
A Note on Signature Transformation Attacks
and Confirmer Signatures

Victor K. Wei

Dept. of Information Engineering, The Chinese Univ. of Hong Kong, Hong Kong
kwwei@ie.cuhk.edu.hk

October 4, 2006

Abstract. Camenisch and Michels in Eurocrypt 2000 introduced the
signature transformation attack on designated confirmer signatures (DCS).
We apply this attack on Gentry, et al. Asiacrypt 2005’s DCS, and on
Goldwasser, et al. TCC 2004’s DCS before repairing them. We also op-
timize efficiencies of the former DCS’ confirmation and disavowal proto-
cols. The undeniable signature of Laguillaumie, et al. in Indocrypt 2005
is upgraded using techniques above.

1 The results

Chaum [7] introduced the DCS (Designated Confirmer Signature). The
signature verification requires the interaction with a confirmer who was
designated by the signer when the signature was created. The motivation
was to split the power to sign and the power to confirm in order to
mitigate the overpower of the signer. Several applications benefit from
such a power splitting [7, 2].

T. Okamoto [15] gave a formal security model for DCS, and a poly-
nomial equivalence reduction between DCS and public-key encryption.
Camenisch and Michels [5] presented an upgraded DCS security model
which included the signature transformation attacker who can query the
confirmation oracle with adaptively designed signer public key which is
not obtained by the given key generation protocol. [5] also gave concrete
instantiations, using the RSA signature and the Cramer-Shoup encryp-
tion. The confirmation and disavowal were not very efficient as they in-
volved double discrete logarithms or range proofs.

Goldwasser and Waisbard [12] and Gentry, et al. [11] presented DCS
without random oracles. [11]’s DCS has O(1)-size and the state-of-the-
art efficiency of costing 10 (resp. 41) exponentiations in confirm (resp.
disavow).
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The contributions of this note: We apply Camenisch and Michels
[5]’s signature transformation attack on the two DCS’s above, before re-
pairing them. The attack on [11] is within their model while the attack
on [12] is beyond their model. We also optimize the efficiencies of [11]’s
confirmation and disavowal protocols. The undeniable signature of Laguil-
laumie, et al. [14] is upgraded using techniques above.

In this brief note, we do not include the security model or other defi-
nitions of terminologies. Consult the original references for details [5, 12,
11].

Attack and repair on Gentry, et al. [11].
Review. The main DCS in [11] on message m is σ′ = (σ∗, φ, c), where

φ = Commit(m, r) = gmhr ∈ QRn2 (1)
c = Enc(pkC , r) = (u1, u1, u3, u4) = (gρ

1 , g
ρ
2 , d

ρ
3g

r
0, (d1d

α
2 )ρ) ∈ QR4

n2 (2)
σ∗ = Sign(skS , (φ, c, pkS)) (3)

where α = Hash(u1, u2, u3). The commitment is Pedersen’s commit-
ment. The base g0 = n + 1 allows the confirmer to compute the partial
discrete logarithm in the Paillier system, and thus decrypt r. Sign is any
secure signature without random oracles, with signer private key skS . The
confirmer public key pkC consists of d1 = gx1

1 gx2
2 , d2 = gy1

1 gy2
2 , d3 = gz

1 .
Its private key is skC = (x1, x2, y1, y2, z). In this, the main instantiation
of [11], the confirmer uses the Cramer-Shoup encryption [9] instantiated
in the group Zn2 [6].

Attack Hypotheses. The attacker needs the following hypotheses:

1. Knowing the private key skS′ of a signer S′, including S′ = S.
2. Query access to a confirmation oracle which, upon common inputs

including a message m̄, a signer public key pkS , and a putative DCS
σ̄′, will confirm or disavow the DCS σ̄′. Except when the queried tuple
(m̄, pkS′ , σ̄′), σ̄′ = (σ̄∗, φ̄, c̄), shares the same m, or the same pkS , or
the same σ∗, or the same φ as the attacker’s target tuple. Note queries
with the same c̄ = c are allowed.

Attack consequence and procedure: Given a (message, signer private
key, putative DCS) tuple, denoted (m, pkS , σ′), our attacker computes
the validity of the putative DCS (i.e. distinguishes a valid DCS from a
non-valid simulation DCS) and consequently cracks the security of the
DCS scheme by cracking its transcript simulatability [11]. It does so by
interacting once with the confirmation oracle with the following trans-
formed tuple: (m̄, pkS′ , σ̄′), σ̄′ = (σ̄∗, φ̄, c̄), where m̄ = m + 1, pkS′
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is from the attack hypotheses, and c̄ = c, φ̄ = φg (which corresponds
to r̄ = r), and σ̄∗ = Sign(skS′ , (φ̄, c̄, pkS′)). The transformed DCS has
the same validity/invalidity as the pre-transformation DCS. Interacting
with the confirmation oracle yields the validity/invalidity of the trans-
formed DCS, and consequently the validity/invalidity of the original pre-
transformation DCS.

Attack generalization. Replacing Equation (1) by φ = gH(m,pkS ,pkC ,c)hr

is not a sufficient defense as we can achieve the same attack using

φ̄ = φgH(m̄,pkS ,pkC ,c)−H(m,pkS ,pkC ,c)

Other DCS schemes that use public-key encryption as a black-box build-
ing block, such as those in [12, 11] and elsewhere, may also risk signature
transformation attacks. In fact, we demonstrate a signature transforma-
tion attack on [12] subsequently.

Attack mitigation: Change α above to

α = Hash(u1, u2, u3, φ, pkS , pkC ,m)

When queried with anything other than the (DCS, pkS , m), the confirma-
tion oracle will not yield any non-negligible advantage on the invisibility
of the validity the DCS [5]. Using the repair above, we can explicitly up-
grade the part of [11]’s security model to the corresponding part in [5]
that defends signature transformation attacks.

Our results suggest that other schemes that use public-key encryption
as a black-box building block, such as those in [12, 11] and elsewhere,
should also use our easy mitigation technique: Open the black box slightly
and add more parameters to the hash input or to the input of other kinds
of tag generating mechanisms [1].

Discussions. Below, we also optimize [11]’s four-move concurrent zero-
knowledge confirmation/disavowal protocols.

We omit the straightforward confirmation protocol CZK{r : φg−m =
hr}. To disavow, prove either of the following:

CZK{(x1, x2, y1, y2) : d1 = gx1
1 ∧ d2 = gy1

1 gy2
2

∧ u4 6= gx1+αy1
1 gx1+αy2

2 }
CZK{(z, r̄) : d3 = gz

1 ∧ u3 = uz
1g

r̄
0 ∧ φg−m 6= hr̄}
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They are equivalent to, respectively,

CZK{(x1, x2, y1, y2, s0, s1 = s0x1, s2 = s0y1, s3 = s0x2, s4 = s0y2) :
d1 = gx1

1 gx2
2 ∧ d2 = gy1

1 gy2
2 ∧ T = u−s0

4 gs1+αs2
1 gs3+αs4

2

∧ 1 = ds0
1 g−s1

1 g−s3
2 ∧ 1 = ds0

2 g−s2
1 g−s4

2 } with T 6= 1

CZK{(z, r̄, s0, s1 = s0r̄) : d3 = gz
1 ∧ u3 = uz

1g
r̄
0 ∧ T = (φ−1gm)s0gs1

∧ T4 = gs0
4 ∧ 1 = T r̄

4 g−s1
4 } with T 6= 1

The confirmation costs 4 moves totalling 3 exponentiations. The dis-
avow costs 4 moves totally at most 32 exponentiations. In comparison,
[11]’s confirmation (resp. disavowal) costs 4 moves and 10 exponentiations
(resp. 16 moves and 41 exponentiations). We demonstrate the second
CZK:

1. Verfier select random c′, sends c′′ = Hash(c′).
2. Prover sends T , T4, and D3 = grz

1 , Du = urz
1 grr

0 , DT = (φ−1gm)r0gr1 ,
D4 = gr0

4 , D5 = T rr
4 g−r1

4 .
3. Verifier checks T 6= 1 and sends c′.
4. Prover checks c′′ = Hash(c′), sends zz = rz − c′z, zr = rr − c′r̄, z0 =

r0 − c′s0, z1 = r1 − c′s1.

Finally, Verifier checks the following before outputting 1: D3 = gzz
1 dc′

3 , Du

= uzz
1 gzr

0 uc′
3 , DT = (φ−1gm)z0gz1T c′

, D4 = gz0
4 T c′

4 , D5 = T zr
4 g−z1

4 .
Signature transformation attack and Goldwasser, et al. [12]’s

DCS. Review. We focus on the first concrete DCS in [12] which is based
on the Cramer-Shoup signature [10] and the Cramer-Shoup encryption
[9]. The Cramer-Shoup signature on message m is σ′ = (e, y′, y),

ye = xhH(x′)

x′ = (y′)e′
h−H(m)

where the signer’s public key is pkS = (n, h, x, e′), n is a product of two
primes, e′ and e′ are distinct primes, h and x are random. The Goldwasser,
et al.’s DCS is σ = (σ1 = e, σ2 = y′, σ3 = Enc(pkC , y) ).

Attack Hypotheses. The attacker needs the following hypotheses:

1. Knowing the private key skS of the signer.
2. Query access to a confirmation oracle which, upon common inputs

including a message m̄, a signer public key pkS′ , and a putative DCS
σ̄, will confirm or disavow the DCS σ̄. Except when the queried tuple
(m̄, pkS′ , σ̄), σ̄ = (ē, ȳ′, σ̄3), shares the same m, or the same pkS , or
the same σ1, or the same σ2 as the attacker’s target tuple. Queries
with the same σ3 are allowed.
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3. The signature verification protocol does not check e is a prime. It only
checks that it is within a certain range. This is a common practice in
using the Cramer-Shoup encryption, e.g. [10, 12], to keep computa-
tional complexities low.

Attack consequence and procedure. The attacker can compute the va-
lidity/invalidity of a given putative DCS by interacting once with the con-
firmation oracle with the following transformed putative DCS: σ̄ = (ē, ȳ′,
σ3) on a new arbitrary message m̄ for a new signer public key p̄kS = (n, h̄,
x̄, e′) where x̄ = ye, h̄ = y, x̄′ = (y′)e′

h̄−H(m̄), ē = e+H(x̄′). It is mechan-
ical to verify that the transformed DCS has the same validity/invalidity
as the pre-transformation DCS. Interacting with the confirmation oracle
yields the validity/invalidity of the transformed DCS, and consequently
the validity/invalidity of the original pre-transformation DCS.

Therefore, an adversary A can distinguish a valid signature from an
invalid one by interacting with the confirmation oracle. However, [12] does
not claim the indistinguishability between valid and invalid signatures,
called the invisibility of the signature in [15, 5]. Our attack is beyond
their security model. Their DCS remains secure in their own model.

Mitigation. Nevertheless, we suggest to include more parameters in the
has inputs wherever possible to defend against signature transformation
and potentially other attacks. For example, letting x′ = (y′)e′

h−H(m,pkS ,e,y′)

or having even more parameters included in the hash inputs can con-
tribute to enhanced security.

Upgrading [14]’s undeniable signature to achieve signature
invisibility. Undeniable signatures [8] are DCS’s where signer and con-
firmer are the same entity. Using techniques developed above, we can
modify Laguillaumie, et al. [14]’s undeniable signature without random
oracles to upgraded security model with signature invisibility and defense
against signature transformation attackers. Consult original references for
details of the security model.

1. Setup. The signer public key pk = (n, y1, y2, 1, d2, d3), sk = (x1,
x2, x̄1, x̄2, ȳ1, ȳ2, z), where y1 = gx1 , y2 = gx2 , d1 = gx̄1

1 gx̄2
2 , d2 =

gȳ1
1 gȳ2

2 , d3 = gz
1 , n is a product of two safe primes p and q, pairings

ê : G1 ×G1 → GT , order(G1) = n, g ∈ G1, g1, g2 ∈ Zn2 , g0 = n + 1.
2. Sign. Select random R ∈ Zn, compute σ = (σ1, σ2), where σ1 =

g1/(x1+R+mx2), σ2 = Enc(R) = (u1, · · · , u4) with u1 = gr
1, u2 = gr

2, u3

= dr
3g

R
0 , u4 = (d1d

α
2 )r, where α = Hash(u1, u2, u3,m, pk, σ1).
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3. Confirm/disavow. To confirm, prove the following concurrent zero-
knwoledge protocols:

CZK{R : ê(σ1, y1y
m
2 )ê(σ1, g)R = ê(g, g) ∧ u3 = uz

1g
R
0 ∧ d3 = gz

1}

To disavow, prove the following concurrent zero-knwoledge protocol

CZK{(x̄1, x̄2, ȳ1, ȳ2, z, R′) : d1 = gx̄1
1 gx̄2

2

∧ d2 = gȳ1
1 gȳ2

2 ∧ d3 = gz
1 ∧ u3 = uz

1g
R′
0

∧ [u4 6= ux̄1+αȳ1
1 ux̄2+αȳ2

2 ∨ ê(σ1, y1y
m
2 )ê(σ1, g)R′ 6= ê(g, g)}

Note order(g0) = n in Zn2 . There is no need to prove for the proof of
range that R (and R′) lie in the interval [0, n). Th invisibility of signa-
ture mainly follows the use of concurrent zero-knowledge protocols. The
unforgeability of the undeniable signature can be proved similarly to [14].
Methods to instantiate a pairings group (or gap Diffie-Hellman group) G1

with a composite order n were described in Boneh, et al. [4] and Groth,
et al. [13].

Generalization. The undeniable signature above combines Boneh, et
al. [3]’s signature without random oracles and the famous Cramer-Shoup
encryption [9] without random oracles. It can be modified into a DCS by
separating the signing key (given to the signer) and the encryption key
(given to the confirmer). But then the confirmer key, pkC = (d1, d2, d3),
is dependent of the signer public key n, as the three entries lie in Zn2 .
Although security is not compromised because the security of the Cramer-
Shoup encryption reduces to the decisional Diffie-Hellman assumption in
Zn2 which continues to hold, this dependence is not desirable. If entries
of pkC are in Zn̄2 with n̄ 6= n, then inefficient range proofs may have to
be used in the confirmation/disavowal protocol.
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