
Analysis and Improvements of Two
Identity-Based Perfect Concurrent Signature

Schemes

Zhenjie Huang, Kefei Chen, Yumin Wang

Department of Computer Science and Engineering,
Shanghai Jiao Tong University, Shanghai 200240, China

State Key Lab of Integrated Service Networks,
Xidian University, Xi’an, Shaanxi 710071, China

Abstract. The notion of concurrent signatures was introduced by Chen,
Kudla and Paterson in their seminal paper in Eurocrypt 2004. In concur-
rent signature schemes, two entities can produce two signatures that are
not binding, until an extra piece of information (namely the keystone) is
released by one of the parties. Upon release of the keystone, both signa-
tures become binding to their true signers concurrently. In ICICS 2005,
two identity-based perfect concurrent signature schemes were proposed
by Chow and Susilo. In this paper, we show that these two schemes are
unfair, in which the initial signer can cheat the matching signer. We
present a modified definition of ID-based concurrent signatures which
redress the flaw of Chow et al.’s definition and then propose two simple
but significant improvements to fix our attacks.

Keywords: Concurrent signature, Identity-Based, Bilinear pairings, Cryp-
toanalysis, Fair exchange.

1 Introduction

Background. The problem of fair exchange of signatures is a fundamental and
well-studied problem in cryptography, with potential application in a wide range
of scenarios in which the parties involved are mutually distrustful. Early work
on solving the problem of fair exchange of signatures was based on the idea of
timed release or timed fair exchange of signatures [2, 7, 8]. Such protocols are
highly interactive with many message flows and may be too interactive for many
applications. Another approach to solving this problem involves the use of a
trusted (or semi-trusted) third party or arbitrator who can be called upon to
handle disputes between signers [1, 3, 4, 9, 10]. The main problem with such an
approach is the requirement for a dispute-resolving third party with functions
beyond those required of a normal Certification Authority. In general, appropri-
ate third parties may not be available.

Concurrent signatures were introduced as an alternative approach to solving
the problem of fair exchange of signatures by Chen, Kudla and Paterson [5] in
their seminal paper in Eurocrypt 2004. In concurrent signature schemes, two

2

entities can produce two signatures that are not binding, until an extra piece
of information (namely the keystone) is released by one of the parties. Upon
release of the keystone, both signatures become binding to their true signers
concurrently. Concurrent signatures have a benefit that they have none of the
disadvantages of previous fair exchange protocols: they require neither special
trusted third party nor highly interactive.

Previous Works. In [5], Chen et al. proposed a concrete concurrent sig-
nature scheme based on a variant of Schnorr based ring signature scheme. In
their scheme, before the keystone is released, any third party cannot be con-
vinced that a signature has indeed been signed by one particular signer, since
any signer can always generate this signature by himself/herself. Later, Susilo et
al. [13] pointed out that in a situation where the initial signer and the matching
signer are known to be honest players, in Chen et al.’s scheme, any third party
can be sure that both signers have signed the messages even before the key-
stone is released. Then, they extended the notion of concurrent signatures to a
stronger notion of perfect concurrent signatures, which will allow full ambiguity
of the concurrent signatures, even both signers are known to be trustworthy.
They proposed two concrete schemes to satisfy this model. The first scheme is
based on a variant of Schnorr ring signature scheme, and the second scheme is
based on bilinear pairing. In 2005, there are four concurrent signature schemes
have been proposed. In [12], Susilo and Mu proposed a tripartite concurrent sig-
nature scheme from bilinear pairings. In tripartite concurrent signatures, three
parties can exchange their signatures in such a way that their signatures will be
binding concurrently. Chow and Susilo [6] proposed two identity-based (simply
ID-based) perfect concurrent signature schemes based on two major paradigms
of ID-based ring signature schemes. Previous concurrent signature schemes use
the concept of ring signatures in their construction. Nguyen [11] proposed a new
concurrent signature (namely asymmetric concurrent signatures) scheme which
is independent of the ring signature concept. This scheme based on Schnorr sig-
nature scheme and Schnorr-like signature scheme. Recently, Tonien et al. [14]
proposed a multi-party concurrent signature scheme using techniques of ring
signatures and bilinear pairings.

Contribution. In this paper, we show that Chow et al.’s two ID-based
perfect concurrent signature schemes [6] are unfair, in their schemes the initial
signer Alice can cheat the matching signer Bob. We will show that, in their
schemes, by carefully choosing some communication value, Alice can perform
the signature protocol with Bob on messages mA and mB , but outputs a valid
signature pair (σ̃, σB) on (m̃,mB) with m̃ 6= mA. We give two attacks for each
Chow et al.’s schemes, respectively.

The definition of ID-based concurrent signatures given by [6] implies that
two keystones kI and kM are chose by the initial signer. As mentioned above,
it may cause unfair. In this paper, we present a modified definition of ID-based
concurrent signatures which redress the flaw of Chow et al.’s definition. We then
propose two simple but significant improvements to fix our attacks.

3

Organization. The rest of this paper is organized as follows. In the next
section, we review the notions of Bilinear Pairings and Chow et al.’s ID-based
perfect concurrent signature schemes. Attacks on the fairness of Chow et al.’s
schemes are given in section 3. We give a modified definition of perfect concurrent
signatures in section 4. In section 5, we propose two improved identity-based
perfect concurrent signature schemes with proofs of their securities. Section 6
concludes this paper.

2 Review of Chow et al.’s Schemes

2.1 Bilinear Pairings and Complexity Assumption

Let G1 be a cyclic additive group generated by P with order prime q and G2 be
a cyclic multiplicative group with the same order q. A bilinear pairing is a map
ê : G1 ×G1 → G2 with the following properties:

Bilinear: For all P, P1, P2, Q, Q1, Q2 ∈ G1,

ê(P1 + P2, Q) = ê(P1, Q)ê(P2, Q),
ê(P, Q1 + Q2) = ê(P, Q1)ê(P, Q2).

Non-degenerate: There exists P, Q ∈ G1 such that ê(P, Q) 6= 1;
Computable: There is an efficient algorithm to compute ê(P, Q) for all

P, Q ∈ G1.
Modified Weil pairing and Tate pairings are examples of bilinear maps.
Computational Co-Diffie-Hellman (Co-CDH) Problem. Given a ran-

domly chosen (P1, P2, aP1, bP2), where P1, P2 ∈ G1, a, b ∈ Z∗q , and a, b are un-
known, compute abP2 ∈ G2.

Co-CDH Assumption. For every probabilistic polynomial-time algorithm
A, the advantage of A to solve Co-CDH-Problem is negligible.

2.2 Chow et al.’s Scheme 1

Concurrent Signature Algorithms

– SETUP: Choose (G1,G2, ê, q, P) as Section 2.1. The Private Key Gener-
ator (PKG) selects a random number s ∈ Z∗q and sets Ppub = sP . It
selects three cryptographic hash functions H0 : {0, 1}∗ → G1 and H1 :
{0, 1}∗ → Zq and H2 : {0, 1}∗ → G1. It publishes system parameters params
= {G1,G2, ê, q, P, Ppub,H0,H1,H2}, and keeps s as the master private key.
The algorithm also sets M = KI = KM = F = Zq and K′ = G1.

– EXTRACT: The EXTRACT algorithm is defined as follows.
• A user Ui submits his or her identity IDi to the PKG.
• The PKG generates Ui’s private key as SIDi

= sQIDi
, where QIDi

=
H0(IDi).

– FIX-INITIAL-KEYSTONE: Assuming a keystone kI ∈ Zq is randomly selected,
this algorithm outputs fI = H1(kI) as the keystone fix.

4

– ASIGN: The ASIGN algorithm accepts the following parameters (IDi, IDj ,
SIDi

, α, f,m), where SIDi
is the private key associated with QIDi

, α, f ∈ F
and m ∈M. The algorithm will perform the following.
• Select a random point Z ∈ G1.
• Set uj = α · f .
• Compute u0 = H1(H2(m)||(IDi ⊕ IDj)||ê(Z, P)ê(ujQIDj

, Ppub)).
• Compute V = u−1

0 (Z − (u0 − uj)SIDi
).

• Output σ = (ui = u0 − uj , uj , V) as the signature on message m.
– ENC-MATCHING-KEYSTONE: Assuming a keystone kM ∈ Zq is randomly

selected, this algorithm outputs KM = kMP as the encrypted keystone.
– FIX-SECRET-KEYSTONE: This algorithm returns fS = H1(ê(KM , SIDj)).
– AVERIFY: The algorithm accepts (σ, IDi, IDj ,m), where σ = (ui, uj , V), and

verifies whether

ui+uj
?= H1(H2(m)||(IDi⊕IDj)||ê(V, P)ui+uj ê(uiQIDi

, Ppub)ê(ujQIDj
, Ppub))

holds with equality. If so, then output accept. Otherwise, output reject.
– VERIFY-INITIAL-KEYSTONE: This algorithm outputs accept if fI = H1(kI),

reject otherwise.
– VERIFY-SECRET-KEYSTONE: It outputs accept if fS =H1(ê(Ppub, QIDj)

kM),
reject otherwise.

– VERIFY-CONNECTION: This algorithm outputs accept if uj = fI and u′i =
uj · fS , reject otherwise.

– VERIFY: The algorithm accepts (kI , kM , S′), where kI ∈ KI and kM ∈ KM

are the keystones and S′ = (σi, σj , IDi, IDj ,mi,mj). The algorithm verifies
whether (kI , kM) is valid and the connection between σi and σj is valid by
using the above three algorithms. If it does not hold, then output reject. Oth-
erwise, run AVERIFY(S). The output of VERIFY is the output of AVERIFY
algorithm.

Concurrent Signature Protocol

1. Alice performs the following
– Picks a random keystone (kI , kM) ∈ Zq × Zq.
– Computes keystone fix fI = H1(kI).
– Selects a message mA ∈M, computes her ambiguous signature as σA =

(uA, uB , V) ← ASIGN(IDA, IDB , SIDA
, 1, fI ,mA).

– Computes encrypted keystone KM = kMP .
– Sends σA and KM to Bob.

2. Bob performs the following
– Verifies the signature σA by testing whether AVERIFY(σA,IDA,IDB ,mA)=

accept. Aborts if the equation does not hold.
– Computes secret matching keystone fix fS = H1(ê(KM , SIDB

))
– Selects a message mB ∈ M, and computes his ambiguous signature as

σB = (u′B , u′A, V ′) ← ASIGN(IDB , IDA, SIDB
, uB , fS ,mB).

– Sends σB and fS to Alice.

5

3. Alice verifies σB by testing whether fS = H1(ê(Ppub, QIDB
)kM), u′A = uB ·

fS , and AVERIFY(σB , IDB , IDA,mB) = accept are held. If not, then Alice
aborts. Otherwise, Alice releases the keystone (kI , kM) to Bob and both
signatures are binding concurrently.

2.3 Chow et al.’s Scheme 2

Concurrent Signature Algorithms

– SETUP: Basically it is the same as Scheme 1, but the description of spaces
becomes M = KI = KM = Zq,F = K′ = G1.

– EXTRACT: The same as Scheme 1.
– FIX-INITIAL-KEYSTONE: Assuming a keystone kI ∈ Zq is randomly selected,

this algorithm outputs fI = H2(kI) as the keystone fix.
– ASIGN: The input of this algorithm includes two identities IDi and IDj , a

private key SIDi
, a message m and α, f ∈ G1.

• Compute Uj = α + f and hj = H1(m||(IDi ⊕ IDj)||Uj).
• Choose r′i ∈ Z∗q randomly, compute Ui = r′iQIDi

− Uj − hjQIDj
.

• Compute hi = H1(m||(IDi ⊕ IDj)||Ui) and V = (hi + r′i)SIDi
.

• Output the signature σ = {Ui, Uj , V }.
– ENC-MATCHING-KEYSTONE: The same as Scheme 1.
– FIX-SECRET-KEYSTONE: This algorithm returns fS = H2(ê(KM , SIDj

)).
– AVERIFY: The input of this algorithm includes two identities IDi and IDj ,

a message m, and a ring signature σ = {Ui, Uj , V }.
• Compute hi = H1(m||(IDi⊕IDj)||Ui) and hj = H1(m||(IDi⊕IDj)||Uj).
• Return accept if ê(Ppub, Ui + hiQIDi

+ Uj + hjQIDj
) = ê(P, V), reject

otherwise.
– VERIFY-INITIAL-KEYSTONE: This algorithm outputs accept if fI = H2(kI),

reject otherwise.
– VERIFY-SECRET-KEYSTONE: It outputs accept if fS =H2(ê(Ppub, QIDj)

kM),
reject otherwise.

– VERIFY-CONNECTION: This algorithm outputs accept if Uj = fI and U ′
i =

Uj + fS , reject otherwise.
– VERIFY: The algorithm accepts (kI , kM , S′), where kI ∈ KI and kM ∈ KM

are the keystones and S′ = (σi, σj , IDi, IDj ,mi,mj). The algorithm verifies
whether (kI , kM) is valid and the connection between σi and σj is valid by
using the above three algorithms. If it does not hold, then output reject. Oth-
erwise, run AVERIFY(S). The output of VERIFY is the output of AVERIFY
algorithm.

Concurrent Signature Protocol

1. Alice performs the following
– Picks a random keystone (kI , kM) ∈ KI ×KM .
– Computes keystone fix fI = H2(kI).

6

– Selects a message mA ∈M, computes her ambiguous signature as σA =
(UA, UB , V) ← ASIGN(IDA, IDB , SIDA

,OF , fI ,mA), where OF denotes
the identity element of the group F .

– Computes encrypted keystone KM = kMP .
– Sends σA and KM to Bob.

2. Bob performs the following
– Verifies the signature σA by testing whether AVERIFY(σA,IDA,IDB ,mA) ?=

accept holds. Aborts if the equation does not hold.
– Computes secret matching keystone fix fS = H2(ê(KM , SIDB

))
– Selects a message mB ∈ M, and computes his ambiguous signature as

σB = (U ′
B , U ′

A, V ′) ← ASIGN(IDB , IDA, SIDB
, UB , fS ,mB).

– Sends σB and fS to Alice.
3. Alice verifies σB by testing whether fS = H2(ê(Ppub, QIDB

)kM), U ′
A = UB +

fS and AVERIFY(σB , IDB , IDA,mB) = accept are held. If not, then Alice
aborts. Otherwise, Alice releases the keystone (kI , kM) to Bob and both
signatures are binding concurrently.

3 Attacks on Fairness of Chow et al.’s Schemes

In Chow et al.’s schemes, both keystones kI and kM are chose by the initial
signer Alice, so she can cheat the matching signer Bob by carefully choosing
some communication value. We will show that Alice can perform the signature
protocol with Bob on messages mA and mB , but outputs a valid signature pair
(σ̃, σB) on (m̃,mB) with m̃ 6= mA. Bob can still obtain a signature pair (σA, σB)
on (mA,mB), but (σA, σB) can not be accepted by verifying algorithm VERIFY.

3.1 Attacks of Chow et al.’s Scheme 1

Attack 1 of Chow et al.’s Scheme 1 In Chow et al.’s Scheme 1, if Alice let fI

be equal to H1(kI)f ′Sf−1 instead of H1(kI), where f ′S = H1(ê(Ppub, QIDB
)kM),

f = H1(ê(Ppub, QIDB
)k′), then Bob will send a signature σB = (u′B , u′A, V ′) with

u′A = H1(kI)f ′S back to Alice. Then Alice can generate a new signature σ̃ =
(ũA, ũB , Ṽ) on a new message m̃ with ũB = H1(kI). The result is: the signature
pair (σ̃, σB) with keystone (kI , kM) should be accepted by VERIFY while the
signature pair (σA, σB) with keystone (kI , kM) should be rejected by VERIFY
since the outputs of VERIFY-INITIAL-KEYSTONE and VERIFY-CONNECTION
are “reject”. Following is the detail.

1. Alice performs the following
– Picks three random keystones kI , kM , k′ ∈ Zq.
– Computes f ′S = H1(ê(Ppub, QIDB

)kM), f = H1(ê(Ppub, QIDB
)k′).

– Computes keystone fix fI = H1(kI)f ′Sf−1.
– Selects a message mA ∈M, computes her ambiguous signature as σA =

(uA, uB , V) ← ASIGN(IDA, IDB , SIDA
, 1, fI ,mA).

– Computes encrypted keystone KM = k′P .

7

– Sends σA and KM to Bob.
2. Bob performs the same as that of the original scheme. Note that, in this

case, the secret matching keystone fix fS = H1(ê(KM , SIDB
)) = f , so Bob

will return a signature σB = (u′B , u′A, V ′) with u′A = H1(kI)f ′S .
3. Alice verifies Bob’s ambiguous signature σB . If it is invalid, then she aborts.

Otherwise, she performs following attack.
– Computes keystone fix f̃ = H1(kI).
– Selects a new message m̃ ∈ M, computes her ambiguous signature as

σ̃ = (ũA, ũB , Ṽ) ← ASIGN(IDA, IDB , SIDA
, 1, f̃ , m̃).

– Releases the keystone (kI , kM) publicly, and both signatures σ̃ and σB

are binding concurrently.

Remark: By releasing kI , kM ,K = ê(KM , SIDB
) such that fI = H1(kI)

H1(ê(Ppub, QIDB
)kM)H1(K)−1, Bob can prove that the signature σA was indeed

issued by Alice, but he can not make σA accepted by VERIFY. According to the
definition, σA is unbinding and invalid. We would like to point out that the
attack above is harmful. After received a valid signature pair (σ̃, σB), one may
not have his wits about the potential cheat.

Attack 2 of Chow et al.’s Scheme 1 Similar to the attack above, we can also
implement a attack of Scheme 1 by letting fI = H1(kI)H1(ê(Ppub, QIDB

)kM)−1.
In this case, Bob will send a signature σB = (u′B , u′A, V ′) with u′A = H1(kI) back
to Alice. In the end, Alice produces a new signature σ̃ = (ũA, ũB , Ṽ) on a new
message m̃ with ũB = H1(kI)H1(ê(Ppub, QIDA

)k̃). The signature pair (σB , σ̃)
with keystone (kI , k̃) should be accepted by VERIFY. Here Bob is the initial
signer while Alice is the matching signer. Whereas the signature pair (σA, σB)
with keystone (kI , k̃) should be rejected by VERIFY. The detail is as follows.

1. Alice performs the following
– Picks a random keystone (kI , kM) ∈ Zq × Zq.
– Computes f = H1(ê(Ppub, QIDB

)kM) and keystone fix fI = H1(kI)f−1.
– Selects a message mA ∈M, computes her ambiguous signature as σA =

(uA, uB , V) ← ASIGN(IDA, IDB , SIDA
, 1, fI ,mA).

– Computes encrypted keystone KM = kMP .
– Sends σA and KM to Bob.

2. Bob performs the same as that of the original scheme. Note that, in this
case, Bob will return a signature σB = (u′B , u′A, V ′) with u′A = H1(kI).

3. Alice verifies Bob’s ambiguous signature σB . If it is invalid, then she aborts.
Otherwise, she performs following attack.
– Picks a new random keystone k̃ ∈ Zq.
– Computes keystone fix f̃ = H1(ê(Ppub, QIDA

)k̃).
– Selects a new message m̃ ∈ M, computes her ambiguous signature as

σ̃ = (ũA, ũB , Ṽ) ← ASIGN(IDA, IDB , SIDA
, u′A, f̃ , m̃).

– Releases the keystone (kI , k̃) publicly, and both signatures σB and σ̃ are
binding concurrently.

8

3.2 Attacks of Chow et al.’s Scheme 2

Attack 1 of Chow et al.’s Scheme 2 Similar to the Attack 1 of Scheme 1,
we can also implement a attack of Scheme 2. In this case, we let fI be equal
to H2(kI) + f ′S − f instead of H2(kI), where f ′S = H2(ê(Ppub, QIDB

)kM), f =
H2(ê(Ppub, QIDB

)k′). Then Bob will send a signature σB = (U ′
B , U ′

A, V ′) with
U ′

A = H2(kI) + f ′S back to Alice. Finally, Alice generates a new signature σ̃ =
(ŨA, ŨB , Ṽ) on a new message m̃ with ŨB = H1(kI). One can see that the
signature pair (σ̃, σB) with keystone (kI , kM) should be accepted by VERIFY
while the signature pair (σA, σB) with keystone (kI , kM) should be rejected by
VERIFY. The detail is similar to that of Attack 1 of Scheme 1. Due to space
limitation, we omit it here.

Attack 2 of Chow et al.’s Scheme 2 Similar to the Attack 2 of Scheme
1, let fI = H2(kI) − H2(ê(Ppub, QIDB

)kM). Then Bob will send a signature
σB = (U ′

B , U ′
A, V ′) with U ′

A = H2(kI) back to Alice. In the end, Alice pro-
duces a new signature σ̃ = (ŨA, ŨB , Ṽ) on a new message m̃ with ŨB =
H1(kI)H1(ê(Ppub, QIDA

)k̃). The signature pair (σB , σ̃) with keystone (kI , k̃) is
valid while the signature pair (σA, σB) with keystone (kI , k̃) is invalid. We omit
the detail due to the same reason.

4 Definition of Perfect ID-Based Concurrent Signatures

The definition of ID-based concurrent signatures given by [6] implies that two
keystones kI and kM are chose by the initial signer. As we have shown above, it
may cause unfair. In this section, we present a modified definition of ID-based
concurrent signatures which redress the flaw of Chow et al.’s definition. We give
a formal definition of “perfect” here. To the best of our knowledge, up to now,
there is a lack of formal definition of “perfect”.

4.1 Concurrent ID-Based Signature Algorithm

A concurrent signature protocol involves two parties Alice and Bob. Since one
party needs to create the keystone fix and send the first ambiguous signature, we
call this party the initial signer. The party who responds to this initial signature
by creating another ambiguous signature we call a matching signer.

Definition 1. A perfect ID-based concurrent signature scheme is a digital sig-
nature scheme that consists of the following algorithms:

– SETUP: A probabilistic algorithm that on input a security parameter l, out-
puts the system parameters params which is the descriptions of the message
space M, the signature space S, the private key space Ksk, the keystone-
pair space KI ×KM , the keystone fix space F , the encrypted keystone space
K′ and any additional system parameters π. The algorithm also outputs an

9

initial-keystone-fix function FI : KI → F , a matching-keystone-fix function
FM : KM × F → F , a keystone encryption function Enc : KM → K′ and a
keystone decryption function Dec : K′ × Ksk → KM . (Note that we do not
include params explicitly as the input in the following descriptions.)

– EXTRACT: A probabilistic algorithm that on inputs a participant’s identity
ID, outputs a public key QID and the corresponding the private key SID.

– ASIGN: A probabilistic algorithm that on inputs (IDi, IDj , SIDi
, f, m), where

f ∈ F , IDi, IDj are the identities of the participants, SIDi
is the private

key associated with IDi and m ∈ M, outputs an ambiguous signature σ =
(ui, uj , V) on m.

– AVERIFY: A deterministic algorithm that takes as input S = (σ, IDi, IDj ,m)
and outputs accept or reject.

– VERIFY: A deterministic algorithm that takes as input (kI , kM , S′), where
(kI , kM) ∈ KI ×KM , S′ = (σI , σM , IDI , IDM ,mI ,mM), and outputs accept
or reject.

4.2 Concurrent Signature Protocol

The concurrent signature protocol works as follows.

– The initial signer performs the following.
• Picks a random keystone kI ∈ KI , and computes the corresponding

keystone fix fI = FI(kI).
• Picks a message mI ∈ M and computes her ambiguous signature σI =

(uI , uM , V) = ASIGN(IDI , IDM , SIDI
, fI ,mI).

• Sends σI to the matching signer.
– The matching signer performs the following.

• Verifies σI by checking whether AVERIFY(σI , IDI , IDM ,mI) = accept.
If not, he aborts.

• Picks a random keystone kM ∈ KM , and computes the corresponding
keystone fix fM = FM (kM , uM).

• Picks a message mM ∈M and computes his ambiguous signature σM =
(u′M , u′I , V

′) = ASIGN(IDM , IDI , SIDM
, fM ,mM).

• Computes the encrypted keystone KM = Enc(kM).
• Sends σM and KM back to the initial signer.

– The initial signer performs the following.
• Computes the matching keystone kM = Dec(KM , SIDI

).
• Verifies σM by checking whether AVERIFY (σM , IDM , IDI ,mM) = ac-

cept and u′I = FM (kM , fI) are held. If not, she aborts. Otherwise, she
releases the keystone pair (kI , kM).

4.3 Security Model for Perfect Concurrent Signatures

A secure perfect concurrent signature scheme should have five properties: cor-
rectness, unforgeability, ambiguity, unlinkability and fairness.

10

Correctness. If a signature σ has been generated correctly by invoking
ASIGN algorithm on a message m ∈ M, AVERIFY algorithm will return accept
with an overwhelming probability, given a signature σ on m and a security
parameter l. After the keystone pair (kI , kM) ∈ KI ×KM is released, the output
of VERIFY algorithm will be accept with an overwhelming probability.

Unforgeability. Unforgeability for a concurrent signature under a chosen
message attack is defined by the following game between an adversary A and a
challenger C.
– Setup: C runs SETUP for a given security parameter l to obtain the system

parameters params.
– Queries: A can make the following types of query to the challenger C:

• Hash Function Queries: A can request a value of Hash function for
any input. C computes and outputs the value of the Hash function for
the requested input.

• EXTRACT Queries: A can request a private key for any input ID. C
runs EXTRACT and outputs the corresponding private key SID.

• FI Queries: A can request that C select a keystone kI and return the
keystone fix fI = FI(kI). If A wishes to choose his own keystone kI ,
then he can request the keystone fix fI = FI(kI) by a FI Query with
input kI .

• FM Queries: A can request a matching keystone fix corresponding to
a keystone fix f ∈ F . C selects a keystone kM and returns the keystone
fix fM = FM (kM , f). If A wishes to choose his own keystone kM , then
he can request the keystone fix fM = FM (kM , f) by a FM Query with
input (kM , f).

• FI Reveal Queries: A can request that C reveal the keystone kI that
he used to produce a keystone fix fI ∈ F in a previous FI query. If
fI was not a previous FI output, then C outputs invalid. Otherwise, C
outputs kI where fI = FI(kI).

• FM Reveal Queries: A can request that C reveal the keystone kM and
the keystone fix f that he used to produce a keystone fix fM ∈ F in a
previous FM query. If fM was not a previous FM output, then C outputs
invalid. Otherwise, C outputs kM and f such that fM = FI(kM , f).

• ASIGN Queries: A can request an ambiguous signature for any input
of the form (IDi, IDj , fi,mi) where fi ∈ F , IDi, IDj 6= IDi are the
identities of the participants and mi ∈M. C responds with an ambiguous
signature σ = (ui, uj , V).

– Output: Finally, A outputs a tuple σ = (uc, ud, V) where uc, ud ∈ F , along
with identities IDc and IDd, and a message m ∈M.

The adversary wins the game if AVERIFY(σ, IDc, IDd,m)= accept, no ASIGN
query with input either of the tuples (IDc, IDd, ud,m) or (IDd, IDc, uc,m) was
made by A and no EXTRACT query was made by A on either IDc or IDd.

Definition 2. We say that an ID-based concurrent signature scheme is existen-
tially unforgeable under a chosen message attack if the probability of success of
any polynomially bounded adversary in the above game is negligible.

11

Ambiguity. Ambiguity for a concurrent signature scheme is defined by the
following game between an adversary A and a challenger C.

– Setup: This is as above in the unforgeability game.
– Phase 1:Amakes a sequence of EXTRACT, FI , FM , FI Reveal, FM Reveal,

ASIGN queries. These queries are answered by C as in the above unforge-
ability game.

– Challenge: A selects a challenge tuple (IDi, IDj ,m) where IDi, IDj are
the identities of the participants and m ∈M. In response, C randomly selects
k ∈ KI and computes f = FI(k) or randomly selects (k, k′) ∈ KM ×KI and
computes f = FM (k, FI(k′)) (each with probability of 1/2), then randomly
selects a bit b ∈ {0, 1}. C outputs σ = ASIGN(IDi, IDj , SIDi

, f, m) if b = 0;
otherwise C outputs σ = ASIGN(IDj , IDi, SIDj

, f, m). Denoted the output
signature σ by (u1, u2, V)

– Phase 2: A may make another sequence of queries as in Phase 1; these are
handled by C as before.

– Output: Finally, A outputs a guess bit b′ ∈ {0, 1}. A wins if b′ = b and
A has made neither FI Reveal nor FM Reveal query on any of the values
u1, u2.

Definition 3. We say that an ID-based concurrent signature scheme is am-
biguous if no polynomially bounded adversary has non-negligibly advantage of
winning in the above game.

Unlinkability. Unlinkability for a concurrent signature scheme is defined by
the following game between an adversary A and a challenger C.

– Setup: This is as above in the unforgeability game.
– Phase 1:Amakes a sequence of EXTRACT, FI , FM , FI Reveal, FM Reveal,

ASIGN queries. These queries are answered by C as in the above unforge-
ability game.

– Challenge:
• A selects a challenge tuple (IDi, IDj ,mi0,mi1, σi0, σi1) such that AVER-

IFY(σia, IDi, IDj ,mia)= accept for a = 0, 1.
• C randomly selects b ∈ {0, 1}, kj ∈ KM and computes fj = FM (kj , ujb).
• C selects mj ∈M, outputs σj = (u′j , u

′
i, V

′) = ASIGN(IDj , IDi, SIDj
, fj ,mj).

– Phase 2: A may make another sequence of queries as in Phase 1; these are
handled by C as before.

– Output: Finally A outputs a guess bit b′ ∈ {0, 1}. A wins if b′ = b and A
has not made a FM Reveal query on fj .

Definition 4. We say that an ID-based concurrent signature scheme is unlink-
able if no polynomially bounded adversary has non-negligibly advantage of win-
ning in the above game.

Fairness. The fairness is defined via the following game between an adver-
sary A and a challenger C:

12

– Setup: This is as above in the unforgeability game.
– EXTRACT, FI , FM , FI Reveal, FM Reveal, ASIGN Queries: These

queries are answered by C as in the above unforgeability game.
– Output: Finally, A chooses the challenge identities IDc and IDd, outputs

a keystone pair (kc, kd) and a signature pair (σc, σd) along with a keystone
fix pair (fc, fd) such that both AVERIFY(σc, IDc, IDd,mc) = accept and
AVERIFY(σd, IDd, IDc,md) = accept are held. The adversary wins the game
if either of the following cases holds:
• No EXTRACT query on input IDc. fc was a previous output from a

FI query, no FI Reveal query on fc was made. fc = FI(kc), but fd 6=
FM (kd, FI(kc)). (Namely, σc is bound but σd remains unbinding.)

• No EXTRACT query on input IDd. fd was a previous output from a
FM query on input fc. fd = FM (kd, FI(kc)), but fc 6= FI(kc). (Namely,
σd is bound but σc remains unbinding.)

Definition 5. We say that an ID-based concurrent signature scheme is fair if
a polynomially bounded adversary’s probability of success in the above game is
negligible.

Definition 6. A ID-based concurrent signature scheme is secure if it is existen-
tially unforgeable under a chosen message attack, correct, ambiguous, unlinkable
and fair.

5 Improved ID-Based Perfect Concurrent Signature
Schemes

In Chow et al.’s schemes, both keystones kI and kM are chose by Alice, as a
result, Alice can cheat Bob by carefully choosing the keystone fix fI . If keystones
kI and kM are chose by Alice and Bob, respectively, all attacks above can be
avoided. We present two simple but significant improvements as follows.

5.1 Improved Scheme 1

Concurrent Signature Algorithms

– SETUP:
• G1,G2, ê, q, P, Ppub,H0,H1,M,F ,K′ are the same as that of the original

scheme.
• Sets KI = KM = G2.
• Sets FI : G2 → Zq be a one-way permutation.
• Sets FM (x, y) = FI(x) + y (mod q).
• Sets Enc(k) = kP .
• Sets Dec(K ′,K ′′) = ê(K ′,K ′′).

– EXTRACT: The same as that of the original scheme.
– ASIGN: The algorithm accepts (IDi, IDj , SIDi

, fi,mi) and performs the fol-
lowing.

13

• Selects a random point Z ∈ G1.
• Computes u0 = H1(H0(m)||(IDi ⊕ IDj)||ê(Z, P)ê(fiQIDj

, Ppub)).
• Computes V = u−1

0 (Z − (u0 − uj)SIDi
).

• Sets ui = u0 − fi (mod q), uj = fi.
• Outputs σ = (ui, uj , V) as the signature on message m.

– AVERIFY: The same as that of the original scheme.
– VERIFY: The algorithm accepts (ki, kj , S

′), where ki ∈ KI and kj ∈ KM

are the keystones and S′ = (σi, σj , IDi, IDj ,mi,mj). The algorithm verifies
whether fi = FI(ki), fj = FI(kj) + fi (mod q). If not, then outputs reject.
Otherwise, run AVERIFY on σi and σj respectively. If both outputs are accept,
then outputs accept. Otherwise, outputs reject.

Concurrent Signature Protocol

1. Alice performs the following
– Picks a random keystone kI ∈ G2, computes keystone fix fI = FI(kI).
– Selects a message mI ∈ M, computes her ambiguous signature as σI =

(uI , uM , V) ← ASIGN(IDI , IDM , SIDI
, fI ,mI).

– Sends σI to Bob.
2. Bob performs the following

– Verifies the signature σI by testing whether AVERIFY(σI ,IDI ,IDM ,mI)=
accept. Aborts if the equation does not hold.

– Picks a random number k ∈ Zq, computes keystone kM = ê(Ppub, QIDI
)k.

– Computes encrypted keystone KM = kP .
– Computes matching keystone fix fM = FI(kM) + uj (mod q).
– Selects a message mM ∈ M, and computes his ambiguous signature as

σM = (u′M , u′I , V
′) ← ASIGN(IDM , IDI , SIDM

, fM ,mM).
– Sends σM and KM to Alice.

3. Alice verifies σM by testing whether
– u′I = FI(ê(KM , SIDI

) + uM (mod q)
– AVERIFY(σM , IDM , IDI ,mM) = accept.

If not, then Alice aborts. Otherwise, Alice computes keystone kM = ê(KM , SIDI
)

and releases the keystone (kI , kM), then both signatures are binding concur-
rently.

5.2 The security

The correctness of the improved concurrent signature scheme 1 can easily be
verified.

Since we do not make any change to the ASIGN algorithm, the unforgeability
of our improved scheme is kept the same as the original scheme. So, the same as
that of [6], we have

Lemma 1. (Unforgeability) The improved concurrent signature scheme 1 is
existentially unforgeable under a chosen message attack in the random oracle
model, assuming the hardness of Co-CDH problem.

14

Lemma 2. (Ambiguity) The improved concurrent signature scheme 1 is am-
biguous in the random oracle model.

Proof. We consider the following distributions:

ξ =

(u1, u2, V)

∣∣∣∣∣∣∣∣∣∣

Z ∈R G1, k ∈R G2

u2 = FI(k)
u0 = H1(H0(m)||(IDi ⊕ IDj)||ê(Z,P)ê(u2QIDj , Ppub))
u1 = u0 − u2

V = u−1
0 (Z − u1SIDi

)

,

and

ζ =

(u′2, u
′
1, V

′)

∣∣∣∣∣∣∣∣∣∣

Z ∈R G1, k ∈R G2

u′2 = FI(k)
u′0 = H1(H0(m)||(IDi ⊕ IDj)||ê(Z, P)ê(u′2QIDi , Ppub))
u′1 = u′0 − u′2
V ′ = u′−1

0 (Z − u′1SIDj
)

.

In the random oracle model, the distributions of the outputs of FI and H1

are uniform, so two distributions above are the same.
The distribution of FI(k) + FI(k′) is the same as the distribution of FI(k),

so the case of f = FI(k) + FI(k′) is the same as that of f = FI(k).
Hence, the adversary wins the game of Definition 3 with probability exactly

1/2, so the scheme is ambiguous. ut
Lemma 3. (Unlinkability) The improved concurrent signature scheme 1 is
unlinkable.

Proof. Since FI : G2 → Zq is a one-way permutation, given fj , fi0, fi1, there
exist k0 and k1 such that fj = FI(k0) + fi0 and fj = FI(k1) + fi1, respectively.
Such k0 and k1 always exist regardless of the values of fj and (fi0, fi1), so fj

and fib have exactly the same relation defined by FM , (b = 0, 1). Therefore, even
an infinitely powerful adversary wins the game of Definition 4 with probability
exactly 1/2, so the scheme is unconditional unlinkable. ut
Lemma 4. (Fairness) The improved concurrent signature scheme 1 is fair in
the random oracle model.

Proof. Suppose that there exists an algorithm A that with probability δ wins
the game in Definition 5, we show that δ is negligible. Let µI and µM are the
numbers of FI and FM queries made by A, respectively.

If case 1 of the output conditions occurs, then A has found a keystone kc

and an output of a FI query fc such that fc = FI(kc), but without making a FI

Reveal query on input fc. However, since FI is a random oracle, A’s probability
of producing such a kc is at most µI/q.

If case 2 of the output conditions occurs, then A has found a keystone pair
(kc, kd) and a keystone fix fd such that fd = FI(kd) + FI(kc), but fc 6= FI(kc),

15

where fd was a previous output from a FM query on input fc, namely, there is k′

such that fd = FI(k′) + fc. Clearly, kd 6= k′, so A cannot get kd by making FM

Reveal query on fd. Since FM is a random oracle, so A gets such (kc, kd) by FM

query with probability at most µM/q. Since FI is a random oracle, A gets such
(kc, kd) by FI query with probability at most µI(µI + 1)/2q (the probability of
two outputs of FI queries f ′ and f ′′ such that fd = f ′+ f ′′). So, A’s probability
of producing such (kc, kd) is at most (µI(µI + 1) + 2µM)/2q.

Since both µI and µM are polynomially bounded in the security parameter
dlog2 qe, above probabilities are negligible. ut
Theorem 1. The improved concurrent signature scheme 1 is secure in the ran-
dom oracle model, assuming the hardness of Co-CDH problem.

Proof. The proof follows directly from above lemmas. ut

5.3 Improved Scheme 2

Concurrent Signature Algorithms

– SETUP:
• G1,G2, ê, q, P, Ppub,H0,H1,M,F ,K′ are the same as that of the original

scheme.
• Sets KI = KM = G2.
• Sets FI : G2 → G1 be a one-way permutation.
• Sets FM (x, y) = FI(x) + y (mod q).
• Sets Enc(k) = kP .
• Sets Dec(K ′,K ′′) = ê(K ′,K ′′).

– EXTRACT: The same as that of the original scheme.
– ASIGN: The algorithm accepts (IDi, IDj , SIDi

, fi,mi) and performs the fol-
lowing.
• Sets Uj = fi, computes hj = H1(m||(IDi ⊕ IDj)||Uj).
• Chooses r′i ∈ Z∗q randomly, computes Ui = r′iQIDi

− Uj − hjQIDj
.

• Computes hi = H1(m||(IDi ⊕ IDj)||Ui) and V = (hi + r′i)SIDi .
• Outputs the signature σ = (Ui, Uj , V).

– AVERIFY: The same as that of the original scheme.
– VERIFY: The same as that of the improved scheme 1.

Concurrent Signature Protocol

1. Alice performs the following
– Picks a random keystone kI ∈ KI , computes keystone fix fI = FI(kI).
– Selects a message mI ∈ M, computes her ambiguous signature as σI =

(UI , UM , V) ← ASIGN(IDI , IDM , SIDI
, fI ,mI).

– Sends σI to Bob.
2. Bob performs the following

– Verifies the signature σI by testing whether AVERIFY(σI ,IDI ,IDM ,mI)
?=

accept holds. Aborts if the equation does not hold.

16

– Picks a random number k ∈ Zq.
– Computes keystone kM = ê(Ppub, QIDI

)k.
– Computes encrypted keystone KM = kP , computes matching keystone

fix fM = FI(kM) + UM

– Selects a message mM ∈ M, and computes his ambiguous signature as
σM = (U ′

M , U ′
I , V

′) ← ASIGN(IDM , IDI , SIDM
, fM ,mM).

– Sends σM and KM to Alice.
3. Alice verifies σM by testing whether

– U ′
I = FI(ê(KM , SIDI

) + UM

– AVERIFY(σM , IDM , IDI ,mM) = accept
If not, then Alice aborts. Otherwise, Alice computes keystone kM = ê(KM , SIDI

)
and releases the keystone (kI , kM), then both signatures are binding concur-
rently.

Similar to the improved scheme 1, we have the following theorem. Due to
space limitation, we omit its proof.

Theorem 2. The improved concurrent signature scheme 2 is secure in the ran-
dom oracle model, assuming the hardness of Co-CDH problem.

6 Conclusion

Concurrent signatures were introduced as an alternative approach to solving the
problem of fair exchange of signatures. Several concrete concurrent signature
schemes have been proposed. In this paper, we present attacks on the fairness
of Chowet al.’s identity-based perfect concurrent signature schemes [6]. We also
present a modified definition of ID-based concurrent signatures which redress
the flaw of Chow et al.’s definition and propose two improved schemes to fix our
attacks.

References

1. N. Asokan, V. Shoup, M. Waidner, Optimistic fair exchange of signatures, in:
Advances in Cryptology - EUROCRYPT ’98, Lecture Notes in Computer Science,
vol. 1403, Springer-Verlag, Berlin, 1998, pp. 591 - 606.

2. D. Boneh, M. Naor, Timed commitments (extended abstract), in: Advances in
Cryptology - CRYPTO 2000, Lecture Notes in Computer Science, vol. 1880,
Springer-Verlag, Berlin, 2000, pp. 236 - 254.

3. D. Boneh, C. Gentry, B. Lynn and H. Shacham, Aggregrate and verifiably en-
crypted signatures from bilinear maps, in: Advances in Cryptology - EUROCRYPT
2003, Lecture Notes in Computer Science, vol. 2656, Springer-Verlag, Berlin, 2003,
pp. 416 - 432.

4. J. Camenisch, V. Shoup, Practical verifiable encryption and decryption of discrete
logarithms, in: Advances in Cryptology - CRYPTO 2003, Lecture Notes in Com-
puter Science, vol. 2729, Springer-Verlag, Berlin, 2003, pp. 126 - 144.

17

5. L. Chen, C. Kudla, K. G. Paterson, Concurrent signatures, in: Advances in Cryptol-
ogy - EUROCRYPT 2004, Lecture Notes in Computer Science, vol. 3027, Springer-
Verlag, Berlin, 2004, pp. 287 - 305.

6. S. Chow, W. Susilo, Generic Construction of (Identity-Based) Perfect Concurrent
Signatures, in: Information and Communications Security (ICICS 2005), Lecture
Notes in Computer Science, vol. 3783, Springer-Verlag, Berlin, 2005, pp. 194-206.

7. S. Even, O. Goldreich, A. Lempel, A randomized protocol for signing contracts,
Commun. ACM, 28(6): 637 - 647 (1985).

8. J. Garay, C. Pomerance, Timed fair exchange of standard signatures, in: Proc.
Financial Cryptography 2003, Lecture Notes in Computer Science, vol. 2742,
Springer-Verlag, Berlin, 2003, pp. 190 - 207.

9. J. Garay, M. Jakobsson, P. MacKenzie, Abuse-free optimistic contract signing, in:
Advances in Cryptology - CRYPTO 1999, Lecture Notes in Computer Science, vol.
1666, Springer-Verlag, Berlin, 1999, pp. 449 - 466.

10. O. Goldreich, A simple protocol for signing contracts, in: Advances in Cryptology
- CRYPTO ’83, Springer-Verlag, Berlin, 1983, pp. 133 - 136.

11. K. Nguyen, Asymmetric Concurrent Signatures Khanh Nguyen, in: Information
and Communications Security (ICICS 2005), Lecture Notes in Computer Science,
vol. 3783, Springer-Verlag, Berlin, 2005, pp. 181-193.

12. W. Susilo, Y. Mu, Tripartite Concurrent Signatures. in: The 20th IFIP Interna-
tional Information Security Conference (IFIP/SEC 2005), pp. 425-441, Springer,
2005.

13. W. Susilo, Y. Mu, F. Zhang, Perfect concurrent signature schemes, in: ICICS 2004,
Lecture Notes in Computer Science, vol. 3269, Springer-Verlag, Berlin, 2004, pp.
14 - 26.

14. D. Tonien, W. Susilo, R. Safavi-Naini, Multi-party Concurrent Signatures, in: ISC
2006, Lecture Notes in Computer Science, vol. 4176, Springer-Verlag, Berlin, 2006,
pp. 131 - 145.

