
Signature Transformation Attacks on Designated
Confirmer Signatures

Victor K. Wei

Dept. of Information Engineering, The Chinese Univ. of Hong Kong, Hong Kong
kwwei@ie.cuhk.edu.hk

October 2, 2006

Abstract. Camenisch and Michels in Eurocrypt 2000 introduced the
signature trnaformation attack on designated confirmer signatures (DCS).
We apply this attack on Gentry, et al. Asiacrypt 2005’s DCS, and on
Goldwasser, et al. TCC 2004’s DCS before repairing them. We also op-
timize efficiencies of the former DCS’ confirmation and disavowal proto-
cols.

1 The results

Chaum [3] introduced the DCS (Designated Confirmer Signature). The
signature verification requires the interaction with a confirmer who was
designated by the signer when the signature was created. The motivation
was to split the power to sign and the power to confirm in order to
mitigate the overpower of the signer. Several applications benefit from
such a power splitting [3, 1].

T. Okamoto [8] gave a formal security model for DCS, and a poly-
nomial equivalence reduction between DCS and public-key encryption.
Camenisch and Michels [2] presented an upgraded DCS security model
which included the signature transformation attacker who can query the
confirmation oracle with adaptively designed signer public key which is
not obtained by the given key generation protocol. [2] also gave concrete
instantiations, using the RSA signature and the Cramer-Shoup encryp-
tion. The confirmation and disavowalwere not very efficient as they in-
volved double discrete logarithms or range proofs.

Goldwasser and Waisbard [7] and Gentry, et al. [6] presented DCS
without random oracles. [6]’s DCS has O(1)-size and the state-of-the-
art efficiency of costing 10 (resp. 41) exponentiations in confirm (resp.
disavow).

The contributions of this note: We apply Camenisch and Michels
[2]’s signature transformation attack on the two DCS’s above, before re-
pairing them. The attack on [6] is within their model while the attack



2 Victor K. Wei

on [7] is beyond their model. We also optimize the efficiencies of [6]’s
confirmation and disavowal protocols.

In this brief note, we do not include the security model or other def-
initions of terminologies. Consult the original references for details [2, 7,
6].

Attack and repair on Gentry, et al. [6]. In summary, the main
DCS in [6] on message m is σ′ = (σ∗, φ, c), where

φ = Commit(m, r) = gmhr ∈ QRn2 (1)
c = Enc(pkC , r) = (u1, u1, u3, u4) = (gρ

1 , g
ρ
2 , d

ρ
3g

r
0, (d1d

α
2 )ρ) ∈ QR4

n2 (2)
σ∗ = Sign(skS , (φ, c, pkS)) (3)

where α = Hash(u1, u2, u3). The commitment is Pedersen’s commit-
ment. The base g0 = n + 1 allows the confirmer to compute the partial
discrete logarithm in the Paillier system, and thus decrypt r. Sign is any
secure signature without random oracles, with signer private key skS . The
confirmer public key pkC consists of d1 = gx1

1 gx2
2 , d2 = gy1

1 gy2
2 , d3 = gz

1 .
Its private key is skC = (x1, x2, y1, y2, z).

The signature transformation attack: Generate the transformed sig-
nature σ̄′ = (σ̄∗, φ̄, c̄) on message m̄ = m + 1 by computing c̄ = c,
r̄ = r, φ̄ = φg, and computing σ̄∗ using attacker’s knowledge of skS which
is granted in the security model. The transformed DCS has the same
validity/invalidity as the pre-transformation DCS. Interacting with the
confirmation oracle yields the validity/invalidity of the transformed DCS,
and consequently the validity/invalidity of the original pre-transformation
DCS. Therefore, an adversary A can distinguish a valid signture from an
invalid one by interacting with the confirmation oracle, and thus breaking
the security of the DCS. Note that replacing Equation (1) by φ = gH(m)hr

is not a sufficient defense as we can use φ̄ = φgH(m̄)−H(m) and achieve
the same attack.

Repair: Change α above to

α = Hash(u1, u2, u3, φ, pkS , pkC ,m)

When queried with anything other than the (DCS, pkS , m), the confirma-
tion oracle will not yield any non-negligible advantage on the invisibility
of the validity the DCS [2].

Using the repair above, we can explicitly upgrade the part of [6]’s
security model to the corresponding part in [2] that defends signature
transformation attacks. Below, we also optimize [6]’s four-move concur-
rent zero-knowledge confirmation/disavowal protocols.



Signature Transformation Attacks on Designated Confirmer Signatures 3

We omit the straightforward confirmation protocol CZK{r : φg−m =
hr}. To disavow, prove either of the following:

CZK{(x1, x2, y1, y2) : d1 = gx1
1 ∧ d2 = gy1

1 gy2
2

∧ u4 6= gx1+αy1
1 gx1+αy2

2 }
CZK{(z, r̄) : d3 = gz

1 ∧ u3 = uz
1g

r̄
0 ∧ φg−m 6= hr̄}

They are equivalent to, respectively,

CZK{(x1, x2, y1, y2, s0, s1 = s0x1, s2 = s0y1, s3 = s0x2, s4 = s0y2) :
d1 = gx1

1 gx2
2 ∧ d2 = gy1

1 gy2
2 ∧ T = u−s0

4 gs1+αs2
1 gs3+αs4

2

∧ 1 = ds0
1 g−s1

1 g−s3
2 ∧ 1 = ds0

2 g−s2
1 g−s4

2 } with T 6= 1

CZK{(z, r̄, s0, s1 = s0r̄) : d3 = gz
1 ∧ u3 = uz

1g
r̄
0 ∧ T = (φ−1gm)s0gs1

∧ T4 = gs0
4 ∧ 1 = T r̄

4 g−s1
4 } with T 6= 1

The confirmation costs 4 moves totalling 3 exponentiations. The dis-
avow costs 4 moves totally at most 32 exponentiations. In comparison,
[6]’s confirmation (resp. disavowal) costs 4 moves and 10 exponentiations
(resp. 16 moves and 41 exponentiations). We demonstrate the second
CZK:

1. Verfier select random c′, sends c′′ = Hash(c′).
2. Prover sends T , T4, and D3 = grz

1 , Du = urz
1 grr

0 , DT = (φ−1gm)r0gr1 ,
D4 = gr0

4 , D5 = T rr
4 g−r1

4 .
3. Verifier checks T 6= 1 and sends c′.
4. Prover checks c′′ = Hash(c′), sends zz = rz − c′z, zr = rr − c′r̄, z0 =

r0 − c′s0, z1 = r1 − c′s1.

Finally, Verifier checks the following before outputting 1: D3 = gzz
1 dc′

3 , Du

= uzz
1 gzr

0 uc′
3 , DT = (φ−1gm)z0gz1T c′

, D4 = gz0
4 T c′

4 , D5 = T zr
4 g−z1

4 .
Attack generalization and repair: Other DCS schemes that use encryp-

tion as a black-box building block, such as those in [7, 6] and elsewhere,
may also risk signature transformation attacks. Our results suggest these
schemes may have an easy upgrade path by opening the black box slightly
and add more parameters to the hash input or to the input of other kinds
of tag generating mechanisms. We demonstrate a similar signature trans-
formation attack on the DCS in [7] below.

Attack and repair on Goldwasser, et al. [7]. We focus on the
first DCS in [7] which is based on the Cramer-Shoup signature [5] and the
Cramer-Shoup encryption [4]. The Cramer-Shoup signature on message
m is σ′ = (e, y′, y),

ye = xhH(x′)

x′ = (y′)e′
h−H(m),pkS ,e,y′)



4 Victor K. Wei

where the signer’s public key is pkS = (n, h, x, e′), n is a product of two
primes, e′ and e′ are distinct primes, h and x are random. The Goldwasser,
et al.’s DCS is σ = (σ1 = e, σ2 = y′, σ3 = Enc(pkC , y) ).

The signature transformation attack: Generate the transformed signa-
ture σ̄ = (ē, ȳ′, σ3) on a new message m̄ for a new signer public key p̄kS

= (n, h̄, x̄, e′) where x̄ = ye, h̄ = y, x̄′ = (y′)e′
h̄−H(m̄), ē = e + H(x̄′).

It is mechanical to verify that the transformed DCS has the same valid-
ity/invalidity as the pre-transformation DCS. Interacting with the con-
firmation oracle yields the validity/invalidity of the transformed DCS,
and consequently the validity/invalidity of the original pre-transformation
DCS. Note in verifying the signature, it is a common practice to not check
e (resp. ē) is a prime, only to check that it is within a certain range [5,
7]. We use this practice in our attack hyphtheses.

Therefore, an adversary A can distinguish a valid signture from an
invalid one by interacting with the confirmation oracle. However, [7] does
not claim the indistinguishability between valid and invalid signatures.
Our attack is beyond their security model. Their DCS remains secure in
their own model. Nevertheless, we suggest to include more parameters in
the has inputs wherever possible to defend against signature transforma-
tion and potentially other attacks. For example, x′ = (y′)e′

h−H(m),pkS ,e,y′)

or to have even more parameters included in the hash inputs.
Acknowledgements to Hong Kong Earmarked Grants 4232-03E and

4328-02E for sponsorship.

References

1. N. Asokan, Victor Shoup, and Michael Waidner. Optimistic fair exchange of digital
signatures. In EUROCRYPT 1998, pages 591–606, 1998.

2. J. Camenisch and M. Michels. Confirmer signature schemes secure against adaptive
adversaries. In Eurocrypt 2000, pages 243–258. Springer-Verlag, 2000. LNCS No.
2729.

3. D. Chaum. Designated confirmer signatures. In Eurocrypt’94, pages 86–91. Springer-
Verlag, 1994. LNCS No. 435.

4. R. Cramer and V. Shoup. Universal hash proofs and a paradigm for adaptive
chosen ciphertext secure public-key encryption. In EUROCRYPT 2002, volume
2332 of LNCS, pages 45–64. Springer-Verlag, 2002.

5. Ronald Cramer and Victor Shoup. Signature schemes based on the strong rsa
assumption. ACM Trans. Inf. Syst. Secur., 3(3):161–185, 2000.

6. Craig Gentry, David Molnar, and Zulfikar Ramzan. Efficient designated confirmer
signatures without random oracles or general zero-knowledge proofs. In ASI-
ACRYPT 2005, volume 3788 of LNCS, pages 662–681. Springer-Verlag, 2005.

7. Shafi Goldwasser and Erez Waisbard. Transformation of digital signature schemes
into designated confirmer signature schemes. In TCC 2004, volume 2951 of LNCS,
pages 77–100. Springer-Verlag, 2004.



Signature Transformation Attacks on Designated Confirmer Signatures 5

8. T. Okamoto. Designated confirmer signatures and public-key encryption are equiv-
alen. In Proc. CRYPTO ’94, pages 61–74, 1994.


