
Transforming a CPA-Secure HIBE Protocol into a CCA-Secure
HIBE Protocol Without Loss of Security

Palash Sarkar and Sanjit Chatterjee

Applied Statistics Unit
Indian Statistical Institute
203, B.T. Road, Kolkata

India 700108.
e-mail:{palash,sanjit t}@isical.ac.in

Abstract. We consider the problem of constructing a HIBE protocol which is secure in the full model
against chosen ciphertext attacks without using random oracle. Known techniques (generic as well as
non-generic) convert an (h + 1)-level CPA-secure HIBE protocol into an h-level CCA-secure HIBE
protocol. Applied to known constructions, these result in an h-level CCA-secure HIBE protocol whose
security degradation is exponential in (h+1). In this paper, we modify a recent construction of a CPA-
secure HIBE to obtain a HIBE protocol in the KEM/DEM framework which is CCA-secure in the full
model and without the random oracle assumption. The main feature of our construction is that the
security degradation for an h-level HIBE protocol is exponential in h. The reduction of the exponent of
security degradation from (h + 1) to h can be significant in reducing the size of the underlying groups
for practical applications. The security of the new protocol is based on the hardness of the decisional
bilinear Diffie-Hellman (DBDH) problem.

1 Introduction

Identity based encryption [25, 7] is a kind of public key encryption where the public key can be
the identity of the receiver. The secret key corresponding to the identity is generated by a private
key generator (PKG) and is securely provided to the relevant user. The notion of IBE simplifies
the issues of certificate management in public key infrastructure. The PKG issues the private key
associated with an identity. The notion of hierarchical IBE (HIBE) [20, 19] was introduced to reduce
the workload of the PKG. The identity of any entity in a HIBE structure is a tuple (v1, . . . , vj).
The private key corresponding to such an identity can be generated by the entity whose identity
is (v1, . . . , vj−1) and which possesses the private key corresponding to this identity. The security
model for IBE was extended to that of HIBE in [20, 19].

The first construction of an IBE which can be proved to be secure in the full model without
the random oracle heuristic was given by Boneh and Boyen in [5]. Later, Waters [27] presented
an efficient construction of an IBE which is secure in the same setting. An extension of Waters’
construction has been independently described in [12] and [24]. This leads to a controllable trade-off
between the size of the public parameters and the efficiency of the protocol (see [12] for details).

A construction of a HIBE secure in the full model without using the random oracle heuristic
is given in [27]. A recent work [13], describes a HIBE which builds on the suggestion in [27] by
reducing the number of public parameters. The constructed HIBE is secure against chosen plaintext
attacks (CPA-secure).

1.1 The Problem

We consider the problem of constructing a HIBE which is secure in the full model against adaptive
chosen ciphertext attacks (CCA-secure). By full model, we mean the model introduced by Boneh-

Franklin [7] and not the weaker selective-ID model introduced later. The security is based on the
conjectured computational hardness of the decisional bilinear Diffie-Hellman (DBDH) problem. Also
the security proof does not use the random oracle assumption. Construction of a full model CCA-
secure HIBE protocol without the random oracle assumption and based on the DBDH problem is
a basic problem in the area of identity based encryption.

1.2 Known Solutions

The construction in [19] is based on the random oracle assumption and does not constitute a
solution to the above problem. Two generic techniques [11, 8] are known which convert an (h+ 1)-
level CPA-secure HIBE protocol into an h-level CCA-secure HIBE protocol while preserving the
other features (security model, with/without random oracle, hardness assumption) of the original
CPA-secure protocol. Currently, there are only two known HIBE protocols which are CPA-secure
in the full model without the random oracle assumption and are based on the DBDH problem –
the Waters HIBE [27] and its improvement, the Chatterjee-Sarkar HIBE [13]. Both these protocols
have a security degradation which is exponential in h, the maximum number of levels in the HIBE
protocol. Applying the generic techniques to these CPA-secure HIBE protocols, one obtains an
h-level CCA-secure HIBE whose security degradation is exponential in (h + 1). There is also a
non-generic method of achieving CCA-security for a HIBE protocol [9]. This method also results
in an h-level CCA-secure HIBE whose security degradation is exponential in (h+ 1).

1.3 Our Contributions

We present two solutions to the problem in Section 1.1. Both of these are obtained by modifying the
CPA-secure HIBE protocol given in [13]. The first construction is a CCA-secure hierarchical identity
based key encapsulation mechanism (HIB-KEM). For an identity tuple having j components, the
decapsulation algorithm of this construction uses j pairings to verify the well-formedness of the
encapsulated key. In our second construction, we do away with these pairing computations while
retaining the KEM/DEM framework. The separation of the KEM/DEM boundary in this case
requires us to extend the notion of Tag-KEM/DEM framework [1] to the hierarchical identity
based setting. The first construction is conceptually easier to understand where as the second
construction is more efficient. We consider the second construction to be the main contribution of
this paper. The first construction is to be considered as a conceptual step in the development of
the second construction.

1.4 Is Our Solution Significant?

We first note that in the current state of knowledge, there is no known HIBE protocol which is
secure in the full model and which can avoid security degradation exponential in h. This is true
irrespective of whether the random oracle assumption is used or security is based on some (possibly
weaker) variant of the DBDH problem. Avoiding such security degradation is a major open problem
in HIBE construction and this paper does not present a solution to this problem.

On the other hand, the important feature of both our constructions is the fact that the security
degradation of an h-level HIBE is exponential in h (and not (h+1) as could be obtained previously).
Thus, we have prevented a loss of security in transforming from CPA-security to CCA-security. To

the best of our knowledge, none of the existing techniques in the literature can be put together to
obtain a solution to the problem in Section 1.1 and which is better than our second construction.

In more concrete terms, the security degradation reduces from approximately qh+1 to qh. In
an asymptotic sense this is not significant. In cryptography, however, it has become customary
to interpret security reductions in terms of what is called concrete security. This is usually done
by substituting concrete values for the different parameters of the protocol. A typical value of q
is 230. With this value of q, the security degradation reduces from 230(h+1) to 230h. Thus, we can
prevent an extra 30-bit security degradation which would be incurred by known techniques for
attaining CCA-security. This improvement comes at no extra cost in efficiency of the protocol, i.e.,
our protocol (from the second construction) is as efficient as any protocol that can be obtained
using other known techniques.

We consider the result of reducing security degradation at no extra cost in efficiency to be an
advancement on understanding of HIBE protocols. On the other hand, we do note that the main
open problem in construction of HIBE protocols is to obtain a (CPA-secure) HIBE protocol which
does not have an exponential security degradation. The current paper does not provide a solution
to this problem.

1.5 Our techniques

For the most part, we combine techniques from different papers to attain our result. The only new
technique that we introduce is to incorporate information about the length of the identity into the
ciphertext. Our main claim to technical novelty is in making different ideas fit together properly to
obtain a correct and efficient construction. More details on our techniques are discussed below.

In the security proof for any CCA-secure (H)IBE protocols, there are two types of queries that
need to be handled by a simulator – key extraction queries and decryption queries. The techniques
for handling these queries are separate and the protocol usually incorporates different features for
tackling these two issues. In fact, these issues are sufficiently separate that one can actually “add-on”
the features for handling decryption queries to a CPA-secure protocol which already incorporates
features for handling key extraction queries. This is clearly the case for generic conversions from
CPA-secure protocol to CCA-secure protocol. Though less evident, this is also true for the non-
generic conversion technique given by [9].

As mentioned earlier, we modify the CPA-secure protocol from [13] to obtain a a CCA-secure
protocol. This CPA-secure protocol includes features for handling key extraction queries and these
features are a development of algebraic techniques introduced in [4] and [27]. CCA-security is
attained by adding “something more” to the protocol in [13].

Our technique for attaining CCA-security is based on the technique of [9] which in turn uses
algebraic ideas from the construction of IBE given in [4]. We make several small but important
changes to prevent the loss of one level of the HIBE in moving from CPA-security to CCA-security.
This results in a reduced security degradation for our protocol.

The well-formedness of the ciphertext in the first construction is ensured through several pairing
based verifications. These are computationally costly. The second construction does away with these
pairings by using a MAC based technique to ensure well formedness. We use ideas from the Tag-
KEM/DEM technique of [1] for this. Basically, the Tag-KEM/DEM construction of [1] can be
considered to be made up of two parts. One part consists of algebraic techniques based on the
Kurosawa-Desmedt [23] protocol (which in turn is based on the Cramer-Shoup [16] protocol). The

other part consists of several components – DEM, MAC, KDF, CRHF. At a high level, our second
construction can be seen replacement of the algebraic part of the Tag-KEM/DEM construction of [1]
by the pairing based HIBE technique, where as the other part remains more or less unchanged.

1.6 Related Work

Apart from the references mentioned above, [22] also consider the problem of non-generic conversion
of a CPA-secure IBE based on [27] to a CCA-secure IBE. The main focus of the work is on IBE
and they make a passing remark on how to modify the IBE construction to obtain a HIBE. This
remark is worked out in details in the recent eprint report [3].

We would like to point out that the HIB-KEM construction suggested in [22] and spelled out
in [3] is incorrect. The problem is that in their protocol if we obtain a ciphertext corresponding to
a j-level identity, then it is easy to obtain a valid ciphertext for its (j − 1)-level prefix by simply
discarding the component of the ciphertext corresponding to the last level of the identity. This
leads to an easy attack on the protocol. More details are given in Section 3.1.

The attack mentioned above is not our observation. An earlier version of this paper, had the
same problem as that of [22, 3]. This problem was pointed out to us by an anonymous reviewer of
the paper (for either PKC 2006 or Crypto 2006) who considered it difficult to fix. Fortunately, we
have been able to fix the problem using a simple technique to ensure that the length of the identity
tuple enters the ciphertext.

In an interesting paper, Boneh-Boyen-Goh [6] have shown how to construct a constant size
ciphertext (H)IBE based on the weak decisional bilinear Diffie-Hellman exponent problem which
is a variant of the DBDH problem. Their protocol is CPA-secure in the selective-ID model. Using
the technique of Waters, this protocol can be made CPA-secure in the full model. Further, using
the techniques of Boyen-Mei-Waters this can be converted into a CCA-secure protocol. For details
of this conversion and also for a protocol secure in a different model see [14]. The work [21] also
considers the same problem. Since the hardness assumptions of this paper and that of [14, 21] are
different, we do not compare the current protocol with that given in these two papers.

2 Preliminaries

In this section, we present the basic definitions of HIBE and HIB-KEM as well as construction of
CPA-secure HIBE protocol from [13]. Due to lack of space, the security model, bilinear map, hard-
ness assumption and components such as DEM, MAC, KDF and CRHF are defined in Appendix A.

2.1 HIBE Protocol

Definition: Following [20, 19], a hierarchical identity based encryption (HIBE) scheme is specified
by four algorithms: Setup, KeyGen, Encrypt and Decrypt. For a HIBE of height h (henceforth
denoted as h-HIBE) any identity v is a tuple (v1, . . . , vj) where 1 ≤ j ≤ h.
– HIBE.Setup: Takes as input a security parameter and outputs (pk, sk), where pk is the public

parameter of the PKG and sk is the master secret of the PKG. It also defines the domains of
identities, messages and ciphertexts.

– HIBE.KeyGen(v, dv|j−1
, pk): Takes as input a j-level identity v, the secret dv|j−1

corresponding
to its (j − 1)-level prefix and pk and returns as output dv, the secret key corresponding to v. In
case j = 1, dv|j−1

is equal to sk, the master secret of the PKG.

– HIBE.Encrypt(v,M, pk): Takes as input v, the message M and pk, and returns C, the ciphertext
obtained by encrypting M under v and pk.

– HIBE.Decrypt(v, dv, C, pk): Takes as input v, the secret key dv corresponding to v, a ciphertext
C and pk. Returns either bad or M , the message which is the decryption of C.

As usual, for soundness, we require that HIBE.Decrypt(v, dv, C, pk) = M must hold for all v, dv, C,
pk, sk and M associated by the above four algorithms.

HIB-KEM: A KEM is used to construct a hybrid encryption scheme. In such a scheme, the actual
encryption is done using a symmetric key algorithm and the secret key of the symmetric encryption
is encapsulated using a public key procedure. The extension of the notion of KEM towards the con-
struction of a hybrid HIBE is quite straightforward. Only the encryption and decryption algorithms
of HIBE are respectively changed to the following encapsulation and decapsulation algorithms. Let
KD be the key space of a suitable symmetric encryption algorithm.

– HIBE.Encap(v, pk): Takes as input v and pk, and returns (ω, dk), where dk ∈ KD and ω is an
encapsulation of dk under v.

– HIBE.Decap(v, dv, ω, pk): Takes as input v, the secret key dv corresponding to v, an encapsulation
ω and pk. Returns either bad or dk, the secret key of the symmetric encryption algorithm.

2.2 CPA-Secure HIBE Construction from [13]

We describe the CPA-secure HIBE protocol given in [13]. Later we modify this to obtain a CCA-
secure HIB-KEM protocol.

Let G1 and G2 be cyclic groups having the same prime order p. We use a cryptographic bilinear
map e : G1 ×G1 → G2 the definition of which is given in Section A.3.

Set-Up:

Depth. The maximum depth of the HIBE is h.
Identity. An identity v is a tuple (v1, . . . , vj) where j ∈ {1, . . . , h} with each vk = (v(k)

1 , . . . , v
(k)
l)

and v
(k)
i is an (n/l)-bit string which will also be considered to be an integer in the range

{0, . . . , 2n/l − 1}. Choosing l = n, gives vk to be an n-bit string as considered by Waters [27].
We set N = 2n.

Public Parameters. The public parameters are the following elements: P , P1 = αP , P2, U ′
1, . . . , U

′
h,

U1 . . . , Ul, where G1 = 〈P 〉, α is chosen randomly from ZZp and the other quantities are chosen
randomly from G1.

Master Secret. The master secret is αP2.

A Useful Notation: Let v = (v1, . . . , vl), where each vi is an (n/l)-bit string and is considered to
be an element of ZZ2n/l . For 1 ≤ k ≤ h we define,

Vk(v) = U ′
k +

l∑
i=1

viUi. (1)

The modularity introduced by this notation allows an easier understanding of the protocol, since
one does not need to bother about the exact value of l. When v is clear from the context we will
write Vk instead of Vk(v).

Key Generation: Let v = (v1, . . . , vj), 1 ≤ j ≤ h, be the identity for which the private key
is required. Choose r1, . . . , rj randomly from ZZp and define dv = (d0, d1, . . . , dj) where d0 =
αP2 +

∑j
k=1 rkVk(vk) and dk = rkP for 1 ≤ k ≤ j. This defines a private key corresponding to

an identity v = (v1, . . . , vj). The requirement of HIBE protocol is to be able to delegate keys. The
delegation technique is essentially based on the Boneh-Boyen [4] technique and details can be found
in [13].

Encryption: Let v = (v1, . . . , vj) be the identity under which a message M ∈ G2 is to be encrypted.
Choose t to be a random element of ZZp. The ciphertext is

(C0 = M × e(P1, P2)t, C1 = tP,B1 = tV1(v1), . . . , Bj = tVj(vj)). (2)

Decryption: Let C = (C0, C1, B1, . . . , Bj) be a ciphertext and the corresponding identity v =
(v1, . . . , vj). Let (d0, d1, . . . , dj) be the decryption key corresponding to the identity v. The decryp-
tion steps are as follows.

Verification. Verify whether C0 is in G2, C1 and the Bi’s are in G1. If any of these verifications
fail, then return bad, else proceed with further decryption as follows.

Return C0 ×
∏j

k=1
e(Bi,di)

e(d0,C1) .

3 CCA-Secure HIB-KEM

In this section, we modify the CPA-secure HIBE protocol in Section 2.2 to obtain a CCA-secure
HIB-KEM protocol. The modification consists of certain additions to the set-up procedure as well
as modification of the encryption and the decryption algorithm to obtain the encapsulation and
decapsulation algorithms respectively. No changes are required in the key generation algorithm and
hence we do not include it below. The additional changes are based on the technique used by
Boyen-Mei-Waters [9] and are also based on the IBE construction by Boneh-Boyen [4] (BB-IBE).

Set-Up: In addition to the set-up for the HIBE protocol of Section 2.2 the following are required.

– A collision resistant hash function H is randomly chosen from a CRHF family {Hk}k∈K, where
each Hk : {1, . . . , h} ×G1 → ZZp.

– A random element W ∈ G1.

Key Generation: This is the same as the key generation of the protocol in 2.2.

Key Encapsulation: Let v = (v1, . . . , vj) be the identity for which a key encapsulation is to be done.

– Choose t to be a random element of ZZp.
– The secret key of the symmetric encryption algorithm is (a suitable hash of) e(P1, P2)t.
– The encapsulated key is formed as follows:

Compute tP ; γ = H(j, tP); and Wγ = W + γP1.
The encapsulated key is
(C1 = tP, C2 = tWγ , B1 = tV1(v1), . . . , Bj = tVj(vj)).

Compared to (2), the encapsulated key in the current protocol has one extra component (C2) but
does not have the encryption of the message.

Key Decapsulation: Let C = (C1, C2, B1, . . . , Bj) be an encapsulated key corresponding to an
identity v = (v1, . . . , vj). The decapsulation steps are as follows.

– Compute V1(v1), . . . , Vj(vj). (These can be precomputed.)
– Compute γ = H(j, C1) and Wγ = W + γP1.
– Perform the following verifications:

Verify that each component of C is an element of G1;
verify e(C1,Wγ) = e(P,C2); and
for 1 ≤ i ≤ j, verify e(C1, Vi) = e(P,Bi).
Note that all the verifications can be done publicly and does not require the secret key.

– If any of the verifications fail, then return bad else return e(d0,C1)∏j

k=1
e(Bi,di)

.

The purpose of the public verification tests is to ensure that any decapsulation query is of the form
(tP, tWγ , tV1(v1), . . . , tVj(vj)) for some t. This ensures the well-formedness of the ciphertext. The
construction of HIB-KEM can be viewed as consisting of two structures – a HIBE and a selective-
ID secure BB-IBE. The public parameters of the IBE consists of (P, P1, P2,W). The encryption
consists of encrypting the message twice – once for the HIBE and the second time for the IBE
under the identity derived from the randomizer tP and the depth j of the identity. This second
encryption is not actually used in the protocol. It is used in the security proof, where the simulator
derives the secret key corresponding to the identity obtained from tP and j and then decrypts the
message. This technique for handling decryption queries is essentially due to Boyen-Mei-Waters [9].

An Alternative Verification Idea. The well-formedness of the ciphertext is ensured by the com-
parisons “for 1 ≤ i ≤ j, verify e(C1, Vi) = e(P,Bi)”. This requires 2j many pairing computations
which is quite costly. An alternative (suggested by a reviewer for Eurocrypt 2007) is the following.
Randomly choose s1, . . . , sj from ZZp. Replace the computation within quotes by the following
computation: Verify whether e(C1,

∑j
i=1 siVi) = e(P,

∑j
i=1 siBi). This removes the 2j pairing com-

putations from the verification. However, it introduces 2j scalar multiplications for computing
s1V1, . . . , sjVj , s1B1, . . . , sjBj . While a scalar multiplication is certainly cheaper than a pairing
computation, by itself it is quite costly. In the worst case, j = h and there is an overhead of 2h
scalar multiplication for verifying the well-formedness of the ciphertext using this approach. In our
second construction (given in Section 4.3) we show that the pairing verifications can be done away
with at essentially no extra cost. In particular, no additional scalar multiplications are required.

3.1 An Incorrect Construction

The use of the function H() is different from its use in [9]. In [9], the function H() maps G1 to
ZZp. On the other hand, in the HIB-KEM protocol above, H() maps {1, . . . , h} × G1 to ZZp. Our
aim is to include information about the length of the identity into the output of H(). Without this
information, an encapsulation for a (j + 1)-level identity can be converted to an encapsulation for
its j-level prefix by simply dropping the term corresponding to the last component in the identity.
(This was pointed out by a reviewer of an earlier version of this work.) We consider this in more
details.

Suppose that H() is a map from G1 to ZZp and the rest of the protocol is unchanged. Now
suppose that (C1, C2, B1, . . . , Bj) is a ciphertext obtained for an identity v = (v1, . . . , vj), with

j > 1. Then it is easy to see that (C1, C2, B1, . . . , Bj−1) is a valid ciphertext corresponding to the
identity (v1, . . . , vj−1). Not only that, both these encapsulate the same secret symmetric key.

This leads to an easy attack on the corresponding protocol. Let the challenge identity be v
and let (C1, C2, B1, . . . , Bj) be the obtained challenge ciphertext. In the second phase, ask the
decryption oracle for the decryption of (C1, C2, B1, . . . , Bj−1) under (v1, . . . , vj−1). Under the rules
of the game, this is an allowed query. The answer will be the symmetric key which is encapsulated
by the challenge ciphertext. As mentioned in the introduction, the HIB-KEM protocol suggested
in [22] and described in [3] suffers from the above problem.

In our protocol, the domain of H() is {1, . . . , h} × G1. This ensures that the component C2

of the ciphertext incorporates information about the length of the identity. With this, the simple
mauling of the ciphertext outlined above no longer works and one can obtain a proof of security as
described below.

3.2 Security Statement

The protocol in Section 2.2 is proved to be secure in [13] and the proof is based on ideas introduced
in [27, 4]. Basically, the simulator is unable to answer certain types of key extraction queries and also
unable to provide challenge ciphertext for certain challenge identities. This leads the simulator to
abort and output a random bit. The main analysis is to lower bound the probability of not abort.
Also, as introduced in [27] and increasingly used in different papers, the technique of “artificial
abort” is used to ensure that the probability of not abort is almost the same for all adversarial
queries. This introduces an extra component in the runtime of the simulator.

Since the new protocol is based on the protocol in Section 2.2, it inherits all the features of the
earlier protocol. The exact security statement for the new protocol is given below.

Theorem 1. The HIB-KEM protocol described above is (εhib-kem, t, qID, qC)-CCA secure assuming
that the (t′, εdbdh)-DBDH assumption holds in 〈G1, G2, e〉, where

εhib-kem ≤ 2εcrhf +
εdbdh

λ
;

t′ = t+ χ(εhibe); and

χ(ε) = O(τ(qC + qID) +O(ε−2 ln(ε−1)λ−1 ln(λ−1)));
τ is the time required for one scalar multiplication in G1;
λ = 1/(2h(2σ(µl + 1))h) with µl = l(2n/l − 1), σ = max(2qID, 2n/l).

We further assume 2σ(1 + µl) < p.

The proof of the Theorem is given in Section B. The statement of Theorem 1 is almost the same
as that of Theorem 1 in [13] with two differences.

1. The above theorem states CCA-security where as [13] proves CPA-security.
2. The value of λ is equal to 1/(2h(2σ(µl + 1))h) in the above statement where as it is equal to

1/(2(2σ(µl + 1))h) in [13].

For 2qID ≥ 2n/l (typically l would be chosen to ensure this), we have

εhib-kem ≤ 2εcrhf + 2h(4lqID2n/l)hεdbdh.

The corresponding bound in [13] is 2(4lqID2n/l)hεdbdh. Thus, we get an additional security degra-
dation of εdbdh by a factor of h while attaining CCA-security. Since h is the maximum number of
levels in the HIBE, its value is small and the degradation is not significant.

The statement of Theorem 1 is a little complicated. The complexity is actually inherited from
the corresponding security statement in [13] for the protocol in Section 2.2. These arise from the
requirement of tackling key extraction queries and providing challenge ciphertexts. In particular, λ
is a lower bound on the probability of not abort by the simulator and O(ε−2 ln((ε−1λ−1 ln(λ−1))) is
the extra runtime introduced due to the artificial abort requirement. In [13], the security degradation
is worked out in more details and much of these also hold for Theorem 1. Hence, we do not repeat
the analysis in this paper.

What have we gained? The currently known techniques for converting a CPA-secure HIBE protocol
to a CCA-secure HIBE protocol, starts with an (h+1)-level CPA-secure HIBE and then converts it
to an h-level CCA-secure HIBE. The security degradation thus correspond to the (h+1)-level HIBE.
If we apply this technique to the protocol in [13] (see Section 2.2), then the security degradation
for the obtained h-level CCA-secure HIBE will be 2(4lq2n/l)h+1. Compared to this, the security
degradation given by Theorem 1 is 2h(4lq2n/l)h. In other words, we have managed to reduce the
exponent from (h + 1) to h and have introduced a multiplicative factor of h. The net effect is
a substantial gain in controlling security degradation. The effect of security degradation on the
size of the groups can be very pronounced as has been analyzed in [12]. Any significant gain in
reducing security degradation has a considerable effect on the time required for performing scalar
multiplication and pairing in the underlying groups.

What have we lost? The reduction in security degradation comes at a cost of increasing the total
number of pairings in the decapsulation. Here, we emphasize that the number of pairings go up.
However, when one chooses a larger size group to compensate for the larger security degradation,
the total time required for executing the entire decapsulation algorithm may actually go up even
though the total number of pairings is less. This is because each operation will then be performed
on larger size groups. Settling this point needs a careful comparison of the total time of the two
protocols in different size groups. Here, we do not perform such a comparison. The reason is that
we are actually able to do away with almost all the pairing verifications during decapsulation.

4 Hierarchical ID-Based Tag-KEM

The CCA-secure HIB-KEM in Section 3 performs several pairing based verifications during decap-
sulation. There are j pairing verifications for an identity of j levels. The aim of these is to ensure
the well-formedness of the encapsulated key. These pairings are quite costly and will take up the
major time for decapsulation.

In this section, we describe a method to do away with the pairing verifications. Basically the
following is done. The secret key in the encapsulation algorithm is e(P1, P2)t. From this we produce
two keys (mk, dk) using a key derivation function (KDF). The key mk is the secret key of a MAC
algorithm, where as dk is the secret key of a symmetric encryption algorithm. The actual message
is encrypted using dk to produce a ciphertext cpr. A MAC chksum of this cpr is computed under
mk. The chksum is sent along with the encrypted message. The idea is that if the adversary changes
the public key part, then the keys (mk, dk) will change and the chksum will not be verified at the
receiving end. Thus, we can do away with the pairing verifications.

The above approach does not separate between the public key and the symmetric encryption
algorithm. It is certainly convenient to separate the two parts, as then one can separately reason
about the security requirements of the two parts. To obtain such a separation, we have to divide
the encapsulation algorithm into two phases. In the first phase, the keys (mk, dk) are produced.
The input to the first phase are v and pk as usual. The ciphertext produced by the DEM is input
to the second phase, which then produces a MAC on it. While looking at the KEM part, we want
to remain oblivious of the DEM. We do this by saying that the second phase of the encapsulation
algorithm takes a tag as input. Thus, what we are doing is really drawing the abstraction boundary
between the KEM and the DEM parts a little differently.

This approach has been recently adopted in the context of PKE [1] where the KEM part has been
called a Tag-KEM. A generic composition result proved in [1] shows that it is possible to combine
a CCA-secure Tag-KEM with a one-time secure DEM to obtain a CCA-secure PKE. The notion
of Tag-KEM can be easily extended to the HIBE setting. In this section, we briefly summarize this
extension. In doing so, we will closely follow the notation used in [1]. In the following, the set KD

denotes the key space of a suitable symmetric encryption algorithm.

Definition: HIB-Tag-KEM (HTKEM) is defined by five algorithms.

– HTKEM.Setup: Takes as input a security parameter and outputs (pk, sk), where pk is the public
parameter of the PKG and sk is the master secret of the PKG. It also defines the domains of
tags, encapsulated keys and identities.

– HTKEM.KeyGen(v, dv|j−1
, pk): This is the same as that for HIBE defined in Section 2.1.

– HTKEM.Key(v, pk): Takes as input pk and v and returns (ω, dk) as output, where dk ∈ KD and
ω is state information.

– HTKEM.Enc(ω, cpr, v): Here cpr is the tag. Outputs ψ.
– HTKEM.Decap(v, dv, ψ, cpr, pk): Outputs dk.

As usual, for soundness, we require that HTKEM.Decap(v, dv, ψ, τ, pk) = dk must hold for all v, dv,
pk, sk, dk, ψ, τ associated by the above five algorithms. For more details on the interpretation of
the above model in the PKE setting see [1]. Much of these also hold in the identity based setting.

4.1 Security Model for HIB-Tag-KEM

The adversary AOD,OP is a probabilistic algorithm with access to the two oracles OD and OP . The
adversarial game is defined as follows.

1. generate (pk, sk) using HTKEM.Setup.
2. (st1, v∗)← AOD,OP (pk).
3. (ω∗, dk1)← HTKEM.Key(v∗, pk);

choose dk0 randomly from KD; choose δ to be a random bit.
4. (cpr∗, st2)← AOD,OP (st1, dkδ).
5. ψ∗ ← HTKEM.Enc(ω∗, cpr∗, v∗).
6. δ′ ← AOD,OP (st2, ψ).

The variables st1, st2 are state variables that the adversary uses to carry information from one
phase to another. There are several natural restrictions on the use of the oracles by the adversary.
In Step 2, the adversary outputs an identity v∗; the adversary must not query OP with v∗ or any

of its prefixes in either Steps 2, 4 or 6. In Step 6, the adversary is not allowed to query OD with
(v∗, ψ∗, τ∗). Additionally, certain queries are useless for the adversary and we will assume that the
adversary does not make such queries. If the adversary knows the secret key corresponding to an
identity v (by querying OP), then he does not query OD on v or any identity of which v is a prefix.
The advantage of the adversary in winning this game is defined as

AdvHTKEM
A =

∣∣Pr[δ = δ′]− 1/2
∣∣ .

As in the case of HIB-KEM, we define the resource bounded versions of the above advantage in an
analogous manner.

4.2 Generic Construction of Hybrid CCA-Secure HIBE

As mentioned earlier, the importance of considering HTKEM is that one can generically combine
a CCA-secure HTKEM with a one-time secure DEM to obtain a CCA-secure HIBE. This parallels
a similar construction in the PKE setting as shown in [1].

Set-Up: Invoke HTKEM.Setup to obtain (pk, sk).
Key Extraction: Given v return HTKEM.KeyGen(v, dv|j−1

, pk).
Encryption: A message M is encrypted using an identity v in the following manner.

1. (ω, dk)← HTKEM.Key(v, pk);
2. cpr← DEM.Encdk(M);
3. ψ ← HTKEM.Enc(ω, cpr, v);
4. output c = (ψ, cpr) and v.

Decryption: Given (c, v), the decryption is as follows.
1. (ψ, cpr)← c;
2. dk ← HTKEM.Dec(v, dv, ψ, cpr, pk);
3. M ← DEM.Decdk(χ);
4. output M .

The above construction yields a CCA-secure (hybrid) HIBE. The corresponding result for PKE
was proved in [1]. The same proof also works for the identity based protocol, with the obvious
modification that any private key query by the adversary attacking HIBE is answered by the
simulator by querying the key extraction oracle of the HTKEM. The rest of the proof goes through
without any other change.

Theorem 2. If HTKEM is (εhtkem, t)-CCA secure and DEM is (εdem, t)-secure, then HIBE is
(εhibe, t)-CCA secure, where εhibe ≤ 2εhtkem + εdem.

Informally, we say that if HTKEM is CCA-secure and DEM is one-time secure, then the above
hybrid HIBE is CCA-secure.

4.3 Construction of HIB-Tag-KEM

The main contribution of this paper is a modification of the HIB-KEM protocol of Section 3 to
obtain a HIB-Tag-KEM protocol. This is a non-generic construction. (A generic construction of
HIB-Tag-KEM along the lines of a generic construction of a Tag-KEM in [1] is possible but is of
less interest.)

HTKEM.Setup and HTKEM.KeyGen(v = (v1, . . . , vj), dv|j−1
, pk). These two are same as the HIB-

KEM protocol in Section 3.

HTKEM.Key(v = (v1, . . . , vj), pk):

1. Choose t randomly from ZZp;
2. Define φ = (C1 = tP, C2 = tWγ , B1 = tV1(v1), . . . , Bj = tVj(vj)),

where Wγ = W + γP1 and γ = H(j, C1);
3. Set K = e(P1, P2)t and (dk,mk) = KDF(K);
4. output (dk, ω = (mk, φ)).

HTKEM.Enc(ω, cpr, v):

1. (mk, φ) = ω;
2. chksum = MAC.Signmk(cpr);
3. output ψ = (φ, chksum).

HTKEM.Dec(v = (v1, . . . , vj), dv = (d0, d1, . . . , dj), ψ, cpr, pk):

1. (φ, chksum) = ψ where φ = (C1, C2, B1, . . . , Bj);
2. Compute Wγ = W + γP1 where γ = H(j, C1);
3. if e(C1,Wγ) 6= e(P,C2), return bad;
4. K = e(d0, C1)/(

∏j
k=1 e(Bi, di));

5. (mk, dk) = KDF(K);
6. if MAC.Vermk(cpr, chksum) 6= 1, return bad;
7. else return dk.

Theorem 3. If {Hk}k∈K is (εcrhf , t)-secure, MAC is (εmac, t
′)-secure, KDF is (εkdf , t

′)-secure and
the (εdbdh, t+χ(εhtkem))-DBDH assumption holds in 〈G1, G2, e〉, then HTKEM is (εhtkem, t, qID, qC)-
CCA secure, where,

2εhtkem ≤ 2εcrhf + εdbdh/λ+ 4εkdf + 4hqC(εkdf + εmac).

Here h is the maximum number of levels in the HIBE; χ() and λ are as defined in Theorem 1.
Further, t′ = t+O(τ(qID + qC)).

We present the proof in Section C.

Discussion: The above construction is more efficient than that of Section 3 in the sense that we can
avoid all but one pairing computations for the verification of well-formedness of the ciphertext. The
technique to achieve CCA-security in [9] requires pairing verifications as in Section 3. On the other
hand, the transformations in [11, 8] do not perform pairing computations to test well-formedness.
Applying the MAC-based transformation of [8] to the protocol in Section 2.2 results in CCA-secure
HIBE where the number of operations is approximately same as the number of operation in the
protocol of this section.

CCA-secure protocols resulting from applying the previously known techniques yield an h-level
HIBE whose exponent of security degradation is h + 1. In contrast, for both the protocols in
Section 3 and this section, the exponent of security degradation for an h-level HIBE is h. This
reduction in security degradation, while retaining the efficiency of MAC based approach, is the
main contribution of this work.

5 Conclusion

We have presented two constructions of CCA-secure HIBE in the KEM/DEM framework. Both of
these protocols are secure in the full model without random oracle and are obtained by modifying
a recent construction of CPA-secure HIBE [13]. The first construction uses a number of expensive
pairings to verify the well-formedness of the encapsulated key. The second construction removes
these pairings by properly using a MAC algorithm. This requires us to extend the notion of Tag-
KEM/DEM framework to the hierarchical identity based setting. The main point of both our
constructions is that the security degradation for an h-level HIBE is exponential in h. Applying
previous constructions [11, 8, 9] to the CPA-secure protocol in [13] yields a CCA-secure HIBE
protocol where the security degradation for an h-level HIBE is exponential in (h+1). This reduction
in the exponent of security degradation from (h+1) to h is significant in choosing smaller size groups
for practical implementations.

References

1. Masayuki Abe, Rosario Gennaro, Kaoru Kurosawa, and Victor Shoup. Tag-KEM/DEM: A New Framework for
Hybrid Encryption and A New Analysis of Kurosawa-Desmedt KEM. In Cramer [15], pages 128–146.

2. Paulo S. L. M. Barreto, Hae Yong Kim, Ben Lynn, and Michael Scott. Efficient Algorithms for Pairing-Based
Cryptosystems. In Moti Yung, editor, CRYPTO, volume 2442 of Lecture Notes in Computer Science, pages
354–368. Springer, 2002.

3. James Birkett, Alexander W. Dent, Gregory Neven, and Jacob Schuldt. Identity based key encapsulation with
wildcards. Cryptology ePrint Archive, Report 2006/377, 2006. http://eprint.iacr.org/.

4. Dan Boneh and Xavier Boyen. Efficient Selective-ID Secure Identity-Based Encryption Without Random Oracles.
In Cachin and Camenisch [10], pages 223–238.

5. Dan Boneh and Xavier Boyen. Secure Identity Based Encryption Without Random Oracles. In Franklin [17],
pages 443–459.

6. Dan Boneh, Xavier Boyen, and Eu-Jin Goh. Hierarchical Identity Based Encryption with Constant Size Cipher-
text. In Cramer [15], pages 440–456. Full version available at Cryptology ePrint Archive; Report 2005/015.

7. Dan Boneh and Matthew K. Franklin. Identity-Based Encryption from the Weil Pairing. SIAM J. Comput.,
32(3):586–615, 2003. Earlier version appeared in the proceedings of CRYPTO 2001.

8. Dan Boneh and Jonathan Katz. Improved Efficiency for CCA-Secure Cryptosystems Built Using Identity-Based
Encryption. In Alfred Menezes, editor, CT-RSA, volume 3376 of Lecture Notes in Computer Science, pages
87–103. Springer, 2005.

9. Xavier Boyen, Qixiang Mei, and Brent Waters. Direct Chosen Ciphertext Security from Identity-Based Tech-
niques. In Vijay Atluri, Catherine Meadows, and Ari Juels, editors, ACM Conference on Computer and Com-
munications Security, pages 320–329. ACM, 2005.

10. Christian Cachin and Jan Camenisch, editors. Advances in Cryptology - EUROCRYPT 2004, International
Conference on the Theory and Applications of Cryptographic Techniques, Interlaken, Switzerland, May 2-6, 2004,
Proceedings, volume 3027 of Lecture Notes in Computer Science. Springer, 2004.

11. Ran Canetti, Shai Halevi, and Jonathan Katz. Chosen-Ciphertext Security from Identity-Based Encryption. In
Cachin and Camenisch [10], pages 207–222.

12. Sanjit Chatterjee and Palash Sarkar. Trading Time for Space: Towards an Efficient IBE Scheme with Short(er)
Public Parameters in the Standard Model. In Dong Ho Won and Seungjoo Kim, editors, ICISC, volume 3935 of
Lecture Notes in Computer Science, pages 424–440. Springer, 2005.

13. Sanjit Chatterjee and Palash Sarkar. HIBE with Short Public Parameters Without Random Oracle. In X. Lai
and K. Chen, editors, ASIACRYPT, volume 4284 of Lecture Notes in Computer Science, pages 145–160. Springer,
2006. see also Cryptology ePrint Archive, Report 2006/279, http://eprint.iacr.org/.

14. Sanjit Chatterjee and Palash Sarkar. New Constructions of Constant Size Ciphertext HIBE Without Random
Oracle. In M.S. Rhee and B. Lee, editors, ICISC, volume 4296 of Lecture Notes in Computer Science, pages
310–327. Springer, 2006.

15. Ronald Cramer, editor. Advances in Cryptology - EUROCRYPT 2005, 24th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Aarhus, Denmark, May 22-26, 2005, Proceedings,
volume 3494 of Lecture Notes in Computer Science. Springer, 2005.

16. Ronald Cramer and Victor Shoup. A Practical Public Key Cryptosystem Provably Secure Against Adaptive
Chosen Ciphertext Attack. In Hugo Krawczyk, editor, CRYPTO, volume 1462 of Lecture Notes in Computer
Science, pages 13–25. Springer, 1998.

17. Matthew K. Franklin, editor. Advances in Cryptology - CRYPTO 2004, 24th Annual International Cryptology-
Conference, Santa Barbara, California, USA, August 15-19, 2004, Proceedings, volume 3152 of Lecture Notes in
Computer Science. Springer, 2004.

18. Steven D. Galbraith, Keith Harrison, and David Soldera. Implementing the Tate Pairing. In Claus Fieker and
David R. Kohel, editors, ANTS, volume 2369 of Lecture Notes in Computer Science, pages 324–337. Springer,
2002.

19. Craig Gentry and Alice Silverberg. Hierarchical ID-Based Cryptography. In Yuliang Zheng, editor, ASIACRYPT,
volume 2501 of Lecture Notes in Computer Science, pages 548–566. Springer, 2002.

20. Jeremy Horwitz and Ben Lynn. Toward Hierarchical Identity-Based Encryption. In Lars R. Knudsen, editor,
EUROCRYPT, volume 2332 of Lecture Notes in Computer Science, pages 466–481. Springer, 2002.

21. Eike Kiltz. Chosen-ciphertext secure identity-based encryption in the standard model with short ciphertexts.
Cryptology ePrint Archive, Report 2006/122, 2006. http://eprint.iacr.org/.

22. Eike Kiltz and David Galindo. Direct chosen-ciphertext secure identity-based key encapsulation without random
oracles. In Lynn Margaret Batten and Reihaneh Safavi-Naini, editors, ACISP, volume 4058 of Lecture Notes in
Computer Science, pages 336–347. Springer, 2006. full version available at http://eprint.iacr.org/2006/034.

23. Kaoru Kurosawa and Yvo Desmedt. A New Paradigm of Hybrid Encryption Scheme. In Franklin [17], pages
426–442.

24. David Naccache. Secure and Practical Identity-Based Encryption. Cryptology ePrint Archive, Report 2005/369,
2005. http://eprint.iacr.org/.

25. Adi Shamir. Identity-Based Cryptosystems and Signature Schemes. In G. R. Blakley and David Chaum, editors,
CRYPTO, volume 196 of Lecture Notes in Computer Science, pages 47–53. Springer, 1984.

26. Victor Shoup. Sequences of Games: a Tool for Taming Complexity in Security Proofs. Cryptology ePrint Archive,
Report 2004/332, 2004. http://eprint.iacr.org/.

27. Brent Waters. Efficient Identity-Based Encryption Without Random Oracles. In Cramer [15], pages 114–127.

Appendix

A Definitions

A.1 Security Model

We describe the full security model for HIB-KEM which is a minor variant of the full security
model for HIBE. The adversary AOD,OP is a probabilistic algorithm with access to two oracles OD

(the decapsulation oracle) and OP (the private key extraction oracle). On querying OP with v, the
adversary obtains dv the secret key corresponding to v. Similarly, on querying OD with (v, ω), the
adversary obtains either dk or bad.

The adversarial game is defined as follows.

1. generate (pk, sk) using HIBE.Setup.
2. (state, v∗)← AOD,OP (pk).
3. (ω∗, dk1)← HIBE.Encap(v∗, pk);

choose dk0 randomly from KD; choose δ to be a random bit.
4. δ′ ← AOD,OP (state, ω∗, dkδ).

The variable state is used by the adversary to carry information from one phase to another. Step 2
correspond to the first phase of the game, whereby the adversary interacts with the oracles and

produces a challenge identity v∗. In Step 3, the challenge step, the adversary is given ω∗ and either
the secret key corresponding to ω∗ or a random secret key according as δ is 1 or 0. The second
phase is Step 4, where the adversary guesses the value of δ. There are several natural restrictions
on the use of the oracles by the adversary. In Steps 2 and 4, the adversary cannot ask OP for the
secret key of v∗ or any of its prefixes. Similarly, in Step 4, it cannot ask OD for the decapsulation
of (v∗, ω∗). Additionally, certain queries are useless for the adversary and we will assume that the
adversary does not make such queries. If the adversary knows the secret key corresponding to an
identity v (by querying OP), then he does not query OD using v or any identity of which v is a
prefix. The advantage of the adversary in winning this game is defined as

AdvHIB-KEM
A =

∣∣Pr[δ = δ′]− 1/2
∣∣ . (3)

The quantity AdvHIB-KEM(t, qID, qC) denotes the maximum of AdvHIB-KEM
A where the maximum is

taken over all adversaries running in time at most t and making qC queries to the decryption oracle
and qID queries to the key-extraction oracle. A HIB-KEM protocol is said to be (ε, t, qID, qC)-CCA
secure, if ε = AdvHIB-KEM(t, qID, qC).

A.2 CPA-Security

In the adversarial game, we can restrict the adversary A from querying the decryption oracle.
AdvHIB-KEM(t, q) in this context denotes the maximum advantage where the maximum is taken
over all adversaries running in time at most t and making at most q queries to the key-extraction
oracle. A HIBE protocol is said to be (ε, t, q)-CPA secure, if ε = AdvHIB-KEM(t, q).

A.3 Cryptographic Bilinear Map

Let G1 and G2 be cyclic groups having the same prime order p and G1 = 〈P 〉, where we write G1

additively and G2 multiplicatively. A mapping e : G1 ×G1 → G2 is called a cryptographic bilinear
map if it satisfies the following properties.

– Bilinearity : e(aP, bQ) = e(P,Q)ab for all P,Q ∈ G1 and a, b ∈ ZZp.
– Non-degeneracy : If G1 = 〈P 〉, then G2 = 〈e(P, P)〉.
– Computability : There exists an efficient algorithm to compute e(P,Q) for all P,Q ∈ G1.

Since e(aP, bP) = e(P, P)ab = e(bP, aP), e() also satisfies the symmetry property. The modified
Weil pairing [7] and Tate pairing [2, 18] are examples of cryptographic bilinear maps.

Known examples of e() have G1 to be a group of Elliptic Curve (EC) points and G2 to be a
subgroup of a multiplicative group of a finite field. Hence, in papers on pairing implementations
[2, 18], it is customary to write G1 additively and G2 multiplicatively. On the other hand, some
“pure” protocol papers such as [5, 27] write both G1 and G2 multiplicatively though this is not true
of the initial protocol papers [7, 19]. Here we follow the first convention as it is closer to the known
examples.

A.4 Hardness Assumption

The decisional bilinear Diffie-Hellman (DBDH) problem in 〈G1, G2, e〉 [7] is as follows: Given a
tuple 〈P, aP, bP, cP, Z〉, where Z ∈ G2, decide whether Z = e(P, P)abc (which we denote as Z is

real) or Z is random. The advantage of a probabilistic algorithm B, which takes as input a tuple
〈P, aP, bP, cP, Z〉 and outputs a bit, in solving the DBDH problem is defined as

AdvDBDH
B = |Pr[B(P, aP, bP, cP, Z) = 1|Z is real]− Pr[B(P, aP, bP, cP, Z) = 1| Z is random]| (4)

where the probability is calculated over the random choices of a, b, c ∈ ZZp as well as the random
bits used by B. The quantity AdvDBDH(t) denotes the maximum of AdvDBDH

B where the maximum
is taken over all adversaries B running in time at most t. We have the (ε, t)-DBDH assumption, if
ε = AdvDBDH(t).

A.5 Components (DEM, MAC, KDF, CRHF)

In the following, we will require different components such as data encapsulation mechanism (DEM),
message authentication code (MAC) and key derivation function (KDF). We briefly introduce and
state the security notions for DEM, MAC and KDF.

A DEM is a symmetric encryption scheme that consists of two algorithms DEM.Enc and
DEM.Dec. We require a DEM to satisfy a notion of security called one-time security which is the
following. An adversary chooses two equal length messages; one of this is randomly selected and
the adversary is given a ciphertext for this message under a randomly chosen key; the adversary
has to determine which message has been encrypted.

A MAC has two algorithms MAC.Sign (the signing algorithm) and MAC.Ver (the verification
algorithm). Both the algorithms use a common secret key. The security notion required of the
MAC scheme is the following. The adversary chooses a message msg; a tag is produced under a
randomly chosen secret key mk by computing tag = MAC.Signmk(msg); the adversary is given
tag; the adversary now has to produce a message tag pair (msg′, tag′) such that msg 6= msg′ and
MAC.Vermk(msg′, tag′) is true.

A KDF is a function KDF() which takes an input K and produces two keys (dk,mk) as output,
where dk (resp. mk) is the secret key for the DEM (resp. MAC). The security notion for KDF is
the following. For a randomly chosen K, the adversary has to distinguish between KDF(K) and a
randomly chosen (dk,mk).

A function family {Hk}k∈K is said to be a collision resistant hash function (CRHF) family if
the following adversarial task is difficult. The adversary is given a randomly chosen k ∈ K and has
to find x 6= x′ in the domain of the family such that Hk(x) = Hk(x′). We say that the family is
(ε, t)-secure if the maximum probability of an adversary running in time t and of finding a collision
is ε.

Notation: We say that a DEM (resp. MAC, KDF, CRHF) is (ε, t)-secure if the maximum advantage
of an adversary running in time t of breaking the DEM (resp. MAC, KEM) is ε. Similarly, we say that
a HIBE (resp. HIB-KEM) is (ε, t, qID, qC)-CCA secure if the maximum advantage of an adversary
running in time t and making qID key extraction queries and qC decryption (resp. decapsulation)
queries of breaking the HIBE (resp. HIB-KEM) is ε. Lastly, we say that the (ε, t)-DBDH assumption
holds if the maximum advantage of an adversary running in time t for solving DBDH is ε. By εxxx we
will denote the advantage corresponding to XXX, where XXX is one of DBDH, HIBE, HIB-KEM,
DEM, MAC, KDF, CRHF.

B Proof of Theorem 1

The construction of CCA-secure HIB-KEM in Section 3 is built on the construction of CPA-secure
HIBE given in [13] (see Section 2.2). The proof of security given in [13] shows how to answer
key-extraction queries and generate the challenge ciphertext. Our proof of Theorem 1 incorporates
these aspects of the proof in [13]. Additionally, the proof shows how to answer decapsulation queries.
Further, the protocol in Section 3 produces a ciphertext which has one more component than the
protocol in [13]. During challenge generation, we show how to generate this component as well.

It might appear that to understand the proof of Theorem 1, it is essential for a reader to have
detailed knowledge of the proof given in [13]. This is actually not the case. Since the techniques
for handling key extraction queries and decapsulation queries are separate, in the proof below
we focus only on the decapsulation queries and gloss over the details of key extraction queries
which have already been provided in [13]. The parts of the game which are new to this paper (in
particular the simulation of decapsulation queries and the relevant part on challenge generation)
can be understood without reading [13].

The proof of Theorem 1 is given as a sequence games. In each game a bit δ is chosen randomly
and the adversary makes a guess δ′. By Xi we denote the event that δ = δ′ in the ith game.

Game 0: This is the usual adversarial game for defining CCA-security of HIB-KEM protocols. We
assume that the adversary’s runtime is t, it makes qID key-extraction queries and qC decapsulation
queries. Also, we assume that the adversary maximizes the advantage among all adversaries with
similar resources. Thus, we have εhib-kem =

∣∣∣Pr[X0]− 1
2

∣∣∣ .
Game 1: This is the same as Game 0, with the following change. If the adversary ever submits
two decapsulation queries of the forms (C1, C2, B1, . . . , Bj) and (C ′

1, C
′
2, B

′
1, . . . , B

′
j′), with (j, C1) 6=

(j′, C ′
1) and H(j, C1) = H(j, C ′

1), then the simulator rejects the second query. Let F1 be the event
that a decapsulation query is rejected only by this check. It is easy to see that Pr[F1] ≤ εcrhf . If
F1 does not occur, then Game 0 and Game 1 are identical. Using the difference lemma (as named
in [26]), we obtain

|Pr[X0]− Pr[X1]| ≤ Pr[F1] ≤ εcrhf .

Game 2: This game is the main non-trivial game of the proof. The protocol is setup from a tuple
(P, P1 = aP, P2 = bP, P3 = cP, Z = e(P, P)abc), where we assume that a, b and c are known
to the simulator. There are four parts to this game – setup; simulation of key-extraction queries;
simulation of decapsulation queries; and challenge generation.

For certain queries as well as for certain challenge identities, the simulator is unable to answer
without using the values of a, b or c. In such cases, it sets a flag flg to 1 (which is initially set
to 0). However, it always answers the adversary’s queries properly and hence the adversary’s view
remains unchanged from the previous game. Thus, we have Pr[X1] = Pr[X2].

Set-Up: Set P1 = aP and P2 = bP . The secret key is bP2 = abP which is not known to the
simulator.

The public parameters (U ′
1, . . . , U

′
h, U1, . . . , Ul) are required to handle key extraction queries.

They have no role in answering decapsulation queries. The proper construction of these parameters
are given in [13] and we do not include these here.

The parameter W is required for answering decapsulation queries (and is not present in [13]).
We show how to define W . Randomly choose a jθ from {1, . . . , h} and compute γ = H(jθ, P3);
choose β randomly from ZZp and define W = −γP1 + βP . The choice of jθ corresponds to the fact
that at this point we are guessing the length of the challenge identity.

Key Extraction Query: The technique for answering such queries are described in detail in [13] and
hence we do not provide these here. We only note that answering certain queries require the use of
the values a or b. In all such cases, the simulator set flg to one.

Decapsulation Query: Suppose C = (C1, C2, B1, . . . , Bj) is a decapsulation query for the identity
v = (v1, . . . , vj). Compute γ′ = H(j, C1) and Wγ′ = W + γ′P1. The simulator then runs the public
verification tests (i.e., e(C1,W

′
γ) = e(P,C2) and for 1 ≤ i ≤ j, e(C1, Vi) = e(P,Bi)) from the

decapsulation procedure and proceeds if the test succeeds. If the test fails, it returns bad to A.
Note that, at this point, since we have already verified that e(C1,W

′
γ) = e(P,C2), we can write

C1 = tP and C2 = tWγ′ for some t in ZZp.
Choose r randomly from ZZp and compute Eγ′ and dγ′ in the following manner. Recall that

γ = H(jθ, P3) = H(jθ, cP) and W = −γP1 + βP .

Eγ′ = −β
γ′−γP2 + r((γ′ − γ)P1 + βP)

= aP2 +
(
r − b

γ′−γ

)
(γ′P1 +W)

= aP2 + r̃Wγ′

dγ′ = rP − 1
γ′−γP2

= r̃P.

(5)

This technique is essentially based on [9] which is in turn based on the technique of [4]. The
verification of the above computation is quite routine – in particular the second equality can be
easily seen by substituting W = −γP1 + βP and noting that P2 = bP .

The decapsulation can now be performed as follows.

e(Eγ′ , C1)
e(dγ′ , C2)

=
e(aP2 + r̃Wγ′ , tP)

e(r̃P, tWγ′)
= e(P1, P2)t.

Note that any decapsulation query can be answered without using the values of a, b or c. Thus, flg
is never set to 1 during this step.

Challenge: Let the challenge identity be (v∗1, . . . , v
∗
j∗). The challenge ciphertext is of the form

(C∗
1 , C

∗
2 , B

∗
1 , . . . , B

∗
j). We set C∗

1 = cP . The components B∗
1 to B∗

j are also present in the protocol
in [13] and the procedure to generate these elements are given in [13]. The same procedure is used in
the current proof and hence we do not repeat the details here. Again, as in the case of key extraction
queries, we note that for certain challenge identities, the generation of B∗

1 , . . . , B
∗
j require the use

of the value of c. In this case, flg is set to one.
The component C∗

2 is new to this protocol and we show how to generate it. If j∗ 6= jθ, then
set flg to 1. In this case, the simulator uses a, b and c to generate the challenge and answer the
adversary. Otherwise, set C2 = βP3. This C2 is properly formed since C2 = cWγ′ = c(γ′P1 +W) =
c(γ′P1 − γP1 + βP) = cβP = βP3. We use γ′ = H(jθ, C1) = H(j∗, cP) = γ. Set Z0 = Z and Z1 to
be a random element of G2. Choose a random bit δ and return (K∗, Zδ) to the adversary.

Game 3: This game is the same as Game 2, with the only difference that the Z in Game 2 is now
replaced by a random element of G2. The difference in the two games can be used to obtain an
algorithm to solve DBDH problem. The basic idea is the following.

Suppose we are given a tuple (P, aP, bP, cP, Z) where Z is either e(P, P)abc or Z is random. The
algorithm for solving DBDH can be described as follows. We play an adversarial game based on the
given tuple as described above. If Z = e(P, P)abc, then we are playing Game 2 and if Z is random,
then we are playing Game 3. The problem is that in certain cases in these two games, we need to
use the values of a, b or c, which are of course not known to us when we are trying to solve the
DBDH problem. In all such cases, flg is set to one. If flg is set to one, then the algorithm to solve
DBDH aborts and outputs a random bit. Details of how to obtain a DBDH solver from the two
games are given in [13]. Also, a detailed analysis of the probability that flg remains 0 throughout
the game has been carried out in [13]. All these analysis also hold for the current proof essentially
due to the fact that answering decapsulation queries introduce no new abort condition. The only
new abort condition is during challenge generation, when j∗ 6= jθ. Since 1 ≤ j∗, jθ ≤ h and jθ is
chosen randomly from {1, . . . , h}, the probability of this new abort is 1/h.

With this small change, the analysis of [13] shows that

|Pr[X2]− Pr[X3]| ≤
εdbdh

2λ
+
εhib-kem

2
(6)

where λ = 1/(2h(2σ(µl + 1))h). The factor 1/h in this expression is due to the new kind of abort.
In Game 3, the Z is random and independent of the rest of the ciphertext. This provides the

adversary with no information and hence Pr[X3] = 1/2. Combining the several relations we have,

εhib-kem =
∣∣∣∣Pr[X0]−

1
2

∣∣∣∣
= |Pr[X0]− Pr[X3]|
= |Pr[X0]− Pr[X1]|+ |Pr[X1]− Pr[X2]|+ |Pr[X2]− Pr[X3]|

= εcrhf +
εdbdh

2λ
+
εhib-kem

2

Rearranging the expression provides the necessary result. ut

C Proof of Theorem 3

This proof is also via a sequence of games. The first three games are almost the same as the first
three games in the proof of Theorem 1. Essentially, these three games show how to construct a
DBDH-solver from an adversary which is able to break the protocol.

The main difference between the HIB-KEM and the HIB-Tag-KEM protocols is in the verifica-
tion of well-formedness of ciphertexts. In the HIB-KEM protocol, this is done using several pairings,
where as in the HIB-Tag-KEM protocol this is done using the MAC and KDF components. In the
proof below, from Game 4 onward, the task is to show that attacking the protocol amounts to
breaking either MAC or KDF. These games are very similar to the corresponding games in [1]. The
reason is that the use of MAC and KDF in the HIB-Tag-KEM protocol is similar to the use of
MAC and KDF in the Tag-KEM protocol of [1].

As in Section B, by Xi we will denote the event that the bit δ is equal to the bit δ′ in the ith
game. We want to show that HTKEM is (εhtkem, t, qID, qC)-CCA secure.

Game 0: This is the usual adversarial game used in defining CCA-secure HIB-Tag-KEM. We as-
sume that the adversary’s runtime is t and it makes qID key extraction queries and qC decapsulation
queries. Also, we assume that the adversary maximizes the advantage among all adversaries with
similar resources. Thus, we have εhtkem =

∣∣∣Pr[X0]− 1
2

∣∣∣ .
Game 1: This is obtained by modifying Game 0 in the same manner as in the proof of Theorem 1.
As before, we have, |Pr[X0]− Pr[X1]| ≤ εcrhf .

Game 2: This game is similar to the Game 2 in the proof of Theorem 1 with some obvious
modifications for adjusting the game from the HIB-KEM format to the HIB-Tag-KEM format.
Note that as part of these modifications, the pairing based public verification tests are no longer
performed as these are not part of the HIB-Tag-KEM protocol.

Game 3: In this game, Z is taken to be a random element of G2. In a manner similar to that of
Theorem 1, we have

|Pr[X2]− Pr[X3]| ≤
εdbdh

2λ
+
εhtkem

2
. (7)

Game 4: We now want to tackle the adversary’s strategy of attacking either KDF or MAC. We will
assume that u′j and ui are known to the simulator such that U ′

j = u′jP and Ui = uiP . This does not
disturb adversary’s view of the game. On the other hand, with this knowledge, we can assume that
for any Vi, the simulator is able to compute wi such that Vi = wiP . The adversary may submit a
decryption query with C1 = tP and for some i, Bi = t1Vi with t 6= t1. The knowledge of wi allows
the simulator to test for this in the following manner: If e(C1, Vi) 6= e(wiC1, P), then t1 6= t and the
query is malformed. The simulator can now detect and reject such a query. Note that this checking
is not done in the actual protocol. So, we would like to be assured that the chance of getting to this
checking stage is small. In other words, we would like to be assured that if the query is malformed
as above and the protocol does not reject it, then the adversary has broken either KDF or MAC.

As in [1], let Rejection Rule 0 be the normal protocol rejection rule and Rejection Rule 1
be the rejection rule as mentioned above. Let F4 be the event that a malformed query is rejected
by Rule 1 but not by Rule 0. Our aim is to show that the chance of this happening is low. Note
that if no query is rejected by Rule 1, then Games 3 and 4 are identical.

From this point onwards, we will only be considering decapsulation queries. The adversary
makes a total of qC decapsulation queries. We will use the superscript (j) to denote the quantities
related to the jth decryption query. For example, K(j) denotes the input to KDF() in the jth
decryption query.

We now employ a “plug and pray” technique used in [1] and assume that the ıth component
of the th query is malformed, i.e., C()

1 = tP and B
()
ı = t1P with t 6= t1. Note that the “plug

and pray” here also extends over the levels of the HIBE, a feature which is not required in [1].
Let F ′

4 be the event that Rule 0 does not apply to the th query but Rule 1 does apply. Then
Pr[F4] ≤ h× qC × Pr[F ′

4] and we have

|Pr[X3]− Pr[X4]| ≤ Pr[F4] ≤ h× qC × Pr[F ′
4]. (8)

We would like to upper bound Pr[F ′
4]. For this we use the deferred analysis technique of [1]. Also,

since we have done a “plug and pray” over the levels of the HIBE, henceforth we will assume that
there is only one level in the HIBE, i.e., we are considering an IBE protocol. This will simplify the
notation as this will result in only one V .

Game 5: We modify Game 4 in the following manner. If the th decryption query is detected to
be malformed using Rule 1, then we set K() to be a random element of G2. We now have to argue
that this does not change the adversary’s point of view. In effect, we are setting both K∗ and K()

to be independent random elements and have to argue that this is what the adversary can expect
to see.

A similar argument is also required in [1]. This is done by initially having some extra randomness
in the setup and later adjusting the setup parameters such that these randomness can be transferred
to the challenge ciphertext and the malformed query. The situation in the identity based setting is
different. In the identity based setting, the adversary can ask for the private key corresponding to an
identity; such a thing is not possible in the public key encryption setting. On the other hand, the on
line probabilistic generation of the secret key for an identity allows an extra source of randomness.

Let us now analyze the relationship between the identity v∗ for the challenge ciphertext and
the identity v() for the malformed query. There are two cases to consider.

Case v∗ = v(): In this case, the adversary cannot ask for the private key of v(). Let the secret key
corresponding to v() be (aP2 + rV (), rP), where r is a random element of ZZp. Then the adversary
expects K() of the malformed query to be

K() =
e(aP2 + rV (), tP)
e(t1V (), rP)

= e(P1, P2)t × e(P, P)rw(t−t1).

Since t 6= t1 (as the query is malformed) and r is random, K() is also random. On the other hand,
the adversary expects K∗ to be e(P1, P2)t∗ where t∗ is random. Hence, the adversary expects K∗

to be random. Further, the randomness of K() and K∗ depends on the randomness of r and t∗

which are independent. Hence, the adversary also expects K() and K∗ to be independent random
quantities as provided to the adversary.

Case v∗ 6= v(): In this case, the adversary can ask for the secret key for v() but not before making
the malformed decryption query. If the adversary knows the secret key for v(), then he can decrypt
any ciphertext encrypted using v(). Thus, it is useless for him to query the decryption oracle using
v() after obtaining the secret key for v(). Recall that we had disallowed such useless queries.

The adversary can first ask for the decryption of a malformed query and then ask for the
private key for the same identity. We have to ensure that the answers to the decryption and private
key queries are consistent. (This situation does not arise in public key encryption scheme.) By
consistency we mean the following. Suppose the adversary makes a decapsulation query with v()

and a later private key extraction query on v(). With the private key dv() returned to him, the
adversary can decrypt his own earlier decapsulation query. Consistency requires that the output
given to him on his decapsulation query should be equal to what he computes for himself. The next
modification ensures this consistency. Note that in this case, we do not have to bother about the
independence of K∗ and K(), since this will be easily ensured.

Let the th query be of the form (t()P, t()1 V). Suppose the simulator returns K() = e(P1, P2)t
()
2 .

On a later private key query on v(), the adversary has to return (aP2+r()V, r()P) for some random
r() ∈ ZZp. The consistency requirement is satisfied if

K() =
e(aP2 + r()V, t()P)

e(t()1 V, r()P)
.

As mentioned before, the simulator can compute a w such that V = wP for some w ∈ ZZp. Also
P1 = aP and P2 = bP , where we assume at this point that the quantities a and b are known to the
simulator. The above consistency condition can be written as

t
()
2 = t() +

wr()(t() − t()1)
ab

.

Note that the simulator does not know t() and t()1 .
The th malformed query is answered in the following manner. The simulator chooses an r()

(required for answering a possible future key extraction query on v()) randomly. It then computes
A = e(P, abt()P) = e(P, P)abt() . This can be done since the simulator knows a, b, P and t()P . It
then computes

B =
e(t()P, r()V ())

e(t()1 V (), r()P)
= e(P, P)r()w(t()−t

()
1).

Note that both numerator and denominator is computable from what is known to the simulator.
Then the simulator computes

K() = (A×B)1/(ab) = e(P1, P2)t
()
2 .

This value K() is returned to the adversary. Since r() is random, so is t()2 and hence K() is random.
Later if the adversary asks for the private key for v(), then the simulator uses r() to construct the
private key and answer the adversary.

Define F ′
5 in a manner similar to F ′

4. Then we have

Pr[X4] = Pr[X5] and Pr[F ′
4] = Pr[F ′

5]. (9)

Game 6: This is obtained from Game 5 by the following modification. In Game 5, the keys
(dk∗,mk∗) and (dk(),mk()) are obtained by applying KDF to K∗ and K() respectively. In Game 6,
these are generated randomly. Define F ′

6 in a manner similar to that of F ′
4. Then we have

|Pr[X5]− Pr[X6]| ≤ 2εkdf and |Pr[F ′
5]− Pr[F ′

6]| ≤ 2εkdf . (10)

The factor of two comes due to the fact that the adversary can break one out of these two invocations
of KDF.

Further, Pr[X6] = 1/2 since irrespective of the value of b chosen by the simulator the adversary
gets to see only a random string. Also, Pr[F ′

6] ≤ 2εmac. The factor of two again comes due to the
fact that the adversary can forge one out of above two applications of MAC verification. (We note
that the modifications done to Game 5 to obtain Game 6 are the same as the modifications done
in [1] to Game 4 to obtain Game 5.) Finally, combining all the inequalities, we obtain

εhtkem =
∣∣∣∣Pr[X0]−

1
2

∣∣∣∣
= |Pr[X0]− Pr[X6]|
≤ |Pr[X0]− Pr[X1]|+ |Pr[X2]− Pr[X3]|+ |Pr[X3]− Pr[X4]|+ |Pr[X5]− Pr[X6]|

≤ εcrhf +
εdbdh

2λ
+
εhtkem

2
+ 2εkdf + hqC(2εkdf + 2εmac).

Rearranging the inequality gives the desired relationship. ut

