
Computational Soundness of Formal Indistinguishability
and Static Equivalence

Gergei Bana?, Payman Mohassel, and Till Stegers

Department of Computer Science
University of California at Davis, USA

gebana@cs.upenn.edu mohassel@cs.ucdavis.edu stegers@cs.ucdavis.edu

Abstract. In the research of the relationship between the formal and the computational view of cryp-
tography, a recent approach, first proposed in [9], uses static equivalence from cryptographic pi calculi
as a notion of formal indistinguishability. Previous work [9, 1] has shown that this yields the sound-
ness of natural interpretations of some interesting equational theories, such as certain cryptographic
operations and a theory of XOR. In this paper however, we argue that static equivalence is too coarse
for sound interpretations of equational theories in general. We show some explicit examples how static
equivalence fails to work in interesting cases. To fix this problem, we propose a notion of formal in-
distinguishability that is more flexible than static equivalence. We provide a general framework along
with general theorems, and then discuss how this new notion works for the explicit examples where
static equivalence failed to ensure soundness. We also improve the treatment by using ordered sorts in
the formal view, and by allowing arbitrary probability distributions of the interpretations.

1 Introduction

In the past few years, significant amount of effort has been made to link formal and computational
methods of cryptography. These two ways of treating cryptographic protocols had largely been
developing independently; the first based on the seminal work of Dolev and Yao [14], and the
second growing out of the work of Goldwasser and Micali [15]. Both methods have their advantages
and drawbacks. While the computational method gives a more realistic and detailed description of
an actual protocol, using probability theory and taking limited computational power into account,
security proofs in this model are done by hand and are often complicated and notoriously hard to
verify. The formal method is a high-level treatment, amenable to automatization, but its reliability
is sometimes questionable; namely, a protocol that is formally secure may not be so computationally,
and therefore, may be insecure in reality. It is therefore important how to translate one model into
the other, and to characterize which security proofs in the simpler formal framework carry over to
the computational setting.

The first paper to address this question was that of Abadi and Rogaway [4], for passive ad-
versaries. In their approach, equivalence relations on the formal and on the computational sides
specify which messages look indistinguishable to an adversary and can thus be used to define the
security of a protocol. Fixing an encryption scheme for the concrete implementation of the formal
operations, an intuitive interpretation assigns a computational object – an ensemble of probability
distributions over bit strings – to each formal expression. The question then arises: Under which
circumstances the equivalence relation is preserved by the interpretation? If the formal equivalence
of any two expressions implies the computational equivalence of their interpretations, then we say
the model is sound. This is the mathematical equivalent of saying that security in the formal model
implies security in the computational model. Conversely, the model is complete if the computational
equivalence of the interpretations of any two formal expressions implies that the formal expressions
are equivalent. Completeness of a model indicates that the formal equivalence notion in question

? Supported by a Packard Fellowship.

is not too fine; that is, the formal equivalence relation distinguishes every pair distinguished in
the computational side, hence the formal model is not too trivial. Note that soundness will always
hold in the trivial case when each expression is only equivalent to itself. Moreover completeness is
important to find attacks formally: if completeness holds, the existence of a formal attack implies
the existence of a computational attack.

Abadi and Rogaway proved soundness for their language if the encryption scheme used for the
interpretation is what they call type-0 secure (basically, it hides everything about the plaintext).
A number of other papers followed, proving completeness as well [19, 6], generalizing for weaker,
more realistic encryptions schemes [6], considering purely probabilistic encryptions [16, 6], including
limited models for active adversaries [20, 18], and addressing the issue of forbidding key-cycles [5],
which is a bothersome, but necessary condition, originating from the fact that traditional security
notions don’t deliver any security when keys encrypt each other cyclically.

Besides the line of analysis that followed the Abadi-Rogaway paper, other approaches to the
topic emerged as well. Notably, active adversaries are considered by Backes et al. and Canetti
in their reactive simulatability [8, 7] and universal composability [10, 11] frameworks, respectively.
Using probabilistic polynomial-time semantics without explicit probabilistic reasoning in [13] is also
notable.

1.1 Previous Work

Our paper addresses issues related to a recently emerged branch of relating formal and computa-
tional models for passive adversaries, namely, when the equivalence relation on the formal side is
static equivalence from cryptographic pi calculi [3, 2], induced by an equational theory. Equational
theories provide a framework to model algebraic axioms in the formal world, such as axioms for
groups, rings, exclusive or, etc. Once an equational theory is fixed, which means setting certain
formal terms equal, static equivalence is uniquely determined. Roughly speaking, two n-tuples of
formal terms are statically inequivalent, or formally distinguishable, if an adversary is able to come
up with two formal computations that, on one of the n-tuples yield two results that are identical
according to the equational theory but yield different results on the other n-tuple. Baudet, Cortier,
and Kremer [9] use this equivalence notion on the formal side, proving soundness of exclusive or
as well as of certain symmetric encryptions that are deterministic and length-preserving. Abadi et
al. [1] employ this framework to analyze a principled formal account of guessing attacks.

1.2 Our Contributions

In this paper, we would like to show that even though static equivalence works well to obtain
soundness results for the cases analyzed in the above papers, it does not work well in other important
cases, and a more flexible notion is needed. For a brief exposition of why this is so, consider the
Decisional Diffie-Hellman assumption. As Baudet et al. describe in [9], in an equational theory
describing a group exponentiation without including logarithm, the 4-tuples (g, ga, gb, gab) and
(g, ga, gb, gc) are statically equivalent. Therefore, if the interpretation of the theory in a certain
computational group scheme is sound, then this scheme satisfies the DDH assumption. However,
formally much more is equivalent. For example, (g, ga, gb, ab) and (g, ga, gb, c) are also equivalent, as
are (g, ga, gb, ga2b) and (g, ga, gb, gc), and so on; an infinitude of statements not necessarily implied
by the DDH assumption would be satisfied. There is no reason to think that such a computational
group scheme exists at all. Moreover, the analysis often goes in the other direction: not a given
formal model has to be interpreted in a sound manner, but for a given computational model we have
to look for a formal theory that is simplifying, yet sound. A computational scheme that satisfies
the DDH assumption may not satisfy any of the other two conditions above (not to mention the
infinitely many more that follow from static equivalence), so static equivalence cannot be used

2

with such a group scheme to achieve soundness. Of course, if we know that the interpretations of
two formal n-tuples are computationally distinguishable, then we may be able to incorporate the
distinguisher into the formal theory hence forcing those two n-tuples to be formally inequivalent.
However, in many cases, we don’t know whether the interpretations are inequivalent, so we have
no explicit distinguishers. In such a case, to play it safe, it is better to assume that they are
distinguishable, and that is how the formal theory should be constructed.

We argue that an equivalence relation finer than static equivalence is necessary to fit a number
of interesting cases for which static equivalence is not suitable. We will call this type of equivalence
relation a formal indistinguishability relation (FIR). We require four properties from any FIR,
and through these properties an initial set of relations will generate a FIR. Each pair that is
statically inequivalent is also inequivalent with respect to a formal indistinguishability relation.
Moreover, static equivalence is one instance of a FIR. In order to test soundness with respect to
a computational interpretation, it is enough to check soundness on a set of relations that generate
the FIR in question. If soundness holds on the generating set of relations, then soundness holds in
total.

Besides introducing the above equivalence notion, we also make some other improvements in
the theory. Baudet et al. require the interpretations to be such that if a distribution is sampled
twice, the probability of collision is negligible. We will not assume this because it would exclude the
formal representation of interesting functions such as the least significant bit. We also use ordered
sorts, allowing names to have multiple sorts.

After introducing the basic framework and proving some general propositions about FIRs, we
discuss three examples. The first is the above-mentioned DDH assumption: we discuss how to
introduce a FIR such that soundness is equivalent to the DDH assumption. Our second example
considers the case of key-cycles and Laud’s solution to them [17]. Laud proposed that if we do not
want to exclude key-cycles from our theory and we do not want to assume that the encryption
scheme is stronger than the usual assumptions (CPA, CCA-2, etc.), then we can simply assume
that the formal adversary can decrypt all ciphertexts that were encrypted with keys that are in a
key-cycle. We will show how this assumption corresponds to a formal indistinguishability relation.
Finally, the third example describes an embedding of Boolean propositional logic, which fails to
be sound with respect to static equivalence because two formal terms that are computationally
distinguishable turn out to be statically equivalent.

The paper is outlined as follows. In Section 2, we describe the syntactical framework. Section 3
presents interpretation the formal model in the computational world. We present the definitions of
soundness, completeness, and faithfulness, along with some useful propositions in Section 4. Finally
in Section 5, we apply our new definition to three examples.

We would like to thank Jonathan Herzog, Phillip Rogaway and Andre Scedrov for valuable
discussions on the topic.

2 Formal Model

In subsection 2.1, we summarize the treatment of [9] including static equivalence; in subsection 2.2,
we introduce our new notion of formal indistinguishability.

2.1 Signatures, Terms, and Frames

A signature is a pair (S,F), where S itself is a triple (S,S ′,≤S), S being a countably infinite set of
sorts with partial order ≤S , S ′ ⊆ S, and F a finite set of function symbols. For sorts, we will usually
use the notation s, s1, s2, . . . , whereas for symbols, we will often use f, f1, f2, We assume that
every f ∈ F has a unique arity s1 × · · · × sk → s for some s1, . . . , sk, s ∈ S, k ≥ 0. If k = 0, then f
is a constant, and we denote this as f : s.

3

Furthermore, let X , N be countably infinite sets; the elements of X are called variables, the
elements of N names. We demand that the sets S, F , X , N are pairwise disjoint. We assume that
both names and variables are sorted, that is, to each name or variable u , a subset Su is assigned;
we write u : s and say u is of sort s whenever s ∈ Su. We require that u : s1 and s1 ≤S s2 implies
u : s2, and that the set Su has a minimum, which we denote by s(u). For any subset U of the set of
names or of the set of variables, let [U]s = {u ∈ U | s(u) = s}. Finally, we require that for each sort
s, [X]s is infinite, and [N]s is infinite whenever s ∈ S ′ and empty whenever s 6∈ S ′. A renaming is
a bijection τ : N → N such that s(a) = s(τ(a)) for each name a.

The terms of our language are sorted by elements of S. As usual, if a term T has sort s, we
write T : s. Terms of sort s are defined as follows:

T : s ::= x : s | a : s | f(T1, . . . , Tk)

where x is a variable, a is a name, and f is a function symbol of arity s1 × · · · × sk → s′ for some
s1, . . . , sk ∈ S, s′ ≤S s, and each term Ti is of sort si for i = 1, . . . , k. The set of all terms will be
denoted by T .

For a term T, we use var(T) for the set of variables occurring in T, and names(T) for the set of
names occurring in T. A term T is said to be closed if var(T) = ∅.

Let x1, . . . , xn be distinct variables, and let T1, . . . , Tn be terms so that s(Ti) ≤S s(xi). A
well-sorted substitution σ is written as σ = {x1 = T1, . . . , xn = Tn}. Since in this paper we will
only have well-sorted substitutions, we will omit the term “well-sorted”. The image of T under
the substitution σ = {xi = Ti}ni=1 is written Tσ, which means that every occurrence of xi in T
is replaced by Ti and everything else in T remains unchanged. If all Ti are closed, σ is said to be
closed ; the domain of σ is the set dom(σ) = {x1, . . . , xn} and the set var(σ) of variables of σ is the
union of all sets var(Ti).

Example 1. As examples, we refer to the first paragraph of Subsection 5.1 or the second paragraph
of Subsection 5.2.

Now we can define how to postulate axioms. In short, an equational theory is an equivalence relation
on terms that is stable under the (well-sorted) substitution of terms for variables, application of
contexts, and renaming. That is:

Definition 1. An equational theory for a given signature is an equivalence relation E ⊆ T × T
(written =E in infix notation) on the set of terms with the following properties:

(i) T =E T ′ implies Tσ =E T ′σ for every substitution σ,

(ii) T1 =E T2 implies T{x = T1} =E T{x = T2} for every term T and variable x with s(x) ≥S s(Ti),
(iii) T1 =E T2 implies τ(T1) =E τ(T2) for every renaming τ.

If R is a relation on T , then the intersection 〈R〉 of all equational theories containing R is the
smallest equational theory containing R. We say 〈R〉 is the equational theory generated by R.

Example 2. For examples, we refer to the second paragraph of Subsection 5.1 and the third para-
graph of Subsection 5.2.

A frame ϕ is an expression νã.σ, where σ is a substitution and ã = names(σ). Sometimes, we list
the elements of ã explicitly for emphasis, or leave them out, since ã is uniquely determined by its
underlying substitution σ. We say that ϕ is closed if σ is a closed substitution. The set of all frames
(with respect to an understood signature) is denoted by F, the set of closed frames are denoted
by Fc.

If E is an equational theory and ϕ is a frame, we say that a term T is deducible from ϕ with
respect to E, written ϕ `E T, if there exists a term M with var(M) ⊆ dom(ϕ) and names(M) ∩

4

(names(ϕ)∪ names(T)) = ∅ such that Mϕ =E T, where Mϕ means substitution of the variables of
M according to the substitution in ϕ.

Suppose that for closed frames ϕ1, ϕ2 with dom(ϕ1) = dom(ϕ2), there are two terms M,N with
var(M) ∪ var(N) ⊆ var(ϕi) and sharing no names with ϕ1 or ϕ2, such that Mϕ1 =E Nϕ1, but
Mϕ2 6=E Nϕ2. Intuitively, this means that carrying out some computations – permitted by the
model and determined by M and N – on the inputs provided by ϕ1, we get equal results, whereas
carrying out the same computations on the input provided by ϕ2 produces differing results. That
is, these computations distinguish ϕ1 from ϕ2. If the distinction of two closed frames is not possible
this way, then we say that these two frames are statically equivalent.

Definition 2. Two closed frames ϕ1, ϕ2 of the same domain are statically equivalent with respect
to an equational theory E, written ϕ1 ≈E ϕ2, if for all terms M,N with var(M)∪var(N) ⊆ var(ϕi)
and using no names occurring in ϕ1 or ϕ2, we have

Mϕ1 =E Nϕ1 ⇐⇒ Mϕ2 =E Nϕ2.

Let Ẽ denote static equivalence as a subset of Fc × Fc.

2.2 Formal Indistinguishability

For a frame ϕ = ν ∪n
i=1 names(Ti).{xi = Ti}ni=1, if ϕ′ is another frame, let ϕϕ′ denote the frame

ν ∪n
i=1 names(Ti) ∪ names(ϕ′).{xi = Tiϕ

′}ni=1. For frames ϕ1, . . . , ϕn with disjoint domains, let
{ϕ1|ϕ2| . . . |ϕn} be the frame corresponding to the combination of all substitutions of ϕ1, . . . , ϕn.

Definition 3 (Formal Indistinguishability Relation). A formal indistinguishability relation
with respect to an equational theory E is an equivalence relation ∼= on the set of closed frames such
that

(i) ϕ1
∼= ϕ2 only if dom(ϕ1) = dom(ϕ2);

(ii) for any frame ϕ, if ϕ1 and ϕ2 are closed frames such that var(ϕ) ⊆ dom(ϕi), names(ϕ) ∩
names(ϕi) = ∅ and ϕ1

∼= ϕ2 then ϕϕ1
∼= ϕϕ2;

(iii) for any two frames ϕ′ and ϕ′′, ϕ′ =E ϕ′′ implies ϕ′ ∼= ϕ′′, and ϕ′ 6≈E ϕ′′ implies ϕ′ 6∼= ϕ′′;
(iv) for any renaming τ , τ(ϕ) ∼= ϕ.

Remark 1. Corresponding sections of equivalent frames are equivalent. That is, for example, if
ϕ1 = ν ∪4

i=1 names(Ti).{xi = Ti}4i=1
∼= ϕ2 = ν ∪4

i=1 names(T ′
i).{xi = T ′

i}4i=1, then ν names(T2) ∪
names(T4).{x2 = T2, x4 = T4} ∼= ν names(T ′

2) ∪ names(T ′
4).{x2 = T ′

2, x4 = T ′
4}. This follows from

(ii) by setting ϕ = ν∅.{x2 = x2, x4 = x4}.
If ϕ1, ϕ2, ϕ′1, ϕ

′
2 are frames such that dom(ϕ1) ∩ dom(ϕ2) = ∅, dom(ϕ′1) ∩ dom(ϕ′2) = ∅,

names(ϕ1) ∩ names(ϕ2) = ∅, names(ϕ′1) ∩ names(ϕ′2) = ∅, and ϕi
∼= ϕ′i, then {ϕ1|ϕ2} ∼= {ϕ′1|ϕ′2}.

The reason is the following. Choose a renaming τ such that τ(ϕ1) = ϕ1, τ(ϕ′1) = ϕ′1, τ(ϕ
′
2) = ϕ′2, and

names(τ(ϕ2))∩names(ϕ1) = names(τ(ϕ2))∩names(ϕ′1) = ∅. This can be done because we assumed
that there are infinitely many names of each sort. Using (iv), we see that {ϕ1|ϕ2} ∼= τ({ϕ1|ϕ2}) =
{ϕ1|τ(ϕ2)}. If dom(ϕ1) = dom(ϕ′1) = {x1, . . . , xk}, then let ψ = {x1 = x1, . . . , xk = xk|τ(ϕ2)}.
Using (ii), it follows that {ϕ1|τ(ϕ2)} = ψϕ1

∼= ψϕ′1 = {ϕ′1|τ(ϕ2)}. Since by (iv) again, τ(ϕ2) ∼= ϕ2,
and ϕ2

∼= ϕ′2 by assumption, τ(ϕ2) ∼= ϕ′2 holds, and applying (ii) in a similar fashion as before, we
obtain {ϕ′1|τ(ϕ2)} ∼= {ϕ′1|ϕ′2}. Putting all these together, {ϕ1|ϕ2} ∼= {ϕ′1|ϕ′2}.

The following useful propositions are proved in the Appendix.

Proposition 1. Static equivalence ≈E is a formal indistinguishability relation with respect to the
equational theory E.

5

Proposition 2. The intersection of an arbitrary number of formal indistinguishability relations
(with respect to the same equational theory E) is a formal indistinguishability relation.

Proposition 3. Consider static equivalence as a subset Ẽ ⊆ Fc × Fc. If S ⊆ Ẽ, then there is a
unique smallest subset 〈S〉 ⊆ Ẽ containing S, such that 〈S〉 (∼=S in infix notation) is a formal
indistinguishability relation with respect to E. 〈S〉 can be generated the following way: Let

S′ :=

(ϕ′, ϕ′′) ∈ Fc × Fc

∣∣∣∣∣∣
ϕ′ = ϕ{ϕ′1| . . . |ϕ′n} and ϕ′′ = ϕ{ϕ′′1| . . . |ϕ′′n} such that
names(ϕ) = ∅ and for all i = 1, . . . , n, (ϕ′i, ϕ

′′
i) ∈ S, or

(ϕ′′i , ϕ
′
i) ∈ S, or ϕ′′i =E τi(ϕ′i) for some renaming τi.

 .

Then 〈S〉 is the transitive closure of S′.

3 Relating the Formal and the Computational Models

We now present the computational interpretation of the formal model. Our definition is equivalent
to the one given by Baudet et al. [9]; the only difference is that we allow probabilistic as opposed
to only deterministic interpretations for the symbols in F , and that we have ordered sorts. To each
closed term, the interpretation assigns an ensemble of probability distributions on bit strings. This
definition is a generalization of how Abadi and Rogaway originally defined it in [4].

Given a signature (S,F), an (S,F)-computational algebra A is a pair

A = ({JsKA}s∈S′ , {fA}f∈F);

for each s sort in S ′, JsKA = {JsKAη}η, where JsKAη is a probability distribution on {0, 1}∗ such
that there is a polynomial time algorithm to draw random elements from JsKAη ; also, fA = {fAη}η,
where fAη : supp(Js1KAη) × · · · × supp(JskKAη) → {0, 1}∗ is a probabilistic function computable
in polynomial time. Here, supp denotes the support of a probability distribution, which is the set
where the distribution gives non-zero probability.

Once a computational algebra is fixed, we can associate a probability distribution to each closed
term M through the following two algorithms. If for each a ∈ names(M), a λ(a) ∈ supp(Js(a)KAη)
is given, then let CONVERTλ

η(M) be the following:

algorithm CONVERTλ
η(M)

if M = a where a is a name then
return λ(a)

if M = f(M1, . . . ,Mk) then

for i = 1, . . . , k do ei
R←− CONVERTλ

η(Mi)

v
R←− fAη(e1, . . . , ek)

return v

Then the interpretation of M is defined as

algorithm INTERPRETη(M)

for a ∈ names(M) do λ(a) R←− Js(a)KAη

v
R←− CONVERTλ

η(M)
return v

For each security parameter η, the probability distribution of v R←− CONVERTη(M) is denoted
by JMKAη . The ensemble {JMKAη}η is denoted by JMKA. We call JMKA the computational interpre-
tation of the term M . Of course, for any name a : s, JsKA = Js(a)KA = JaKA. The reader should note

6

that if there are repeated occurrences of a name a in M , then the same random outcome λ(a) is used
in the construction of JMKAη . That is, the corresponding parts of JMKAη are completely correlated.
However, if there are two occurrences of a symbol f in M , then the corresponding occurrences of
fAη are invoked with independent random coins.

We also define the interpretation of a closed frame ϕ = {x1 = T1, . . . , xn = Tn}:

algorithm INTERPRET′
η(ϕ)

for a ∈ names(ϕ) do λ(a) R←− Js(a)KAη

if ϕ = {x1 = T1, . . . , xn = Tn} then

ei
R←− CONVERTλ

η(Ti) for i = 1, . . . , n, and
v ←− {x1 = e1, . . . , xn = en}
return v

We use the notation JϕKAη for the probability distribution sampled by INTERPRET′
η(ϕ) (with

fixed security parameter) and JϕKA for the ensemble of these distributions, which we call the com-
putational interpretation of the frame ϕ in the model A. Similarly as in the interpretation of terms,
if the same name occurs twice within in a frame, then the corresponding parts of the interpretation
will be completely correlated.

The standard equivalence notion in the computational world is computational indistinguisha-
bility. Two ensembles of probability distributions (indexed by the security parameter) are said to
be computationally indistinguishable, if no probabilistic polynomial time algorithm can distinguish
them. Once the formal expressions are interpreted, then we can consider the computational indis-
tinguishability of interpretations of two closed terms or two closed frames. We will use the notation
JM1KA ≈ JM2KA and Jϕ1KA ≈ Jϕ2KA, respectively. Explicitly, this latter means that for any PPT
algorithm A,

AdvAη (Jϕ1KA, Jϕ2KA) =
∣∣∣Pr[ϕ̂1

R←− Jϕ1KAη : A(η, ϕ̂1) = 1]− Pr[ϕ̂2
R←− Jϕ2KAη : A(η, ϕ̂2) = 1]

∣∣∣
is a negligible function; that is, for each fixed n natural, AdvAη (Jϕ1KA, Jϕ2KA) < η−n for some
sufficiently large η.

4 Soundness, Completeness and Faithfulness

The computational model of a cryptographic scheme is in a sense closer to reality than its formal
representation by being a more detailed description. Therefore, the accuracy of a formal model
can be characterized based on how close it is to the computational model; more specifically, how
formal and computational indistinguishability relate to each other via the interpretation. The most
important concepts to describe this are given in the following definition.

Definition 4. Let A be an (S,F)-computational algebra, and let ∼= be a formal indistinguishability
relation on the set of frames, and let F ⊆ Fc. We say that the computational algebra A is ∼=-sound
on F if for every closed pair of frames ϕ1, ϕ2 ∈ F , ϕ1

∼= ϕ2 implies that Jϕ1KA ≈ Jϕ2KA. A is
∼=-complete on F if for every closed pair of frames ϕ1, ϕ2 ∈ F , ϕ1 6∼= ϕ2 implies that Jϕ1KA 6≈
Jϕ2KA. A is ∼=-faithful on F if for every closed pair of frames ϕ1, ϕ2 ∈ F , ϕ1 6∼= ϕ2 implies that
the statistical distance ∆(Jϕ1KAη , Jϕ2KAη) is not negligible and there is a PPT algorithm A such
that |AdvAη (Jϕ1KAη , Jϕ2KAη) −∆(Jϕ1KAη , Jϕ2KAη)| is negligible. For all three notions, we adopt the
convention that if no such set F is mentioned, it is assumed that F = Fc.

It is well known that the advantage of an adversary trying to distinguish two distributions is less
than or equal to the statistical distance between the two distributions. Faithfulness therefore means
that if two frames are formally distinguishable, then there is an algorithm that distinguishes their
interpretations (almost) as best as possible.

7

Remark 2. If a model is sound, then, in terms of indistinguishability, it is at least as fine-grained
as the computational model. In particular, formal proofs of indistinguishability are valid proofs of
computational indistinguishability.

Remark 3. Our faithfulness definition is different from the one by Baudet et al. given in [9]. They
require the existence of an adversary whose advantage is negligibly close to 1, instead of just non-
negligible. However, there are interesting cases where this assumption is too strong, as the following
example shows. Nevertheless, we will not discuss faithfulness in this paper beyond this example.

Example 3. Suppose that we add a function symbol LSB: Data → Data to our theory, where Data
is a sort. We think of this as the least significant bit, and accordingly, we define the interpretation
for the LSB function such that LSBAη(x) = 0 if the least significant bit of x is 0, and LSBAη(x) = 1
if the least significant bit of x is 1. Now, consider the two frames νab.{x1 = LSB(a), x2 = LSB(b)}
and νa.{x1 = LSB(a), x2 = LSB(a)}. After interpretation, for each security parameter, the first
frame will contain two independent bits of uniform distribution, whereas the interpretation of the
second frame will contain two completely correlated bits of uniform distribution. No adversary
can distinguish these two distributions with advantage greater than 1/2, which is the statistical
distance. However, the adversary that outputs 1 if the two bits are identical and 0 if they are
different is clearly the best possible.

Remark 4. Completeness can be rewritten in the form that for every closed pair of frames ϕ1, ϕ2,
Jϕ1KA ≈ Jϕ2KA implies that ϕ1

∼= ϕ2. That is, whatever looks the same computationally looks the
same formally as well. This notion is weaker then faithfulness, i.e., a faithful interpretation is also
complete.

Definition 5. Let A be a (S,F)-computational algebra, and let E be an equational theory. We say
that A is =E-sound if for each pair of closed terms T1 and T2, T1 =E T2 implies that Pr[e1, e2

R←−
JT1, T2KAη : e1 6= e2] is negligible. It is =E-complete if for each pair of closed terms T1 and T2,

T1 6=E T2 implies that Pr[e1, e2
R←− JT1, T2KAη : e1 6= e2] is not negligible.

Remark 5. The reader may ask why no adversaries are used in this definition. For example, would
it not make more sense to define =E-soundness so that for each pair of closed terms T1 and T2

if T1 =E T2 holds, then JT1, T2KA ≈ JT1, T1KA? However, using the fact that the advantage of an
adversary trying to distinguish the two distributions cannot exceed the statistical distance, it is
easy to show that this definition would be equivalent to what is given above.

The following proposition shows that if a FIR ∼= is generated by a set S ⊆ Fc × Fc, then it
suffices to check soundness for pairs of frames in S to see that 〈S〉 is sound. The proof is included
in the appendix.

Proposition 4. Let A be an (S,F)-computational algebra that is =E-sound. Suppose S ⊆ Ẽ is a
binary relation on closed frames such that (ϕ,ψ) ∈ S implies JϕKAη ≈ JψKAη . Then JϕKAη ≈ JψKAη

whenever ϕ ∼=S ψ. That is, A is ∼=S-sound.

Corollary 1. Let A be a (S,F)-computational algebra with S ⊆ Fc × Fc such that A is ∼=S-sound
on F . Let S′ := S ∩ (F × F). Then A is ∼=S′-sound.

5 Applications

In this section, we exemplify the utility of formal indistinguishability relations that refine static
equivalence. In the theory of groups with exponentiation, we obtain an FIR such that soundness is

8

equivalent to the Decisional Diffie-Hellman Assumption. Next, we show how to handle key-cycles
by encoding Laud’s approach in a formal indistinguishability relation. Finally, we give an example
from propositional Boolean logic whose natural model would not be sound with respect to static
equivalence, but is sound with respect to a particular FIR.

5.1 Decisional Diffie-Hellman Assumption

Consider the following equational theory to model a commutative group with exponentiation (as
in [9]). Let A and B be sorts, S = S ′ with the trivial ordering, and the following function symbols:

∗ : G×G→ G − : A→ A
1G : G · : A×A→ A
+ : A×A→ A 1A : A
0 : A exp : G×A→ G

To simplify our notation, we write UV for exp(U, V).
Let the equational theory E be generated by the following equations:

x ∗ 1G = x x+ (−x) = 0 (x+ y) · z = x · z + y · z
1G ∗ x = x x+ (y + z) = (x+ y) + z (xa)b = x(a·b)

x ∗ (y ∗ z) = (x ∗ y) ∗ z x · 1A = x xa ∗ xb = xa+b

x+ 0 = x x · y = y · x x1A = x
x+ y = y + x x · (y · z) = (x · y) · z x0 = 1G

Observe that we did not include a symbol for the discrete logarithm in the language. The reason is
that we want to assume that computing a from ga is not feasible for an adversary.

Once a computational group scheme is set (for computational group schemes see for example the
full version of [12]), the computational interpretation of this signature is straightforward. Names of
sort G will be mapped to the ensemble of distributions corresponding to the generation of random
group elements whereas names of sort A will correspond to the generation of the ring elements.
Addition, multiplication etc. will be translated to addition, multiplication etc. of ring elements,
group elements correspondingly. As Baudet et al. point out in their paper, in this theory, the
frames νg, a, b.{x1 = g, x2 = ga, x3 = gb, x4 = gab} and νg, a, b, c.{x1 = g, x2 = ga, x3 = gb, x4 = gc}
are statically equivalent. Distinguishing the interpretations of these two frames is the Decisional
Diffie-Hellman problem. So, a computational implementation that is sound with respect to static
equivalence will imply that the DDH assumption holds for the given group scheme. Unfortunately,
soundness would imply much more than the DDH assumption. For example,

νgab.{x1 = g, x2 = ga, x3 = gb, x4 = ganbm} ≈E νgabc.{x1 = g, x2 = ga, x3 = gb, x4 = gc}

for some naturals n,m ≥ 1, and therefore ≈E-soundness would imply that the computational
interpretations of these are indistinguishable as well. Moreover, even

νgab.{x1 = g, x2 = ga, x3 = gb, x4 = ab} ≈E νgabc.{x1 = g, x2 = ga, x3 = gb, x4 = c}.

It is unreasonable to require that all these hold for a computational implementation.
We therefore suggest to use a formal indistinguishability relation instead. Since we only want

to assume that the DDH assumption holds and nothing more, simply let S be the set{(
νgab.{x1 = g, x2 = ga, x3 = gb, x4 = gab}, νgabc.{x1 = g, x2 = ga, x3 = gb, x4 = gc}

)}
;

then, by Proposition 4, a computational interpretation is ∼=S-sound if and only if the DDH as-
sumption holds. In this model, ∼=S will make exactly those frames equivalent for which equivalence

9

necessarily follows from the DDH assumption and the algebraic identities that we included in the
model. Hence, for example,

νgab.{x1 = g, x2 = ga, x3 = gb, x4 = ab} 6≈E νgabc.{x1 = g, x2 = ga, x3 = gb, x4 = c},

but

νgg′ab.{x1 = gg′, x2 = (gg′)a, x3 = (gg′)b, x4 = (gg′)ab} ∼=S

νgg′c.{x1 = gg′, x2 = (gg′)a, x3 = (gg′)b, x4 = (gg′)c}.

This follows from the commutativity of the group operation, from property (ii) and (iv) of the
formal indistinguishability relation, and the definition of S.

Often (for example in case of uniform distributions), Jg, g′KA and Jg, gg′KA are computationally
indistinguishable. In this case, we can include the pair of frames (νgg′.{x1 = g, x2 = g′}, νgg′.{x1 =
g, x2 = gg′}) in S, and then the above equivalence will follow without the use of commutativity.
Alternatively, if we include (νab.{x1 = a, x2 = b}, νab.{x1 = a, x2 = ab}) in S, then it follows that

νgg′adf.{x1 = g, x2 = gad, x3 = gf , x4 = g′gadf} ∼=S νgg
′df.{x1 = g, x2 = gad, x3 = gf , x4 = g′gc}.

5.2 Key-Cycles

In their paper, Baudet et al. [9] also consider equational theory for encryption schemes, and prove
the soundness of static equivalence when key-cycles are excluded. Another such example in the
framework of static equivalence can be found in the paper of Abadi et al. [1], where key-cycles are
excluded as well. The problem of key-cycles is not specific to static equivalence. It necessarily comes
up in the investigation of the relationship of formal and computational models; already Abadi and
Rogaway in [4] had to exclude them. There are two ways to include key-cycles. Either the encryption
scheme used for the interpretation has to be secure even in the presence of key-cycles, or formal
indistinguishability has to be relaxed. The problem with the first is that no realistic encryption
scheme is known that is secure for key-cycles. Laud proposed a simple solution along the second
way in [17]: simply assume that the formal adversary can decrypt all the encryptions that were
encrypted by keys that are part of a key-cycle. In the present formalism this means switching from
static equivalence to another formal indistinguishability relation. We illustrate this by first recasting
the original Abadi-Rogaway treatment into the present formalism and then showing how Laud’s
solution provides a special FIR.

The Abadi-Rogaway formal language of [4] gives the following signature (Ssenc,Fsenc) in this
terminology: Let Ssenc = {Key,Data,Cipher,Pair}, S ′senc = {Key}, with Key ≤S Data, Cipher ≤S
Data, Pair ≤S Data, and let all the names be of sort Key. The following function symbols are used:

enc : Data×Key→ Cipher symmetric encryption
dec : Data×Data→ Data symmetric decryption
pair : Data×Data→ Pair pairing
fst : Data→ Data first projection
snd : Data→ Data second projection

0, 1, error : Data constants

Let the equational theory Esenc be generated by the following equations:

dec(enc(x, y), y) = x,

pair(fst(x), snd(x)) = x,

fst(pair(x, y)) = x,

snd(pair(x, y)) = y,

10

and furthermore, dec(x, y) = error whenever the sort s(x) is ≤S-incomparable with Cipher or s(x)
is incomparable with Key, and fst(x) = snd(x) = error whenever s(x) is incomparable with Pair.

Given a computational encryption scheme (E ,D,K), along with a computational way of pairing,
it is straightforward how to assign a computational algebra Asenc to this signature: simply interpret
the formal function symbols as their computational counterpart, and let JKeyKAsenc be the distribu-
tion of key generation. In order to state the result that is analogous to that of Abadi and Rogaway,
we first need some definitions:

Definition 6. A frame ϕ is well-formed if ϕ does not contain the symbols dec, fst, snd, error.
For a well-formed frame ϕ, the set of recoverable keys of ϕ are those keys that are deducible from
ϕ: R-Keys(ϕ) = {k | k ∈ names(ϕ), k : Key, ϕ `E k}. The set B-Keys(ϕ) consists of those keys
that encrypt the outermost undecryptable terms in ϕ, namely, those undecryptable terms that are
deducible from ϕ:

B-Keys(ϕ) = {k ∈ names(ϕ) | ϕ `E enc(T, k) and k 6∈ R-Keys(ϕ)}.

We say that B-Keys(ϕ) is cyclic if for some keys k1, k2, . . . , km ∈ B-Keys(ϕ) with k1 = km, there
are terms M1, . . . ,Mm with M1 = Mm such that ki occurs in Mi in positions other then in the
second argument of enc and enc(Mi, ki+1) occurs in ϕ.

The reason for excluding some symbols is that Abadi and Rogaway only considered expressions
built via encryption and pairing. But, these symbols of course can be used in the distinguishers M
and N in the definition of static equivalence!

The result of Abadi and Rogaway then says that if the encryption scheme is secure enough,
namely, type-0 secure (as defined in [4]), then for two well-formed frames ϕ and ψ, ϕ ≈E ψ implies
JϕKAsenc ≈ JψKAsenc whenever neither B-Keys(ϕ) nor B-Keys(ψ) are cyclic.

The exclusion of key-cycles is necessary as long as the encryption scheme is only type-0 secure.
In fact, all standard computational notions of security make it necessary to exclude key-cycles. If
the encryption scheme satisfies stronger security definitions, for instance if it is KDM-secure (see
[5]), then key-cycles do not cause problems, but no realistic KDM-secure encryptions are known at
this time.

As we mentioned, following Laud’s method, we can keep the computational algebra Asenc but
switch from static equivalence to another formal indistinguishability relation on the formal side
which is sound even in presence of key-cycles. Define S as static equivalence Ẽenc minus pairs that
contain key-cycles on at least one side. Then ∼=S-soundness including key-cycles will hold. More
precisely, the following proposition is true:

Proposition 5. Let Asenc be the above (Ssenc,Fsenc)-computational algebra. Let S ⊆ Fc×Fc be the
following set:

S :=
{

(ϕ1, ϕ2)
∣∣∣(ϕ1, ϕ2) ∈ Ẽsenc and, if ϕi is well-formed, B-Keys(ϕi) is not cyclic

}
.

Let ∼=S be the formal indistinguishability relation generated by S. Then, for all well-formed frames
ϕ1 and ϕ2, ϕ1

∼=S ϕ2 implies Jϕ1KAsenc ≈ Jϕ2KAsenc.

Proof. The proposition clearly holds on S, because from there we removed the the key-cycles. Then
the proof is similar to that of Proposition 4.

5.3 Boolean Algebra

We give an example where static equivalence identifies frames that are computationally clearly
distinguishable, whereas a more fine-grained formal indistinguishability relation can do better.

11

Consider a signature (S,F), where S = ({B,S}, {B,S},=), and F contains the symbols
∧,∨ : B → B, constants 0, 1: B, as well as LSB: S → B. Let E be the equational theory gen-
erated by the set {(M,N) | M,N : B, M ↔ N is a tautology of propositional Boolean algebra}.

Let A denote the following (S,F)-computational algebra: supp(JSKAη) = {0, 1}η ⊆ {0, 1}∗,
supp(JBKAη) = {0, 1} ⊂ {0, 1}∗, where both spaces are equipped with the uniform distribution over
their support. The operations 0, 1, ∧, ∨ are interpreted as the obvious operations on the Boolean
algebra {0, 1}, and LSBAη is defined by LSBAη(b1 . . . bη) = bη. It is clear that A is =E-sound.
However, it is not ≈E-sound because

νab.{x = LSB(a) ∧ LSB(b)} ≈E νcd.{x = LSB(c) ∨ LSB(d)}

if a, b : S, or, even more simply, νab.{x = a ∧ b} ≈E νcd.{x = c ∨ d} for a, b : B, whereas the
interpretation of the left-hand side is distributed so that Pr[{x = 1}] = 1/4, and for the right-hand
side Pr[{x = 1}] = 3/4, which are clearly distinguishable. (We remark that while A does not satisfy
the requirement of Baudet et. al. that, for two names a, b : B, Pr[e1, e2 ← Ja, bKAη ; e1 = e2] be
negligible, this can also be satisfied by making minor changes to the model.)

To remedy the problem, we can use instead of static equivalence a custom formal indistinguisha-
bility relation. For a frame which has only sort B in its domain, it is easy to compute explicitly
the probability distribution of its interpretation using only the formal expressions. Without writing
down the explicit recursive formula, just consider for example that for νab.{x1 = a ∧ b, x2 = a},
Pr[{x1 = 1, x2 = 1}] = 1/4, Pr[{x1 = 1, x2 = 0}] = 0, Pr[{x1 = 0, x2 = 1}] = 1/4, Pr[{x1 = 0, x2 =
0}] = 1/2. We can therefore define the binary relation S generating formal indistinguishability so
that S contains those pairs for which the domains only have variables of sort B, and have identical
probability distributions. This definition gives a formal indistinguishability relation that is both
sound and faithful.

6 Conclusion

We suggested a generalized notion of formal indistinguishability which provides greater flexibility
than static equivalence. This is needed because computational distinguishability is much more
then just trying to distinguish with the algebraic manipulations allowed by the formal model. It is
unrealistic to expect that an indistinguishability relation defined in a purely algebraic manner in
a relatively simple formal model will cover all the subtleties of computational indistinguishability.
However, even though computational indistinguishability is a complex notion, in many cases it is
possible to distill a simple formal indistinguishability relation, impose it on the formal model, and
get a sound, meaningful theory. The utility of this new definition was demonstrated in Section 5:
We pointed out natural models of certain equational theories in which static equivalence seems to
be an insufficiently coarse notion of formal indistinguishability, and showed how to come up with
different indistinguishability relation that does not identify more expressions than needed.

References

1. M. Abadi, M. Baudet, and B. Warinschi. Guessing attacks and the computational soundness of static equiva-
lence. In Proceedings of the 9th International Conference on Foundations of Software Science and Computation
Structures (FoSSaCS ’06). Springer-Verlag, March-April 2006. To appear.

2. M. Abadi and C. Fournet. Mobile values, new names, and secure communication. In POPL ’01: Proceedings
of the 28th ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pages 104–115, New
York, NY, USA, 2001. ACM Press.

3. M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: The Spi Calculus. Information and
Computation, 148(1):1–70, January 1999. Full version available as SRC Research Report 149, January 1998.

4. M. Abadi and P. Rogaway. Reconciling two views of cryptography (the computational soundness of formal
encryption). Journal of Cryptology, 15(2):103–127, January 2002. Preliminary version presented at IFIP TCS’00.

12

5. P. Adão, G. Bana, J. Herzog, and A. Scedrov. Soundness of formal encryption in the presence of key-cycles. In
S. De Capitani di Vimercati, P. Syverson, and D. Gollmann, editors, Proceedings of the 10th European Symposium
on Research in Computer Security (ESORICS), volume 3679 of Lecture Notes in Computer Science, pages 374–
396, Milan, Italy, September 12–14 2005. Springer.

6. P. Adão, G. Bana, and A. Scedrov. Computational and information-theoretic soundness and completeness of
formal encryption. In Proceedings of the 18th IEEE Computer Security Foundations Workshop (CSFW), pages
170–184, Aix-en-Provence, France, June 20–22 2005. IEEE Computer Society Press.

7. M. Backes and B. Pfitzmann. Symmetric encryption in a simulatable Dolev-Yao style cryptographic library. In
Proceedings of the 17th IEEE Computer Security Foundations Workshop (CSFW), pages 204–218, Pacific Grove,
CA, USA, June 28–30 2004. IEEE Computer Society Press. Full version available at IACR ePrint Archive, Report
2004/059.

8. M. Backes, B. Pfitzmann, and M. Waidner. A composable cryptographic library with nested operations. In
S. Jajodia, V. Atluri, and T. Jaeger, editors, Proceedings of the 10th ACM Conference on Computer and Com-
munications Security (CCS), pages 220–230, Washington D.C., USA, October 27–30 2003. ACM Press. Full
version available at IACR ePrint Archive, Report 2003/015, January 2003.

9. M. Baudet, V. Cortier, and S. Kremer. Computationally sound implementations of equational theories against
passive adversaries. In Proceedings of the 32nd International Colloquium on Automata, Languages and Program-
ming (ICALP’05), volume 3580, pages 652–663. Springer-Verlag, July 2005.

10. R. Canetti. Universally composable security: A new paradigm for cryptographic protocols. In 42nd IEEE
Symposium on Foundations of Computer Science (FOCS), pages 136–145, Las Vegas, NV, USA, October 14–17
2001. IEEE Computer Society Press. Full version available at IACR ePrint Archive, Report 2000/067.

11. Ran Canetti and Jonathan Herzog. Universally composable symbolic analysis of mutual authentication and key
exchange protocols. In Proceedings, Theory of Cryptography Conference (TCC), March 2006.

12. R. Cramer and V. Shoup. A practical public key cryptosystem provably secure against adaptive chosen ciphertext
attack. In H. Krawczyk, editor, Advances in Cryptology CRYPTO ’98, volume 1462 of Lecture Notes in Computer
Science, pages 13–25, Santa Barbara, CA, USA, August 23–27 1998. Springer. Full version available at IACR
ePrint Archive, Report 2001/108, Dec 2001.

13. A. Datta, A. Derek, J. C. Mitchell, V. Shmatikov, and M. Turuani. Probabilistic polynomial-time semantics for a
protocol security logic. In L. Caires, G. Italiano, L. Monteiro, C. Palamidessi, and M. Yung, editors, Proceedings
of the The 32nd International Colloquium on Automata, Languages and Programming (ICALP), volume 3580 of
Lecture Notes in Computer Science, pages 16–29, Lisbon, Portugal, July 11–15 2005. Springer.

14. D. Dolev and A. C. Yao. On the security of public-key protocols. IEEE Transactions on Information Theory,
29(2):198–208, March 1983. Preliminary version presented at FOCS’81.

15. S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and Systems Sciences, 28(2):270–299,
April 1984. Preliminary version presented at STOC’82.

16. J. D. Guttman, F. J. Thayer, and L. D. Zuck. The faithfulness of abstract protocol analysis: Message authentica-
tion. In P. Samarati, editor, Proceedings of the 8th ACM Conference on Computer and Communications Security
(CCS), pages 186–195, Philadelphia, PA, USA, November 05–08 2001. ACM Press.

17. P. Laud. Encryption cycles and two views of cryptography. In Proceedings of the 7th Nordic Workshop on Secure
IT Systems (NORDSEC), number 31 in Karlstad University Studies, pages 85–100, Karlstad, Sweden, November
7–8 2002.

18. P. Laud. Symmetric encryption in automatic analyses for confidentiality against active adversaries. In Proceedings
of the 2004 IEEE Symposium on Security and Privacy (S&P), pages 71–85, Oakland, CA, USA, May 9–12 2004.
IEEE Computer Society Press.

19. D. Micciancio and B. Warinschi. Completeness theorems for the Abadi-Rogaway logic of encrypted expressions.
Journal of Computer Security, 12(1):99–130, 2004. Preliminary version presented at WITS’02.

20. D. Micciancio and B. Warinschi. Soundness of formal encryption in the presence of active adversaries. In
M. Naor, editor, Proceedings of the 1st Theory of Cryptography Conference (TCC), volume 2951 of Lecture Notes
in Computer Science, pages 133–151, Cambridge, MA, USA, February 19–21 2004. Springer.

A Proofs

A.1 Proof of Proposition 1

Proof. Items (i) and (iii) are trivially satisfied by ≈E . Consider frames ϕ,ϕ1, ϕ2 as in (ii). Let
M,N be terms whose variables are included in dom(ϕϕ1) = dom(ϕϕ2) = dom(ϕ) and that
have no names in common with ϕϕi, i = 1, 2. Then names(Mϕ) = names(M) ∪ names(ϕ), and
names(M) ∪ names(ϕ) is disjoint from names(ϕi) by the assumption on M and condition (ii).
Therefore names(Mϕ) and names(ϕi) are disjoint (and likewise for N). If ϕ1 ≈E ϕ2 holds, then

13

by the definition of static equivalence, (Mϕ)ϕ1 =E (Nϕ)ϕ1 if and only if (Mϕ)ϕ2 =E (Nϕ)ϕ2.
Therefore, M(ϕϕ1) =E N(ϕϕ1) if and only if M(ϕϕ2) =E N(ϕϕ2), and that is exactly what we
had to prove to see that ϕϕ1

∼= ϕϕ2.
To see (iv), we first construct another renaming τ ′ the following way: On names(ϕ), let τ ′ be

equal τ , and on N \ (names(ϕ) ∪ τ(names(ϕ)), let τ ′ be the identity map. We still have to define
τ ′ on τ(names(ϕ)) \ names(ϕ). Since τ is a sort-preserving bijection, the number of elements in
[τ(names(ϕ)) \ names(ϕ)]s is the same as the number of elements in [names(ϕ) \ τ(names(ϕ))]s for
each sort s; both are |[names(ϕ)]s| − |[names(ϕ) ∩ τ(names(ϕ))]s|, which equals |[τ(names(ϕ))]s| −
|[names(ϕ) ∩ τ(names(ϕ))]s|. So on [τ(names(ϕ)) \ names(ϕ)]s choose τ ′ to be any bijection to
[names(ϕ) \ τ(names(ϕ))]s. It is then easy to see that τ ′ is a sort-preserving bijection on N , and
that τ ′(ϕ) = τ(ϕ) for the ϕ in question. Moreover, for any M expression that shares no names with
ϕ and τ(ϕ), τ ′(M) = M , and therefore Mτ(ϕ) = Mτ ′(ϕ) = τ ′(Mϕ) holds. Hence, for any two such
expressions M and N , Mτ(ϕ) =E Nτ(ϕ) if and only if τ ′(Mϕ) =E τ ′(Nϕ) which happens – since
τ ′ is a bijection – if and only if Mϕ =E Nϕ, and τ(ϕ) ∼= ϕ follows.

A.2 Proof of Proposition 2

Proof. Let (∼=i)i∈I , where I is some indexing set, be a sequence of formal indistinguishability rela-
tions with respect to the same equational theory E, and let ∼= be their intersection. Clearly, ∼= is an
equivalence relation. Items (i) and (iii) are trivially satisfied by ∼= . Let ϕ,ϕ1, ϕ2 be as in (ii). Then
ϕ1ϕ ∼=i ϕ2ϕ for all i ∈ I, hence ϕ1ϕ ∼= ϕ2ϕ. Likewise, since every ∼=i is preserved by the renaming
of variables, ∼= is preserved as well. Therefore (iii), (iv) are also satisfied by ∼= .

A.3 Proof of Proposition 3

Proof. The existence of such a smallest set is clear. In order to prove the statement about how to
generate 〈S〉, consider the transitive closure Ŝ of S′. It is clear from the definition of S′ that Ŝ is
symmetric, reflexive and transitive, hence an equivalence relation. It is also clear from the definition
of a formal indistinguishability relation and from Remark 1 that in the construction of S′ and Ŝ we
stay within 〈S〉. Therefore, we only have to show that Ŝ is a formal indistinguishability relation.

By the construction of Ŝ, it is clear that Ŝ satisfies properties (i), (iii) and (iv) of a formal
indistinguishability relation, so that only (ii) remains. Suppose (ϕ1, ϕ2) ∈ Ŝ, and let ϕ be as in (ii);
we have to show that (ϕϕ1, ϕϕ2) ∈ Ŝ. Since (ϕ1, ϕ2) ∈ Ŝ, there are frames ψ1, . . . , ψn such that
ϕ1 = ψ1, ϕ2 = ψn, and the pairs (ψi, ψi+1), where i = 1, . . . , n − 1, are all in S′. Without loss of
generality, we can assume that names(ϕ)∩names(ψi) = ∅, because otherwise the names of the ψi’s
(i = 2, . . . , n− 1) can be moved away via renaming, the resulting pairs of frames will still be in S′.
If we can show that (ϕψi, ϕψi+1) ∈ S′, then transitivity ensures that (ϕϕ1, ϕϕ2) ∈ Ŝ. Let us now
fix i. Then, by the assumption (ψi, ψi+1) ∈ S′, these frames have the form ψi = ψ{ψ′1| . . . |ψ′m} and
ψi+1 = ψ{ψ′′1 | . . . |ψ′′m} such that for all j = 1, . . . ,m, (ψ′j , ψ

′′
j) ∈ S, or (ψ′′j , ψ

′
j) ∈ S, or ψ′′j = τj(ψ′j)

for some renaming τj , and names(ψ) = ∅. If [names({ψ′1| . . . |ψ′m}) \ names(ψi)] ∩ names(ϕ) 6= ∅,
then replace those names with fresh ones in {ψ′1| . . . |ψ′m}; this can be done, because they don’t
show up in ψi. Similarly for ψi+1. Let a1, . . . , al be the names occurring in ϕ, and let y1, . . . , yl be
fresh variables. For 1 ≤ k ≤ l, replace every occurrence of ak in ϕ by the variable yk, obtaining
a frame ξ such that names(ξ) = ∅, and ϕψi = (ξψ){ψ′1| . . . |ψ′m|y1 = a1| . . . |yl = al} and ϕψi+1 =
(ξψ){ψ′′1 | . . . |ψ′′m|y1 = a1| . . . |yl = al}. By assumption, names(ψ) = ∅, so names(ξψ) = ∅, and
therefore (ϕψi, ϕψi+1) ∈ S′.

A.4 Proof of Proposition 4

Proof. As a consequence of Proposition 3, it is sufficient to verify that those production rules
preserve the computational indistinguishability of the interpretations of frames. For reflexivity,

14

transitivity, and symmetry, this is implied by the fact that computational indistinguishability is an
equivalence relation. By the definition of the interpretation of a frame, it is also clear that if ψ is
any frame and τ is a renaming, then JψKA = Jτ(ψ)KA.

It is therefore enough to show that if ϕ1, ϕ2, ϕ are as in ii of Definition 3, then Jϕ1KA
∼=

Jϕ2KA implies Jϕϕ1KA
∼= Jϕϕ2KA . Suppose there is a probabilistic polynomial-time adversary A

whose advantage |Pr[A(η, Jϕϕ1KAη) = 1] − Pr[A(η, Jϕϕ2KAη) = 1]| is non-negligible in η. This
gives an adversary B that distinguishes ϕ1 and ϕ2 with non-negligible advantage: Given η and
a concrete frame ψ̂ (namely a sample element from either Jϕ1KA or Jϕ2KA), B simply interprets
the frame ϕ using the values specified by ψ̂ for the variables occurring in ϕ. All these variables
are assigned a unique value if ψ̂ is sampled from JϕiKA since var(ϕ) ⊆ dom(ϕi). The adversary
B thus constructs a concrete frame σ̂i, runs A(η, σ̂) and outputs the output of A. Since ψ̂ is
sampled from JϕiKAη , the distribution of σ̂i is exactly JϕϕiKAη . Therefore the advantage of B,
|Pr[B(η, Jϕ1KAη) = 1] − Pr[B(η, Jϕ2KAη) = 1]|, equals the advantage of A, which is non-negligible.
Furthermore, B runs in probabilistic polynomial-time since the size of the encoding of ϕ is constant
in η, so each σ̂i can be computed in probabilistic polynomial time. This proves the claim by
contraposition.

15

