
Efficient Pseudorandom Generators Based on the DDH
Assumption

Reza Rezaeian Farashahi, Berry Schoenmakers, and Andrey Sidorenko

Eindhoven University of Technology,
P.O. Box 513, 5600MB Eindhoven, The Netherlands

r.rezaeian@tue.nl, berry@win.tue.nl, a.sidorenko@tue.nl

Abstract. A new family of pseudorandom generators based on the decisional Diffie-
Hellman assumption is proposed. The new construction is a modified and generalized
version of the Dual Elliptic Curve generator presented by Barker and Kelsey. Although
the original Dual Elliptic Curve generator is shown to be insecure, the modified version
is provably secure and very efficient in comparison with the other pseudorandom
generators based on discrete log assumptions.
Our generator can be based on any group of prime order such that an additional
requirement is met (e.g., there exists an efficiently computable function that in some
sense enumerates the elements of the group). Three concrete examples are presented.
The techniques used to design the concrete examples, for instance, the new proba-
bilistic randomness extractors are of independent interest for other applications.

1 Introduction

A pseudorandom generator is a deterministic algorithm that converts a short sequence of
uniformly distributed random bits into a longer sequence of bits that cannot be distinguished
from uniformly random by a computationally bounded algorithm. It is known that a pseudo-
random generator can be constructed from any one-way function [23]. Thus, intractability
of the discrete logarithm problem suffices to construct a pseudorandom generator. Such a
construction was first proposed by Blum and Micali [2]. The Blum-Micali pseudorandom
generator is inefficient in the sense that it outputs only a single bit per modular exponentia-
tion. In this paper, we show that the stronger assumption that the decisional Diffie-Hellman
problem is hard to solve (DDH assumption) gives rise to much more efficient pseudorandom
generators.

1.1 Related Work

Our work is actually inspired by Barker and Kelsey’s publication [1], in which the so-called
Dual Elliptic Curve generator is proposed. Let P and Q be points on a prime order elliptic
curve over a prime field Fp such that p is close to 2256. Let q denote the order of the curve.
On input s0 chosen uniformly at random from Zq the Dual Elliptic Curve generator produces
two sequences of points siP and siQ such that si is set to be the x-coordinate of si−1P ,
i = 1, 2, . . . , k. The output of the generator consists of k binary strings each string consisting
of 240 least significant bits of the x-coordinate of siQ. The sequence of points siQ is shown
to be indistinguishable from the sequence of uniformly random points of the elliptic curve
under the assumption that the DDH problem and the non-standard x-logarithm problem
are intractable in E(Fp) [3]. However, the binary sequence produced by the generator turns
out to be distinguishable from uniform. The reason is that points of the elliptic curve are
transformed into random bits in an improper way [9, 22].

Some ideas of the Dual Elliptic Curve generator are present in the earlier work by Naor
and Reingold [20]. Let p be a prime and let g be a generator of a subgroup of Z∗p of prime
order q. Let a ∈ Zq be a fixed number. Naor and Reingold [20] propose a simple function G

2

that on input b ∈ Zq outputs (gb, gab). If b is chosen uniformly at random, the output of the
function is computationally indistinguishable from uniform under the DDH assumption in
the subgroup. Note, however, that function G produces random elements of the subgroup
rather than random bits and therefore it is not a pseudorandom generator in the sense of
Definition 1 (converting random elements of the subgroup into random bits is a nontrivial
problem). Moreover, although function G doubles the input it cannot be iterated to produce
as much pseudorandomness as required by the application. Namely, it is not clear how to
produce a new value of b given two group elements gb and gab. Nevertheless, the goal of
Naor and Reingold [20] is to construct not a pseudorandom generator but a pseudorandom
function. Function G turns out to be a suitable building block for a pseudorandom function
even though it does not automatically yield a pseudorandom generator.

1.2 Our Contributions

We modify and generalize the Dual Elliptic Curve generator so that the modified version is
provably secure under the DDH assumption. In comparison with the original Dual Elliptic
Curve generator, our generator can be based on any group of prime order such that an
additional requirement is met (e.g., there exists an efficiently computable function that in
some sense enumerates the elements of the group). The new generator is more efficient than
all known pseudorandom generators based on discrete log assumptions.

We present three concrete examples of the new pseudorandom generator.
The first example is based on the group of quadratic residues modulo a safe prime

p = 2q + 1. This example uses an elegant idea of Chevassut et al. [4] who show that there
exists a simple bijective function that maps quadratic residues modulo p to Zq.

The second example is based on an arbitrary prime order subgroup of Z∗p, where p is
prime but not necessarily a safe prime. To construct this example, we first propose a surpris-
ingly simple probabilistic randomness extractor that provided with some extra randomness
converts a uniformly random element of the subgroup of order q into a uniformly random
number in Zq, which in turn can be easily converted into a string of uniformly random bits
using, for instance, algorithm Q2 from [11]. Note that all (probabilistic and deterministic)
extractors known so far can only convert random elements of the subgroup into bits that are
statistically close to uniform.

The extractor proposed is of independent interest. It can be used not only for designing
pseudorandom generators but also for key exchange protocols to convert the random group
element shared by the parties involved into the random binary string.

If the size of the subgroup q is sufficiently large, our extractor is more efficient than
the general purpose probabilistic randomness extractors (e.g., the universal hash functions
[23]) in terms of the number of extra random bits required. For instance, if the statistical
distance to be reached is 2−80 our extractor requires less extra randomness than universal
hash functions if the size of the subgroup is at least p/2160. If the size of the subgroup is
close to the size of the group p, our extractor requires only few extra bits.

The recently proposed deterministic extractor by Fouque et al. [6] does not require any
extra randomness to produce the output. However, it extracts substantially less than half
of the bits of a uniformly distributed random element of the subgroup. On the contrary, our
extractor does require extra randomness rand ∈ Zl, l ≥ 1, but one gets this randomness back
in the sense that the extractor outputs not only the integer from Zq but also an element of
Zl. The crucial advantage of our extractor is that it extracts all the bits of the subgroup
element.

In practice, hash functions like MD5 or SHA-1 are often used as randomness extractors.
In this case security of the scheme cannot be proved in the standard model without additional
non-standard assumptions.

The third example of the DDH generator is based on a subgroup of points of an elliptic
curve. The advantage of this generator is a relatively short seed. This generator can be used as

3

a cryptographically secure alternative for the Dual Elliptic Curve generator. In contrast with
the Dual Elliptic Curve generator, the new generator is based on supersingular curves. Due
to the powerful attack of Menezes et al. [19] the group size in the case of supersingular curves
has to be higher than in the case of ordinary curves for the same security level. It means
that the new generator is somewhat less efficient than the original one. The degradation of
the efficiency is the price to pay for provable security.

We derive the security parameters of the new pseudorandom generators from the cor-
responding security reductions. For this purpose, we make practical assumptions about in-
tractability of the discrete logarithm problem in the corresponding groups.

2 Preliminaries

In this section, we introduce some conventions and recall basic definitions.

2.1 Conventions

Time Units. A unit of time has to be set to measure the running time of the algorithms.
Throughout this paper, the unit of time is one DES encryption. According to the data
from [15], a software implementation of DES is estimated to take about 360 Pentium
clock cycles. Therefore, we assign

1 time unit = 360 Pentium clock cycles.

Security level. The table by Lenstra and Verheul [15] implies that 280 DES encryptions
will be infeasible for classical computers until the year 2013. Therefore, we set 280 time
units as the security level to be reached.

Modular multiplication cost. In [15], it is reported that multiplication modulo p takes
about (log2 p)2/24 Pentium clock cycles, that is,

(log2 p)2/(24 · 360) time units.

Complexity of discrete logarithm variant of the NFS. The discrete logarithm vari-
ant of the Number Field Sieve (NFS) algorithm solves the discrete logarithm problem in a
n-bit prime field in expected time L(n) = A exp((1.9229+o(1))(n ln 2)1/3(ln(n ln 2))2/3),
where A is a constant. Following [15], we assume that the o(1)-term is zero and estimate
the constant A from experimental data. Unfortunately, practical experience with the dis-
crete logarithm variant of the NFS is limited. On the other hand, there are several data
points for the Number Field Sieve factoring algorithm. For instance, factoring a 512-bit
integer is reported to take about 3 · 1017 Pentium clock cycles [15]. Since computing dis-
crete logarithms in n-bit fields takes about the same amount of time as factoring n-bit
integers for any n in the current range of interest (cf. [15]), it implies that A ≈ 4.7 ·10−5

and thus

L(n) = 4.7 · 10−5 exp((1.9229 + o(1))(n ln 2)1/3(ln(n ln 2))2/3) time units.

It is believed that the discrete logarithm problem in the extension field is as hard as the
discrete logarithm problem in the prime field of similar size (cf. [14]).

2.2 Notation

Let x and y be random variables taking on values in a finite set S. The statistical distance
between x and y is defined as

∆(x, y) =
1
2

∑

α∈S

|Pr[x = α]− Pr[y = α]|.

4

We say that algorithm D distinguishes x and y with advantage ε if and only if

|Pr[D(x) = 1]− Pr[D(y) = 1] | ≥ ε.

If the statistical distance between x and y is less than ε then no algorithm distinguishes x
and y with advantage ε (see, e.g., Exercise 22 of [16]).

Let Um denote a random variable uniformly distributed on Zm. We say that an algorithm
is T -time if it halts in time at most T .

2.3 Pseudorandom Generators

Consider a deterministic algorithm PRG : {0, 1}n 7→ {0, 1}M , where M > n. Loosely speak-
ing, PRG is called a pseudorandom generator if it maps uniformly distributed input into
an output which is computationally indistinguishable from uniform. The input is called the
seed and the output is called the pseudorandom sequence. The precise definition is given
below.

A T -time algorithm D : {0, 1}M 7→ {0, 1} is said to be a (T, ε)-distinguisher for PRG if

|Pr[D(PRG(U2n)) = 1]− Pr[D(U2M) = 1] | ≥ ε. (1)

Definition 1 (Pseudorandom generator). Algorithm PRG is called a (T, ε)-secure pseu-
dorandom generator if there exists no (T, ε)-distinguisher for PRG.

An important question is what level of security (T, ε) suffices for practical applications
of pseudorandom generators. Unfortunately, the level of security is often chosen arbitrarily.
Knuth ([13], p. 176) sets ε = 0.01 and consider several values for T up to 53.5 · 1012 Mips-
Years1. In [5], the security level is set to T = 1 Mips-Year, ε = 0.01. In [7], T = 3.5 · 1010

Mips-Years, ε = 0.01.
The fact that a pseudorandom generator is (T, ε)-secure does not automatically mean

that the generator is (T ′, ε′)-secure for all T ′ and ε′ such that T ′/ε′ ≤ T/ε. For instance, if a
pseudorandom generator is (T, 0.01)-secure it does not necessarily mean that the generator
is (T ′, 0.009)-secure even if T À T ′. The reason is that a (T ′, 0.009)-distinguisher cannot
always be transformed into a (T, 0.01)-distinguisher. Indeed, the only way to improve the
success probability of the distinguisher is to run it several times on the same input. However,
the latter does not always help since there might be ”bad” inputs, that is, inputs for which
the success probability of the distinguisher is very low or equals 0.

It is reasonable to require that a pseudorandom generator is secure for all pairs (T, ε)
such that the time-success ratio T/ε is below a certain bound that is set to be 280 time
units throughout this paper. Time-success ratio is a standard way to define security of
cryptographic schemes [16, 23].

2.4 Decisional Diffie-Hellman Problem

Let G be an additive group of prime order q. For P, Q ∈ G and s ∈ Zq such that P = sQ, s
is called the discrete logarithm of P to the base Q. We write s = logQ P .

Definition 2 (DDH problem). Let XDDH ∈ G4 be a random variable uniformly distrib-
uted on the set consisting of all 4-tuples (P, Q, R, S) ∈ G4 such that logP R = logQ S and let
YDDH ∈R G4. Algorithm D is said to solve the decisional Diffie-Hellman (DDH) problem in
G with advantage ε if it distinguishes the random variables XDDH and YDDH with advantage
ε, that is,

|Pr[D(XDDH) = 1]− Pr[D(YDDH) = 1] | ≥ ε.

1 A Mips-Year is defined as the amount of computation that can be performed in one year by a
single DEC VAX 11/780 (see also [15]).

5

Related to the decisional Diffie-Hellman problem is the computational Diffie-Hellman
problem (given P,Q ∈ G, sP, s ∈ Zq compute sQ), and the discrete logarithm problem
(given P, Q ∈ G, compute logQ P).

Clearly, the discrete logarithm (DL) problem is at least as hard to solve as the computa-
tional Diffie-Hellman (CDH) problem. The CDH problem is proved to be equivalent to the
DL problem under certain conditions [17, 18]. Moreover, no groups are known such that the
CDH problem is strictly easier to solve than the DL problem. The common practice is to
assume that these two problems are equally hard.

On the other hand, there exist groups (e.g., Z∗p) in which a random instance of the
CDH problem is believed to be hard while the DDH problem is easy. The latter groups are
referred to as the non-DDH groups [8]. Furthermore, Wolf [24] shows that for all groups G
an algorithm that solves the DDH problem in G is of no help for solving the CDH problem
in G. However, the computational gap between the DDH problem and the CDH problem is
difficult to estimate. It is believed that except for the non-DDH groups, there is no way to
solve the DDH problem rather than to solve the CDH problem.

We do not use non-DDH groups in this paper. To compute security parameters for the
pseudorandom generators, we assume that the DDH problem and the DL problem are equally
hard, in agreement with common practice.

Let TDL be the running time of the best known algorithm for solving a random instance
of the DL problem in a group G. Of course, TDL depends on the group G, that is, TDL =
TDL(G). For instance, in the case of finite fields, TDL corresponds to the running time of the
discrete logarithm variant of the Number Field Sieve, while for most of the ordinary elliptic
curves the best known algorithms are the exponential square root attacks.

Assumption 1 Unless G is a non-DDH group, no T -time algorithm solves the DDH prob-
lem in G with probability ε if T/ε ≤ TDL(G).

3 DDH Generator

In this section, we present a new provably secure pseudorandom generator. We call the new
generator the DDH generator, since the security of this generator relies on the intractability
of the DDH problem in the corresponding group. In contrast with the Dual Elliptic Curve
generator [1], the DDH generator can be based on any group of prime order such that an
additional requirement is met (e.g., there exists an efficiently computable function enum that
”enumerates” the elements of the group).

3.1 Construction of the Generator

Let G be a group of prime order q and let enum : G × Zl 7→ Zq × Zl, l > 0, be a bijection.
On uniformly distributed input, function enum produces uniformly distributed output. Typ-
ically, but not necessarily, l is chosen to be small. The advantage of a smaller l is that the
seed of the generator is shorter.

Let P,Q ∈R G. The seed of the DDH generator (Algorithm 3.1) is s0 ∈R Zq and
randp0, randq0 ∈R Zl. The DDH generator transforms the seed into the sequence of k pseudo-
random numbers from Zq.

Note that the random elements P and Q are not included into the seed. These two
elements are the system parameters that are not necessarily kept secret. In the security
analysis of the generator we assume that P and Q and known to the distinguisher.

3.2 Security Analysis

The following theorem implies that under the DDH assumption in group G the output
sequence of the DDH generator is indistinguishable from the sequence of uniformly random
numbers in Zq.

6

Algorithm 3.1 DDH generator
Input: s0 ∈ Zq, randp0 ∈ Zl, randq0 ∈ Zl, k > 0
Output: k pseudorandom numbers from Zq

for i = 1 to k do
Set (si, randqi) ← enum(si−1P, randqi−1)
Set (outputi, randpi) ← enum(si−1Q, randpi−1)

end for
Return output1, . . . , outputk

Theorem 2. Suppose there exists a T -time algorithm that distinguishes the output of the
DDH generator from the sequence of independent uniformly distributed random numbers in
Zq with advantage ε. Then the DDH problem in G can be solved in time T with advantage
ε/k.

Proof. Suppose there exists a T -time algorithm D that distinguishes the output of the DDH
generator from the sequence of independent uniformly distributed random numbers in Zq

with advantage ε, that is,

|Pr[D(output1, . . . , outputk) = 1]− Pr[D(U) = 1] | ≥ ε,

where U = (u1, . . . , uk), ui ∈R Zq, i = 1, . . . , k. Let j ∈R {1, 2, . . . , k}. Due to the classical
hybrid argument (see, e.g., Section 3.2.3 of [10]),

|Pr[D(Zj) = 1]− Pr[D(Zj+1) = 1] | ≥ ε/k,

where

Zj =(u1, . . . , uj−1, output1, . . . , outputk−j+1),

Zj+1 =(u1, . . . , uj−1, uj , output1, . . . , outputk−j).

Now, we show how to solve the DDH problem in G using the distinguisher D as a building
block. Let (P, Q, R, S) ∈ G4. A solver for the DDH problem decides if logP R = logQ S or R
and S are independent uniformly distributed random elements of G as follows.

Select v1, . . . , vj−1 ∈R Zq, randp0 ∈R Zl, randq0 ∈R Zl

Set (s1, randp1) ← enum(R, randp0)
Set (vj , randq1) ← enum(S, randq0)
for i = 2 to k − j do

Set (si, randpi) ← enum(si−1P, randpi−1)
Set (vi+j−1, randqi) ← enum(si−1Q, randqi−1)

end for
Set Z = (v1, . . . , vk)
Return D(Z)
If there exists s0 ∈ Zq such that R = s0P and S = s0Q then vj and vj+1 are distributed

as the first and the second outputs of the DDH generator, so Z is distributed as Zj .
In the opposite case, if R and S are independent uniformly distributed random elements

of G then vj+1 is distributed as the first output of the DDH generator while vj is uniformly
distributed over Zq and independent of vj+1, so Z is distributed as Zj+1.

Therefore, the above algorithm solves the DDH problem in G in time at most T with
advantage ε/k.

The DDH generator is not a pseudorandom generator in terms of Definition 1. It outputs
numbers in Zq rather than bits. However, converting random numbers into random bits is
an easy to solve problem. For instance, one can use Algorithm Q2 from [11] that is shown

7

to produce on average n − 2 bits given a uniformly distributed random number Uq. In the
latter case, the average number of bits produced by the generator is k(n− 2).

For the sake of simplicity, throughout this paper, we assume that q is close to the power
of 2, that is, 0 ≤ (2n − q)/2n ≤ δ for a small δ. So, the uniform element Uq is statistically
close to n uniformly random bits.

The following simple lemma is proved by [4].

Lemma 1. Under the condition that 0 ≤ (2n − q)/2n ≤ δ, the statistical distance between
Uq and U2n is bounded above by δ.

The following statement implies that if q is close to a power of 2, the DDH generator is
a cryptographically secure pseudorandom generator under the DDH assumption in G.

Corollary 1. Let 0 ≤ (2n − q)/2n ≤ δ. Suppose the DDH generator is not (T, ε)-secure.
Then there exists an algorithm that solves the DDH problem in G1 in time at most T with
advantage ε/k − δ.

Proof. Suppose there exists a distinguisher D : {0, 1}kn 7→ {0, 1} that runs in time at most
T and

|Pr[D(output1, . . . , outputk) = 1]− Pr[D(U2kn) = 1] | ≥ ε.

Let ui ∈R Zq, i = 1, . . . , k, and U = (u1, . . . , uk). Lemma 1 implies that the statistical
distance ∆(U,U2kn) ≤ kδ. Thus,

|Pr[D(output1, . . . , outputk) = 1]− Pr[D(U) = 1] | ≥ ε− kδ.

Now, the statement follows from Theorem 2.

4 Concrete Pseudorandom Generators

To implement the DDH generator, one has to choose the group G of prime order q and
function enum that enumerates the group elements. In this section, we consider three concrete
examples of the DDH generator.

Throughout this section we assume that q is close to a power of 2, that is, 0 ≤ (2n −
q)/2n ≤ δ for a small δ. We stress that the latter assumption is made for the sake of simplicity
only. M denotes the total number of pseudorandom bits produced by the generator.

4.1 Group of Quadratic Residues Modulo Safe Prime

To build our first example, we use an elegant idea of Chevassut et al. [4] who show that there
exists a simple deterministic function that enumerates elements of the group of quadratic
residues modulo safe prime p.

Let p be a safe prime, p = 2q + 1, where q is prime. Let G1 be a group of nonzero
quadratic residues modulo p. The order of G1 equals q. Consider the following function
enum1 : G1 7→ Zq,

enum1(x) =

{
x, if x ≤ q;
p− x, if x > q.

It is shown in [4] that function enum1 is a bijection. Moreover, enum1 does not require any
additional input, so in terms of Section 3.1 l = 1.

Let x, y ∈ G1. Let s0 ∈R Zq be the seed. Generator PRG1 (Algorithm 4.1) is a de-
terministic algorithm that transforms the seed into the pseudorandom sequence of length
kn.

The following statement follows from Corollary 1.

8

Algorithm 4.1 Generator PRG1

Input: s0 ∈ Zq, k > 0
Output: kn pseudorandom bits

for i = 1 to k do
Set si ← enum1(x

si−1)
Set outputi = enum1(y

si−1)
end for
Return output1, . . . , outputk

Proposition 1. Suppose pseudorandom generator PRG1 is not (T, ε)-secure. Then there
exists an algorithm that solves the DDH problem in G1 in time at most T with advantage
ε/k − δ.

The seed length n plays the role of the security parameter of the generator. Clearly,
smaller n gives rise to a faster generator. On the other hand, for larger n the generator is
more secure. Our goal is to select n as small as possible such that the generator is (T, ε)-
secure for all T, ε such that T/ε < 280 time units.

For δ = ε/(2k), the generator is (T, ε)-secure if

2kT/ε < TDL(G1), (2)

where TDL(G1) is the running time of the fastest known method for solving the discrete
logarithm problem in G1. According to the current state of the art, we set TDL(G1) to be
the running time of the discrete logarithm variant of the Number Field Sieve L(n). Note
that k = M/n. Then, (2) holds if 2MT/(nε) < L(n). For M = 220 and T/ε = 280, the
smallest parameter n that satisfies the above inequality is n ≈ 1600.

Recall that the prime q satisfies 0 ≤ (2n − q)/2n ≤ δ. We have assumed that δ = ε/(2k).
For M = 220, n = 1600, and ε = 2−80, this condition implies that 0 < 2n − q < 21500. There
are plenty of safe primes p = 2q + 1 such that 0 < 2n − q < 21500.

4.2 Arbitrary Prime Order Subgroup of Z∗
p

In this section, we show that the DDH generator can be based not only on the group of
quadratic residues modulo a safe prime but on any prime order subgroup of Z∗p, where p is
a prime but not necessarily a safe prime.

Let q be a prime factor of p − 1, p − 1 = lq, l ≥ 2, such that gcd(l, q) = 1. If p is a
safe prime then l = 2. Denote by G2 a subgroup of Z∗p of order q. Throughout this section,
multiplication of integers is done modulo p.

Let split2 : Z∗p 7→ Zq ×Zl denote a bijection that splits an element of Z∗p into two smaller
numbers. An example of split2 is a function that on input z ∈ Z∗p returns (z − 1) mod q and
(z − 1) ÷ q. Let t ∈ Z∗p be an element of order l. Let enum2 : G2 × Zl 7→ Zq × Zl be the
following function:

enum2(x, rand) = split2(xtrand),

where x ∈ G2, rand ∈ Zl. The following lemma shows that enum2 is a bijection and thus it
is suitable for building the DDH generator.

Lemma 2. Function enum2 defined above is a bijection.

Proof. Let f : G2 × Zl 7→ Z∗p be defined as f(x, rand) = xtrand mod p for x ∈ G2 and
rand ∈ Zl. To prove the statement of the lemma, we first show that f is a bijection. We use
reductio ad absurdum.

Suppose that x1t
rand1 = x2t

rand2 for xi ∈ G2, randi ∈ Zl, i = 1, 2. Since x2 ∈ G2, x2 6= 0.
Then, x1/x2 = trand1−rand2 ∈ G2 so tq(rand1−rand2) = 1. Therefore, l divides q(rand1 − rand2).

9

Since gcd(q, l) = 1, it implies that l divides rand1 − rand2. The latter implies that rand1 =
rand2 and thus x1 = x2.

The contradiction implies that f is indeed a bijection and thus enum2 is also a bijection
as a composition of two bijective functions.

Let x, y ∈R G2. The seed of generator PRG2 (Algorithm 4.2) consists of s0 ∈R Zq and
randp0, randq0 ∈R Zl. PRG2 transforms the seed into the pseudorandom sequence of length
kn.

Algorithm 4.2 Generator PRG2

Input: s0 ∈ Zq, randp0 ∈ Zl, randq0 ∈ Zl, k > 0
Output: kn pseudorandom bits

for i = 1 to k do
Set (si, randqi) ← enum2(x

si−1 , randqi−1)
Set (outputi, randpi) ← enum2(y

si−1 , randpi−1)
end for
Return output1, . . . , outputk

The following statement follows from Corollary 1.

Proposition 2. Suppose pseudorandom generator PRG2 is not (T, ε)-secure. Then there
exists an algorithm that solves the DDH problem in G2 in time at most T with advantage
ε/k − δ.

Let m denote the bit length of p. The above pseudorandom generator outputs n bits
per two modular exponentiations with n-bit exponent, which implies linear in n number of
modular multiplications. Therefore, the computational effort per output bit does not depend
on n. On the other hand, the computational effort is proportional to m2. Our goal is now to
determine parameters m and n that minimize the computational effort under the condition
that the generator is (T, ε)-secure for all T, ε satisfying T/ε < 280.

For δ = ε/(2k), generator PRG2 is (T, ε)-secure if

2kT/ε < TDL(G2), (3)

where TDL(G2) is the running time of the fastest known method for solving the discrete
logarithm problem in G2. The best algorithms for solving the discrete logarithm problem in
G2 are the Pollard’s rho method in G2 and the discrete logarithm variant of the Number
Field Sieve in the full multiplicative group Z∗p. The running time of the Pollard’s rho method
is estimated to be 0.88

√
q group operations (cf. [15]). Since k = M/n, condition (3) implies

that
2MT/(nε) < min[L(m), 0.88 · 2n/2m2/(24 · 360)].

For M = 220, T/ε = 280, the optimal parameters n and m are m ≈ 1600, 160 / n ≤ m.
In comparison with PRG1, the seed of PRG2 is somewhat longer, although if m ≈ n it

is roughly of the same size. Moreover, PRG2 is less efficient than PRG1 in terms of compu-
tational effort since computation of enum2 implies a modular exponentiation while enum1

implies at most 1 integer subtraction. A significant advantage of PRG2 versus PRG1 is that
the former can be based on any prime order subgroup of Z∗p for any prime p provided that
the size of the subgroup is sufficiently large to resist the Pollard’s rho attack.

4.3 Supersingular Elliptic Curve

It turns out that the previous example can be modified in a simple way for the case of
a certain type of supersingular elliptic curves. In comparison with the examples presented

10

above, the generator proposed in this section is slower the reason being that addition of
points of an elliptic curve takes a dozen of modular multiplications. On the other hand, the
seed of the generator proposed in this section is about 2 times shorter.

Let p be a prime, p ≡ 2 mod 3. Consider a curve E(Fp) that consists of points (x, y) ∈
Fp × Fp such that

y2 = x3 + c,

where c ∈ Fp, and a point at infinity O. Kaliski [12] shows that the elliptic curve E(Fp)
equipped with the standard ”tangent and chord” addition law forms a cyclic additive group
of order p + 1. More precisely, for each y ∈ Fp there exists exactly one x ∈ Fp such that
(x, y) ∈ E(Fp).

Since p ≡ 2 mod 3, p+1 is divisible by 6. Let q be a prime factor of p+1, that is, p+1 = lq,
l ≥ 6, gcd(l, q) = 1. Let G3 be a subgroup of E(Fp) of order q. Let split3 : Zp+1 7→ Zq × Zl

denote a bijection that splits an element of Zp+1 into two smaller numbers. Let T ∈ E(Fp)
be a point of order l, that is lT = O. Denote by y : E(Fp) 7→ Zp+1 the function that gives
the y-coordinate of the point of the curve and y(O) = p. Let enum3 : G3 × Zl 7→ Zq × Zl be
the following function:

enum3(P, rand) = split3(y(P + rand · T)),

where P ∈ G3, rand ∈ Zl. Similarly to Lemma 2, we can show that enum3 is a bijection.
Let P, Q ∈R G3. The seed of generator PRG3 (Algorithm 4.3) is s0 ∈R Zq and randp0,

randq0 ∈R Zl. PRG3 transforms the seed into the pseudorandom sequence of length kn.

Algorithm 4.3 Generator PRG3

Input: s0 ∈ Zq, randp0 ∈ Zl, randq0 ∈ Zl, k > 0
Output: k numbers from Zq

for i = 1 to k do
Set (si, randqi) ← enum3(si−1P, randqi−1)
Set (outputi, randpi) ← enum3(si−1Q, randpi−1)

end for
Return output1, . . . , outputk

The following statement follows from Corollary 1.

Proposition 3. Suppose the pseudorandom generator PRG3 is not (T, ε)-secure. Then there
exists an algorithm that solves the DDH problem in G2 in time at most T with advantage
ε/k − δ.

Let m denote the bit length of p. We now determine parameters m and n that minimize
the computational effort under the condition that the generator is (T, ε)-secure for all T, ε
satisfying T/ε < 280. Similarly to the example presented in Section 4.2, the computational
effort of PRG3 is proportional to m2 and does not depend on n.

As before, assume that δ < ε/(2k). Then, generator PRG3 is (T, ε)-secure if

2kT/ε < TDL(G3), (4)

where TDL(G3) is the running time of the fastest known method for solving the discrete
logarithm problem in G3. The result of Menezes et al. [19] implies that the discrete logarithm
problem in E(Fp) is not harder than the discrete logarithm problem in Fp2 . Therefore,
condition (4) gives

2MT/(nε) < min[L(2m), 12 · 0.88 · 2n/2m2/(24 · 360)].

11

Here we assumed that a point addition costs about 12 modular multiplications (cf. [14]).
For M = 220 and T/ε = 280, we get m ≈ 800, 160 / n < m.

The pseudorandom generator PRG3 can be based not only on the supersingular elliptic
curves over prime fields but also on the supersingular elliptic curves over binary fields F2m

such that m is odd. Let E(F2m) be the elliptic curve defined by the equation

y2 + ay = x3 + b,

where a, b ∈ F2m , a 6= 0. It can be shown that if m is odd then for each y ∈ F2m the exists
exactly one x such that (x, y) ∈ E(F2m). So the number of points on the curve E(F2m)
including the point at infinity is 2m +1. One can consider a prime order subgroup of E(F2m)
and construct function enum similar to enum3.

The disadvantage of elliptic curves over binary fields in this context is that for a fixed
parameter m there is at most one possible order of the group of length m, that is, 2m−1 +1.
On the contrary, in the case of elliptic curves over prime fields the order can be chosen to be
p + 1 for any prime p of length m. So in the latter case, there is more freedom in the choice
of the parameters.

5 Generator PRG1 versus the Gennaro generator

To the best of our knowledge, the pseudorandom generator proposed by Gennaro [7] is the
best known pseudorandom generator based on a discrete log like problem. In this section,
we show that generator PRG1 is more efficient than the Gennaro generator [7].

Security of the Gennaro generator is based on a variant of the discrete logarithm problem,
that is, the discrete logarithm with short exponent (DLSE) problem. Let P,Q be elements
of an additive group G. The c-DLSE problem is to find s, 0 ≤ s < 2c, such that P = sQ
given P, Q and the parameter c. Clearly, the DLSE problem is not harder to solve than the
original discrete logarithm problem.

Now, we recall the basic results of [7].
Let g be a generator of Z∗p, where p is an n-bit safe prime. For a nonnegative integer x

let `j(x) ∈ {0, 1} denote the j-th least significant bit of x:

x =
∑

j

`j(x)2j−1.

Let x1 ∈R Zp−1 be the seed. The Gennaro generator (Algorithm 5.1) transforms the seed
into the pseudorandom sequence of length k(n− c− 1).

Algorithm 5.1 The Gennaro pseudorandom generator
Input: x1 ∈ Zp−1, k > 0
Output: k(n− c− 1) pseudorandom bits

for i = 1 to k do
Set outputi ← `2(xi), `3(xi), . . . , `n−c(xi)

Set xi+1 ← g
Pn

j=n−c+1 `j(xi)2
j−1+1

end for
Return output1, . . . , outputk

The following statement is the exact version of Theorem 2 of [7].

Theorem 3 (Gennaro). Suppose the Gennaro pseudorandom generator is not (T, ε)-secure.
Then there exists an algorithm that solves the c-DLSE in Z∗p in time 16c(ln c)(k/ε)3T with
probability 1/2.

12

The Gennaro generator outputs (n − c − 1) bits per modular exponentiation with c-bit
exponent. The standard right-to-left exponentiation costs on average c/2 multiplications and
c squarings. Assume that a squaring modulo p takes about 80% of the time of a multiplication
modulo p (cf. [14]). Then, the average computational effort is 1.3cn2/(24·360(n−c−1)) time
units per output bit. Our goal is now to determine n and c that minimize the computational
effort under the condition that the generator is (T, ε)-secure for all T, ε satisfying T/ε < 280

with a natural limitation T ≥ 1 time unit.
Theorem 3 implies that the Gennaro generator is (T, ε)-secure if

32c(ln c)(k/ε)3T < TDLSE(Z∗p),

where TDLSE(Z∗p) is the running time of the fastest algorithm for solving the c-DLSE problem
in Z∗p. The fastest algorithms for solving the DLSE problem are the discrete logarithm
variant of the NFS and the Pollard’s lambda method. The complexity of the latter is close
to 2 · 2c/2 multiplications in Z∗p, that is, 2c/2+1n2/(24 · 360) time units (cf. [21]). Note that
k = M/(n − c − 1), where M is the total number of pseudorandom bits produced by the
generator. Thus, the Gennaro generator is (T, ε)-secure if

32c(ln c)M3T

ε3(n− c− 1)3
< min[L(n), 2c/2+1n2/(24 · 360)].

For M = 220, T/ε < 280 with a natural limitation T ≥ 1 the optimal parameters are
n ≈ 18000, c ≈ 520.

The secure length of the modulus turns out to be quite large. Recall that generator
PRG1 is provably secure for much smaller parameter n, namely, n ≈ 1600. The reason is
that the reduction in Theorem 3 is not tight in the sense that a distinguisher for the Gennaro
generator is transformed into the far less efficient solver for the DLSE problem (note that ε
is raised to the power of 3 in the statement of Theorem 3). On the contrary, the reduction
in Theorem 2 is much tighter.

To compare the Gennaro generator with generator PRG1, we determine the computa-
tional effort for both generators.

1. The average computational effort of the Gennaro generator is 1.3cn2/(24 ·360(n−c−1))
time units per output bit. For n = 18000, c = 520, we get about 1500 time units per
output bit.

2. The generator PRG1 outputs n bits at the cost of 2 modular exponentiations with n-bit
exponent. The average computational effort for n = 1600 is 2.6n2/(24 · 360) ≈ 770 time
units per output bit.

Thus, for M = 220 bits to be produced and for the level of security of 280 time units,
generator PRG1 is about 2 times faster than the Gennaro generator. Furthermore, the seed
length of generator PRG1 is more than 10 times shorter (1600 bits versus 18000 bits).

We focus the attention of the reader on the way the comparison is done. At first sight, it
seems that the Gennaro generator is more efficient than generator PRG1 since the Gennaro
generator outputs almost n bits per modular exponentiation with a short c-bit exponent,
while generator PRG1 outputs n bits per 2 exponentiation with a full-size exponent. However,
it should not be neglected that the n’s in these two cases are different. Due to the tighter
reduction, generator PRG1 is provably secure for much smaller n. This is the main reason
why generator PRG1 turns out to be more efficient.

Acknowledgements

We thank David Galindo for fruitful discussions.

13

References

1. E. Barker and J. Kelsey, Recommendation for random number generation using deterministic
random bit generators, December 2005, NIST Special Publication (SP) 800-90.

2. M. Blum and S. Micali, How to generate cryptographically strong sequences of pseudo-random
bits, SIAM Journal on Computing 13 (1984), no. 4, 850–864.

3. D. Brown, Conjectured security of the ANSI-NIST Elliptic Curve RNG, Cryptology ePrint
Archive, Report 2006/117, 2006, http://eprint.iacr.org/.

4. O. Chevassut, P. Fouque, P. Gaudry, and D. Pointcheval, Key derivation and randomness ex-
traction, Cryptology ePrint Archive, Report 2005/061, 2005, http://eprint.iacr.org/.

5. R. Fischlin and C. P. Schnorr, Stronger security proofs for RSA and Rabin bits, Journal of
Cryptology 13 (2000), no. 2, 221–244.

6. P. Fouque, D. Pointcheval, J. Stern, and S. Zimmer, Hardness of distinguishing the MSB or
LSB of secret keys in Diffie-Hellman schemes, ICALP (2), 2006, pp. 240–251.

7. R. Gennaro, An improved pseudo-random generator based on the discrete logarithm problem,
Journal of Cryptology 18 (2005), no. 2, 91–110.

8. R. Gennaro, H. Krawczyk, and T. Rabin, Secure hashed Diffie-Hellman over non-DDH groups,
Cryptology ePrint Archive, Report 2004/099, 2004, http://eprint.iacr.org/.

9. K. Gjøsteen, Comments on Dual-EC-DRBG/NIST SP 800-90, Draft December 2005, March
2006, http://www.math.ntnu.no/~kristiag/drafts/dual-ec-drbg-comments.pdf.

10. O. Goldreich, Foundations of cryptography, Cambridge University Press, Cambridge, UK, 2001.
11. A. Juels, M. Jakobsson, E. Shriver, and B. K. Hillyer, How to turn loaded dice into fair coins,

IEEE Transactions on Information Theory 46 (2000), no. 3, 911–921.
12. B. S. Kaliski, Elliptic curves and cryptography: A pseudorandom bit generator and other tools,

Ph.D. thesis, MIT, Cambridge, MA, USA, 1988.
13. D. E. Knuth, Seminumerical algorithms, third ed., vol. 3, Addison-Wesley, Reading, MA, USA,

1997.
14. A. K. Lenstra and E. R. Verheul, The XTR public key system, Advances in Cryptology—Crypto

2000, Lecture Notes in Computer Science, vol. 1880, Springer-Verlag, 2000, pp. 1–19.
15. , Selecting cryptographic key sizes, Journal of Cryptology 14 (2001), no. 4, 255–293.
16. M. Luby, Pseudorandomness and cryptographic applications, Princeton University Press, Prince-

ton, NJ, USA, 1994.
17. U. M. Maurer, Towards the equivalence of breaking the Diffie-Hellman protocol and computing

discrete algorithms, CRYPTO, 1994, pp. 271–281.
18. U. M. Maurer and S. Wolf, Diffie-Hellman oracles., CRYPTO, 1996, pp. 268–282.
19. A. Menezes, T. Okamoto, and S. A. Vanstone, Reducing elliptic curve logarithms to logarithms

in a finite field, IEEE Transactions on Information Theory 39 (1993), no. 5, 1639–1646.
20. M. Naor and O. Reingold, Number-theoretic constructions of efficient pseudo-random functions,

Journal of the ACM 51 (2004), no. 2, 231–262.
21. J. M. Pollard, Kangaroos, monopoly and discrete logarithms, Journal of Cryptology 13 (2000),

no. 4, 437–447.
22. B. Schoenmakers and A. Sidorenko, Cryptanalysis of the Dual Elliptic Curve pseudorandom

generator, Cryptology ePrint Archive, Report 2006/190, 2006, http://eprint.iacr.org/.
23. J. H̊astad, R. Impagliazzo, L. A. Levin, and M. Luby, Construction of a pseudo-random gener-

ator from any one-way function, SIAM Journal on Computing 28 (1999), 1364–1396.
24. S. Wolf, Information-theoretically and computationally secure key agreement in cryptography,

Ph.D. thesis, ETH Zurich, 1999.

