2.

Otherwise A2 returns the message m to B2.

B2 eventually terminates by outputting a bit b′.
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3. A2 terminates by outputting the bit b′.

It is clear to see that the decryption oracles that A provides perfectly simulate
the decryption oracles for B providing that A2 does not incorrectly respond ⊥
for a ciphertext (C1, C2). There are two case in which this might occur:

• If B2 makes a DecRK query on a ciphertext (C1, C2) with C1 6= C∗
1 , C2 = C∗

2

and VC = VC∗ .

• If B2 makes a DecPK query on a ciphertext (C1, C2) with C1 6= C∗
1 , C2 = C∗

2

and t = t∗.

In either case, we would recover C∗
1 ||mb2 after we apply the TRE-PC decryption

algorithm. Hence, the ciphertext is invalid because C1 6= C∗
1 . Hence, the

response of ⊥ is correct.
Therefore, A is a legitimate IND-TR-CCAOS attacker. Its advantage can

be defined as

1

2
|Pr[A outputs 1|b2 = 0] − Pr[A outputs 1|b2 = 1]| ,

and so this value is negligible as E is an IND-TR-CCAOS TRE-PC scheme.
However, this value is equal to

1

2
|Pr[Exp(0, 0)] − Pr[Exp(0, 1)]|

which proves the lemma.

Lemma 5. If (K, E ,D) is an IND-CPA secure encryption scheme, then

|Pr[Exp(0, 1)] − Pr[Exp(1, 1)]|

is negligible as a function of the security parameter 1ℓ.

Proof. We show that there exists an IND-CPA attacker A = (A1,A2) against
(K, E ,D), which makes use of B as a subroutine, that has advantage

1

2
|Pr[Exp(0, 1)] − Pr[Exp(1, 1)]| .

Hence, we conclude that |Pr[Exp(0, 1)]−Pr[Exp(1, 1)]| is negligible as (K, E ,D)
is IND-CPA secure.

The attacker A1 is defined as follows:

1. A1 receives the public key pk from the challenger.

2. A1 computes (param, mk) = Setup(1ℓ) and (pk′
r, sk

′
r) = Gen′U(1ℓ).

3. A1 sets param′ = (param, pk).

4. A1 executes B1 on the input of pk′
r and param′.

21



• If B1 makes an Ext′TS query for a time t, then A1 computes TSt =
ExtTS(mk, t) and returns TSt to B1.

• If B1 makes a DecRK query for a ciphertext C = (C1, C2) and a
pre-open key VC , then A1 computes C′

1||m = DecRK(C2, VC , skr). If
C′

1 6= C1 then A1 returns ⊥; otherwise A1 returns m to B1.

• If B1 makes a DecPK query for a ciphertext C = (C1, C2) and a release
time t, then A1 computes C′

1||m = DecPK(C2, TSt, skr). If C′
1 6= C1

then A1 returns ⊥; otherwise A1 returns m to B1.

B1 terminates by outputting two equal length messages m0 and m1, a
release time t∗ and some state information state′.

5. A1 terminates by outputting the messages m0 and m1, and some state
information state = (state′, pk, param, mk, pkr, skr, m0, m1, t

∗).

The challenger will then randomly choose a bit b1 ∈ {0, 1} and compute the
challenge public-key encryption C∗

1 = E(mb1 ). The attacker A2 is defined as
follows:

1. A2 receives the challenge ciphertext C∗
1 and the state information state =

(state′, pk, param, mk, pkr, skr, m0, m1, t
∗).

2. A2 computes (C∗
2 , VC∗) = Enc(C∗

1 ||m1, t
∗, pkr) and sets C∗ = (C∗

1 , C∗
2 ).

3. A2 executes B2 on the input (C∗, VC∗ , state′). If B2 makes any oracle
queries, then A2 answers them in exactly the same way as A1 would have
done. B2 terminates by outputting a bit b′.

4. A2 terminates by outputting the bit b′.

Clearly, for the same reasons as in the previous lemma, we have that A’s ad-
vantage is equal to 1

2 |Pr[Exp(0, 1)] − Exp(1, 1)]| and hence this value is negli-
gible.

This proves that E′ is IND-TR-CCAOS secure. Hence, it only remains to
show that E′ is not IND-TR-CPATS secure.

Lemma 6. E′ is not IND-TR-CPATS secure.

Proof. To prove the claim, we only need to show that the an IND-TR-CPATS
attacker has non-negligible advantage in attacking E′. The attack is quite easy:
Suppose that the challenge is (C∗, VC∗), where C∗ = (C∗

1 , C∗
2 ). Since the at-

tacker has access to sk, then it can immediately compute mb = Dsk(C∗
1 ), which

means it can succeed in guessing b with the probability 1. As a result, the
theorem gets proved.
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4.2 Relation between IND-TR-CCATS and IND-TR-CPAIS

We prove that IND-TR-CCATS =⇒\ IND-TR-CPAIS by the following theorem.

Theorem 3. If there exists an IND-TR-CCATS secure TRE-PC scheme E,
then there exists a TRE-PC scheme E′ which is IND-TR-CCATS secure but
not IND-TR-CPAIS secure.

Proof. Suppose that E = (Setup, GenU, ExtTS, Enc, DecRK, DecPK) is an IND-TR-
CCATS secure TRE-PC scheme and (K, E ,D) is an IND-CPA secure public key
encryption scheme. Consider the TRE-PC scheme E′ where the algorithms are
defined as follows.

1. The Setup′ algorithm takes a security parameter 1ℓ as input, and computes
the public/private parameters (param′, mk′) = Setup(1ℓ).

2. The Gen′U algorithm takes as input the public parameters param′, and
computes (pkr, skr) = GenU(1ℓ) and and (pk, sk) = K(1ℓ). The user’s
public key is defined to be pk′

r = (pkr, pk). The user’s private key is
defined to be sk′

r = (skr , sk).

3. The Ext′TS algorithm take as input mk′, and a release time t, and returns
ExtTS(mk′, t).

4. The Enc′ algorithm takes as input a message m, a release time t and the
receiver’s public key pk′

r, and returns a ciphertext C = (C1, C2) and a
pre-open key VC , where:

C1 = E(pk, m)

(C2, VC) = Enc(C1||m, t, pkr)

We assume that C1 is drawn from a prefix free set (such as a set of strings
of a fixed length) so that it may be recovered from the arbitrary bitstring
C1||m.

5. The Dec′RK algorithm takes as input a ciphertext C = (C1, C2), a pre-open
key VC , and a private key sk′

r, and computes

C′
1||m = DecRK(C2, VC , skr) .

If C′
1 6= C1, then the algorithm outputs ⊥. Otherwise it returns m.

6. The Dec′PK algorithm takes as input a ciphertext C = (C1, C2), a times-
tamp TSt, and a private key sk′

r, and computes

C′
1||m = DecPK(C2, TSt, skr) .

If C′
1 6= C1, then the algorithm outputs ⊥. Otherwise it returns m.
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It is easy to see that E′ is constructed in the same way as in the proof of
Theorem 2, except that (pk, sk) is possessed by the receiver instead of by the
trusted time server. Therefore, following exactly the same procedure as in the
proof of Theorem 2, we can prove that E′ is IND-TR-CCATS secure. Hence, it
only remains to show that E′ is not IND-TR-CPAIS secure.

Lemma 7. E′ is not IND-TR-CPAIS secure.

Proof. To prove the claim, we only need to show that the an IND-TR-CPATS
attacker has non-negligible advantage in attacking E′. The attack is quite easy:
Suppose that the challenge is C∗ = (C∗

1 , C∗
2 ). Since the attacker has access

to sk, then it can immediately compute mb = Dsk(C∗
1 ), which means it can

succeed in guessing b with the probability 1. As a result, the theorem gets
proved.

4.3 Relation between IND-TR-CPAIS and IND-TR-CPAOS

We prove that IND-TR-CPAIS =⇒\ IND-TR-CPAOS by the following theorem.

Theorem 4. If there exists an IND-TR-CPAIS secure TRE-PC scheme E,
then there exists a TRE-PC scheme E′ which is IND-TR-CPAIS secure but not
IND-TR-CPAOS secure.

Proof. Suppose that E = (Setup, GenU, ExtTS, Enc, DecRK, DecPK) is an IND-TR-
CPAIS secure TRE-PC scheme. Consider the TRE-PC scheme E′ where the
algorithms are defined as follows.

1. The algorithms Setup′, Gen′U, Ext′TS, Dec′PK are defined in the same way as
in E.

2. The Enc′ algorithm takes a message m, a release time t and the receiver’s
public key pk′

r as input, and returns a ciphertext C and a pre-open key
VC , where:

(C, V ′
C) = Enc(m, t, pk′

r)

VC = V ′
C ||m

We assume that V ′
C is drawn from a prefix free set (such as a set of strings

of a fixed length) so that it may be recovered from the arbitrary bitstring
V ′

C ||m.

3. The Dec′RK algorithm takes a ciphertext C, a pre-open key V ′
C ||m, and a

private key sk′
r as input, and returns DecRK(C, V ′

C , sk′
r).

The validity of this theorem lies in the following two lemmas.

Lemma 8. E′ is IND-TR-CPAIS secure.
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Proof. Suppose an IND-TR-CPAIS attacker B = (B1,B2) has the advantage δ

in attacking E′. We show that there exists an IND-TR-CPAIS attacker A =
(A1,A2) for E, which makes use of B as a subroutine, that also has advantage δ.
Hence, we will be able to conclude that δ is negligible as E is IND-TR-CPAIS
secure.

The attacker A1 is defined as follows:

1. A1 receives the public parameters param and the public/private key pair
(pkr, skr).

2. A1 sets param′ = param, pk′
r = pkr, and sk′

r = sk.

3. A1 executes B1 on the input pk′
r, sk′

r, and param′. If B1 makes a extrac-
tion oracle query for a time t, then A1 makes a similar query to its own
extraction oracle and returns the timestamp TSt to B1. B1 terminates by
outputting two equal length messages m0 and m1, a release time t∗, and
some state information state′.

4. A1 terminates by outputting the messages m0 and m1, a release time t∗,
and the state information state = state′.

The challenger will then randomly choose a bit b ∈ {0, 1} and compute the
challenge TRE-PC encryption C∗, where (C∗, VC∗) = Enc(mb, t

∗, pkr). The
attacker A2 is defined as follows:

1. A2 receives the challenge ciphertext C∗ and the state information state.

2. A2 executes B2 on the input (C∗, state). If B2 makes a extraction oracle
query for a time t < t∗, then A2 makes a similar query to its own extraction
oracle and returns the timestamp TSt to B2. B2 eventually terminates by
outputting a bit b′.

3. A2 terminates by outputting the bit b′.

It is clear to see that A provides perfect simulation for the oracles for B may
query, A is a legitimate IND-TR-CPAIS attacker, and A’s advantage equals to
δ. Since E is an IND-TR-CPAIS TRE-PC scheme, then δ should be negligible,
which proves the lemma.

Lemma 9. E′ is not IND-TR-CPAOS secure.

Proof. It is clear to see that an IND-TR-CPAOS attacker can identify the
random bit chosen by the challenger with the probability 1, because the pre-
open key always contains the plaintext. As a result, this lemma is valid. As
a result, the theorem gets proved.
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4.4 Relation between IND-TR-CCATS and Soundness

We prove that “IND-TR-CCATS =⇒\ Soundness” by the following theorem.

Theorem 5. If there exists an IND-TR-CCATS secure TRE-PC scheme E,
then there exists a TRE-PC scheme E′ which is IND-TR-CCATS secure but
not sound.

Proof. Suppose that E = (Setup, GenU, ExtTS, Enc, DecRK, DecPK) is an IND-TR-
CCATS secure TRE-PC scheme. Consider the TRE-PC scheme E′ where the
algorithms are defined as follows.

1. The algorithms Setup′, Gen′U, Ext′TS, Enc′ are defined in the same way as in
E.

2. The algorithm Dec′RK is defined in the same way as DecRK, except that it
returns a random message from the plaintext space when DecRK returns
⊥.

3. The algorithm Dec′PK is defined in the same way as DecPK, except that it
returns a random message from the plaintext space when DecPK returns
⊥.

The validity of this theorem lies in the following two lemmas.

Lemma 10. E′ is IND-TR-CCATS secure.

Proof. Suppose an IND-TR-CCATS attacker B = (B1,B2) has the advantage
δ in attacking E′. We show that there exists an IND-TR-CCATS attacker
A = (A1,A2) for E, which makes use of B as a subroutine, that also has
advantage δ. Hence, we will be able to conclude that δ is negligible as E is
IND-TR-CCATS secure.

The attacker A1 is defined as follows:

1. A1 receives the public parameters param, the public key pkr, and the
master key mk.

2. A1 sets param′ = param, pk′
r = pkr, and mk′ = mk.

3. A1 executes B1 on the input of mk′, pk′
r, and param′.

• If B1 queries the Dec′RK oracle with the ciphertext C and the pre-open
key VC , then A1 queries its DecRK oracle on (C, VC). It receives m′

from the oracle. If m′ =⊥ then A1 returns a random message from
the plaintext space to B1. Otherwise A1 returns the message m′ to
B1.

• If B1 queries the Dec′PK oracle with the ciphertext C and for the time
t, then A1 queries its DecPK oracle on (C, t). It receives m′ from
the oracle. If m′ =⊥ then A1 returns a random message from the
plaintext space to B1. Otherwise A1 returns the message m′ to B1.
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B1 terminates by outputting two equal length messages m0 and m1, a
release time t∗, and some state information state′.

4. A1 terminates by outputting the messages m0 and m1, a release time t∗,
and the state information state = state′.

The challenger will then randomly choose a bit b ∈ {0, 1} and compute the
challenge TRE-PC encryption (C∗, VC∗) = Enc(mb, t

∗, pkr). The attacker A2

is defined as follows:

1. A2 receives the challenge ciphertext C∗, the challenge pre-open key VC∗

and the state information state.

2. A2 executes B2 on the input (C∗, VC∗ , state).

• If B2 queries the Dec′RK oracle with the ciphertext C = (C1, C2) and
the pre-open key VC , then A2 queries its DecRK oracle on (C, VC).
Suppose A2 receives m′ as the response. If m′ =⊥ then A2 returns
a random message from the plaintext space to B2. Otherwise A2

returns the message m′ to B2.

• If B2 queries the Dec′PK oracle with the ciphertext C = (C1, C2) and
for the time t, then A2 queries its DecPK oracle on (C, t). Suppose
A2 receives m′ as the response. If m′ =⊥ then A2 returns a random
message from the plaintext space to B2. Otherwise A2 returns the
message m′ to B2.

B2 eventually terminates by outputting a bit b′.

3. A2 terminates by outputting the bit b′.

It is clear to see that A provides perfect simulation for the oracles that B may
query, A is a legitimate IND-TR-CCATS attacker, and A’s advantage equals
to δ. Since E is an IND-TR-CCATS secure TRE-PC scheme, then δ should be
negligible, which proves the lemma.

Lemma 11. E′ is not sound.

Proof. We first construct a two-stage algorithm A = (A1,A2), and then then
construct a soundness attacker A′ for E′. The sub-algorithms A1 and A2 are
defined as follows:

1. A1 takes (pkr, param) as input, where pkr is a string from the same space
as pk′

r and param is a string from the same space as param′, and returns
(m0, m1, t

∗), where m0 and m1 are two equal length messages randomly
chosen from the plaintext space of E′ and t∗ = 2.

2. A2 takes (m0, m1, C, VC) as input, where C is from the ciphertext space
of E′, VC is from the pre-open key space of E′. A2 sets t† = 1 and makes
a Dec′PK query on the input of (C, t†). If A2 receives m† as the response,
then it terminates by outputting a bit b′ which is defined as follows: b′ = i

if m† = mi (0 ≤ i ≤ 1); otherwise, b′ is set to be a random bit.
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The attacker A′ is defined as follows. A′ receives (pk′
r, param′) from the

challenger, then

1. Run A1 on the input of (pk′
r, param′) and get the output (m0, m1, t

∗),

2. Select a random bit b ∈ {0, 1} and compute (C∗, VC∗) = Enc(mb, t
∗, pk′

r),

3. Run A2 on the input of (m0, m1, C
∗, VC∗),

4. On receiving A2’s Dec′PK query, make a Dec′PK query to its own oracle on
the input of (C∗, t†), return the output to A2,

5. Get the output b′ from A2 and terminate by outputting (C∗, VC∗ , t†).

From the description, it is clear that A′ is a legitimate soundness attacker,
A′’s advantage can be denoted as δ = Pr[m† 6= mb], and |Pr[b = b′] − 1

2 | is
negligible because E′ is also IND-TR-CCATS secure.

Let E1 and E2 be the events that m† = mb and m† = mb̄ respectively, where
b̄ = |b− 1|. Let E3 be the event that neither E1 nor E2 occurs. The probability
Pr[b = b′] can be denoted as follows:

Pr[b = b′] =

3∑

i=1

Pr[Ei]Pr[b = b′|Ei] (1)

= Pr[E1] +
1

2
Pr[E3] (2)

= 1 − Pr[E2] −
1

2
Pr[E3] (3)

Note that the reduction from (1) to (2) is based on the fact that Pr[b = b′|E1] =
1, P r[b = b′|E2] = 0, P r[b = b′|E3] = 1

2 , while the reduction from (2) to (3) is

based on the fact that
∑3

i=1 Pr[Ei] = 1.
As a result, |Pr[b = b′] − 1

2 | is negligible implies that |12 − δ′|, where δ′ =
Pr[E2] + 1

2Pr[E3], is negligible, and therefore δ′ is non-negligible. Since δ =
Pr[E2] + Pr[E3] ≥ Pr[E2] + 1

2Pr[E3] = δ′, then it is clear that δ is also non-
negligible and the lemma is valid.

Combining the results in the previous lemmas, the theorem gets proved.

4.5 Relation between Soundness and IND-TR-CPAOS

We prove that “Soundness =⇒\ IND-TR-CPAOS” by the following theorem.

Theorem 6. There exists a TRE-PC scheme E which is sound but not IND-
TR-CPAOS secure.

Proof. Consider the following TRE-PC scheme E where the algorithms are
defined as follows.

1. The Setup algorithm takes a security parameter 1ℓ as input, and sets the
master key mk = 1 and the public parameters param = 1.
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2. The GenU algorithm takes a security parameter 1ℓ as input, and sets a
public/private key pair (pkr, skr), where pkr = skr = 1. The plaintext
and ciphertext space is denoted as {0, 1}k

3. The ExtTS algorithm take mk and a release time t as input, and returns
TSt = 1.

4. The Enc algorithm takes a message m, a release time t and the receiver’s
public key pkr as input, and returns a ciphertext C = m and a pre-open
key VC = 1.

5. The DecRK algorithm takes a ciphertext C, a pre-open key VC , and a
private key skr as input, and returns m = C.

6. The DecPK algorithm takes as input a ciphertext C, a timestamp TSt, and
a private key skr, and returns m = C.

From the description, it is easy to see that E is sound but not not IND-TR-
CPAOS secure. As a result, the theorem gets proved.

It is clear that this scheme is also not IND-TR-CPAIS secure.

4.6 Relations between IND-TR-CPAIS and Soundness

We prove that “IND-TR-CPAIS =⇒\ Soundness” by the following theorem.

Theorem 7. If there exists an IND-TR-CPAIS secure TRE-PC scheme E,
then there exists a TRE-PC scheme E′ which is IND-TR-CPAIS secure but not
sound.

Proof. Suppose that E = (Setup, GenU, ExtTS, Enc, DecRK, DecPK) is an IND-TR-
CPAIS secure TRE-PC scheme. Consider the TRE-PC scheme E′ where the
algorithms are defined as follows.

1. The algorithms Setup′, Gen′U, Ext′TS, Enc′ are defined in the same way as in
E.

2. The algorithm Dec′RK is defined in the same way as DecRK, except that it
returns a random message from the plaintext space when DecRK returns
⊥.

3. The algorithm Dec′PK is defined in the same way as DecPK, except that it
returns a random message from the plaintext space when DecPK returns
⊥.

The validity of this theorem lies in the following two lemmas.

Lemma 12. E′ is IND-TR-CPAIS secure.
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Proof. Suppose an IND-TR-CPAIS attacker B = (B1,B2) has the advantage δ

in attacking E′. We show that there exists an IND-TR-CPAIS attacker A =
(A1,A2) for E, which makes use of B as a subroutine, that also has advantage δ.
Hence, we will be able to conclude that δ is negligible as E is IND-TR-CPAIS
secure.

The attacker A1 is defined as follows:

1. A1 receives the public parameters param, the public key pkr, and the
private key skr.

2. A1 sets param′ = param, pk′
r = pkr, and sk′

r = skr.

3. A1 executes B1 on the input of pk′
r, sk′

r, and param′. If B1 makes a
extraction oracle query for a time t, then A1 makes a similar query to its
own extraction oracle and returns the timestamp TSt to B1. B1 terminates
by outputting two equal length messages m0 and m1, a release time t∗,
and some state information state′.

4. A1 terminates by outputting the messages m0 and m1, a release time t∗,
and the state information state = state′.

The challenger will then randomly choose a bit b ∈ {0, 1} and compute the
challenge TRE-PC encryption C∗, where (C∗, VC∗) = Enc(mb, t

∗, pkr). The
attacker A2 is defined as follows:

1. A2 receives the challenge ciphertext C∗ and the state information state.

2. A2 executes B2 on the input (C∗, state). If B2 makes a extraction oracle
query for a time t < t∗, then A2 makes a similar query to its own extraction
oracle and returns the timestamp TSt to B2. B2 eventually terminates by
outputting a bit b′.

3. A2 terminates by outputting the bit b′.

It is clear to see that A provides perfect simulation for the oracles that B may
query, A is a legitimate IND-TR-CPAIS attacker, and A’s advantage equals to
δ. Since E is an IND-TR-CPAIS secure TRE-PC scheme, then δ should be
negligible, which proves the lemma.

Lemma 13. E′ is not sound.

Proof. The proof of this lemma is based on the fact that if E′ is IND-TR-
CPAIS secure then a polynomial-time attacker B = (B1,B2) only has negligible
advantage in the following game.

1. Game setup: The challenger runs Setup′ to generate the time server’s
master key mk′ and the public system parameters param′. The challenger
also runs Gen′U to generate a public/private key pair (pk′

r, sk
′
r).
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2. Phase 1: The attacker runs B1 on the input (pk′
r, param′). B1 has access

to the following types of oracles:

• Ext′TS oracle, which, on receiving a query for time t, returns Ext′TS(mk, t).

• Dec′RK oracle, which, on receiving a query for (C, VC), returns Dec′RK(C, VC , sk′
r).

• Dec′PK oracle, which, on receiving a query for (C, t), returns Dec′PK(C, TSt, sk
′
r).

B1 terminates by outputting two equal length messages m0, m1 and a
release time t∗ which is larger than all the inputs to the Ext′TS oracle. In
addition, B1 also outputs some state information state.

3. Challenge: The challenger picks a random bit d ∈ {0, 1}, computes (C∗, VC∗) =
Enc(md, t

∗, pk′
r), and returns C∗.

4. Phase 2: The attacker runs B2 on the input (C∗, state). B2 has access to
the same types of oracles as B1. However, B2 may not make a Ext′TS query
on a time t ≥ t∗ or a Dec′PK query on the input (C, t), where t ≥ t∗. B2

terminates by outputting a guessing bit d′ ∈ {0, 1}.

In this attack game, instead of taking the private key sk′
r as an input as

required by a legitimate IND-TR-CPAIS attack game, the attacker is granted
access to the decryption oracles. Since E′ is IND-TR-CPAIS secure, it is easy
to see that the attacker’s advantage in the above game (i.e. |Pr[d′ = d]− 1

2 |) is
negligible.

Then we can construct a soundness attacker A′ and an algorithm A identical
to those in the proof of Lemma 11. The proof is also exactly the same as that of
Lemma 11, except that in this case the probability |Pr[b = b′]− 1

2 | is negligible
because B only has negligible advantage in the above game.

5 KEM, DEM, and TRE-PC-KEM

In this section, we first review the security definitions for KEM and DEM, and
then introduce concepts and security definitions for TRE-PC-KEM which can
be thought of as combining the functionality of a KEM and a TRE-PC scheme.

5.1 Preliminaries of KEM and DEM

A KEM consists of the following three algorithms:

• A probabilistic, polynomial-time key generation algorithm KEM.Gen that
on input of a security parameter 1ℓ (ℓ ≥ 1), outputs a public/private key
pair (pkr, skr).

• A probabilistic, polynomial-time encapsulation algorithm KEM.Encap, which,
on the input of a public key pkr, outputs a pair (K, C), where K is a sym-
metric key and C is a ciphertext.
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• A deterministic, polynomial-time decapsulation algorithm KEM.Decap,
which, on the input a ciphertext C and a private key skr, outputs ei-
ther a symmetric key K or an error message ⊥.

We assume that the range of possible keys K is some set of fixed length bi-
nary strings, {0, 1}KeyLen(ℓ), where KeyLen is polynomial-time computable. The
formal definitions for the securities of a KEM against an adaptive chosen ci-
phertext attack and a passive attack are as follows.

Definition 10. A KEM is defined to be secure against an adaptive chosen
ciphertext attack (IND-CCA2 secure), if any two-stage polynomial-time attacker
A = (A1,A2) only has negligible advantage in the following game.

1. Game setup: The challenger runs KEM.Gen on the input of a security
parameter 1ℓ to generate a public/private key pair (pkr , skr).

2. Phase 1: The attacker runs A1 on the input of pkr. During its execution,
A1 has access to a decapsulation oracle, which, on the input of C, returns
KEM.Decap(C, skr). A1 terminates by outputting some state information
state.

3. Challenge: The challenger generates a challenge encapsulated pair as fol-
lows:

(a) The challenger generates an encapsulated pair (K0, C
∗) = KEM.Encap(pk).

(b) The challenger randomly selects K1 ∈ {0, 1}KeyLen(ℓ).

(c) The challenger randomly selects a bit b ∈ {0, 1}, and returns (Kb, C
∗).

4. Phase 2: The attacker runs A2 on the input of (Kb, C
∗, state). During

its execution, A2 has access to the decapsulation oracle. But A2 may not
make a query on the input C∗. A2 terminates by outputting a guessing
bit b′.

In this attack game, the attacker’s advantage is defined to be |Pr[b′ = b]− 1
2 |.

Definition 11. A KEM is defined to be secure against a passive attack (IND-
CPA secure) if it is IND-CCA2 secure against attackers that make no decapsu-
lation queries.

A DEM consists of the following two algorithms:

• A deterministic, polynomial-time encryption algorithm DEM.Enc, which,
on the input a message m and a symmetric key K, outputs a ciphertext
C.

• A deterministic, polynomial-time decryption algorithm DEM.Dec, which,
on the input a ciphertext C and a symmetric key K, outputs a message
m or an error message ⊥.
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We assume that the range of possible keys K is the same as that of the
associated KEM, i.e., {0, 1}KeyLen(ℓ). The formal definitions for the securities of
a DEM against an adaptive chosen ciphertext attack and a passive attack are
as follows.

Definition 12. A DEM is defined to be secure against an adaptive chosen
ciphertext attack (IND-CCA2 secure), if a two-stage polynomial-time attacker
A = (A1,A2) only has negligible advantage in the following game.

1. Phase 1: The attacker runs A1. At some point, A1 terminates by out-
putting two equal length messages m0 and m1. In addition, A1 also out-
puts some state information state.

2. Challenge: The challenger randomly selects a bit b ∈ {0, 1} and a sym-
metric key K ∈ {0, 1}KeyLen(ℓ), and returns C∗ = DEM.Enc(mb, K).

3. Phase 2: The attacker runs A2 on the input of (C∗, state). During its
execution, A2 has access to the decryption oracle, which, on the input of
C, returns DEM.Dec(C, K). But A2 may not make a query on the input
C∗. A2 terminates by outputting a guessing bit b′.

In this attack game, the attacker’s advantage is defined to be |Pr[b′ = b]− 1
2 |.

Definition 13. A DEM is defined to be secure against a passive attack (IND-
CPA secure) if it is IND-CCA2 secure against attackers that make no decapsu-
lation query.

5.2 Definition of TRE-PC-KEM

In this subsection, we define TRE-PC-KEM, which is a special type of KEM
with timed-release and pre-open capabilities. A TRE-PC-KEM consists of the
following polynomial-time algorithms:

• TRE-PC-KEM.Setup: Run by the time server, this setup algorithm takes a
security parameter 1ℓ as input, and generates a secret master-key mk and
the public parameters param. We assume that all subsequent algorithms
take param implicitly as an input

• TRE-PC-KEM.ExtTS: Run by the time server, this timestamp extraction
algorithm takes mk and a time t as input, and generates a timestamp TSt.

• TRE-PC-KEM.Gen: Run by a user, this key generation algorithm takes
a security parameter 1ℓ as input, and outputs a public/private key pair
(pkr, skr).

• TRE-PC-KEM.Encap: Run by the message sender, this key encapsulation
algorithm takes a release time t and a public key pkr as input, and outputs
(K, C, VC), where K is a symmetric key, C is a ciphertext, VC is the pre-
open key of C.
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• TRE-PC-KEM.DecapRK: Run by the receiver, this decapsulation algorithm
takes a ciphertext C, a pre-open key VC , and the receiver’s private key skr

as input, and returns either the encapsulated key K or an error message
⊥.

• TRE-PC-KEM.DecapPK: Run by the receiver, this decryption algorithm
takes a ciphertext C, a timestamp TSt which is determined by the release
time accompanied with C, and the receiver’s private key skr as input, and
returns either the encapsulated key K or an error message ⊥.

It should be noted that param is defaulted to be the input of all the algo-
rithms except for TRE-PC-KEM.Setup.

5.3 Security definitions

For a TRE-PC-KEM, we consider the same types of attackers as a TRE-PC
scheme, and correspondingly we have the following security definitions.

5.3.1 Soundness of TRE-PC-KEM

Definition 14. A TRE-PC-KEM is sound if any polynomial-time attacker A
only has a negligible probability of winning the following game.

1. Game setup: The challenger runs TRE-PC-KEM.Setup to generate the
time server’s master key mk and the public parameters param. The chal-
lenger also runs TRE-PC-KEM.Gen to generate a public/private key pair
(pkr, skr).

2. Challenge: The attacker A runs on the input (pkr, param). At some point,
A generates a ciphertext C∗ for release at t∗ and a pre-open key VC∗ , and
then terminates by outputting (C∗, t∗, VC∗). During its execution, A has
access to the following oracles:

• TRE-PC-KEM.ExtTS oracle, which, on receiving a query for time t,
returns TRE-PC-KEM.ExtTS(mk, t).

• TRE-PC-KEM.DecapRK oracle, which, on receiving a query for (C, V ′
C),

returns TRE-PC-KEM.DecapRK(C, V ′
C , skr). It should be noted that

C and V ′
C may have no relationship with each other, i.e. V ′

C may not
be the pre-open key of C.

• TRE-PC-KEM.DecapPK oracle, which, on receiving a query for (C, t′),
returns TRE-PC-KEM.DecapPK(C, TSt′ , skr). It should be noted that
t′ may not be the release time of C,

In this game A wins if O1 6=⊥, O2 6=⊥, and O1 6= O2, where

O1 = TRE-PC-KEM.DecapRK(C∗, VC∗ , skr),

O2 = TRE-PC-KEM.DecapPK(C∗, TSt∗ , skr).
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5.3.2 Security against malicious outsiders

We define the securities of a TRE-PC-KEM against outside attackers which
do not know the time server’s master key. Specifically, we define the security
under an adaptive chosen ciphertext attack (IND-TR-KEM-CCAOS security)
and the security under an adaptive chosen plaintext attack (IND-TR-KEM-
CPAOS security).

Definition 15. A TRE-PC-KEM is IND-TR-KEM-CCAOS secure if any two-
stage polynomial-time attacker A = (A1,A2) only has negligible advantage in
the following game.

1. Game setup: The challenger runs TRE-PC-KEM.Setup to generate the
time server’s master key mk and the public parameters param. The chal-
lenger also runs TRE-PC-KEM.Gen to generate a public/private key pair
(pkr, skr).

2. Phase 1: The attacker runs A1 on the input (pkr, param). A1 has access
to the following oracles.

• TRE-PC-KEM.ExtTS oracle, which, on receiving a query for time t,
returns TRE-PC-KEM.ExtTS(mk, t).

• TRE-PC-KEM.DecapRK oracle, which, on receiving a query for (C, V ′
C),

returns TRE-PC-KEM.DecapRK(C, V ′
C , skr). It should be noted that

C and V ′
C may have no relationship with each other, i.e. V ′

C may not
be the pre-open key of C.

• TRE-PC-KEM.DecapPK oracle, which, on receiving a query for (C, t′),
returns TRE-PC-KEM.DecapPK(C, TSt′ , skr). It should be noted that
t′ need not be the legitimate release time for C.

A1 terminates by outputting a release time t∗ and some state information
state.

3. Challenge: The challenger generates the challenge as follows:

(a) The challenger computes (K0, C
∗, VC∗) = TRE-PC-KEM.Encap(t∗, pkr).

(b) The challenger randomly selects K1 ∈ {0, 1}KeyLen(ℓ).

(c) The challenger randomly selects a bit b ∈ {0, 1}, and returns (Kb, C
∗, VC∗).

4. Phase 2: The attacker runs A2 on the input (Kb, C
∗, VC∗ , state). A2 has

access to the same types of oracles as A1. However, A2 may not make a
TRE-PC-KEM.DecapPK query on the input (C∗, t∗) or a TRE-PC-KEM.DecapRK

query on the input (C∗, VC∗). A2 terminates by outputing a guessing bit
b′.

In this game the attacker’s advantage is defined to be |Pr[b = b′] − 1
2 |.

Definition 16. A TRE-PC-KEM is IND-TR-KEM-CPAOS secure if it is IND-
TR-KEM-CCAOS secure against attackers that make no decryption queries.
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5.3.3 Security against curious time server

In this subsection we define the security of a TRE-PC-KEM against the curi-
ous time server. Specifically, we define the security under an adaptive chosen
ciphertext attack (IND-TR-KEM-CCATS security) and the security under an
adaptive chosen plaintext attack (IND-TR-KEM-CPATS security).

Definition 17. A TRE-PC-KEM is IND-TR-KEM-CCATS secure if any two-
stage polynomial-time attacker A = (A1,A2) only has negligible advantage in
the following game.

1. Game setup: The challenger runs TRE-PC-KEM.Setup to generate the
time server’s master key mk and the public parameters param. The chal-
lenger also runs TRE-PC-KEM.Gen to generate a public/private key pair
(pkr, skr).

2. Phase 1: The attacker runs A1 on the input (mk, pkr, param). A1 has
access to the following oracles.

• TRE-PC-KEM.DecapRK oracle, which, on receiving a query for (C, V ′
C),

returns TRE-PC-KEM.DecapRK(C, V ′
C , skr). It should be noted that

C and V ′
C may have no relationship with each other, i.e. V ′

C may not
be the pre-open key of C.

• TRE-PC-KEM.DecapPK oracle, which, on receiving a query for (C, t′),
returns TRE-PC-KEM.DecapPK(C, TSt′ , skr). It should be noted that
t′ need not be the legitimate release time for C.

A1 terminates by outputting a release time t∗ and some state information
state.

3. Challenge: The challenger generates the challenge as follows:

(a) The challenger computes (K0, C
∗, VC∗) = TRE-PC-KEM.Encap(t∗, pkr).

(b) The challenger randomly selects K1 ∈ {0, 1}KeyLen(ℓ).

(c) The challenger randomly selects a bit b ∈ {0, 1}, and returns (Kb, C
∗, VC∗).

4. Phase 2: The attacker runs A2 on the input (Kb, C
∗, VC∗ , state). A2 has

access to the same types of oracles as A1. However, A2 may not make a
TRE-PC-KEM.DecapPK query on the input (C∗, t∗) or a TRE-PC-KEM.DecapRK

query on the input (C∗, VC∗). A2 terminates by outputing a guessing bit
b′.

In this game the attacker’s advantage is defined to be |Pr[b = b′] − 1
2 |.

Definition 18. A TRE-PC-KEM is IND-TR-KEM-CPATS secure if it is IND-
TR-KEM-CCATS secure against attackers that make no decryption queries.
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5.3.4 Security against malicious receiver

The security against the malicious receiver, i.e. IND-TR-KEM-CPAIS security,
is defined as follows.

Definition 19. A TRE-PC-KEM is IND-TR-KEM-CPAIS secure if any two-
stage polynomial-time attacker A = (A1,A2) only has negligible advantage in
the following game.

1. Game setup: The challenger runs TRE-PC-KEM.Setup to generate the
time server’s master key mk and the public parameters param. The chal-
lenger also runs TRE-PC-KEM.Gen to generate a public/private key pair
(pkr, skr).

2. Phase 1: The attacker runs A1 on the input (pkr, skr, param). A1 has ac-
cess to the TRE-PC-KEM.ExtTS oracle, which, on receiving a query for time
t, returns TRE-PC-KEM.ExtTS(mk, t). A1 terminates by outputting a re-
lease time t∗ which is larger than all the inputs to the TRE-PC-KEM.ExtTS

oracle and some state information state.

3. Challenge: The challenger generates the challenge as follows:

(a) The challenger computes (K0, C
∗, VC∗) = TRE-PC-KEM.Encap(t∗, pkr).

(b) The challenger randomly selects K1 ∈ {0, 1}KeyLen(ℓ).

(c) The challenger randomly selects a bit b, and returns (Kb, C
∗).

4. Phase 2: The attacker runs A2 on the input (Kb, C
∗, state). A2 has access

to the TRE-PC-KEM.ExtTS oracle on the input t < t∗. A2 eventually
terminates by outputting a guessing bit b′.

In this game the attacker’s advantage is defined to be |Pr[b = b′] − 1
2 |.

6 Constructing TRE-PC using TRE-PC-KEM

and DEM

In this section we first propose a method to build TRE-PC schemes using TRE-
PC-KEM and DEM, and then discuss the security of the proposed TRE-PC
scheme.

6.1 The Construction

The polynomial-time algorithms of the proposed TRE-PC scheme are defined
as follows.

• Setup algorithm is the same as the TRE-PC-KEM.Setup algorithm.

• GenU algorithm is the same as the TRE-PC-KEM.Gen algorithm.
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• ExtTS algorithm is the same as TRE-PC-KEM.ExtTS algorithm.

• Enc algorithm: Taking a message m, a release time t, and the receiver’s
public key pkr as input, this algorithm returns a ciphertext C = (C1, C2)
and a pre-open key VC , where

(K, C1, VC) = TRE-PC-KEM.Encap(t, pkr), C2 = DEM.Enc(m, K).

• DecRK algorithm: Taking a ciphertext C = (C1, C2), a pre-open key VC ,
and the private key skr as input, this algorithm first computes K, where

K = TRE-PC-KEM.DecapRK(C1, VC , skr).

If K =⊥, the algorithm returns ⊥. Otherwise, it returns m, where

m = DEM.Dec(C2, K),

• DecPK algorithm: Taking a ciphertext C = (C1, C2), the timestamp TSt,
and the private key skr as input, this algorithm first computes K, where

K = TRE-PC-KEM.DecapPK(C1, TSt, skr).

If K =⊥, the algorithm returns ⊥. Otherwise, it returns m, where

m = DEM.Dec(C2, K),

6.2 Security results

Theorem 8. If the TRE-PC-KEM is sound, then the TRE-PC scheme is sound.

Proof. Suppose A is a soundness attacker for the TRE-PC scheme. We construct
a soundness attacker A′ for the TRE-PC KEM which makes use of A as a
subroutine. The attacker A′ is defined as follows:

1. A′ receives the public key pkr and the public parameters param as input
and runs A on the input (pkr, param).

• If A makes an extraction oracle query for a time t, then A′ makes a
similar query to its own extraction oracle and returns the timestamp
TSt to A.

• If A queries the DecRK oracle with the ciphertext C = (C1, C2) and
the pre-open key VC , then A′ queries its KEM.DecapRK oracle on
(C1, VC). If it receives ⊥, A′ returns ⊥. Otherwise, if it receives K,
A′ returns DEM.Dec(C2, K) to A.

• If A queries the DecPK oracle with the ciphertext C = (C1, C2) and
for the time t, then A′ queries its KEM.DecapPK oracle on (C1, t). If
it receives ⊥, A′ returns ⊥. Otherwise, if it receives K, A′ returns
DEM.Dec(C2, K) to A.
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A terminates by outputting (C∗, VC∗ , t∗), where C∗ = (C∗
1 , C∗

2 ).

2. A′ terminates by outputting (C∗
1 , VC∗ , t∗).

It is easy to see that A′ is a legitimate soundness attacker for the TRE-PC
KEM and provides perfect simulation for the oracles that A may query. Now,
suppose that A returns values (C∗

1 , C∗
2 , VC∗ , t∗) such that

⊥6= DecRK(C∗, VC∗ , skr) 6= DecPK(C∗, TSt∗, skr) 6=⊥ .

Then we must have that

KEM.DecapRK(C∗
1 , VC∗ , skr) 6=⊥ KEM.DecapPK(C∗

1 , TSt∗ , skr) 6=⊥
KEM.DecapRK(C∗

1 , VC∗ , skr) 6= KEM.DecapPK(C∗
1 , TSt∗ , skr) .

The latter conditions comes from the fact that if KEM.DecapRK(C∗
1 , VC∗ , skr) =

KEM.DecapPK(C∗
1 , TSt∗ , skr) = K then

DecRK(C∗, VC∗ , skr) = DEM.Dec(C∗
2 , K) = DecPK(C∗, TSt∗, skr) .

So, if A breaks the TRE-PC scheme, then A′ breaks the TRE-PC KEM. How-
ever, the probability that A′ breaks the TRE-PC KEM is negligible, and so we
may deduce that the probability that A breaks the TRE-PC scheme is negligible,
and that the TRE-PC scheme is sound.

Theorem 9. If the TRE-PC-KEM is IND-TR-KEM-CCAOS secure and the
DEM is IND-CCA2 secure, then the TRE-PC scheme is IND-TR-CCAOS se-
cure.

Proof. We prove the theorem through a sequence of games. Firstly, the legiti-
mate IND-TR-CCAOS attack game is described as follows.

1. Game Setup: The challenger runs Setup to generate the time server’s
master key mk and the public parameters param. The challenger also
runs GenU to generate a public/private key pair (pkr, skr).

2. Phase 1: The attacker executes A1 on the input (pkr, param). A1 has
access to the following oracles:

• ExtTS oracle, which takes as input a release time t, returns ExtTS(mk, t).

• DecRK oracle, which takes as input a ciphertext C and a pre-open
key VC , returns DecRK(C, VC , skr).

• DecPK oracle, which takes as input a ciphertext C and a release time
t, returns DecPK(C, TSt, skr).

A1 terminates by outputting two equal length message m0 and m1, a
release time t∗ and some state information state.
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3. Challenge: The challenger returns C∗ = (C∗
1 , C∗

2 ) and a pre-open key VC∗ ,
which are computed in two steps:

(a) Compute (K∗, C∗
1 , VC∗) = TRE-PC-KEM.Encap(t∗, pkr),

(b) Compute C∗
2 = DEM.Enc(mb, K

∗).

4. Phase 2: The attacker executes A2 on the input (C∗, VC∗ , state). A2 has
access to the same types of oracles as A1. However, A2 may not query
the DecRK oracle on the input (C∗, VC∗) or the DecPK oracle on the input
(C∗, t∗). A2 terminates by outputting a guessing bit b′.

Let Game0 denote this legitimate game and E0 be the event that b = b′ at the
end of the game.

Secondly, consider a new game Game1 which is essentially identical to Game0,
except for the following changes.

1. In the Challenge phase, the challenger returns C∗ = (C∗
1 , C∗

2 ) and a pre-
open key VC∗ , which are computed as follows:

(a) Compute (K∗, C∗
1 , VC∗) = TRE-PC-KEM.Encap(t∗, pkr),

(b) Randomly select K† ∈ {0, 1}KeyLen(ℓ), compute C∗
2 = DEM.Enc(mb, K

†).

2. In Phase 2, on receiving a DecRK query on the input (C, VC ), where C =
(C∗

1 , C2), C2 6= C∗
2 , and VC = VC∗ , the challenger returns DEM.Dec(C2, K

†).

3. In Phase 2, on receiving a DecPK query on the input (C, t), where C =
(C∗

1 , C2), C2 6= C∗
2 , and t = t∗, the challenger returns DEM.Dec(C2, K

†).

Let E1 be the event that b = b′ at the end of Game1. The following lemma
shows that |Pr[E0] − Pr[E1]| is negligible.

Lemma 14. |Pr[E0] − Pr[E1]| is negligible if the TRE-PC-KEM is IND-TR-
KEM-CCAOS secure.

Proof. We construct an IND-TR-KEM-CCAOS attacker A′ = (A′
1,A

′
2) for

the TRE-PC-KEM, which makes use of an IND-TR-CCAOS attacker A as a
subroutine, has the advantage 1

2 |Pr[E0] − Pr[E1]|. Hence, we will be able to
conclude that |Pr[E0]−Pr[E1]| is negligible as the TRE-PC-KEM is IND-TR-
KEM-CCAOS secure.

A′ takes (pkr, param), which is generated by the challenger as input, and
consists of two sub-algorithms: A′

1 and A′
2, where

1. A′
1 executes A1 on the input (pkr, param) and answers A1’s oracle queries

as follows.

• If A1 makes an extraction oracle query for a time t, then A′
1 makes a

similar query to its own extraction oracle and returns the timestamp
TSt to A1.
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• If A1 queries the DecRK oracle with the ciphertext C = (C1, C2)
and the pre-open key VC , then A′

1 queries its TRE-PC-KEM.DecapRK

oracle on (C1, VC). If it receives ⊥, A′
1 returns ⊥. Otherwise, if it

receives K, A′
1 returns DEM.Dec(C2, K) to A1.

• If A1 queries the DecPK oracle with the ciphertext C = (C1, C2) and
for the time t, then A′

1 queries its TRE-PC-KEM.DecapPK oracle on
(C1, t). If it receives ⊥, A′

1 returns ⊥. Otherwise, if it receives K,
A′

1 returns DEM.Dec(C2, K) to A1.

Suppose A1 terminates by outputting two equal length messages m0 and
m1, a release time t∗, and some state information state. A′

1 terminates
by outputting t∗, and the state information state′ = (state, m0, m1).

2. A′
2 takes (Kb, C

∗
1 , VC∗ , state′) as input, where (Kb, C

∗
1 , VC∗) is the chal-

lenge for the TRE-PC-KEM. A′
2 computes C∗

2 = DEM.Enc(md, Kb) where
d is randomly chosen from {0, 1}, and sets C∗ = (C∗

1 , C∗
2 ). A′

2 executes
A2 on the input (C∗, VC∗ , state) and answers A2’s oracle queries in the
same way as A′

1 except for the following two cases.

(a) If A2 queries the DecPK oracle on the input (C, VC), where C =
(C∗

1 , C2), C2 6= C∗
2 , and VC = VC∗ , A′

2 returns DEM.Dec(C2, Kb).

(b) If A2 queries the DecPK oracle on the input (C, t), where C = (C∗
1 , C2),

C2 6= C∗
2 , and t = t∗, A′

2 returns DEM.Dec(C2, Kb).

Suppose A2 eventually terminates by outputting a guessing bit d′, then
A′

2 terminates by outputting a guessing bit b′, where b′ = 1 if d′ = d and
b′ = 0 if d′ 6= d.

It is easy to see that A′ is a legitimate IND-TR-KEM-CCAOS attacker and
its advantage can be denoted as 1

2 |Pr[b′ = 1|b = 0] − Pr[b′ = 1|b = 1]|. If
b = 0, A′ provides perfect simulation for the oracles that an IND-TR-CCAOS
attacker may query in Game0, otherwise A′ provides perfect simulation for the
oracles that such an attacker may query in Game1. Therefore, Pr[b′ = 1|b =
0] = Pr[E0], Pr[b′ = 1|b = 1] = Pr[E1], and the lemma gets proved.

Finally, we show that |Pr[E1] −
1
2 | is negligible by the following lemma.

Lemma 15. |Pr[E1] −
1
2 | is negligible if the DEM is IND-CCA2 secure.

Proof. We construct an IND-CCA2 attacker A′ = (A′
1,A

′
2) for the DEM, which

makes use of an IND-TR-CCAOS attacker A as a subroutine, has the advantage
|Pr[E1] −

1
2 |. Hence, we will be able to conclude that |Pr[E1] −

1
2 | is negligible

as the DEM is IND-CCA2 secure.
A′ takes a security parameter 1ℓ as input and consists of two sub-algorithms:

A′
1 and A′

2, where

1. A′
1 takes 1ℓ as input, runs Setup to generate mk and param, and runs

GenU to generate the public/private key pair (pkr, skr). A′
1 executes A1

on the input (pkr, param) and answers A1’s oracle queries as follows.
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• If A1 makes an extraction oracle query for a time t, then A′
1 computes

and returns the timestamp TSt to A1.

• If A1 queries the DecRK oracle with the ciphertext C = (C1, C2) and
the pre-open key VC , then A′

1 computes K = TRE-PC-KEM.DecapRK(C1, VC).
If K =⊥, A′

1 returns ⊥; otherwise, returns DEM.Dec(C2, K) to A1.

• If A1 queries the DecPK oracle with the ciphertext C = (C1, C2) and
for the time t, then A′

1 computes K = TRE-PC-KEM.DecapPK(C1, t).
If K =⊥, A′

1 returns ⊥; otherwise, returns DEM.Dec(C2, K) to A1.

Suppose A1 terminates by outputting two equal length messages m0 and
m1, a release time t∗, and some state information state. A′

1 terminates
by outputting m0 and m1, and the state information state′ = (state, t∗).

2. A′
2 takes (C∗

2 , state′) as input, where C∗
2 is the challenge for the DEM.

A′
2 computes (K∗, C∗

1 , VC∗) = TRE-PC-KEM.Encap(t∗, pkr) and sets C∗ =
(C∗

1 , C∗
2 ). A′

2 executes A2 on the input (C∗, VC∗ , state) and answers A2’s
oracle queries in the same way as A′

1 except for the following two cases.

(a) If A2 queries the DecPK oracle on the input (C, VC), where C =
(C∗

1 , C2), C2 6= C∗
2 , and VC = VC∗ , A′

2 queries its DEM.Dec on the
input of C2 and sends the result to A2.

(b) If A2 queries the DecPK oracle on the input (C, t), where C = (C∗
1 , C2),

C2 6= C∗
2 , and t = t∗, A′

2 queries its DEM.Dec oracle on the input of
C2 and sends the result to A2.

Suppose A2 eventually terminates by outputting a bit b′, then A′
2 termi-

nates by outputting b′.

It is easy to see that A′ is a legitimate IND-CCA2 attacker and provides
perfect simulation for the oracles that A may query. A′’s advantage is equal
to A’s advantage in the game Game1, i.e. |Pr[E1] −

1
2 |. Since the DEM is

IND-CCA2 secure, |Pr[E1] −
1
2 | is negligible and the lemma gets proved.

We have proved that both |Pr[E0]−Pr[E1]| and |Pr[E1]−
1
2 | are negligible.

As a result, |Pr[E0] −
1
2 | is also negligible and the theorem gets proved.

Using exactly the same techniques as in proving the previous theorem, we
can prove the the following theorem about the IND-TR-CCATS security.

Theorem 10. If the TRE-PC-KEM is IND-TR-KEM-CCATS secure and the
DEM is IND-CCA2 secure, then the TRE-PC scheme is IND-TR-CCATS se-
cure.

Theorem 11. If the TRE-PC-KEM is IND-TR-KEM-CPAOS secure and the
DEM is IND-CPA secure, then the TRE-PC scheme is IND-TR-CPAOS secure.

Proof. We prove the theorem through a sequence of games. Firstly, the legiti-
mate IND-TR-CPAOS attack game is described as follows.
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1. Game Setup: The challenger runs Setup to generate the time server’s
master key mk and the public parameters param. The challenger also
runs GenU to generate a public/private key pair (pkr, skr).

2. Phase 1: The attacker executes A1 on the input (pkr, param). A1 has
access to the ExtTS oracle, which takes as input a release time t, returns
ExtTS(mk, t). A1 terminates by outputting two equal length message m0

and m1, a release time t∗ and some state information state.

3. Challenge: The challenger returns C∗ = (C∗
1 , C∗

2 ) and a pre-open key VC∗ ,
which are computed in two steps:

(a) Compute (K∗, C∗
1 , VC∗) = TRE-PC-KEM.Encap(t∗, pkr),

(b) Compute C∗
2 = DEM.Enc(mb, K

∗).

4. Phase 2: The attacker executes A2 on the input (C∗, VC∗ , state). A2 also
has access to the ExtTS oracle. A2 eventually terminates by outputting a
guessing bit b′.

Let Game0 denote this legitimate game and E0 be the event that b = b′ at the
end of the game.

Secondly, consider a new game Game1 which is essentially identical to Game0,
except that in the Challenge phase, the challenger returns C∗ = (C∗

1 , C∗
2 ) and

a pre-open key VC∗ , which are computed in as follows:

1. Compute (K∗, C∗
1 , VC∗) = TRE-PC-KEM.Encap(t∗, pkr),

2. Randomly select K† ∈ {0, 1}KeyLen(ℓ), compute C∗
2 = DEM.Enc(mb, K

†).

Let E1 be the event that b = b′ at the end of Game1. The following lemma
shows that |Pr[E0] − Pr[E1]| is negligible.

Lemma 16. |Pr[E0] − Pr[E1]| is negligible if the TRE-PC-KEM is IND-TR-
KEM-CPAOS secure.

Proof. We construct an IND-TR-KEM-CPAOS attacker A′ = (A′
1,A

′
2) for

the TRE-PC-KEM, which makes use of an IND-TR-CPAOS attacker A as a
subroutine, that has the advantage 1

2 |Pr[E0] − Pr[E1]|. Hence, we will be able
to conclude that |Pr[E0] − Pr[E1]| is negligible as the TRE-PC-KEM is IND-
TR-KEM-CPAOS secure.

A′ takes a security (pkr, param) as input and consists of the following sub-
algorithms:

1. A′
1 executes A1 on the input (pkr, param) and answers A1’s extraction

oracle query. On receiving an extraction query for a time t, A′
1 makes a

similar query to its own extraction oracle and returns the timestamp TSt

to A1. Suppose A1 terminates by outputting two equal length messages
m0 and m1, a release time t∗, and some state information state. A′

1 termi-
nates by outputting t∗, and the state information state′ = (state, m0, m1).

43



2. A′
2 takes (Kb, C

∗
1 , VC∗ , state′) as input, where (Kb, C

∗
1 , VC∗) is the chal-

lenge for the TRE-PC-KEM. A′
2 computes C∗

2 = DEM.Enc(md, Kb) where
d is randomly chosen from {0, 1}, and sets C∗ = (C∗

1 , C∗
2 ). A′

2 executes A2

on the input (C∗, VC∗ , state) and answers A2’s oracle queries in the same
way as A′

1. Suppose A2 eventually terminates by outputting a guessing
bit d′, then A′

2 terminates by outputting a guessing bit b′, where b′ = 1 if
d′ = d and b′ = 0 if d′ 6= d.

It is easy to see that A′ is a legitimate IND-TR-KEM-CPAOS attacker and its
advantage can be denoted as 1

2 |Pr[b′ = 1|b = 0] − Pr[b′ = 1|b = 1]|. If b = 0,
A′ provides perfect simulation for the oracles that an IND-TR-CPAOS attacker
may query in Game0, otherwise A′ provides perfect simulation for the oracles
that such an attacker may query in Game1. Therefore, Pr[b′ = 1|b = 0] =
Pr[E0], Pr[b′ = 1|b = 1] = Pr[E1], and the lemma gets proved.

Finally, we show that |Pr[E1] −
1
2 | is negligible by the following lemma.

Lemma 17. |Pr[E1] −
1
2 | is negligible if the DEM is IND-CPA secure.

Proof. We construct an IND-CPA attacker A′ = (A′
1,A

′
2) for the DEM, which

makes use of an IND-TR-CPAOS attacker A as a subroutine, has the advantage
|Pr[E1] −

1
2 |. Hence, we will be able to conclude that |Pr[E1] −

1
2 | is negligible

as the DEM is IND-CPA secure.
A′ takes a security parameter 1ℓ as input and consists of the following sub-

algorithms:

1. A′
1 takes 1ℓ as input, runs Setup to generate mk and param, and runs GenU

to generate the public/private key pair (pkr, skr). A′
1 executes A1 on the

input (pkr, param). If A1 makes an extraction oracle query for a time t,
then A′

1 computes and returns the timestamp TSt to A1. Suppose A1

terminates by outputting two equal length messages m0 and m1, a release
time t∗, and some state information state. A′

1 terminates by outputting
m0 and m1, and the state information state′ = (state, t∗).

2. A′
2 takes (C∗

2 , state′) as input, where C∗
2 is the challenge for the DEM.

A′
2 computes (K∗, C∗

1 , VC∗) = TRE-PC-KEM.Encap(t∗, pkr) and sets C∗ =
(C∗

1 , C∗
2 ). A′

2 executes A2 on the input (C∗, VC∗ , state) and answers A2’s
oracle queries in the same way as A′

1. Suppose A2 eventually terminates
by outputting a bit b′, then A′

2 terminates by outputting b′.

It is easy to see that A′ is a legitimate IND-CPA attacker for the DEM and
provides perfect simulation for the oracles that A may query. A′’s advantage
equals to A’s advantage in the game Game1, i.e. |Pr[E1] −

1
2 |. Since the DEM

is IND-CPA secure, |Pr[E1] −
1
2 | is negligible and the lemma gets proved.

We have proved that both |Pr[E0]−Pr[E1]| and |Pr[E1]−
1
2 | are negligible.

As a result, |Pr[E0] −
1
2 | is also negligible and the theorem gets proved.
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Using exactly the same techniques as in proving the previous theorem, we
can prove the the following theorem about the IND-TR-CPATS security.

Theorem 12. If the TRE-PC-KEM is IND-TR-KEM-CPATS secure and the
DEM is IND-CPA secure, then the TRE-PC scheme is IND-TR-CPATS secure.

Theorem 13. If the TRE-PC-KEM is IND-TR-KEM-CPAIS secure and the
DEM is IND-CPA secure, then the TRE-PC scheme is IND-TR-CPAIS secure.

Proof. We prove the theorem through a sequence of games. Firstly, the legiti-
mate IND-TR-CPAIS attack game is described as follows.

1. Game Setup: The challenger runs Setup to generate the time server’s
master key mk and the public parameters param. The challenger also
runs GenU to generate a public/private key pair (pkr, skr).

2. Phase 1: The attacker executes A1 on the input (pkr, skr, param). A1 has
access to the ExtTS oracle, which takes as input a release time t, returns
ExtTS(mk, t). A1 terminates by outputting two equal length message m0

and m1, a release time t∗, which is larger than the the inputs to the ExtTS

oracle, and some state information state.

3. Challenge: The challenger returns C∗ = (C∗
1 , C∗

2 ) which is computed as
follows:

(a) compute (K∗, C∗
1 , VC∗) = TRE-PC-KEM.Encap(t∗, pkr),

(b) compute C∗
2 = DEM.Enc(mb, K

∗).

4. Phase 2: The attacker executes A2 on the input (C∗, state). A2 has
access to the ExtTS oracle on any input t < t∗. A2 eventually terminates
by outputting a guessing bit b′.

Let Game0 denote this legitimate game and E0 be the event that b = b′ at the
end of the game.

Secondly, consider a new game Game1 which is essentially identical to Game0,
except that in the Challenge phase, the challenger returns C∗ = (C∗

1 , C∗
2 ) which

is computed as follows:

1. compute (K∗, C∗
1 , VC∗) = TRE-PC-KEM.Encap(t∗, pkr),

2. randomly select K† ∈ {0, 1}KeyLen(ℓ), compute C∗
2 = DEM.Enc(mb, K

†).

Let E1 be the event that b = b′ at the end of Game1. The following lemma
shows that |Pr[E0] − Pr[E1]| is negligible.

Lemma 18. |Pr[E0] − Pr[E1]| is negligible if the TRE-PC-KEM is IND-TR-
KEM-CPAIS secure.
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Proof. We construct an IND-TR-KEM-CPAIS attacker A′ = (A′
1,A

′
2) for the

TRE-PC-KEM, which makes use of an IND-TR-CPAIS attacker A as a subrou-
tine, has the advantage 1

2 |Pr[E0]−Pr[E1]|. Hence, we will be able to conclude
that |Pr[E0] − Pr[E1]| is negligible as the TRE-PC-KEM is IND-TR-KEM-
CPAIS secure.

A′ takes a security (pkr, skr, param) as input and consists of the following
sub-algorithms:

1. A′
1 executes A1 on the input (pkr, skr, param) and answersA1’s extraction

oracle query. On receiving an extraction query for a time t, A′
1 makes a

similar query to its own extraction oracle and returns the timestamp TSt

to A1.

Suppose A1 terminates by outputting two equal length messages m0 and
m1, a release time t∗, and some state information state. A′

1 terminates
by outputting t∗, and the state information state′ = (state, m0, m1).

2. A′
2 takes (Kb, C

∗
1 , state′) as input, where (Kb, C

∗
1 ) is the challenge for the

TRE-PC-KEM. A′
2 computes C∗

2 = DEM.Enc(md, Kb) where d is ran-
domly chosen from {0, 1}, and sets C∗ = (C∗

1 , C∗
2 ). A′

2 executes A2 on the
input (C∗, state) and answers A2’s oracle queries in the same way as A′

1.
Suppose A2 eventually terminates by outputting a guessing bit d′, then
A′

2 terminates by outputting a guessing bit b′, where b′ = 1 if d′ = d and
b′ = 0 if d′ 6= d.

It is easy to see that A′ is a legitimate IND-TR-KEM-CPAIS attacker and its
advantage can be denoted as 1

2 |Pr[b′ = 1|b = 0] − Pr[b′ = 1|b = 1]|. If b = 0,
A′ provides perfect simulation for the oracles that an IND-TR-CPAIS attacker
A may query in Game0, otherwise A′ provides perfect simulation for the oracles
that such an attacker may query in Game1. Therefore, Pr[b′ = 1|b = 0] =
Pr[E0], Pr[b′ = 1|b = 1] = Pr[E1], and the lemma gets proved.

Finally, we show that |Pr[E1] −
1
2 | is negligible by the following lemma.

Lemma 19. |Pr[E1] −
1
2 | is negligible if the DEM is IND-CPA secure.

Proof. We construct an IND-CPA attacker A′ = (A′
1,A

′
2) for the DEM, which

makes use of an IND-TR-CPAIS attacker A as a subroutine, has the advantage
|Pr[E1] −

1
2 |. Hence, we will be able to conclude that |Pr[E1] −

1
2 | is negligible

as the DEM is IND-CPA secure.
A′ takes a security parameter 1ℓ as input and consists of the following sub-

algorithms:

1. A′
1 takes 1ℓ as input, runs Setup to generate mk and param, and runs

GenU to generate the public/private key pair (pkr, skr). A′
1 executes A1

on the input (pkr, skr, param) and answers A1’s oracle queries in the same
way as the challenger will in Game1. Suppose A1 terminates by outputting
two equal length messages m0 and m1, a release time t∗, and some state
information state. A′

1 terminates by outputting m0 and m1, and the state
information state′ = (state, t∗).
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2. A′
2 takes (C∗

2 , state′) as input, where C∗
2 is the challenge for the DEM.

A′
2 computes (K∗, C∗

1 , VC∗) = TRE-PC-KEM.Encap(t∗, pkr) and sets C∗ =
(C∗

1 , C∗
2 ). A′

2 executes A2 on the input (C∗, state) and answers A2’s or-
acle queries in the same way as the challenger will in Game1. Suppose
A2 eventually terminates by outputting a bit b′, then A′

2 terminates by
outputting b′.

It is easy to see that A′ is a legitimate IND-CPA attacker for the DEM and
provides perfect simulation for the oracles that A may query. A′’s advantage
equals to A’s advantage in the game Game1, i.e. |Pr[E1] −

1
2 |. Since the DEM

is IND-CPA secure, |Pr[E1] −
1
2 | is negligible and the lemma gets proved.

We have proved that both |Pr[E0]−Pr[E1]| and |Pr[E1]−
1
2 | are negligible.

As a result, |Pr[E0] −
1
2 | is also negligible and the theorem gets proved.

7 Proposal of a TRE-PC-KEM

7.1 The Description

The polynomial-time algorithms of the proposed TRE-PC-KEM are defined as
follows.

• TRE-PC-KEM.Setup: This algorithm takes a security parameter 1ℓ as in-
put and generates the following parameters:

– an additive group G1 of prime order q, a generator P of G1, and a
multiplicative group G2 of the same order as G1,

– a polynomial-time computable bilinear map ê : G1 × G1 → G2,

– three cryptographic hash functions H1 : {0, 1}∗ → G1, H2 : G1×G1×
G2 → {0, 1}ℓ, H3 : G1 × G2 → {0, 1}KeyLen(ℓ),

– a public/private key pair (S, s), where S = sP and s is randomly
chosen from Zq,

where the master secret mk = s and the public parameters param =
(G1, G2, q, P, ê, S, H1, H2, H3).

• TRE-PC-KEM.ExtTS: This algorithm takes the master secret mk and a
time t as input and returns TSt = sH1(t).

• TRE-PC-KEM.Gen: This algorithm takes the security parameter 1ℓ as in-
put, randomly chooses skr from Zq, and generates a public/private key
pair (pkr, skr) where pkr = skrP .

• TRE-PC-KEM.Encap: This algorithm takes a release time t and the re-
ceiver’s public key pkr as input, and returns (K, C, VC), which are com-
puted as follows:
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1. Randomly choose r and v from Zq, compute Qt = H1(t), C1 = rP ,
C2 = vP , X1 = r · pkr, X2 = ê(vS, Qt),

2. Compute C3 = H2(C2, X1, X2), K = H3(X1, X2),

3. Set VC = vQt and C = (C1, C2, C3).

• TRE-PC-KEM.DecRK: This algorithm takes a ciphertext C = (C1, C2, C3),
the pre-open key VC = vQt, and the private key skr as input, and runs as
follows:

1. Compute X1 = skrC1 and X2 = ê(S, VC), and check whether C3 =
H2(C2, X1, X2) holds,

2. If the check succeeds, return K = H3(X1, X2); otherwise, return an
error message ⊥.

• TRE-PC-KEM.DecPK: This algorithm takes a ciphertext C = (C1, C2, C3),
the timestamp TSt, and the private key skr as input, and runs as follows:

1. Compute X1 = skrC1 and X2 = ê(C2, TSt), and check whether
C3 = H2(C2, X1, X2) holds,

2. If the check succeeds, return K = H3(X1, X2); otherwise, return an
error message ⊥.

7.2 Security results

The security of the proposed scheme is based on the Bilinear Diffie-Hellman
(BDH) assumption which is formally described as follows: Given a security pa-
rameter 1ℓ, there exists a polynomial-time algorithm which takes 1ℓ as input
and outputs an additive group G1 of prime order q, a generator P of G1, a
multiplicative group G2 of the same order as G1, and a polynomial-time com-
putable bilinear map ê : G1 × G1 → G2. On the input of (G1, G2, P, q, ê) and
a BDH challenge (αP, βP, γP ) where α, β, γ are randomly chosen from Zq, any
polynomial-time attacker can only compute ê(P, P )αβγ with a negligible prob-
ability.

It is easy to see that the BDH assumption implies the Computational Diffie-
Hellman (CDH) assumption, which is formally described as follows: Given a
security parameter 1ℓ, there exists a polynomial-time algorithm which takes 1ℓ

as input and outputs an additive group G of prime order q and a generator
P of G. On the input of (G, P, q) and a CDH challenge (αP, βP ) where α, β

are randomly chosen from Zq, any polynomial-time attacker can only compute
αβP with a negligible probability. In our security analysis, we will use the
following adapted CDH assumption. Given a security parameter 1ℓ, there exists
a polynomial-time algorithm which takes 1ℓ as input and outputs an additive
group G1 of prime order q, a generator P of G1, a multiplicative group G2

of the same order as G1, and a polynomial-time computable bilinear map ê :
G1 ×G1 → G2. On the input of (G1, G2, P, q, ê) and a CDH challenge (αP, βP )
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where α, β are randomly chosen from Zq, any polynomial-time attacker can only
compute αβP with a negligible probability.

In the rest of this section, we prove that the proposed TRE-PC-KEM is
secure in the sense of soundness, IND-TR-KEM-CCATS, and IND-TR-KEM-
CPAIS. Then from the security definitions, it is straightforward to verify that
the proposed scheme is also secure in the sense of other security notions.

Theorem 14. If H2 is collision-resistant, then the TRE-PC-KEM is sound.

Proof. Without loss of generality, suppose that at the end of the legitimate
soundness attack game the attacker outputs (C∗, t∗, VC∗), where C∗ = (C∗

1 , C∗
2 , C∗

3 ).
Based on the definition of decapsulation algorithms, the attacker can only win
the game if the following two requirements are satisfied:

1. X ′
2 6= X ′′

2 , where X ′
2 = ê(S, VC∗) and X ′′

2 = ê(C∗
2 , TSt∗).

2. C∗
3 = H2(C

∗
2 , X∗

1 , X ′
2) and C∗

3 = H2(C
∗
2 , X∗

1 , X ′′
2 ), where X∗

1 = skrC
∗
1 .

Therefore, the attacker wins the game implies that it finds a collision for H2.
Under the assumption that H2 is collision-resistant, it is clear that the attacker
can only win the game with a negligible probability.

Theorem 15. The TRE-PC-KEM is IND-TR-KEM-CCATS secure in the ran-
dom oracle model under the CDH assumption.

Proof. We prove the theorem through a sequence of games. Firstly, by modeling
the hash functions as random oracles, the legitimate IND-TR-KEM-CCATS
attack game (referred to as Game0) in the random oracle model for the TRE-
PC-KEM is described as follows.

1. Game setup: The challenger first runs TRE-PC-KEM.Setup to generate
mk = s and param = (G1, G2, q, P, ê, S, H1, H2, H3), and then runs TRE-
PC-KEM.Gen to generate a public/private key pair (pkr, skr). The chal-
lenger simulates the random oracle H1 as follows: The challenger main-
tains a list of vectors, each of them contains a message, its hash value,
and an element from Zq. After receiving a request message, the challenger
first checks its list to see whether the hash value for the request message
has been queried. If the check succeeds, the challenger returns the stored
value, otherwise, the challenger returns yP , where y a random chosen from
Zq. In the meantime, the challenger stores the new vector, containing the
request message, yP , and y, to the existing list. H2 and H3 are simulated
in a similar way.

2. Phase 1: The attacker runs A1 on the input (mk, pkr, param). A1 has
access to the decapsulation oracles:

• TRE-PC-KEM.DecapRK oracle on the input (C, VC), where C = (C1, C2, C3).
The challenger returns TRE-PC-KEM.DecapRK(C, VC , skr).
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• TRE-PC-KEM.DecapPK oracle on the input (C, t), where C = (C1, C2, C3).
Since the challenger knows s, it computes TSt = sH1(t) and returns
TRE-PC-KEM.DecapPK(C, TSt, skr) .

At some point, A1 terminates by outputting a release time t∗ and some
state information state.

3. Challenge: The challenger generates the challenge as follows:

(a) Randomly choose r∗ and v∗ from Zq, K1 from {0, 1}KeyLen(ℓ),

(b) Compute Qt∗ = H1(t
∗), C∗

1 = r∗P , C∗
2 = v∗P , X∗

1 = r∗ · pkr, X∗
2 =

ê(v∗S, Qt∗), C∗
3 = H2(C

∗
2 , X∗

1 , X∗
2 ), K0 = H3(X

∗
1 , X∗

2 ),

(c) Return (Kb, C
∗, VC∗), where b is randomly chosen from {0, 1}, C∗ =

(C∗
1 , C∗

2 , C∗
3 ), and VC∗ = v∗Qt∗ .

4. Phase 2: The attacker runs A2 on the input of (Kb, C
∗, VC∗ , state). A2 has

access to the decapsulation oracles, but it may not make a TRE-PC-KEM.DecapPK

query on the input (C∗, t∗) or a TRE-PC-KEM.DecapRK query on the input
(C∗, VC∗). A2 terminates by outputing a guessing bit b′.

Secondly, consider a new game Game1 which is essentially identical to Game0

except that the decapsulation queries are answered as follows.

• On receiving a TRE-PC-KEM.DecapRK(C, VC) query, where C = (C1, C2, C3),
the challenger computes the response as follows.

1. Check whether A has queried the H2 oracle on an input (z1, z2, z3),
where z1 = C2, ê(C1, pkr) = ê(z2, P ), z3 = ê(S, VC).

2. If the check fails, return ⊥; otherwise, set X1 = z2, X2 = z3 and
continue to check whether C3 = H2(C2, X1, X2) holds.

3. If the check succeeds, return K = H3(X1, X2); otherwise, return ⊥.

• On receiving a TRE-PC-KEM.DecapPK(C, t) query, where C = (C1, C2, C3),
the challenger computes the response as follows.

1. Check whether whether A has queried the H2 oracle on an input
(z1, z2, z3), where z1 = C2, ê(C1, pkr) = ê(z2, P ), z3 = ê(C2, TSt),

2. If the check fails, return ⊥; otherwise, set X1 = z2, X2 = z3 and
continue to check whether C3 = H2(C2, X1, X2) holds,

3. If the check succeeds, return K = H3(X1, X2); otherwise, return ⊥.

Let E0 and E1 denote the event b = b′ at the end of Game0 and Game1,
respectively. The following lemma shows that |Pr[E0] − Pr[E1]| is negligible.

Lemma 20. |Pr[E0] − Pr[E1]| is negligible in the random oracle model.
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Proof. Let F1 be the event that, in step 2 of the attack game, the challenger
answers any TRE-PC-KEM.DecapRK query on the input of (C, VC) with a valid
message, where C = (C1, C2, C3) and the attacker makes no H2 query on the
input (z1, z2, z3) satisfying z1 = C2, ê(C1, pkr) = ê(z2, P ), z3 = ê(S, VC). Given
such a TRE-PC-KEM.DecapRK query, it is straightforward to verify that the
probability that C3 = H2(C2, X1, X2) occurs with the probability 1

2ℓ , where
C1 = rP , X1 = r · pkr, and X2 = ê(S, VC), because H2 is modeled as a random
oracle. As result, in the presence of a polynomial-time attacker, F1 occurs with
a negligible probability in Game0.

Let F2 be the event that, in step 2 of the attack game, the challenger answers
any TRE-PC-KEM.DecapPK query on the input of (C, t) with a valid message,
where C = (C1, C2, C3) and the attacker makes no H2 query on the input
(z1, z2, z3) satisfying z1 = C2, ê(C1, pkr) = ê(z2, P ), z3 = ê(C2, TSt). For
similar reasons, Pr[F2] is negligible in Game0.

Let F3 be the event that, in step 4 of the attack game, the challenger answers
any TRE-PC-KEM.DecapRK query on the input of (C, VC) with a valid message,
where C = (C1, C2, C3) and the attacker makes no H2 query on the input
(z1, z2, z3) satisfying z1 = C2, ê(C1, pkr) = ê(z2, P ), z3 = ê(S, VC). Recall that,
for a valid query, either C 6= C∗ or VC 6= VC∗ should hold, therefore, at least
one of the following inequations should hold: C1 6= C∗

1 , C2 6= C∗
2 , C3 6= C∗

3 ,
and VC 6= VC∗ . Given a TRE-PC-KEM.DecapRK query on the input of (C, VC) in
Game0, where the attacker makes no H2 query on the input (z1, z2, z3) satisfying
z1 = C2, ê(C1, pkr) = ê(z2, P ), z3 = ê(S, VC), based on the assumption that H2

is regarded as a random oracle, the following facts are true:

1. If C1 6= C∗
1 , then X1 6= X∗

1 and C3 = H2(C2, X1, X2) occurs with the
probability 1

2ℓ .

2. If C2 6= C∗
2 , then C3 = H2(C2, X1, X2) occurs with the probability 1

2ℓ .

3. If VC 6= VC∗ , then X2 6= X∗
2 and C3 = H2(C2, X1, X2) occurs with the

probability 1
2ℓ .

4. If C3 6= C∗
3 , then C3 = H2(C2, X1, X2) occurs at most with the probability

1
2ℓ .

As result, in the presence of a polynomial-time attacker, F3 occurs with a neg-
ligible probability in Game0.

Let F4 be the event that, in step 4 of the attack game, the challenger answers
any TRE-PC-KEM.DecapPK query on the input of (C, t) with a valid message,
where C = (C1, C2, C3) and the attacker makes no H2 query on the input
(z1, z2, z3) satisfying z1 = C2, ê(C1, pkr) = ê(z2, P ), z3 = ê(C2, TSt). For
similar reasons, Pr[F4] is negligible in Game0.

It is clear that Game0 and Game1 perform identically unless the event Fi,
for some i (1 ≤ i ≤ 4), occurs, therefore, Pr[E0|¬(F1 ∨ F2 ∨ F3 ∨ F4)] =
Pr[E1|¬(F1 ∨ F2 ∨ F3 ∨ F4)]. Using the Difference Lemma introduced in [15],
we immediately have |Pr[E0] − Pr[E1]| ≤ Pr[F1 ∨ F2 ∨ F3 ∨ F4]. Since Pr[Fi
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(1 ≤ i ≤ 4) are all negligible, |Pr[E0]−Pr[E1]| is also negligible and the lemma
gets proved.

Thirdly, consider a new game Game2 which is essentially identical to Game1,
except that the challenger randomly selects C∗

3 from {0, 1}ℓ, and K0 from
{0, 1}KeyLen(ℓ) instead of computing C∗

3 = H2(C
∗
2 , X∗

1 , X∗
2 ) and K0 = H3(X

∗
1 , X∗

2 ).
Let E2 be the event that b = b′ at the end of Game2. The following lemma shows
that |Pr[E1] − Pr[E2]| is negligible.

Lemma 21. |Pr[E1] − Pr[E2]| is negligible in the random oracle model under
the CDH assumption.

Proof. It is clear that the games Game2 and Game1 perform identically unless
H2 is queried on the input of (C∗

2 , r∗ · pkr, ê(v
∗S, Qt∗)) or H3 is queried on the

input of (r∗ · pkr, ê(v
∗S, Qt∗)). Let F3 denote that either of the these events

occurs. We now construct an algorithm A′, which makes use of an IND-TR-
KEM-CCATS attacker A as a subroutine, to solve the CDH problem with a
non-negligible probability if Pr[F3] is non-negligible.

The attacker A′ is implemented to play the same role as the challenger will
play in Game2:

1. A′ receives the parameters (G1, G2, P, q, ê) and a CDH challenge (αP, βP ),
and generates (H1, H2, H3), a public/private key pair (S, s) and sets pkr =
αP . A′ sets param = (G1, G2, q, P, ê, S, H1, H2, H3), and simulates the
random oracles in the same way as the challenger in Game2.

2. A′ runs A1 on the input of (mk, pkr, param) and answers A1’s decapsu-
lation queries as follows.

• On receiving a TRE-PC-KEM.DecapRK(C, VC) query, where C = (C1, C2, C3),
the challenger computes the response as follows.

(a) Check whether there is an input (z1, z2, z3) to H2 satisfying z1 =
C2, ê(C1, pkr) = ê(z2, P ), z3 = ê(S, VC),

(b) If the check fails, return ⊥; otherwise, set X1 = z2, X2 = z3 and
continue to check whether C3 = H2(C2, X1, X2) holds,

(c) If the check succeeds, return K = H3(X1, X2); otherwise, return
⊥.

• On receiving a TRE-PC-KEM.DecapPK(C, t) query, where C = (C1, C2, C3),
the challenger computes the response as follows.

(a) Check whether there is an input (z1, z2, z3) to H2 satisfying z1 =
C2, ê(C1, pkr) = ê(z2, P ), z3 = ê(C2, TSt),

(b) If the check fails, return ⊥; otherwise, set X1 = z2, X2 = z3 and
continue to check whether C3 = H2(C2, X1, X2) holds,

(c) If the check succeeds, return K = H3(X1, X2); otherwise, return
⊥.
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3. When A1 terminates by outputting a release time t∗ and some state in-
formation state, A′ computes the challenge as follows:

(a) Randomly choose v∗ from Zq, C∗
3 from {0, 1}ℓ, K0 and K1 from

{0, 1}KeyLen(ℓ),

(b) Set C∗
1 = βP and compute Qt∗ = H1(t

∗), C∗
2 = v∗P , X∗

2 = ê(v∗S, Qt∗),

(c) Return (Kb, C
∗, VC∗), where b is randomly chosen from {0, 1}, C∗ =

(C∗
1 , C∗

2 , C∗
3 ), and VC∗ = vQt∗ .

4. A′ runs A2 on the input of (Kb, C
∗, VC∗ , state) and answers A2’s decap-

sulation queries in the same way as in step 2.

5. After A2 terminates, A′ first randomly selects an input from the input
set which is composed of the following two types of inputs: the inputs to
H2 in the form of (C∗

2 , ?, ê(v∗S, Qt∗)) and the inputs to H3 in the form
of (?, ê(v∗S, Qt∗)), where ? can be any element from G1. If an input to
H2, say (C∗

2 , w′
1, ê(v

∗S, Qt∗), is chosen, A′ sets λ = w′
1, otherwise, if an

input to H3, say (w′
2, ê(v

∗S, Qt∗)) is chosen then λ = w′
2. A′ terminates

by outputting λ.

It is easy to see that the algorithm A′ faithfully plays the role that the
challenger will play in Game2. Suppose n1 oracle queries has been made to H2

and n2 oracle queries has been made to H3, where the queries are in the form
specified in step 5 of A′. Note the fact that the queries to H3 are made either
directly by A or by A′ in simulating the decapsulation oracles, however, the
queries to H2 are all made by A. Since A is a polynomial-time attacker, ni

(1 ≤ i ≤ 2) are polynomials of ℓ. It is clear that Pr[λ = αβP ] = 1
n1+n2

Pr[F3],
so that Pr[F3] should be negligible based on the CDH assumption.

Since Game2 and Game1 perform identically unless the event F3 occurs. Us-
ing the Difference Lemma [15], we have |Pr[E1]−Pr[E2]| ≤ Pr[F3]. As a result,
|Pr[E1] − Pr[E2]| is also negligible and the lemma gets proved.

It is clear that |Pr[E2] −
1
2 | = 0 in Game2 because both K0 and K1 are

randomly chosen. Therefore, we have proved that |Pr[E0]−Pr[E1]|, |Pr[E1]−
Pr[E2]|, and |Pr[E2]−

1
2 | are negligible. As a result, |Pr[E0]−

1
2 | is also negligible

and the theorem gets proved.

Theorem 16. The TRE-PC-KEM scheme is IND-TR-KEM-CPAIS secure in
the random oracle model under the BDH assumption.

Proof. We prove the theorem through a sequence of games. Firstly, we describe
the legitimate IND-TR-KEM-CPAIS attack game in the random oracle model
for the TRE-PC-KEM.

1. Game setup: The challenger first runs TRE-PC-KEM.Setup to generate
mk = s and param = (G1, G2, q, P, ê, S, H1, H2, H3), and then runs TRE-
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PC-KEM.Gen to generate a public/private key pair (pkr, skr). The chal-
lenger simulates the random oracle H1 as follows: The challenger main-
tains a list of vectors, each of them contains a message, its hash value,
and an element from Zq. After receiving a request message, the challenger
first checks its list to see whether the hash value for the request message
has been queried. If the check succeeds, the challenger returns the stored
value, otherwise, the challenger returns yP , where y a random chosen from
Zq. In the meantime, the challenger stores the new vector, containing the
request message, yP , and y, to the existing list. H2 and H3 are simulated
in a similar way.

2. Phase 1: The attacker executes A1 on the input (pkr, skr, param). If
A1 makes an extraction oracle query for a time t, the challenger returns
the timestamp TSt to A1. At some point, A1 terminates by outputting
a release time t∗, which is larger than all the inputs to the TRE-PC-
KEM.ExtTS oracle, and some state information state.

3. Challenge: The challenger generates the challenge as follows:

(a) Randomly choose r∗ and v∗ from Zq, K1 from {0, 1}KeyLen(ℓ),

(b) Compute Qt∗ = H1(t
∗), C∗

1 = r∗P , C∗
2 = v∗P , X∗

1 = r∗ · pkr, X∗
2 =

ê(v∗S, Qt∗), C∗
3 = H2(C

∗
2 , X∗

1 , X∗
2 ), K0 = H3(X

∗
1 , X∗

2 ),

(c) Return (Kb, C
∗), where b is randomly chosen from {0, 1} and C∗ =

(C∗
1 , C∗

2 , C∗
3 ).

4. Phase 2: The attacker executes A2 on the input (Kb, C
∗, state). If A2

makes an extraction oracle query for a time t < t∗, the challenger returns
the timestamp TSt to A2. A2 eventually terminates by outputting a bit
b′.

Let Game0 denote this legitimate game and E0 be the event that b = b′ at
the end of the game.

Secondly, consider a new game Game1 which is essentially identical to Game0,
except that the challenger randomly selects C∗

3 from {0, 1}ℓ, and K0 from
{0, 1}KeyLen(ℓ) instead of computing C∗

3 = H2(C
∗
2 , X∗

1 , X∗
2 ) and K0 = H3(X

∗
1 , X∗

2 ).
Let E1 be the event that b = b′ at the end of Game1. The following lemma shows
that |Pr[E0] − Pr[E1]| is negligible.

Lemma 22. |Pr[E0] − Pr[E1]| is negligible in the random oracle model under
the BDH assumption.

Proof. It is clear that the games Game1 and Game0 perform identically unless
H2 is queried on the input of (C∗

2 , r∗ · pkr, ê(v
∗S, Qt∗)) or H3 is queried on the

input of (r∗ · pkr, ê(v
∗S, Qt∗)). Let F1 denote that either of the these events

occurs. We now construct an algorithm A′, which makes use of an IND-TR-
KEM-CPAIS attacker A as a subroutine, to solve the BDH problem with a
non-negligible probability if Pr[F1] is non-negligible.
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Without loss of generality, we assume that the total number of H1 queries
A1 may make is bounded by n1 (n1 ≥ 1)1. Note that these queries do not
include those which are indirectly caused by the TRE-PC-KEM.ExtTS queries.
The attacker A′ is implemented to play the same role as the challenger in Game1

and defined as follows:

1. A′ receives the parameters (G1, G2, P, q, ê) and a BDH challenge (αP, βP, γP ),
and generates (H1, H2, H3), a public/private key pair (S, s) and sets S =
αP . A′ sets param = (G1, G2, q, P, S, ê, H1, H2, H3), and simulates H1, H2,
and H3 in the same way as the challenger will do in Game1. In addition,
A′ randomly selects j ∈ {1, 2, · · · , n1 + 1}.

2. A′ runs A1 on the input of (pkr, skr, param). If 1 ≤ j ≤ n1, A
′ answers

A1’s j-th query H1(t
′) with γP , and stores (t′, γP, null). If A1 makes a

TRE-PC-KEM.ExtTS query for a time t, A′ first checks whether t 6= t′. If
the check succeeds, A′ computes and returns the timestamp TSt to A1;
otherwise, A′ terminates as a failure. Note that if t 6= t′ then H1(t) = yP

for some y, where y is known to A′. Therefore, A′ can compute TSt = yαP

although α is unknown.

3. When A1 terminates by outputting a release time t∗ and some state in-
formation state, if A1 has not queried H1 on t∗, then A′ queries H1 on t∗

as the (n1 + 1)-th query to this random oracle and sets H1(t
∗) = γP . If

t∗ was not the j-th query to the random oracle H1, then A′ terminates as
a failure. Otherwise, A′ computes the challenge as follows:

(a) Randomly choose r∗ from Zq, C∗
3 from {0, 1}ℓ, and K0 and K1 from

{0, 1}KeyLen(ℓ),

(b) Compute C∗
1 = r∗P and set C∗

2 = βP ,

(c) Return (Kb, C
∗), where b is randomly chosen from {0, 1} and C∗ =

(C∗
1 , C∗

2 , C∗
3 ).

4. A′ runs A2 on the input of (Kb, C
∗, state). If A2 makes any TRE-PC-

KEM.ExtTS query on the input t, A′ computes and returns the timestamp
TSt.

5. After A2 terminates, A′ first randomly selects an input from the input
set which is composed of the following two types of inputs: the inputs
to H2 in the form of (C∗

2 , r∗ · pkr, ?) and the inputs to H3 in the form of
(r∗ · pkr, ?), where ? can be any element from G2. If an input to H2, say
(C∗

2 , r∗ · pkr, w
′
1), is chosen, A′ sets λ = w′

1, otherwise, if an input to H3,
say (r∗ · pkr, w

′
2) is chosen then λ = w′

2. A′ terminates by outputting λ.

It is straightforward to verify that the probability that A′ successfully ends
is 1

n1+1 , i.e. the probability that A′ does not terminate in step 3 is 1
n1+1 . If

1For the simplicity of description, it is reasonable to require that A1 query H1 only once

with the same input.
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A′ successfully ends, then it faithfully plays the role that the challenger will
play in Game1. Suppose n2 oracle queries has been made to H2 and n3 oracle
queries has been made to H3, where the queries are in the form specified in
step 5 of A′. Note the fact that these queries are all made by A. Since A is a
polynomial-time attacker, ni (1 ≤ i ≤ 3) are polynomials of ℓ. Therefore, if A′

successfully ends, the probability that λ = ê(P, P )αβγ holds is Pr[F1]
n2+n3

, so that

the probability that A′ can compute ê(P, P )αβγ is Pr[F1]
(n1+1)(n2+n3)

. Based on the

BDH assumption, Pr[F1] should be negligible. Recall that Game1 and Game0

perform identically unless the event F1 occurs. Using the Difference Lemma
[15], we have |Pr[E0]−Pr[E1]| ≤ Pr[F1]. As a result, |Pr[E0]−Pr[E1]| is also
negligible and the lemma gets proved.

It is clear that |Pr[E1]−
1
2 | = 0 in Game1 because both K0 and K1 are ran-

domly chosen. Therefore, we have proved that |Pr[E0]−Pr[E1]| and |Pr[E1]−
1
2 |

are negligible. Therefore, |Pr[E0] −
1
2 | is also negligible and the theorem gets

proved.

8 Conclusions

In this paper we have analysed a security model, i.e. the HYL model, for
TRE-PC schemes proposed by Hwang, Yum, and Lee, and shown its defects.
We proposed a new security model which avoids the defects possessed by the
HYL model. Although the security definitions in Section 3.2 and 3.3 are only
focused on either adaptive CCA/CPA attacks, it is straightforward to derive the
definitions against non-adaptive CCA/CPA attacks. We also worked out the
complete relations among the security notions defined in the proposed security
model, introduced a new notion, i.e. TRE-PC-KEM, and presented a hybrid
model to construct TRE-PC schemes.
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