
Generic Construction of (Identity-based)
Perfect Concurrent Signatures ?

Sherman S.M. Chow1 and Willy Susilo2

1 Department of Computer Science
Courant Institute of Mathematical Sciences

New York University, NY 10012, USA
schow@cs.nyu.edu

2 Center for Information Security Research
School of Information Technology and Computer Science
University of Wollongong, Wollongong 2522, Australia

wsusilo@uow.edu.au

Abstract. The notion of concurrent signatures was recently introduced
by Chen, Kudla and Paterson. In concurrent signature schemes, two enti-
ties can produce two signatures that are not binding, until an extra piece
of information (namely the keystone) is released by one of the parties.
Subsequently, it was noted that the concurrent signature scheme pro-
posed in the seminal paper cannot provide perfect ambiguity. Then, the
notion of perfect concurrent signatures was introduced. In this paper, we
define the notion of identity-based (or ID-based) perfect concurrent sig-
nature schemes. We provide the first generic construction of (ID-based)
perfect concurrent signature schemes from ring signature schemes. Using
the proposed framework, we give two concrete ID-based perfect concur-
rent signature schemes based on two major paradigms of ID-based ring
signature schemes. Security proofs are based on the random oracle model.

Keywords: Concurrent Signatures, Perfect Ambiguity, Fair-Exchange,
Ring Signatures, Identity-based Signatures, Bilinear Pairing

1 Introduction

Consider the situation where a customer Alice would like to make a purchase
request of a physical item from a shop owner Bob. One of the ways to do the
transaction is asking Alice to firstly sign a payment instruction to pay Bob the
price of the item. Then, Bob agrees by signing a statement that he authorizes
Alice to pick the item up from the store, which will be sent via an email or other
means upon receiving Alice’s signature. We would like to make sure that both
parties (the customer and the shop owner in our case) get the other party’s item,
or no party gets the other party’s item at the end of a transaction, that is, the
? This is the revised version of our ICICS 2005 paper. The original protocol does not

meet the fairness requirement. After a slight modification similar to the suggestion
attributed to [14], the attack against the fairness is avoided.

principle of fair exchange. For purchase occurred in a face-to-face manner, people
have a higher confidence in getting back the other party’s item shortly after
giving out his or her item to be exchanged. However, to achieve fair exchange
over Internet, in which two parties are mutually distrustful, is not a trivial task.

Concurrent signature can help when the full power of fair exchange is not
necessary [6]. A pair of concurrent signatures can be made binding at the same
time, i.e. when Alice picks up the item from Bob’s store. At this time, Alice’s
signature (i.e. payment instruction) will be binding and Bob’s signature (to allow
Alice to pick up the item) will also be binding concurrently.

Subsequently, [13] noted that the concurrent signature scheme proposed in
[6] cannot provide perfect ambiguity if both signers are known to be trustworthy.
With the aim to further anonymize the signatures before the signatures are made
binding, the notion of perfect concurrent signatures was introduced.

1.1 Related Work

Fair exchange of signature is a fundamental research problem in cryptography.
Fairness in exchanging signatures is normally achieved with the help of a trusted
third party (TTP) (which is often offline [2]). There were some attempts where
a fair exchange of signatures can be achieved with a “semi-trusted” TTP who
can be called upon to handle disputes between signers [1, 9]. This type of fair
exchange is also referred to as an optimistic fair exchange. The well-known open
problem in fair exchange is the requirement of a dispute resolving TTP whose
role cannot be replaced by a normal certification authority (CA).

In [12], the notion of ring signatures was formalized and an efficient scheme
based on RSA was proposed. A ring signature scheme allows a signer who knows
at least one piece of secret information (or a trapdoor) to produce a sequence of
n random permutations and form them into a ring. This ambiguous signature
can be used to convince any third party that one of the people in the group (who
knows the trapdoor information) has authenticated the message on behalf of the
group. The authentication provides signer ambiguity, in the sense that no one
can identify who has actually signed the message. The ID-based version of ring
signature schemes was introduced in [15]. After that, a number of ID-based ring
signature schemes were proposed. A recent study [7] showed that these schemes
can be classified into two major paradigms, namely, the conversation from non-
ID-based ring signature and the extension from ID-based signature. Please refer
to [7] for a more detailed review of ID-based ring signature schemes.

1.2 Our Contributions

We define the notion of ID-based perfect concurrent signatures, which is the
strongest notion (in terms of privacy) of concurrent signature currently available.
We provide a generic construction of both non-ID-based and ID-based perfect
concurrent signature schemes from ring signatures, which is the first discussion
in the literature. We illustrate our idea by two schemes from each of two major
paradigms of existing ID-based ring signature schemes. Both of them enjoy short

signature length which is only one group element on elliptic curve larger than
most existing ID-based signature schemes, our second scheme is also efficient in
the sense that no pairing operation is required for the generation of signature.

1.3 Paper Organization

The rest of this paper is organized as follows. The next section reviews some
notions that will be used throughout this paper. Section 3 provides a model of
ID-based perfect concurrent signature schemes together with its security require-
ments. We also present a generic construction of (ID-based) perfect concurrent
signature protocol in this section. In Section 4 and Section 5, we provide two
concrete ID-based perfect concurrent signature schemes. Section 6 concludes the
paper and discusses future research direction.

2 Preliminaries

2.1 Basic Concepts on Bilinear Pairings

Let G1,G2 be cyclic additive groups generated by P1, P2, respectively, whose
order are a prime q. Let GM be a cyclic multiplicative group with the same
order q. We assume there is an isomorphism ψ : G2 → G1 such that ψ(P2) = P1.
Let ê : G1 ×G2 → GM be a bilinear mapping with the following properties:

1. Bilinearity: ê(aP, bQ) = ê(P,Q)ab for all P ∈ G1, Q ∈ G2, a, b,∈ ZZq.
2. Non-degeneracy: There exists P ∈ G1, Q ∈ G2 such that ê(P,Q) 6= 1.
3. Computability: There exists an efficient algorithm to compute ê(P,Q) for all
P ∈ G1, Q ∈ G2.

For simplicity, hereafter, we set G1 = G2 and P1 = P2. We note that our scheme
can be easily modified for a general case, when G1 6= G2.

A bilinear pairing instance generator is defined as a probabilistic polynomial
time algorithm IG that takes as input a security parameter ` and returns a uni-
formly random tuple param = (p,G1,GM , ê, P) of bilinear parameters, including
a prime number p of size `, a cyclic additive group G1 of order q, a multiplicative
group GM of order q, a bilinear map ê : G1 × G1 → GM and a generator P of
G1. For a group G of prime order, we denote the set G∗ = G \ {O} where O is
the identity element of the group.

2.2 Complexity Assumption

Definition 1. Computational Co-Diffie-Hellman (Co-CDH) Problem.
Given a randomly chosen (P1, P2, aP1, bP2), where P1, P2 ∈ G1, a, b ∈ ZZ∗q , and
a, b are unknown, compute abP2 ∈ GM .

Definition 2. Co-CDH Assumption.
If IG is a Co-CDH parameter generator, the advantage AdvIG(A) that an al-
gorithm A has in solving the Co-CDH problem is defined to be the probabil-
ity that the algorithm A outputs abP2 on inputs G1,GM , P1, P2, aP1, bP2, where
(G1,GM) is the output of IG for sufficiently large security parameter `, P1, P2

are random generators of G1 and a, b are random elements of ZZ∗q . The Co-CDH
assumption is that AdvIG(A) is negligible for all efficient algorithms A.

2.3 Review on Concurrent Signatures

In concurrent signatures, there are two parties involved in the protocol, namely
A and B (or Alice and Bob, respectively). At first, both parties’ signatures are
ambiguous from any third party’s point of view, but they will be simultaneously
binding after an additional information, called a “keystone” is released by one
of the participants. Since one party is required to create a keystone and send
the first message to the other party, we call this party the initial signer. A party
who responds to the initial signature by creating another signature is called a
matching signer. We note that if Alice does not release the keystone, then the
transaction cannot be completed, although Bob would like to do so. Nevertheless,
there are many scenarios where this type of signature schemes is applicable [6].

Similar to the definition in [6], concurrent signatures are digital signature
schemes that consist of the following algorithms:

– SETUP: A probabilistic algorithm that accepts a security parameter `, out-
puts the descriptions of the message spaceM, the signature space S, the key-
stone space K, the keystone footprint space F , a function KSGEN : K → F
and any other parameters π.

– KEYGEN: A probabilistic algorithm that accepts a security parameter `,
outputs the public key yi; together with the corresponding private key xi to
be kept secretly.

– ASIGN: A probabilistic algorithm that accepts (yi, yj , xi, h1, h2,m), where
h1, h2 ∈ F , yi, yj 6= yi are public keys, xi is the private key corresponding to
yi, and m ∈M, outputs a signer-ambiguous signature σ = (s, h1, h2) where
s ∈ S, and h1, h2 are the sources of randomness used in generating s.

– AVERIFY: An algorithm that accepts S = (σ, yi, yj ,m), where σ = (s, h1, h2),
s ∈ S, h1, h2 ∈ F , yi and yj are public keys, and m ∈M, outputs accept or
reject. The symmetric property of AVERIFY requires AVERIFY(σ′, yj , yi,m)
= AVERIFY(σ, yi, yj ,m) for σ′ = (s, h2, h1).

– VERIFY: An algorithm that accepts (k, S) where k ∈ K is a keystone and S is
of the form S = (σ, yi, yj ,m), where σ = (s, h1, h2) with s ∈ S, h1, h2 ∈ F ,
yi and yj are public keys, and m ∈ M. The algorithm verifies whether

KSGEN(k) ?= h2 holds. If it does not hold, then it terminates with output
reject. Otherwise, it runs AVERIFY(S).

As discussed in the introduction, the concrete construction of concurrent
signature schemes in [6] cannot provide perfect ambiguity in certain situations.

In their scheme, the two signatures have an explicit relationship which can be
easily observable by any third party. As a consequence, when the two signers
are well known to be honest that will always conform to the protocol, then
any third party would trust that the signatures are valid. Since the signatures
can be identified even before the keystone is released, it contradicts with the
requirement of concurrent signatures. Concurrent signature schemes with perfect
ambiguity was considered in [13]. They presented two schemes based on the
discrete logarithm problem and bilinear pairings. Their constructions are based
on the framework proposed by [6], and they have not considered the generic
construction of perfect concurrent signature schemes.

3 Generic Framework and Security Notions

We note that the algorithms listed out by [6] may not be enough to cater for the
need of perfect ambiguity. In view of this, we provide a new generic framework.

3.1 Building Blocks

Firstly, we provide a formal definition of the algorithm used in our generic con-
struction of perfect concurrent signature schemes, by incorporating some el-
ements from the notion introduced in [6]. Notice that to achieve the perfect
ambiguity, we no longer require the matching signer to use the same keystone
footprint as the initial signer. Beside, a pair of keystones is used instead of a
single one. We also describe the essential properties of these algorithms for the
construction of perfect concurrent signature schemes.

Definition 3. A perfect concurrent signature scheme is a digital signature scheme
that consists of the following algorithms:

– SETUP: A probabilistic algorithm that on input a security parameter `, out-
puts the system parameters params which is the descriptions of the message
spaceM, the signature space S, the random coin space R, the keystone space
K, the keystone footprint space F and the encrypted keystone space K′. Note
that we do not include params explicitly as the input in the following de-
scriptions.

– KEYGEN: A probabilistic algorithm that is invoked by a participant ID. The
algorithm outputs a public key QID and the corresponding the secret key SID.

– FOOTPRINT: A deterministic algorithm that on input a keystone k ∈ K, it
outputs the corresponding keystone footprint f ∈ F .

– ASIGN: A probabilistic algorithm that on inputs (IDi, IDj ,SIDi
, α, f,m), where

α, f ∈ F , IDi, IDj are the identities of the participants, SIDi
is the secret

key associated with IDi, and m ∈ M, outputs an ambiguous signature σ =
{Ui, Uj , V } on m.

– ENC-MATCHING-KEYSTONE: A deterministic algorithm that on input a
random factor r ∈ R and a public key QIDi

, it outputs the matching keystone
kM ∈ K and the corresponding encrypted matching keystone KM ∈ K′.

– DEC-MATCHING-KEYSTONE: A deterministic algorithm that on inputs an
encrypted matching keystone KM ∈ K′ and a secret key SIDi

, outputs a
matching keystone footprint kM ∈ K.

– AVERIFY: A deterministic algorithm that takes as input S = (σ, IDi, IDj ,m)
and outputs accept or reject. It should be symmetric in the sense that
AVERIFY(σ, IDi, IDj ,m) = AVERIFY(σ′, IDj , IDi,m) for σ′ = {Uj , Ui, V }.

– VERIFY-CONNECTION: A deterministic algorithm that on input a pair of
signatures σi = {Ui, Uj , V } and σj = {U ′

i , U
′
j , V

′} and a pair of keystone
footprint fI and fS, it outputs accept or reject depending whether Uj = fI

and U ′
i = Uj ⊗ fS, where ⊗ is the operator of the group F .

– VERIFY: A deterministic algorithm that takes as input (kI , kM , S, S′), where
(kI , kM) ∈ K ×K, S = (σ, IDi, IDj ,m) S′ = (σ′, IDj , IDi,m

′). The algorithm
verifies if all of the following holds.
1. the initial keystone kI is valid;
2. the matching keystone kM is valid;
3. VERIFY-CONNECTION(σ, σ′) returns true;
4. AVERIFY(S) returns true and
5. AVERIFY(S′) returns true.

3.2 ID-based Scenario

For ID-based perfect concurrent signature, we need to modify the SETUP algo-
rithm described and replace KEYGEN algorithm by a new EXTRACT algorithm
in the above definition.

Definition 4. An ID-based perfect concurrent signature scheme requires the fol-
lowing algorithms:

– SETUP: A probabilistic algorithm that on input a security parameter `, out-
puts descriptions of the set of participants U , the message space M, the
signature space S, the keystone space K, the keystone footprint space F , and
the encrypted keystone space K′. The algorithm also outputs the public key
of the private key generator (PKG) and the master secret key of the PKG
for the extraction of user’s private key.

– EXTRACT: A deterministic algorithm that is invoked by a participant and the
PKG. On input an ID of a participant, the algorithm outputs a participant’s
secret key SID.

3.3 Generic Construction

In this section, we describe a generic construction of (ID-based) concurrent sig-
nature protocol. We highlight the properties of the algorithm involved. There
are two parties, namely A (Alice) and B (Bob) that are involved in the protocol.
Without losing generality, we assume that A is the initial signer and B is the
matching signer. The protocol works as follows.

Firstly, CA/PKG runs the SETUP algorithm to determine the public param-
eters of the scheme. Then, depending on whether the scheme is ID-based, user
invokes the corresponding algorithm to get the public-private key pair.

More specifically, for non-ID-based scenario, both A and B run KEYGEN to
generate a public-private key pair (denoted by (QIDA

,SIDA
) and (QIDB

,SIDB
) re-

spectively), register the public key and the identity with the CA, and possibly
provides a proof-of-knowledge of the private key to the CA as well. After au-
thentication (and the checking of the proof-of-knowledge) the CA issues a digital
certificate binding the relation of the purported identity to the user.

For the ID-based scenario, both A and B visit the PKG and engage in the
EXTRACT algorithm to obtain their secret key SIDA

and SIDB
, respectively. The

identities of A and B are available publicly as IDA and IDB , together with public
hash functions H0 : {0, 1}∗ → G1. Hence, the public key QIDi

can be computed
by anyone (for instance, by computing QIDi

= H0(IDi)).
After both users got their corresponding key pair, the protocol is as follows.

1. A picks a random initial keystone kI ∈ K and executes the FOOTPRINT
algorithm using kI as the input to obtain fI ∈ F .

A good candidate for FOOTPRINT is a cryptographic hash function, for its
one-wayness, i.e. given y from the range of the function, it is hard to invert
the function and find a pre-image x.

2. A selects a message mA ∈ M, together with her identity IDA and B’s
identity IDB , computes her ambiguous signature as σA = {UA, UB , V } ←
ASIGN(IDA, IDB ,SIDA

,OF , fI ,mA) where OF denotes the identity element
of the group F . (OF is used to unify the list of input parameters used by IDA

and IDB for the ASIGN algorithm, which merely means that A can skip a
certain group operation inside the ASIGN algorithm that is used to connect
B’s signature with A’s.) A then sends σA to B.

We require that the ASIGN algorithm to be able to produce ambiguous sig-
nature σ such that any one can get convinced that either SIDA

or SIDB
is used

as the input but does not know exactly which one with probability greater
than 1/2. Moreover, there are two parts (which can be implicitly) involved
with the signature such that the first part can be chosen arbitrary while the
value of another part must be depending on the first part. Most of existing
ring signature schemes satisfy these properties.

3. Upon receiving A’s ambiguous signature σA, B verifies the signature by
testing whether AVERIFY(σA, IDA, IDB ,mA) ?= accept holds. B aborts if
the above equation does not hold.

Obviously, the AVERIFY algorithm is simply the one matching with the
ASIGN algorithm.

4. B selects r the random coin space R and executes the ENC-MATCHING-
KEYSTONE algorithm using r as the input to obtain a matching keystone
kM ∈ K and the encrypted matching keystone footprint KM ∈ K′.

We require that the value of kM is uniquely determined by r and SIDA
and

cannot be computed without the knowledge of SIDA
or r, All these properties

can be achieved by key encapsulation (KEM), such that r is the randomness
used in encryption, kM is the key produced and KM is the ciphertext. The
value of kM can be recovered by using the ciphertext KM and the recipient’s
private key SIDA

.

5. B picks a message mB ∈ M to sign. B produces the matching keystone
footprint fs by FOOTPRINT(kM) and computes his ambiguous message
σB = {U ′

A, U
′
B , V

′} ← ASIGN(IDB , IDA,SIDB
, UB , fS ,mB) This signature

together with the encrypted matching keystone KM is sent to A. A then use
DEC-MATCHING-KEYSTONE to get the matching keystone kM .

Obviously, DEC-MATCHING-KEYSTONE can be built from the key decap-
sulation algorithm corresponding to ENC-MATCHING-KEYSTONE.

6. Upon receiving B’s ambiguous signature σB , A reproduces the matching
keystone footprint by fs = FOOTPRINT(kM), and verifies the signature by
testing whether
– VERIFY-CONNECTION(fI , fS , σA, σB) ?= accept and
– AVERIFY(σB , IDB , IDA,mB) ?= accept

hold. If not, then A aborts. Otherwise, A releases the keystone pair (kI , kM)
to B, and both signatures are binding concurrently.

3.4 Security Notions

As the original model of concurrent signatures in [6], we require a perfect con-
current signatures (either ID-based or not) to satisfy correctness, ambiguity,
unforgeability and fairness. Intuitively, these notions are described as follows.
Note that we follow the definition of ambiguity in [13] instead of the one in [6].

– Correctness: If a signature σ has been generated correctly by invoking ASIGN
algorithm on a message m ∈ M, AVERIFY algorithm will return “accept”
with an overwhelming probability, given a signature σ on m and a security
parameter `. Moreover, after the keystone-pair (kI , kM) ∈ K×K, is released,
then the output of VERIFY algorithm will be “accept” with an overwhelming
probability.

– Ambiguity: We require that given the two ambiguous signatures (σ1, σ2), any
adversary will not be able to distinguish who was the actual signer of the
signatures before the keystone is released. Any adversary can only conclude
that one of the following events has occurred:
1. Both σ1 and σ2 were generated by the initial signer.
2. Both σ1 and σ2 were generated by the matching signer.
3. The initial signer generated σ1 while the matching signer generated σ2.
4. The matching signer generated σ1 while the initial signer generated σ2.

All these cases are equally probable from the adversary’s view.
– Unforgeability: There are two levels of unforgeability to be considered.

• Level 1: When an adversaryA does not have any knowledge of the respec-
tive secret key SID, then no valid signature that will pass the AVERIFY
algorithm can be produced. Otherwise, one of the underlying hard prob-
lems can be solved by using this adversary’s capability. This requirement
is for the matching signer to get convinced that the signature presented
by the initial signer is indeed originated from her.
• Level 2: Any party cannot frame the other party that he or she has in-

deed signed a message. We require that although both signatures are
ambiguous, any party who would like to frame (or cheat) the others will
not be able to produce a valid keystone with an overwhelming proba-
bility. This means that the first signature can only be generated by the
initial signer and it is unforgeable by anyone else, including the matching
signer. At the same time, the second signature can only originate from
the matching signer, which is unforgeable by any person other than him,
including the initial signer.

– Fairness: We require that any valid ambiguous signatures generated using
the same keystone will all become binding after the keystone is released.
Hence, a matching signer cannot be left in a position where a keystone
binds his signature to him whilst the initial signer’s signature is not binding
to her. This requirement is important for the case like the initial signer
try to present a signature of another message after the matching signer has
verified the validity of the original message and complete his part of protocol.
However, we do not require that the matching signer will definitely receive
the necessary keystone.

Definition 5. An ID-based perfect concurrent signature scheme is secure if it
is existentially unforgeable under a chosen message attack, ambiguous and fair.

4 A Concrete Instantiation

We present a concrete ID-based perfect concurrent signature scheme using the
above general construction, with the ID-based ring signature scheme proposed
by Zhang and Kim [15] and the basic version of ID-based encryption scheme
with semantic security proposed by Boneh and Franklin [4]. Using our generic
construction in Section 3, we define the required nine algorithms.

– SETUP: The PKG selects a random number s ∈ ZZ∗q and sets Ppub = sP . It
selects three cryptographic hash functions H0 : {0, 1}∗ → G1 and and H1 :
{0, 1}∗ → ZZq. It publishes system parameters params = {G1,GM , ê, q, P,
Ppub,H0,H1}, and keeps s as the master secret key. The algorithm also sets
M = {0, 1}∗, R = F = ZZq, K = GM and K′ = G1.

– EXTRACT: The EXTRACT algorithm is defined as follows.
1. A user Ui submits his or her identity IDi to the PKG.
2. After a successful identification, PKG generates Ui secret key as follows.
• Compute QIDi

= H0(IDi).
• Compute Ui’s secret key as SIDi = sQIDi .

• Deliver SIDi
as user Ui’s secret key through a private and authenti-

cated channel.
– FOOTPRINT: This algorithm outputs f = H1(k) as the keystone footprint

for keystone k.
– ASIGN: The ASIGN algorithm accepts the following parameters (IDi, IDj ,
SIDi

, α, f,m), where SIDi
is the secret key associated with QIDi

, f ∈ F and
m ∈M is the message. The algorithm will perform the following.
1. Select a random point Z ∈ G∗

1.
2. Set uj ← α · f .
3. Compute u0 = H1

(
m||(IDi ⊕ IDj)||ê(Z,P)ê(ujQIDj , Ppub)

)
.

4. Compute V = u−1
0 (Z − (u0 − uj)SIDi).

5. Output σ = (ui = u0 − uj , uj , V) as the signature on message m.
– ENC-MATCHING-KEYSTONE: For a random coin r ∈ R, this algorithm out-

puts KM = rP as the encrypted keystone. It also returns km = ê(QIDi , P)r

as the matching keystone.
– DEC-MATCHING-KEYSTONE: This algorithm returns ê(KM ,SIDi

).
– AVERIFY. This algorithm accepts (σ, IDi, IDj ,m), where σ = (ui, uj , V). The

algorithm verifies whether

ui + uj
?= H1

(
m||(IDi ⊕ IDj)||ê(V, P)(ui+uj)ê(uiQIDi , Ppub)ê(ujQIDj , Ppub)

)
holds with equality. If so, then output accept. Otherwise, output reject.

– VERIFY-CONNECTION: This algorithm outputs accept if U ′
i = Uj · fS ,

reject otherwise.
– VERIFY. This algorithm does exactly the thing as described in our generic

framework. In particular, the validity of the keystones can be tested by using
the FOOTPRINT algorithm.

Correctness.
The correctness of the above proposed scheme is justified as follows.

ui + uj = H1

(
m||(IDi ⊕ IDj)||ê(V, P)(ui+uj)ê(uiQIDi , Ppub)ê(ujQIDj , Ppub)

)
u0 = H1

(
m||(IDi ⊕ IDj)||ê((ui + uj)V + uiSIDi

, P)ê(ujQIDj
, Ppub)

)
= H1

(
m||(IDi ⊕ IDj)||ê(u0V + (u0 − uj)SIDi

, P)ê(ujQIDj
, Ppub)

)
= H1

(
m||(IDi ⊕ IDj)||ê(Z,P)ê(ujQIDj , Ppub)

)
4.1 Security Consideration

The security proofs are presented in the Appendix.

Theorem 1. (Ambiguity) Before the keystone k is released, both signatures
are ambiguous.

Lemma 1. When the output of VERIFY is accept, then any third party can
be sure who has generated the signature. Any party cannot frame that the other
party has signed a message without his or her consent assuming the one-way
property of the hash function. This guarantees that the signature is unforgeable.

Theorem 2. (Unforgeability) The scheme presented in this section is exis-
tentially unforgeable under a chosen message attack in the random oracle model,
assuming the one-way property of the hash function, the hardness of the discrete
logarithm problem and the Co-CDH assumption.

Theorem 3. (Fairness) For all signatures that are generated with the same
keystone will be binding concurrently when the keystone is released.

Theorem 4. Our ID-based perfect concurrent signature scheme presented in
this scheme is secure in the random oracle model, assuming the hardness of the
discrete logarithm problem.

4.2 Signature Length

In the above scheme, each signature is a three-tuple σi = (u1, u2, V), where
u1, u2 ∈ ZZq and V ∈ G1. Using any of the families of curves described in [5],
one can take q to be a 170-bit prime and use a group G1 where each element
is 171 bits. For example, G1 is derived from the curve E/GF (397) defined by
y2 = x3−x+1, which has 923-bit discrete-logarithm security. With these choices,
the total signature length for a pair of signature is 1,022 bits or 128 bytes.

5 A More Efficient Construction

Now we present a more efficient variant of ID-based perfect concurrent signature
which requires no pairing operation in signing without sacrificing the computa-
tional efficiency of verification or other steps. Again, the construction follows
our idea of generic construction in Section 3. We utilize the ID-based ring signa-
ture scheme proposed by Chow et al. [8] and also the basic version of ID-based
encryption scheme with semantic security proposed in [4].

– SETUP: Basically it is the same as our first scheme, but the keystone foot-
print space becomes F = G1 and we need another cryptographic hash func-
tion H2 : {0, 1}∗ → G1.

– EXTRACT, ENC-MATCHING-KEYSTONE, DEC-MATCHING-KEYSTONE:
The same as our first scheme.

– FOOTPRINT: The same as our first scheme, except H2 is used instead of H1.
– ASIGN: The input of this algorithm includes two identities IDi and IDj , a

private key SIDi
, a message m, a G1 element α, and a G1 element f .

1. Compute Uj = α+ f and hj = H1(m||(IDi ⊕ IDj)||Uj).
2. Choose r′i ∈R Z∗

q , compute Ui = r′iQIDi
− Uj − hjQIDj

.
3. Compute hi = H1(m||(IDi ⊕ IDj)||Ui) and V = (hi + r′i)SIDi

.
4. Output the signature σ = {Ui, Uj , V }.

– AVERIFY: The input of this algorithm includes two identities IDi and IDj , a
message m, and a ring signature σ = {Ui, Uj , V }.
1. Compute hi = H1(m||(IDi ⊕ IDj)||Ui) and hj = H1(m||(IDi ⊕ IDj)||Uj).

2. Return accept if ê(Ppub, Ui + hiQIDi
+ Uj + hjQIDj

) = ê(P, V), reject
otherwise.

– VERIFY-CONNECTION: This algorithm outputs accept if U ′
i = Uj + fS ,

reject otherwise.
– VERIFY: The same as our first scheme.

Correctness.
The correctness of our second scheme is justified as follows.

ê(Ppub, Ui + hiQIDi + Uj + hjQIDj)
= ê(Ppub, r

′
iQIDi − Uj − hjQIDj + hiQIDi + Uj + hjQIDj)

= ê(sP, (hi + r′i)QIDi) = ê(P, (hi + r′i)SIDi)

5.1 Security Consideration

Again, please find the security proofs in the Appendix.

Theorem 5. (Ambiguity) Before the keystone k is released, both signatures
are ambiguous.

Lemma 2. When the output of VERIFY is accept, then any third party can
be sure who has generated the signature. Any party cannot frame that the other
party has signed a message without his or her consent assuming the one-way
property of the hash function. This guarantees that the signature is unforgeable.

Theorem 6. (Unforgeability) The scheme presented in this section is exis-
tentially unforgeable under a chosen message attack in the random oracle model,
assuming the one-way property of the hash function, the hardness of the discrete
logarithm problem and the Co-CDH assumption.

Theorem 7. (Fairness) For all signatures that are generated with the same
keystone will be binding concurrently when the keystone is released.

Theorem 8. Our ID-based perfect concurrent signature scheme presented in
this scheme is secure in the random oracle model, assuming the hardness of the
discrete logarithm problem.

5.2 Signature Length and Efficiency

In this scheme, each signature is a three-tuple (U1, U2, V), where U1, U2, V ∈ G1.
With the same setting as our first scheme, our second scheme only requires 1,026
bits or 129 bytes for a pair of signatures. Hence, the signature is nearly as short as
that of the first one. This signature length is only one group element on elliptic
curve larger than most existing ID-based signature schemes (for example, see
the review in [3]). Our second scheme inherits the efficiency of the underlying
scheme by Chow et al. [8], such that no pairing operation is needed for signing,
with a normal computational cost for other algorithms of the protocol.

6 Conclusion and Future Research Direction

We introduced the notion of ID-based perfect concurrent signatures, which is an
extension of the notion of concurrent signatures proposed in [6]. We provided the
first generic construction of (ID-based) perfect concurrent signature protocol in
the literature. We presented two concrete constructions of ID-based perfect con-
current signature schemes based on our generic framework. Our second scheme
requires no pairing operation in signing. We also provided a complete security
analysis for our schemes on their ambiguity, fairness and unforgeability.

Recently, a new ID-based ring signature scheme was proposed [10]. Instead
of following the existing paradigms of ID-based ring signature constructions, the
scheme is constructed using a cryptographic primitive known as accumulator
(e.g. see [10]). It would be interesting to see if concurrent signature could be
realized from cryptographic accumulator.

References

1. N. Asokan, Victor Shoup, and Michael Waidner. Optimistic Fair Exchange of
Digital Signatures. IEEE Journal on Selected Areas in Communications, 18, 2000.

2. Feng Bao, Robert H. Deng, and Wenbo Mao. Efficient and Practical Fair Exchange
Protocols. In IEEE Symposium on Security and Privacy 1998, pp. 77–85, 1998.

3. Mihir Bellare, Chanathip Namprempre, and Gregory Neven. Security Proofs for
Identity-Based Identification and Signature Schemes. In Adv in Cryptology - Eu-
rocrypt 2004, LNCS 3027, pp. 268–286, 2004.

4. Dan Boneh and Matt Franklin. Identity-based Encryption from the Weil Pairing.
In Adv in Cryptology - Crypto 01, LNCS 2139, pp. 213–229, 2001.

5. Dan Boneh, Ben Lynn, and Hovav Shacham. Short Signatures from the Weil
Pairing. Adv in Cryptology - Asiacrypt 2001, LNCS 2248, pp. 514–532, 2001.

6. Liqun Chen, Caroline Kudla, and Kenneth G. Paterson. Concurrent Signatures.
In Adv in Cryptology - Eurocrypt 2004, LNCS 3027, pp. 287–305, 2004.

7. Sherman S.M. Chow, Richard W.C. Lui, Lucas C.K. Hui, and Siu Ming Yiu. Iden-
tity Based Ring Signature: Why, How and What Next. EuroPKI 2005, LNCS
3545, pp. 144-161, 2005.

8. Sherman S.M. Chow, Siu Ming Yiu, and Lucas C.K. Hui. Efficient Identity Based
Ring Signature. Applied Crypto and Network Security - ACNS 2005, LNCS 3531,
pp. 499-512, 2005.

9. Yevgeniy Dodis and Leonid Reyzin. Breaking and Repairing Optimistic Fair Ex-
change from PODC 2003. ACM Workshop on Digital Rights Management, 2003.

10. Lan Nguyen. Accumulators from Bilinear Pairings and Applications. Topics in
Cryptology - CT-RSA 2005, LNCS 3376, pp. 275–292, 2005.

11. David Pointcheval and Jacques Stern. Security Proofs for Signature Schemes. Adv
in Cryptology - Eurocrypt 1996, LNCS 1070, pp. 387 – 398, 1996.

12. Ronald L. Rivest, Adi Shamir, and Yael Tauman: How to Leak a Secret. Adv in
Cryptology - Asiacrypt 2001, LNCS 2248, pp. 552 – 565, 2001.

13. Willy Susilo, Yi Mu and Fangguo Zhang. Perfect Concurrent Signature Schemes.
Inf and Comm Security - ICICS 2004, LNCS 3269, pp. 14–26, 2004.

14. Guilin Wang, Feng Bao and Jianying Zhou. The Fairness of Perfect Concurrent
Signature. To appear in Inf and Comm Security - ICICS 2006.

15. Fangguo Zhang and Kwangjo Kim. ID-based Blind Signature and Ring Signature
from Pairings. Adv in Cryptology - Asiacrypt 2002, LNCS 2501, pp. 533 – 547,
2002.

Appendix

Proof of Theorem 1. The ambiguity of the signatures is clear since from any third
party’s viewpoint, it is either A or B who has generated such signature, but the
third party cannot be sure who has signed the signatures. Both parties could
have generated the signatures by himself or herself. To justify this argument, it
is sufficient for us to show that any party can generate both signatures that are
verifiable with ASIGN algorithm. We first assume that A would like to generate
both signatures by himself. He will perform the following.

1. Select two random values r1 and r2 ∈ F and two messages m1,m2 ∈M.
2. Execute ASIGN(IDA, IDB ,SIDA

, IZ∗
q
, r1,m1) to obtain a signature σ1 on m1,

where IZ∗
q

denotes the identity element of the group Z∗
q . Note that σ1 =

(u1, u2, V), where u2 is equal to r1.
3. Execute ASIGN(IDA, IDB ,SIDA

, IZ∗
q
, r2,m2) to obtain σ2 = (u′1, u

′
2, V

′), where
u′2 is equal to r2

It is clear that both signatures (σ1, σ2) are acceptable by AVERIFY algorithm.
We note that in step 2 above, A obtains a valid signature for a keystone footprint
r (which is eventually the same as u2). However, in step 3, she “pretends” that
the signature σ2 was generated by B. Even she cannot choose the value of u′1
arbitrary, there exists a value r′ ∈ F such that (u′1 = u2 · r′). Before the release
of keystone, no one can check the validity of this matching keystone footprint r′.

On the other hand, the matching signer B can also “pretends” that the
σ1 was generated by A, if the corresponding initial keystone kI that making
H1(kI) = u2 is not released yet.

So both signatures are a pair of valid ID-based perfect concurrent signatures.
This shows that even a valid signature is found, from any third party’s viewpoint,
the signature is ambiguous. Hence, we complete the proof.

Proof of Lemma 1. To verify a signature σA(uA, uB , V) that was generated by
A, any third party will perform the following steps.

– Verify whether the keystone is correct, by testing H1(kI)
?= fI . If it does not

hold, then output reject.
– Verify whether uB = fI .
– Verify whether σ = (uA, uB , V) is correct, by testing whether

uA+uB
?= H1

(
m||(IDA ⊕ IDB)||ê(R,P)(uA+uB)ê(uAQIDA

, Ppub)ê(uBQIDB
, Ppub)

)
holds with equality.

Note that in the second verification above, the value ê(uBQIDB
, Ppub) was already

set before the signature was computed, since uB is the keystone (unless the hash
function H1(·) is invertible, which violates the underlying assumption). Then,
the value of u0 (which is set to be uA + uB) needs to be computed afterwards.
Therefore, to obtain a valid verification in the above equation, one must know the
value of SIDA

that will be used to solve the equation V = u−1
0 (Z−(u0−u2)SIDA

),
for a randomly chosen Z ∈ G∗

1. Since the only person who knows the secret key
SIDA

is A, then any third party can be sure that A has indeed generated the
signature.

A similar argument applies to the signature σB = (u′A, u
′
B , V

′) that is gener-
ated by B by invoking the FOOTPRINT algorithm and VERIFY-CONNECTION
algorithm, for the corresponding keystone kM . To launch a successful framing at-
tack, the party needs to release a valid keystone (kI , kM) and hence, the VERIFY
algorithm will return accept, which means u′A = fI · fS , or in other words

H1(mB ||(IDA⊕IDB)||ê(Z,P)ê(u′BQIDB
, Ppub))−u′B = H1(kI)·H1(ê(Ppub,QIDj

))kM .

Although Z, u′B , kI and kM can be chosen arbitrary, it is difficult to make the
equation holds due to the one-way property of the hash function H1(·), so it is
infeasible to compute the associated keystone (kI , kM) ∈ K×K Hence, framing
attack will not be successful if the underlying hash function used is one way.

Proof of Theorem 2. The proof is similar to the proof of unforgeability of the
Schnorr signature scheme in [11] and the concurrent signatures in [6]. We in-
corporate the forking lemma [11] to provide the proof. We use the notion of
existential unforgeability against a chosen message attach from [6]. Firstly, we
note that it is shown in [11] that if A is a polynomial time Turing machine that
only accepts public input data only and produces a valid signature (m,u1, h, u2)
in time τ and with probability η ≥ 10(QIDj

+ 1)(QIDj
+ qH)/2`, where ` is the

security parameter, QIDj is the number of signature queries, qH is the number
of hash queries, and (u1,m, u2) are simulatable with indistinguishable probabil-
ity distribution without the knowledge of the secret key, then there exists an
algorithm B, which controls A and replaces A’s interaction with the signer by
simulation and produces two valid signatures (m,u1, h, u2) and (m,u1, h

′, u′2)
such that h 6= h′ in expected time τ ′ = 12068QIDj

τ/η.
The game between an adversary A and a challenger C is defined using the

following.

– Setup: C runs SETUP for a given security parameter ` to obtain descriptions
of U ,M,S,K and F . In addition, SETUP also generates the public key Ppub

for the PKG and provides it secret key, sPKG. Finally, it also simulates the
private key generation for all identities by invoking EXTRACT.

– KSGEN Queries: A can request that C selects a keystone k ∈ K that
it used to generate a keystone footprint f ∈ F , by invoking the corre-
sponding algorithm (FOOTPRINT, ENC-MATCHING-KEYSTONE and DEC-
MATCHING-KEYSTONE). A can also select her own keystone k ∈ K and
then compute the keystone footprint by himself.

– KSReveal Queries: A can request the challenger C to reveal the keystone
k that is used to produce a keystone footprint f ∈ F in a previous KSGEN
query. If f was not asked before, then C outputs invalid. Otherwise, C
returns k ∈ K.

– ASign Queries: A can request an ambiguous signature for any input of
the form (IDA, IDB , Ppub, f,m) where QIDA

,QIDB
are the respective public

keys, together with Ppub, f ∈ F and m ∈M. C responds with an ambiguous
signature σ = (u0, u1, u2, V).

– AVerify and Verify Queries: A cannot request an answer for these queries
since he can compute them for himself using the AVERIFY and VERIFY
algorithms.

– Private Key Extraction Queries: A can request the private key SID

associated with any QID of any participant. In response, C outputs SID. The
response can be verified by A by testing whether ê(SID, P) ?= ê(QID, Ppub)
holds with equality.

– Output: Finally,A outputs a tuple σ = (u0, u1, u2, V) along with (IDA, IDB)
and a message m ∈M. The adversary wins the game if the following equal-
ity AVERIFY(σ, IDA, IDB ,m) ?= accept holds and one of the two conditions
below hold:
1. The ASIGN query for (IDA, IDB ,m, f) has never been asked by A and no

Private Key Extract query was made by A on either IDA or IDB .
2. The ASIGN query for (IDA, IDB ,m, f) has never been asked by A and no

Private Key Extract query was made by A on IDA.

Now, we show how to build an algorithm B who will simulate the challenger
C in the above attack to answer A’s request. We assume there is a PPT attacker
A who can produce a valid signature σ on a message m without knowing the
appropriate secret keys of the signers. The purpose of B is to solve a Co-CDH
problem, given aP and bP to compute abP . The simulation is as follows. Firstly,
the public key Ppub is set to be bP . The adversary A is allowed to query KSGEN
and KSReveal queries many times. On answering ASign query, B simulates
the signing oracle by accepting (IDA, IDB , α, f,m) and outputs a signature, if
possible. Now, set Q∗ = aP and a target message m∗ ∈M. If the ASign query
is asked on Q∗, then terminate the simulation. The probability of the attack
fails in this case is bounded by 1

q2 . After a subsequent queries, A outputs a
valid signature σ on a message m∗ with Q∗. The attack is restarted again for a
second round using the same method, and eventually A outputs a second valid
signature σ′ on the same target message. When this collision happens, we obtain
two signatures on the same keystone footprint. That means, for a pair (σ, σ′),
where σ = (u1, u2, V) and σ′ = (u′1, u

′
2, V

′), we obtain

ê(R,P)u0 ê(u1QID∗ , Ppub) = ê(R′, P)u′
0 ê(u′1QID∗ , Ppub)

where u0 = u1+u2 and u′0 = u′1+u′2. Rearranging the above equation, we obtain

u0R+ u1SID∗ = u′0R+ u′1SID∗

and hence
SID∗ = (u1 − u′1)−1(u′0R

′ − u0R)

Since we let Ppub = bP and Q∗ = aP , then SID∗ = abP , which is the solution of
the Co-CDH problem. Hence, we obtain the contradiction.

With the result of Lemma 1, we achieve the second level of the unforgeability
as well.

Proof of Theorem 3. The proof can be deduced from the proof of Lemma 1.
Suppose the initial signer selects a keystone kI ∈ K and then signs a message
m1 ∈ M to produce a signature σ1. Then, the matching signer signs a message
m2 ∈M using the matching keystone, kM ∈ K, to produce a signature σ2. Now,
consider a scenario where the initial signer tries to cheat by producing another
message m′ 6= m1 and signs it, to produce a signature σ′. When the keystone
kI is released, then all messages (m1,m2,m

′) will be binding concurrently. The
matching signer will not be left in a situation where his signature is still binding
on m2, but the initial signer’s signature is not binding to m1 anymore. It is
because the matching signer only complete the rest of the protocol (i.e. sign
his message) after he received the signature from A, so he can always present
this signature if A purports that the message she signed is another one. This
guarantees the fairness of the scheme.

Proof of Theorem 4. The proof can be derived from Theorem 1, 2, and 3.

Proof of Theorem 5. As in the proof of Theorem 1, it is sufficient to show that
any party can generate a pair of concurrent signatures that is valid and it will be
accepted under AVERIFY algorithm. Let us assume that B would like to produce
such signature. B will perform the following.

1. Randomly choose r2 ∈R F .
2. Generate σB = {U ′

A, U
′
B , V

′} using ASIGN algorithm, with IF and r2 as
input.

3. Randomly choose kM ∈R K.
4. Compute UB = U ′

A −H1(ê(QIDB
, Ppub)kM).

5. Generate σA = {UA, UB , V } like ASIGN algorithm, except that UB is not
chosen randomly but using the above computed value.

The essential idea of the above procedure is before the release of the initial
keystone that determining the value of UB , the matching signer can firstly gen-
erate the second signature, making a UB that satisfy the VERIFY-CONNECTION
algorithm, and use that particular value of UB as part of the first signature. For
A to create a signature that makes AVERIFY algorithm returns true even if takes
SIDA

to sign but the public key to be verified is QIDB
, the same idea in the proof

of Theorem 1 can be applied.
The probability that this pair of signatures was generated by a single party

himself or herself is 1
4 , which is uniform. This is due to the following possibilities.

1) The signatures were generated by Alice, 2) The signatures were generated by
Bob, 3) σ1 was generated by Alice, and σ2 was generated by Bob, or 4) σ1 was

generated by Bob, and σ2 was generated by Alice. Hence, from any third party’s
viewpoint, the signature is indistinguishable.

Proof of Lemma 2. It is not possible for an adversary to find the pre-image k such
that UB = H2(kI) if UB is created by the formula r′AQIDA

−UB − hBQIDB
. For

the second signature, we argue that A cannot be the actual signer by considering
the following three cases. Case 1: If we fix the value of UB firstly, then computing
kM satisfying the equation U ′

A = UB + H1(ê(QIDB
, Ppub)kM) involving solving

discrete logarithm problem in G2 and breaking the one-way property of H1(·).
Case 2: If we fix kM first, it involves finding the pre-image kI again. Case 3:
This case requires more attention as the signature scheme used in this scheme
is different from that of the previous scheme. A needs to make the equation
r′AQIDA

− U ′
B − h′BQIDB

= UB + H1(ê(QIDB
, Ppub)kM) hold. For A to give V ′,

knowledge of r′ is necessary, so the problem becomes making U ′
B+h′BQIDB

equals
to a fixed value, which is difficult as h′B = H1(mB ||(IDA ⊕ IDB)||UB).

Proof of Theorem 6. Notice that our scheme is very similar to the two-party
version of the ID-based ring signature scheme in [8], the difference is only the
way to choose the random factors of non-participating signer. The scheme in [8]
is proven to be existentially unforgeable against adaptive chosen-message-and-
identity attack, under the random oracle model. As can be concluded from the
proof of unforgeability in [8], if an adversary other than A and B can create
either one of the signature, the Co-CDH problem can be solved by using this
adversary.

The difference in the way of choosing the random factors does not affect the
security proof for the unforgeability. However, we remark that it has effects on
the ambiguity of the signatures before the release of the keystone. We can only
achieve the computational signer ambiguity (because of the use of the matching
keystone) instead of the information theoretic security achieved by the scheme
in [8] under random oracle model.

Proof of Theorem 7. Since both schemes use the same underlying generic con-
struction framework, the discussion of the fairness of both schemes are essentially
the same, given the result of the Lemma 2.

Proof of Theorem 8. The proof can be derived from Theorem 5, 6, and 7.

