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Abstract

In this article we introduce the multipartite access structure and the composite access

structure. A new family of the multipartite access structure will be given, we will provide

secret sharing scheme realizing it based on MSP and also prove it is ideal.

key words : secret sharing schemes, monotone span programs, multipartite access struc-

ture.

1 Introduction

Secret sharing schemes are methods designed to share a secret among a group of

participants in such a way that the secret can be reconstruct only by specified groups

of participant, if non-allowed coalitions cannot obtain any information about the secret.

Then the scheme is said to be perfect. Let P = {p1, p2, . . . , pn} be the set of players. The

family of qualified subsets Γ ⊆ 2p is called the access structure if it is closed under taking

supersets (A ∈ Γ, A ⊂ B ⇒ B ∈ Γ). Thus the set of minimal elements in Γ, denoted Γm,

determines the whole structure Γ and it is called the basis of Γ.

One of the basic paraments of a secret sharing scheme
∑

is its information rate

which is the rate between the length (in bits) of the secret and the maximum length of

the shares of the participants:

ρ(Σ, Γ, K) = ρ(Σ) =
log2 |K|

maxp(log2 |S(p)|) ,
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where K is set of all possible secrets for
∑

and S(p) is set of all possible shares for p ∈ P .

A scheme
∑

is called ideal if ρ(Σ) = 1. But figuring out an ideal secret sharing scheme

realizing an access structure is still very difficult. Notice that in general we always have

ρ(Σ) ≤ 1. An access structure Γ is called ideal if there is an ideal scheme realizing it.

More generally we define the optimal information rate of the structure Γ as

ρ∗(Γ) = sup(ρ(Σ, Γ, K))

where the supremum is taken over all possible Σ and K for Γ. A particular class of secret

sharing schemes is that of (t, n) threshold schemes which were introduced independently

by Blakley [1] and Shamir [5], where the access structure consists of all subsets of P with

at least t out of n participants. That is, Γ0={A|A ⊂ P , |A| = t}. Monotone span pro-

grams (MSP) were introduced by Karchmer and Wigdreson[6] to construct (t,n)-threshold

schemes.

We consider the multipartite access structures: the set of players is divided into K

disjoint entities and all players in each entity play exactly the same role inside the access

structure. when K=1, the threshold access structure is regarded as the multipartite access

structure. And K ≥ 2, some multipartite access structures are discussed by [3,7,9]. We

will also consider the composite access structure, it can be useful for sharing secrets when

the set of participants is divided into several groups, each of them with its own family of

authorized coalitions. These access structures have many applications in real life, for ex-

ample persons were divided by some groups according to their position or responsibilities

in company and department.

Many families of multipartite access structure have been discussed in the [9], their

proofs are existential, but not constructive. Here we will give a new family of the multi-

partite access structure and its proof is constructive and useful.

The rest of this paper is organized as follows. In Section 2 we give some concepts

about the monotone span program(MSP) and the definition of composition access struc-

ture and the general multipartite access structure. In Section 3 we construct the MSP

about a kind of composite access structure and we illustrate it could prove the family of

multipartite is ideal. We will conclude our work about the multipartite access structure

in section 4.
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2 preliminaries

Definition 1. [6] A Monotone Span Program (MSP) M is a quadruple (F ,M,
−→
t ,

ϕ), where F is a finite field, M is a matrix (with m rows and d ≤ m columns) over F ,

ϕ : {1, · · · ,m} →{1, · · · , n} is a surjection function and
−→
t is a fixed non-zero vector,

called target vector. The size of M is the number m of rows and is denoted as size(M).

As ϕ labels each row with a number i from [1, · · · ,m] that corresponds to player Pϕ(i).

we can think of each player as being the owner of one or more rows.

For any set of players B ⊆ P consider the matrix consisting of the rows these players

own in M, as is common,we shall denote MB. But we should stay aware of the difference

between MB for B ⊆ P and for B ⊆ {1, · · · ,m}.
An MSP is said to compute a(complete)access structure Γ when ε ∈ im(MA

T ) if and

only if A is a member of Γ. We say that A is accepted by M if and only if A ∈ Γ.

Otherwise we say A is rejected by M, in other words, the players in A can construct the

secret precise if the rows they own contain in their linear span the target vector of M.

Definition 2. [10] If Γ1, Γ2, · · ·, Γk are defined on participants set X1, X2, · · ·, Xk

respectively. Γ1+Γ2+· · ·+Γk and Γ1× Γ2 · · · × Γk defined on X1 ∪X2 ∪ · · · ∪Xk such that

for A ⊆ X1 ∪X2 ∪ · · · ∪Xk.

A ∈ Γ1 + Γ2 + · · ·+ Γk ⇐⇒ A ∩X1 ∈ Γ1 or A ∩X2 ∈ Γ2 or · · · or A ∩Xk ∈ Γk.

A ∈ Γ1 × Γ2 · · · × Γk ⇐⇒ A ∩X1 ∈ Γ1 and A ∩X2 ∈ Γ2 and · · · and A ∩Xk ∈ Γk.

Let σ be any permutation of P , σ(Γ)={σ(A)|A ∈ Γ}. Now we introduce multipartite

access structures.

Definition 3. [8] An access structure Γ defined in the set of player P is multi-

partite of partition X1, · · · , Xk if σ(Γ) = Γ for any permutation σ of P with σ(X1) =

X1, · · · , σ(Xk) = Xk. Then Γ is (X1, · · · , Xk)-multipartite or k-multipartite.

Proposition 1. [9] Any access structure is a multipartite access structure.

Proof : Let τpq be a permutation of P , the transposition of two participants p, q in P
for two participants p,q ∈ P . τpq(Γ)={τpq(A)|A ∈ Γ}. In order to find participants with

the same role in the structure we define the relation : p ∼ q if and only if τpq(Γ) = Γ.

Obviously the binary relation ∼ is an equivalence relation. Therefore we can consider the

quotient P/ ∼ ={X1, · · · , Xk}. Where X1, · · · , Xk are the equivalence classes determined

by the relation ∼. Let σ be a permutation of P with σ(X1) = X1, · · · , σ(Xk) = Xk. It is

obvious that σ=σ1 ◦· · · ◦ σk with σi(Xi) = Xi and σi(pj) = pj for any player pj ∈ P−Xi.

This directly implies σ(Γ) = Γ. So any access structure is a multipartite access structure.
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In the multipartite access structure P is the set of participants and P= X1 ∪ · · ·
∪ Xk is a partition of P(that is ∅ 6= Xi 6= P , Xi ∩Xj = ∅, if i 6= j and ∪k

i=1Xi = P). Let

us write |Xi| = ni and n =
∑K

i=1ni. For a set A ⊆ P we denote Ai = A ∩Xi. Obviously

A = A1 ∪ · · · ∪ Ak. For i = 1, · · · , k, let Γi be an access structure on Xi and let Γ0 be an

access structure on the quotient P/ ∼ = {X1, · · · , Xk}.

Definition 4. [2] With the notion as above the composite access structure of Γ1, · · ·,
Γk, following Γ0, denoted by Γ0[Γ1, · · · , Γk], is defined as follows

Γ0[Γ1, · · · , Γk] = {A ∈ P| ∃B ∈ Γ0 such that Ai ∈ Γi for all Xi ∈ B}
= ∪B∈Γ0{A ∈ P|Ai ∈ Γi for all Xi ∈ B}

Γ0[Γ1, . . . , Γk] is an access structure defined on P , if A ∈ Γ0[Γ1, · · · , Γk], then ∃ B ∈
Γ0, for all Xi ∈ B, Ai = A ∩Xi ∈ Γi. A ⊂ A′ ⊂ P , then ∃ the same B ∈ Γ0, A′ ∩Xi ⊃
A∩Xi, so A′ ∩Xi ∈ Γi. We have A′ ∈ Γ0[Γ1, · · · , Γk]. A coalition A ⊆ P is authorized if

and only if it includes, as subsets, authorized coalitions in enough of the components Γ1,

· · ·, Γk to constitute an authorized subsets for Γ0.

3 a family of multipartite access structure

Any access structure Γ is multipartite of partition X1, X2, · · · , Xk defined in the

set of players P if σ(Γ) = Γ for any permutation σ of P with σi(Xi) = Xi, let Γi is

an threshold access structure defined on Xi, i = 1, · · · , k. Let Γ0 is an threshold access

structure defined on P/ ∼ ={X1, · · · , Xk}. Let Γ = Γ0[Γ1, · · · , Γk] is composite access

structure which could be computed by MSP. It has been discussed widely in [3], but we

will give a new proof about it. So we have the following lemma.

Lemma 1. Let Γ = Γ0[Γ1, · · · , Γk] is composite access structure. Γ0 is threshold

access structure defined on P/ ∼ = {X1, · · · , Xk} which is computed by the MSP N0,

Γi is threshold access structure defined on Xi which is computed by the MSP Mi for

i = 1, · · · , k. Then there exists an MSP M computing Γ = Γ0[Γ1, · · · , Γk] of size m=|P|.
Proof : Let Xi={pi1, · · · , pini

} for i = 1, · · · , k. Suppose the threshold access structure
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Γ0 is computed by MSP

N0 =




1 m01 m2
01 · · · md−1

01

1 m02 m2
02 · · · xd−1

02

...
...

...
. . .

...

1 m0k m2
0k · · · md−1

0k




X1

X2

...

Xk

here d ≤ k. We construct the matrix as follows:

Ni =




1 m0i m2
0i · · · md−1

0i

1 m0i m2
0i · · · xd−1

0i

...
...

...
. . .

...

1 m0i m2
0i · · · md−1

0i




pi1

pi2

...

pini

here i = 1, 2, . . . , k. The threshold access structure Γi is computed by the MSP Mi.

Mi =




1 xi1 x2
i1 · · · xti−1

i1

1 xi2 x2
i2 · · · xti−1

i2

...
...

...
. . .

...

1 xini
x2

ini
· · · xti−1

ini




pi1

pi2

...

pini

Let Mi = (1M
(2)
i ). Then the MSP M

M =




N1 M
(2)
1 0 0 · · · 0

N2 0 M
(2)
2 0 · · · 0

N3 0 0 M
(2)
3 · · · 0

...
...

...
...

. . .
...

Nk 0 0 0 · · · M
(2)
k




computes Γ = Γ0[Γ1, · · · , Γk]. Then M is a (n× (d−K + t1 + t2 + · · ·+ tk)) matrix. The

labelling of M is carried over in a natural way from Mi and Ni, i = 1, · · · , k.

Now we will show that this MSP computes the access structure Γ = Γ0[Γ1, · · · , Γk]. If

A ∈ Γ = Γ0[Γ1, · · · , Γk] if and only of ∃ B ∈ Γ0 such that A ∩ Xi ∈ Γi, for all Xi ∈ B, then

A ∩ Xi ∈ Γi =⇒ (1, . . . , 0)T ∈ Im((Mi)A∩Xi
)T =⇒ (0, . . . , 0)T ∈ Im(((M

(2)
i )A∩Xi

)
T
) =⇒

(1,m0i,m
2
0i, . . . , m

(d−1)
0i , 0, . . . , 0)

T ∈ Im(MA∩Xi
)T . Because B ∈ Γ0 and for all Xi ∈ B,

(1, . . . , 0)T ∈ Im((N0)B)T and the number of the column vector (1,m0i,m
2
0i, . . . , m

(d−1)
0i )

is greater than or equal to d, then (1, . . . , 0)T ∈ Im((MA)T ).

If (1, . . . , 0)T ∈ Im((MA)T ), if Pi ⊆ A satisfies for any i ∈ 1, . . ., K =⇒ (0, . . . , 0)T

∈ Im((M
(2)
i )A∩Xi

)
T
) =⇒ |A ∩Xi| ≥ ti =⇒ (1, . . . , 0)T ∈ Im((Mi)A∩Xi

)T =⇒ A ∩Xi ∈
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Γi. Let B = {Pi|Pi ⊆ A, i = 1, . . . , k}, (1, . . . , 0)T ∈ Im((MA)T ) =⇒ (1, . . . , 0)T ∈
Im(((N0)B)T ) =⇒ B ∈ Γ0. So A ∈ Γ. Thus M computes Γ and the size of M is |P|.

Let X1, . . . , Xk be a partition of P . We define the mapping υ : P −→ {1, 2, . . . , k}
that assigns to every participant the entity he belongs to. We will use the notation

υi=υ(pi), meaning that the participants pi belongs to the entity Xυi
. For a subset of

players A ⊂ P , the set of entities represented by A as υ(A)={υ(pi) | pi ∈A}. First An

access structure is given, then we get a partition of P according to participants play the

same role in the same role in the access structure, Let us suppose Γi is threshold access

structure defined on the partition Xi, i=1, 2, · · ·, k and Γ0 is threshold access structure

defined on P/ ∼ = {X1, . . . , Xk}. If Γ = Γ0[Γ1, . . . , Γk], we have the following Theorem.

Theorem 1. Let k, d, ni, ti be positive integer numbers with d ≤ k, ti ≤ ni for i=1, 2,

. . ., k. Let X1, X2, . . . , Xk be a partition of P. The multipartite access structure defined

in the partition X1, X2, . . . , Xk by

Γ = {A ⊆ P : |υ(A)| ≥ d and |A ∩Xi| ≥ ti, i ∈ {i1, i2, · · · , id}, {i1, i2, · · · , id} ⊂ {1, 2, · · · , k}}

Then the multipartite access structure Γ is ideal.

Proof : Let Γ0 be (d,k)-threshold access structure defined on P/ ∼ ={X1, . . . , Xk},
let Γi be (ti, ni)-threshold access structure defined on Xi for i=1,· · ·,K. Γ = Γ0[Γ1, . . . , Γk]

is ideal access structure based on Lemma 1.

Corollary 1. With the notion as above the multipartite access structure composite

defined in the partition X1, X2, · · · , Xk.

if d = 1, Γ = (t1, n1) + (t2, n2) + · · ·+ (tk, nk). (1)

if d = k, Γ = (t1, n1)× (t2, n2)× · · · × (tk, nk). (2)

Proof : if d=1, ∀ A ∈ Γ, |A ∩X1| ≥ t1 or |A ∩X2| ≥ t2 or · · · or |A ∩Xk| ≥ tk. So

Γ=(t1, n1)+(t2, n2)+· · ·+(tk, nk) based on Definition 2. If d=k, ∀ A ∈ Γ, |A ∩X1| ≥ t1

and |A ∩X2| ≥ t2 and · · · and |A ∩Xk| ≥ tk. So Γ=(t1, n1) × (t2, n2) × · · · × (tk, nk). It

is also based on Definition 2.

We know that any access structure is multipartite access structure based on Propo-

sition 1 and a particular interesting kind of access structure is threshold access structure.

Now we could generalize this special threshold structure based on Theorem 1. It is ob-
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vious that this multipartite access structure is a threshold access structure if k=1. It is

composed by some small threshold access structures when k ≥ 2.

Next we will show the example of how the result of Theorem 1 can be used in practice.

Let the participants set be P={p1, p2, · · · , p9}. The minimal qualified subset of the access

structure :

Γm ={{p1, p2, p3, p4}, {p1, p2, p4, p8}, {p1, p3, p4, p8}, {p1, p2, p3, p7}, {p1, p3, p7, p8},
{p1, p2, p7, p8}, {p3, p4, p7, p8}, {p2, p3, p4, p7}, {p2, p4, p7, p8}, {p1, p4, p5, p6, p9},
{p1, p5, p6, p7, p9}, {p4, p5, p6, p7, p9}, {p2, p3, p5, p6, p9}, {p2, p5, p6, p8, p9}, {p3, p5, p6, p8, p9}}.
In order to find participants with the same role in the access structure, there is an

equivalence relation: p ∼ q if and only if τpq(Γ) = Γ, for p,q ∈ P .We could ver-

ify p1 ∼ p4 ∼ p7,p2 ∼ p3 ∼ p8, p5 ∼ p6 ∼ p9. There are three equivalence classes

X1={p1, p4, p7},X2={p2, p3, p8},X3={p5, p6, p9}. Let Γ1 be (2,3)-threshold access struc-

ture defined on X1, Γ2 be (2,3)-threshold access structure defined on X2 and Γ3 be (3,3)-

threshold access structure defined on X3. Let Γ0 be (2,3)-threshold access structure de-

fined on P/ ∼ ={X1, X2, X3}. So we easily get Γ = Γ0[Γ1, Γ2, Γ3]= (2,3)[(2,3),(2,3),(3,3)].

There exists MSPsM1(F13,M1,ϕ1,[1, 0]T ),M2(F13,M2,ϕ2,[1, 0]T ),M3(F13,M3,ϕ3,[1, 0, 0]T )

computing Γ1,Γ2,Γ3 respectively. The matrix

M1 =




1 1

1 2

1 3




p1

p4

p7

The matrix

M2 =




1 1

1 2

1 3




p2

p3

p8

The matrix

M3 =




1 1 1

1 2 4

1 3 9




p5

p6

p9

There exists an MSP N0(F13,N0,ϕ0,[1, 0, 0]T ) computing Γ0. The matrix

N0 =




1 1

1 2

1 3




X1

X2

X3
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Then there exists an MSP M(F13,M,ϕ,[1, 0, 0, 0, 0, 0]T ) computing Γ.The matrix

M =




1 1 1 0 0 0

1 2 0 1 0 0

1 2 0 2 0 0

1 1 2 0 0 0

1 3 0 0 1 1

1 3 0 0 2 4

1 1 3 0 0 0

1 2 0 3 0 0

1 3 0 0 3 9




p1

p2

p3

p4

p5

p6

p7

p8

p9

Let the secret s=3 ∈ F13. The dealer distributes the share of secret, First he choose

(3, 1, 4, 6, 8, 5)T , where the first element 3 is secret,but the other five numbers are random

numbers from F13. The share owned by p1 is 8 (8=〈(1, 1, 1, 0, 0, 0)T , (3, 1, 4, 6, 8, 5)T 〉), the

share owned by p2 is 11(11=〈(1, 2, 0, 1, 0, 0)T , (3, 1, 4, 6, 8, 5)T 〉), the rest may be deduced

by analogy. Let we verify any qualify subset in Γ could recover the secret. We might as

well choose a qualify subset set A={p1, p3, p4, p8}. The share owned by p1 is 8, The share

owned by p3 is 4,The share owned by p4 is 12 and The share owned by p8 is 10. So the

share owned by A is SA=(8, 4, 12, 10)T . The matrix

MA =




1 1 1 0 0 0

1 2 0 2 0 0

1 1 2 0 0 0

1 2 0 3 0 0




p1

p3

p4

p8

There exists the unique vector λA=(4, 10, 11, 2)T satisfying MT
AλA=[1, 0, 0, 0, 0, 0]T . Then

〈SA, λA〉= 〈(8, 4, 12, 10)T , (4, 10, 11, 2)T 〉=3=s. For any unqualified subset could not re-

cover the secret, I may as well choose a unqualified subset B={p3, p5, p6, p9}. the share

owned by p3 is 4, the share owned by p5 is 6, the share owned by p6 is 5 and the share

owned by p9 is 10. The share owned by B is SB=(4, 6, 5, 10)T . The matrix

MB =




1 2 0 2 0 0

1 3 0 0 1 1

1 3 0 0 2 4

1 3 0 0 3 9




p3

p5

p6

p9

Because rank(MT
B , [1, 0, 0, 0, 0, 0]T ) 6= rank(MT

B ), there doesn’t exist a vector λB satisfy-

ing MT
BλB=[1, 0, 0, 0, 0, 0]T . So the participant set B doesn’t recover the secret.The rest

unqualified subset could be deduced by analogy.
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4 Conclusions

In this paper we have showed the relation between the multipartite access structure and

the composite access structure. Next we give a new family of multipartite access structure

and prove that there is an ideal secret sharing realizing it. Finally,we illustrate some simple

examples to show its applicants.
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