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Abstract. This note presents analysis of the compression function of
a recently proposed hash function, FORK-256. We exhibit some unex-
pected differentials existing for the step transformation and show their
possible uses in collision-finding attacks on different simplified variants
of FORK-256. Finally, as a concrete application of those observations we
present a method of finding chosen IV collisions for a variant of FORK-
256 reduced to two branches : either 1 and 2 or 3 and 4.
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1 Introduction

Most of dedicated hash functions published in the last 15 year follow more
or less closely design ideas used by R. Rivest in his functions MD4 [10, 11]
and MD5 [12]. Using terminology from [13], their step transformations are all
based on source-heavy Unbalanced Feistel Networks (UFN) and employ bit-
wise Boolean functions. Apart from MD4 and MD5 other examples include
RIPEMD [9], HAVAL [18], SHA-1 [7] and also SHA-256 [8]. A very nice feature
of all these designs is that they all are very fast in software implementations on
modern 32-bit processors and use only a small set of basic instructions executed
in constant-time like additions, rotations and Boolean functions.

However, traditional wisdom says that monoculture is dangerous. This proved
to be true also in the world of hash functions. Ground-breaking attacks on MD4,
MD5 by X. Wang et al. [16, 14] were later refined and applied to attack SHA-
0 [17] and SHA-1 [15] as well as some other hash functions.

Since source-heavy UFNs with Boolean functions seem to be susceptible to
attacks similar to Wang’s because only one register is changed after each step
and the attacker can manipulate it to a certain extent, one could try designing a
hash function using the other flavour of UFNs, namely target-heavy UFNs where
changes in one register influence many others. This is the case with designed
in 1995 hash function Tiger [1] (tailored for 64-bit platforms) and a recently
proposed FORK-256 [3] which will be the focus of this paper.

1.1 Notation

Throughout the paper we will use the notation presented below. Unless stated
otherwise, all words are 32-bit and can be seen as elements of Z232 or Z

32
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X + Y integer addition / addition modulo 232 (depending on the context),
X − Y integer subtraction / modular subtraction of two words X, Y ,
X ⊕ Y bitwise XOR of two words X , Y ,

ROLa(X) rotation of bits of the word X by a positions left.

1.2 A brief description of FORK-256

FORK-256 is a dedicated hash function recently proposed by Hong et al. [3,
4]. It is based on the classical Merkle-Damg̊ard iterative construction with the
compression function that maps 256 bits of state and 512 bits of message to
256 bits of a new state. For the complete description we refer interested readers
to [3], here we only present an outline necessary to understand main ideas of the
rest of this paper.

The compression function consists of four parallel branches BRANCHj , j =
1, 2, 3, 4, each one of them using a different permutation of 16 message words Mi,
i = 0, . . . , 15 and the same set of chaining variables CV = (A, B, C, D, E, F, G, H).
The compression function updates the set of chaining variables according to the
formula

CVi+1 = CVi + {[BRANCH1(CVi, M) + BRANCH2(CVi, M)]⊕

[BRANCH3(CVi, M) + BRANCH4(CVi, M)]} ,

where modular and XOR additions are performed word-wise. This construction
can be seen as a further extension of the design principle of two parallel lines
used in RIPEMD [9].

Each branch function BRANCHj , j = 1, 2, 3, 4 consists of eight steps. In
each step k = 0, . . . , 7 branch function updates its own copy of eight chaining
variables according to the following formulae

Aj,k+1 := Hj,k + ROL21(g(Ej,k + Mσj(2k+1)) ⊕ ROL17(Ej,k + Mσj(2k+1) + δπj(2k+1)),

Bj,k+1 := Aj,k + Mσj2k + δπj(2k),

Cj,k+1 := Bj,k + f(Aj,k + Mσj(2k)) ⊕ g(Aj,k + Mσj(2k) + δπj(2k)),

Dj,k+1 := Cj,k + ROL5(f(Aj,k + Mσj(2k))) ⊕ ROL9(g(Aj,k + Mσj(2k) + δπj(2k))),

Ej,k+1 := Dj,k + ROL17(f(Aj,k + Mσj(2k))) ⊕ ROL21(g(Aj,k + Mσj(2k) + δπj(2k))),

Fj,k+1 := Ej,k + Mσj(2k+1) + δπj(2k+1),

Gj,k+1 := Fj,k + g(Ej,k + Mσj(2k+1)) ⊕ f(Ej,k + Mσj(2k+1) + δπj(2k+1)),

Hj,k+1 := Gj,k + ROL9(g(Ej,k + Mσj(2k+1)) ⊕ ROL5(Ej,k + Mσj(2k+1) + δπj(2k+1)),

where functions f and g are defined as

f(x) = x +
(

ROL7(x) ⊕ ROL22(x)
)

, (1)

g(x) = x ⊕
(

ROL13(x) + ROL27(x)
)

. (2)



Constants δ0, . . . , δ15 are defined as the first 32 bits of fractional parts of binary
expansions of cube roots of the first 16 primes. Their values are

δ0 = 428a2f98, δ1 = 71374491, δ2 = b5c0fbcf, δ3 = e9b5dba5 ,

δ4 = 3956c25b, δ5 = 59f111f1, δ6 = 923f82a4, δ7 = ab1c5ed5 ,

δ8 = d807aa98, δ9 = 12835b01, δ10 = 243185be, δ11 = 550c7dc3 ,

δ12 = 72be5d74, δ13 = 80deb1fe, δ14 = 9bdc06a7, δ15 = c19bf174 .

Finally, permutations σj of message words and permutations πj of constants
are shown in Table 1.

Table 1. Message and constant permutations used in four branches of FORK-256

j message permutation σj permutation of constants, πj

1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 14 15 11 9 8 10 3 4 2 13 0 5 6 7 12 1 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

3 7 6 10 14 13 2 9 12 11 4 15 8 5 0 1 3 1 0 3 2 5 4 7 6 9 8 11 10 13 12 15 14

4 5 12 1 8 15 0 13 11 3 10 9 2 7 14 4 6 14 15 12 13 10 11 8 9 6 7 4 5 2 3 0 1

2 Analysis of step transformation of FORK-256

The step transformation described in the previous section can be logically split
into three parts: addition of message words, two parallel mixing structures QL

and QR and a final rotation of registers. This view is presented in Fig. 1. The
key role is played by the two transformations of four words, QL and QR as they
are the main source of both confusion and diffusion in the compression function.
It is clear that if we can find interesting differential characteristics for QL and
QR, we should be able to extend them to the whole branch and maybe also the
whole function.

Fig. 1. A high-level structure of step transformation of FORK-256
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Let us focus on QL, presented in Fig. 2, as QR is very similar to QL (f and
g are swapped and rotation amounts are different) and the arguments we are
going to develop work for both of them.

Fig. 2. QL-structure of step transformation in FORK-256
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Characteristics of the form (0, ∆B, ∆C, ∆D) → (0, ∆B, ∆C, ∆D) are not
that difficult to get since in each step the difference in registers B, C, D are
modified by only one modular addition and one XOR operation. Whether we
consider modular or XOR differences, there is only one incompatible operation
to deal with.

We can combine such characteristics to get a straightforward differential for
up to three steps for each branch.

The difficult part is characteristics of the form (∆A, 0, 0, 0) → (∆A, 0, 0, 0).
As far as we could see, there are two ways of finding them. The first method of
finding those difficult but desired characteristics is based on the fact that both
f and g are not bijective so we can hope that we can find such inputs x, x′ that
f(x) = f(x′) and g(x + δ) = g(x′ + δ). The second one is aimed at getting zero
differences in registers B, C, D in spite of non-zero differences at the outputs of
f and g. In next sections we describe both of them in detail.

3 Simultaneous collisions for f and g

For given value δ, we would like to find all x and x′ such that f(x) = f(x′)
and g(x + δ) = g(x′ + δ). A naive search would require order 264 computations,
which is well beyond our computing resources. A less naive method trades time
for memory. Below we describe this tradeoff in a way that involves order 232

computations and 232 memory for the particular functions f and g used in
FORK-256. Again, we focus on QL, i.e. f is applied before g.

Step 1: We determine which inputs x have more than one preimage. This is
done by initializing an array of 232 entries to zero, and then incrementing



f(x) within the array for all 232 inputs x. Those values that accumulate 2
or larger are then output. There are about 230 of these. In fact, this step is
not necessary for our algorithm, but it may help in practice since it reduces
memory requirements for the next step.

Step 2: Read in the values of f(x) from Step 1, i.e. the values that have more
than one preimage. Then, for each input value, build a linked list of all
preimages of that value. This is done similar to Step 1: compute all 232

values of f(x), and for each value that matches one of the inputs from Step
1 (this can be checked quickly with a hash table), add it to the corresponding
linked list. The longest linked list for f has 12 preimages.

Step 3: Process the linked lists from Step 2. For each linked list, consider the
set of values that map to the same preimage, x1, . . . , xk. See if there is any
xi and xj in that list such that g(xi + δ) = g(xj + δ), and if so, output the
pair as a solution to simultaneous collisions of f and g when the additive
constant is δ.

The running time of Step 3 depends upon the number of combinations of 2
there are of preimages that map to the same image. According to our computa-
tions, this is 2134351185 < 231.

There are many potential tricks to reduce the search space and/or memory
requirements further, but the above algorithm was sufficient for us to determine
the following solutions:

x = 4b4d2a05, x′ = 6ff2f3e9, for δ1 = 71374491,

x = 06def69a, x′ = aeb691e5, for δ2 = b5c0fbcf,

x = 27a61343, x′ = 67eac4d8, for δ3 = e9b5dba5,

x = 04549cdc, x′ = 20d331a5, for δ7 = ab1c5ed5,

for QL and

x = 445c5563, x′ = d73bc777, for δ10 = 243185be,

x = be452586, x′ = edfd4d5b, for δ14 = 9bdc06a7.

for QR.

4 Microcollisions in QL and QR

In this section we concentrate on an alternative way of finding characteristics of
the form (∆A, 0, 0, 0) → (∆A, 0, 0, 0) in QL and show that it works for QR as
well. The idea is to look for pairs of inputs to the register A such that output
differences in registers B, C, D are equal to zero in spite of non-zero differences
at the outputs of functions f and g. Such a situation is possible if we have three
simultaneous microcollisions : differences in g cancel out differences from f in
all three registers B, C, D (cf. Fig. 2).



4.1 Necessary and sufficient condition for microcollisions

Let us denote y = f(x), y′ = f(x′) and z = g(x + δ), z′ = g(x′ + δ). We have a
microcollision in the first line if the following equation is satisfied

(y + B) ⊕ z = (y′ + B) ⊕ z′ (3)

for given y, y′, z, z′ and some constant B. Our aim is to find the set of all constants
B for which (3) is satisfied.

Let us first introduce three different representations of differences between
two numbers x, x′ ∈ Z232 . We will use certain relationships between them in our
analysis.

The first kind of representation useful for us is the usual XOR difference.
We will treat it as a vector of 32 digits representing bits of x ⊕ x′ and denote it
∆⊕(x, x′) ∈ {0, 1}32.

The second one is plain integer difference. For two numbers x, x′, we define
the integer difference ∂x simply as the result of the subtraction of two operands,
i.e. ∂x = x − x′, −232 < ∂x < 232.

Another kind of representation we will be using is the signed binary repre-
sentation. It uses three digits, 1, 0, −1, and a pair x, x′ has signed binary repre-
sentation ∆±(x, x′) = (x0 − x′

0, x1 − x′
1, . . . , x31 − x′

31), i.e. the i-th component
is the result of the subtraction of corresponding bits of x and x′ at position i.

A simple but important observation is that if a difference has signed represen-
tation (r0, r1, . . . , r31) than the corresponding XOR difference is (|r0|, |r1|, . . . , |r31|),
i.e. the XOR difference has ones in those places where the signed difference has
a non-zero digit, either −1 or 1.

The relationship between integer and signed binary representations is more
interesting. An integer difference ∂x corresponds to a signed binary representa-
tion (r0, . . . , r31) if ∂x =

∑31
i=0 2i · ri where ri ∈ {−1, 0, 1}. Of course this cor-

respondence is one-to-many because of the value–preserving transformations of
signed representations, (∗, 0, 1, ∗) ↔ (∗, 1,−1, ∗) and (∗, 0,−1, ∗) ↔ (∗,−1, 1, ∗),
that can stretch or shrink chunks of ones. To see this on a small example, let
us assume words of 4 bits and consider ∆±(11, 2) = (1, 0, 0, 1), ∆±(14, 5) =
(1, 0, 1,−1) and ∆±(12, 3) = (1, 1,−1,−1). All these binary signed representa-
tions correspond to the integer difference ∂x = 9. Note that we can go from
one pair of values to another by adding an appropriate constant, e.g. (12, 3) =
(11 + 1, 2 + 1). This addition preserves the integer difference but can modify the
signed binary representation.

After this introductory part we are equipped with the necessary tools and
can go back to our initial problem. Rewriting (3) as

(y + B) ⊕ (y′ + B) = z ⊕ z′ . (4)

we can easily see that the signed difference ∆±(y +B, y′ +B) can have non-zero
digits only in those places where the XOR difference ∆⊕(z, z′) has ones. This
narrows down the set of all possible signed binary representations that can “fit”
into XOR difference of a particular form to 2hw(∆⊕(z,z′)). But since a single signed



binary representation corresponds to a unique integer difference, there are also
only 2hw(∆⊕(z,z′)) integer differences ∂y that “fit” into the given XOR difference
∆⊕(z, z′) and what is important, integer differences are preserved when adding
a constant B.

Thus, to check whether a particular difference ∂y = y − y′ may “fit” into
XOR difference we need to solve the following problem: having ∂y = y − y′,
−232 < ∂y < 232 and a set of positions I = {k0, k1, . . . , km} ⊂ {0, . . . , 31} (that
is determined by non-zero bits of ∆⊕(z, z′)) decide whether it is possible to find
a binary signed representation r = (r0, . . . , r31) corresponding to ∂y such that

∂y =
m

∑

i=0

2ki · rki
where rki

∈ {−1, 1} . (5)

Substituting ti = (rki
+1)/2 we can rewrite the above equation in the equivalent

form

∂y +

m
∑

i=0

2ki = 2k0+1t0 + 2k1+1t1 + · · · + 2km+1tm , (6)

where ti ∈ {0, 1}. Deciding if there are numbers ti that satisfy (6) is an instance
of the knapsack problem and since it is superincreasing (because weights are
powers of two), we can do this very efficiently.

This gives us a computationally efficient necessary condition for microcolli-
sion in a line: if ∂y = y − y′ cannot be represented as (5), no constant B can
help us and there is no solution of (3).

Moreover, we can also show that this is as well a sufficient condition: if we
can find a solution to the problem (5), there exist a constant B that modifies
the signed difference in such a way that it “fits” the prescribed XOR pattern.

First of all, observe that since the solution of the superincreasing knapsack
problem (6) is unique, so is the solution of the equivalent problem (5). This means
that we know the unique signed representation ∆±(u, u+∂y) = (r0, . . . , r31) that
is compatible with the XOR difference ∆⊕(z, z′) and yields the integer difference
∂y. However, a unique signed representation corresponds to a number of concrete
pairs (u, u+∂y). If at a particular position j ∈ I we have rj = −1, we know that
in this position the value of j-th bit of u has to change from 1 to 0. Similarly, if
we have rj = 1, the j-th bit of u should change from 0 to 1. The rest of the bits
of u (corresponding to positions with zeros in ∆±(u, u + ∂y)) can be arbitrary.
That way we can easily determine the set U of all such values u. It is clear that
U always contains at least one element.

Now, since u = y +B for all u ∈ U , the set B of all constants B satisfying (3)
is simply B = {u − y : u ∈ U}.

This reasoning shows also that if we can have a microcollision in a line,
there are |B| = 232−hw(z⊕z′) constants that yield the microcollision if the most
significant bit of z ⊕ z′ is zero and 232−hw(z⊕z′)+1 if the MSB of z ⊕ z′ is one.
The difference is caused by the fact that if 31 ∈ I, we don’t need to change u31

in a particular way (i.e. either 1 → 0 or 0 → 1), any change is fine since we don’t
introduce carries anyway.



Finally, since we didn’t use any properties of functions f and g, the same
line of argument applies not only to microcollisions in QR but also to the same
structure with any functions in places of f and g.

4.2 Estimation of probabilities of microcollisions

From the practical point of view, we are very interested in the probability that
a random pair of values (A, A′) may lead to simultaneous microcollisions and
what is the overall probability of characteristics of the form (∆A, 0, 0, 0) →
(∆A, 0, 0, 0) when we cannot manipulate the values of registers A, B, C, D.

We conducted some experiments for QL and QR with different constants δ.
Our results indicate that the probability that a random pair of inputs (A, A′)
may lead to simultaneous microcollisions in all three lines is around 2−23 with
probability for a single line close to 2−13.

The probability that random constants B, C, D adjust the difference in
f(x) properly depends on Hamming weights of ∆⊕(z, z′). One example of such
distribution of weights obtained by testing 232 random pairs1 is presented in
Table 2.

Table 2. Distribution of Hamming weights of ∆⊕(g(x+ δ0), g(x′ + δ0)) corresponding
to potential simultaneous microcollisions after testing 232 random pairs x, x′

hw 0 1 . . . 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
count 1 0 . . . 0 1 6 18 29 59 78 74 90 56 39 14 1 0 0

We can see a clear peak around weights 24–26, so, according to the formula
describing the size of the set of constants from the previous subsection, we can
expect 26 ∼ 28 “good” constants in each of the sets B, C, D and thus the
probability that a random constant falls into that set is around 2−24 ∼ 2−26. Of
course to get a result for all three branches we need to cube that number.

Using the above results, we can try to estimate the probability that a set
of three simultaneous microcollisions occurs if we have no control of any values
A, A′, B, C, D. Multiplying 2−23 by 2−72 ∼ 2−78 we get an estimation of
2−95 ∼ 2−101. It shows that such differentials are not immediately useful, but
if we can force specific values of registers to desired values, they may be used
to construct collisions for at least simplified variants of FORK, as presented in
next sections.

5 Finding high-level differential paths in FORK-256

If we can avoid mixing introduced by the structures QL and QR (i.e. we know how
to get differentials (∆A, 0, 0, 0) → (∆A, 0, 0, 0) and (∆E, 0, 0, 0) → (∆E, 0, 0, 0))

1 In all experiments we were using Mersenne Twister [5] as the source of pseudorandom
numbers



and we can assume that differences in the registers B, C, D and F, G, H remain
unchanged, the only places where differences can change are registers A and E,
after the addition of a message word difference. Thus, the values of registers in
steps are simple linear functions of registers of the initial vector and message
words. If we denote ∆X0 + ∆Mσj(a) by [X,a] and ∆X0 + ∆Mσj(a) + ∆Mσj(b)

by [X,a,b], where σj is the permutation of message words used in branch j =
1, 2, 3, 4, we can write this down concisely in a tabular form presented in Table 3.

Table 3. If no mixing through QL and QR occurs, differences in registers are combina-
tions of differences in initial vectors and message words. [X,i] stands for ∆X0+∆Mσj(i)

and [X,a,b] stands for ∆X0 + ∆Mσj(a) + ∆Mσj(b)

registers
step ∆A ∆B ∆C ∆D ∆E ∆F ∆G ∆H

1 [A,0] [B] [C] [D] [E,1] [F] [G] [H]
2 [H,2] [A,0] [B] [C] [D,3] [E,1] [F] [G]
3 [G,4] [H,2] [A,0] [B] [C,5] [D,3] [E,1] [F]
4 [F,6] [G,4] [H,2] [A,0] [B,7] [C,5] [D,3] [E,1]
5 [E,1,8] [F,6] [G,4] [H,2] [A,0,9] [B,7] [C,5] [D,3]
6 [D,3,10] [E,1,8] [F,6] [G,4] [H,2,11] [A,0,9] [B,7] [C,5]
7 [C,5,12] [D,3,10] [E,1,8] [F,6] [G,4,13] [H,2,11] [A,0,9] [B,7]
8 [B,7,14] [C,5,12] [D,3,10] [E,1,8] [F,6,15] [G,4,13] [H,2,11] [A,0,9]

output [A,0,9] [B,7,14] [C,5,12] [D,3,10] [E,1,8] [F,6,15] [G,4,13] [H,2,11]

It is clear that differences in registers at any particular step are combinations
of differences introduced in the initial vector (A0, . . . , H0) and differences in
message words M0, . . . , M15.

If we consider the simplest case and assume (very optimistically) that any
two differences can cancel each other (this is the case with XOR differences),
we are in fact working over F2 and differences in all registers are F2-linear
combinations of differences ∆A0, . . . , ∆H0 and ∆M0, . . . , ∆M15 (which are now
seen as elements of F2). Now output differences of the whole compression func-
tion (including feed-forward) are also linear combinations of differences from
S = (∆A0 . . . , ∆H0, ∆M0, . . . , ∆M15) and we can represent this map as an F2-
linear function, (∆A, . . . , ∆H) = Lout(S). This means we can easily find the
set Sc of all vectors S = (∆A0 . . . , ∆H0, ∆M0, . . . , ∆M15) that yield zero out-
put differences at the end of the function simply as the kernel of this map,
Sc = ker(Lout).

To minimize the complexity of the attack, we want to find high-level paths as
short as possible. Since each register difference in each step is a linear function of
differences ∆A0 . . . , ∆H0, ∆M0, . . . , ∆M15 and there are only 224 of them, the
straightforward approach is to enumerate them all and for any desirable subset
of registers (e.g. for collisions in two or three branches) count the number of
registers containing non-zero differences and pick those differences S that give



the smallest one. This straightforward process can be improved. If we denote
by V the vector of register states we are interested in, there is a matrix Ψ such
that V = S ·Ψ . The matrix Ψ can be seen as a generator matrix of a linear code
over F2. Minimum words of that code correspond to register states with minimal
weight. To find collisions (or other restricted paths), the appropriate generating
matrix is Basis(kerLout)) · Ψ (or Basis(ker(L)) · Ψ where L is the linear map
describing those registers we want to be zero). Here Basis(A) denotes the basis
matrix of a linear space A. Using systems like MAGMA [2], finding minimum
words in such codes takes only a fraction of a second.

Our computations show that

– Minimal collision path in branches 1-2 uses differences in M0 and M9,
– Minimal collision path in branches 3-4 uses differences in M14 and M15,
– Minimal collision path for all four branches requires differences in message

words M6 and M12,
– Minimal unrestriced path for all branches has differences in the message M12

only

However, differences in registers other than A and E don’t contribute to
the complexity of the attack that much. The measure based on the number of
differences in registers A and E only corresponds more closely to the number
of “difficult” differentials we need to handle that require finding microcollisions.
Considering this, we also conducted experiments for different variants of FORK-
256 counting only differences in registers A and E.

Table 4. Minimal numbers of sets of simultaneous microcollisions in QL and QR

necessary in different attack scenarios on variants of FORK-256

Scenario Branches Number of simult. microcollisions Differences in

Collisions 1,2 2 M0, M9

Collisions 3,4 2 M14, M15

Collisions 1,3 3 M5

Collisions 1,4 3 M2

Collisions 2,3 3 M3

Collisions 2,4 3 M9

Pseudo-collisions 1,2,3 6 B0

Pseudo-collisions 1,2,4 6 B0

Pseudo-collisions 1,3,4 6 B0

Pseudo-collisions 2,3,4 6 B0

Collisions 1,2,3,4 12 M6, M12

Free path 1,2,3,4 6 M12

The results are presented in Table 4. The first column specifies whether we
are interested in collision, pseudo-collisions (differences also appear in the initial
vector) of just a free path – no specific conditions on differences are imposed.



The third column gives the minimal number of Q–structures that require special
differentials and thus also microcollisions in registers B,C,D or F ,G,H . The last
column gives an example of message and/or chaining variables differences that
induce the high-level path with the given number of sets of microcollisions.

6 Collisions for two branches of FORK

We can use the minimal path for branches 1&2 to get collisions for these two
branches of FORK-256. The idea is to find two related simultaneous microcolli-
sions, the first one of type f - δ0 - g (f is followed by δ0 and then by g) to be used
in the left part of the first step of branch 1 and the other one of type g - δ12 - f
to be used in step 2 of branch 2.

If we can find a pair of values (x, x′) that yields f - δ0 - g microcollisions and
a pair (y, y′) that yields g - δ12 - f microcollisions such that the values satisfy
the condition x − x′ = y′ − y, we can construct a collision for branches 1&2 by
preserving differences ∂x = x − x′ in steps 2, 3, 4 of branch 1 and ∂y = y − y′

in steps 3, 4, 5 of branch 2.
The algorithm works as follows:

1. find a pair of values x, x′ that produce f - δ0 - g simultaneous microcollisions
and determine the three compatible constants ρ1, ρ2, ρ3, (this step requires
around 223 tests of random pairs x, x′)

2. for the fixed difference ∂x = x−x′ test pairs of the form y, y′ = y+∂x until a
simultaneous microcollision of type g - δ12 - f is found. Determine compatible
constants τ1, τ2, τ3. (Again, experiments suggest that the complexity of that
step is 223 tests)

3. set IV [1] := ρ1, IV [2] := ρ2, IV [3] := ρ3,
4. compute M0 := x − IV [0], M ′

0 := x′ − IV [0],
5. set both M15 and M ′

15 to τ1 − IV [4] − δ14,
6. compute initial values IV [5] and IV [6] as follows

IV [5] := (τ2 ⊕ f(IV [4] + M15 + δ14)) − g(IV [4] + M15),

IV [6] := (τ3 ⊕ ROL5(f(IV [4] + M15 + δ14))) − ROL9(g(IV [4] + M15))

7. compute the values M9 := y − E
(2)
1 and M ′

9 := y′ − E
(2)
1 , where

E
(2)
1 = ((IV [3]+ROL17(f(IV [0]+M14)))⊕ROL21(g(IV [0]+M14 + δ15))),

is the value of register E after step 1 in branch 2.
8. preserve the difference ∂x by forcing the value of g to zero in steps 2, 3, 4

(XOR-ing with zero doesn’t change the modular difference)

– set M ′
2 := M2 := −A

(1)
1 − δ2,

– set M ′
4 := M4 := −A

(1)
2 − δ4,

– set M ′
6 := M6 := −A

(1)
3 − δ6,

9. similarly, preserve the difference ∂y by forcing the value of f to zero in steps
3, 4, 5 of branch 2



– set M ′
10 := M10 := −E

(2)
2 − δ10,

⋄ in step 3 we cannot modify the value of M4 as it is already fixed by
correction done in branch 1. However, we can modify freely the value of

M8 (and M ′
8) which indirectly influences the value of E

(2)
3 we need to

adjust. We do this until the difference in H
(2)
4 is equal to the difference

at the beginning of the step, i.e. in G
(2)
3 . If we exhaust all possible values

of M8, we can modify the value of M11 and go to step 9 or pick another
constant ρ1 and start over from step 3.

– set M ′
13 := M13 := −E

(2)
4 − δ6,

The complexity of the attack on branches 1 and 2 depends on the effort to find
suitable pair of microcollisions and the amount of work necessary to find the
appropriate value of M8 in step 9.⋄. Microcollisions can be precomputed using
around 223 evaluations of functions f , g. The only part we need to deal with
during the attack is 9.⋄. In our experiment we had to test ≈ 10000 values of M8

to find the right one. Since one test is roughly equivalent to computing single
step in one branch of FORK (1/32 of the whole function), we can estimate the
complexity of 9.⋄ to be less than 29 evaluations of the compression function.

This algorithm (partially) uses the following variables: IV [1], IV [2], IV [3],
IV [5], IV [6], M0, M2, M4, M6, M8, M9, M10, M13, M15. The following variables
can have arbitrary values: IV [0], IV [4], IV [7], M1, M3, M5, M7, M11, M12, M14.

Finally, we present an example of a collision:

IV={6a09e667, ff03f03a, f7da19f9, a19f937d,

510e527f, d1075199, c4bba02c, 00000000}

M={97770819, 00000000, 90e31bf1, 00000000,

e9b1a3b9, 00000000, 36ca5a85, 00000000,

000024a1, 6ff47b82, 3f7bfaf6, 00000000,

00000000, 014b4e3b, 00000000, 980100ed}

MM={b479fad2, 00000000, 90e31bf1, 00000000,

e9b1a3b9, 00000000, 36ca5a85, 00000000,

000024a1, 52f188c9, 3f7bfaf6, 00000000,

00000000, 014b4e3b, 00000000, 980100ed}

Collisions for branches 3 and 4 can be obtained using exactly the same
method by introducing appropriate differences in message words M14 and M15.

7 Conclusions and future work

In this paper we presented a preliminary analysis of the compression function
of FORK-256. We showed that having enough freedom we can easily find dif-
ferentials with differences in registers A and E that propagate through step
transformation without affecting other registers. This somehow violates the de-
sign principles that expect structures QL and QR to introduce high diffusion
of differences. Our algorithm allows us to find such pathological situations very
efficiently. Using described techniques we were able to easily construct actual
collisions for variants of FORK-256 reduced to only two branches, either 1 and



2 or 3 and 4. We presented directions how to extend these results to variants
with more branches. The open question remains if those methods can be used
to attack more than three branches of FORK-256. The key question seems to be
whether we have enough freedom to apply those techniques to the full function
and the key challenge seems to be controlling values in specific registers simul-
taneously in all branches. We hope that our further research will answer some
of these questions.
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