
Extended version of the paper sent to EUROCRYPT 2007.  
 
 
 
A New Concept of Hash Functions SNMAC Using a Special Block 

Cipher and NMAC/HMAC Constructions 
 

Vlastimil KLÍMA*

October 2006**

 
Abstract. In this paper, we present new security proofs of well-known hash constructions 
NMAC/HMAC proposed by Bellare et al. in 1996. We introduce a new cryptographic 
primitive called special block cipher (SBC) which is resistant to attacks specific for block 
ciphers used in hash functions. We propose to use SBC in the NMAC/HMAC constructions, 
what gives rise to the new concept of hash functions called Special NMAC (SNMAC). From 
our new NMAC/HMAC security proofs it follows that SNMAC hash functions are 
computationally resistant to preimage and collision attacks. Moreover, at CRYPTO 2005 
Coron et al. proved that SNMAC is indifferentiable from a random oracle in the limit. 
SNMAC construction is general and it enables various proposals using different instances of 
the special block ciphers. We propose a special block cipher DN (Double Net) and define a 
hash function HDN (Hash Double Net) as the SNMAC construction based on DN.  
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1. Introduction 
It is well known that most of the common hash functions are vulnerable to message extension 
attack [Tsu92], i.e. having given h(M) and suitable N, it is possible to determine h(M || N). 
Even though this property differentiates these functions from random oracles, it was tolerated 
for a long time. In 2004 and 2005, further generic problems of hash functions were 
discovered. There were Joux's multicollision attack [Jou04] and Kelsey-Schneier's 
multicollision attack and second preimage attack [KS05]. Note that all modern hash functions 
are vulnerable to these three generic attacks ([Tsu92], [Jou04], [KS05]), so that they strongly 
differ from random oracles behavior. Originally, the class of hash functions SHA-2 [SHA-2] 
was assumed as a possible replacement of functions MD5 and SHA-1. But hash functions 
SHA-2 are also vulnerable to all generic attacks; moreover, their design criteria have never 
been published. However, the attacks on SHA-2 are coming forward ([HPR04], [SKH04], 
[YB05], [YBP05], [MPRR06a], [MPRR06b]). 

Also, practical cryptanalysis of hash functions made a big progress in last years. In a 
lot of hash functions, especially in MD5, SHA-0 and SHA-1 ([MD5], [SHA-0], [SHA-1]), 
there were discovered serious weaknesses. Generic attacks on the strongest present hash 
functions ([Tsu92], [Jou04], [KS05]) and practical attacks on functions from classes MD and 
SHA showed that it is necessary to propose a new hash function concept ([Sch04]). 

At CRYPTO 1996, Bellare et al. [BCK96] proposed the constructions NMAC/HMAC.  
At CRYPTO 2005 Coron et al. [CDMP05] examined NMAC construction with two oracles 
and a HMAC construction with an ideal block cipher in the Davies-Meyer form. They proved 
that these constructions become indifferentiable from random oracles as their block length 
increases. In this paper, we prove, for the first time, quantitative estimates of resistance of 
these constructions against preimage and collision attacks. From Theorems 1 to 4, it follows 
that the attacker has to do roughly 2n operations for finding a preimage or 2n/2 operations for 
finding a collision of NMAC/HMAC, which is the same estimate as for a random oracle. Thus 
NMAC/HMAC constructions, which were proposed in 1996 by Bellare et al. [BCK96], 
become practical as well as theoretical based candidates for the new generation of hash 
functions.  

Recently, Bellare [Bel06] showed that it is even possible to weaken traditional 
requirements on a compression function in the HMAC construction. For instance, it suffices 
that the compression function is a pseudorandom one for HMAC to be pseudorandom. 

Because NMAC/HMAC are computationally resistant to preimage and collision 
attacks, we do not need to be afraid of generic attacks, discovered by Joux and Kelsey-
Schneier ([Jou04], [KS05]). The remaining generic attack is the message extension attack. 
Gauravaram et al. [GHA06] presented this attack only for a very artificial form of the NMAC 
interior functions.  

The second part of the paper deals with a practical construction of NMAC/HMAC 
functions and a design of the SNMAC hash function SNMAC. Contemporary attacks on hash 
functions in the MD and SHA families, including SHA-2, were caused by weak nonlinearities 
in the block cipher employed and its key expansion ([KML02], [BDK03], [HKK03], 
[KKH04], [SKH04], [KKL04], [BDK05], [HKL05], [KBP05], [MPRR06a], [MPRR06b], 
[YWYP06], [BDK07]). To avoid modern attacks, hash functions should remove these weak 
functions from their design and replace them by a contemporary block cipher technology 
[Bih05]. By the word technology, we mean several well-established and proven principles and 
building blocks of block ciphers. If we use this technology, we obtain a hash function as on 
Fig. 1. 

2 

http://eprint.iacr.org/2005/327.pdf


hash
(m)

m1

h0

m2

h1

mL

hL-1 hL

K bits

n bits

K bits K bits

n bits n bitsn bits n bits

a 
bl

oc
k 

ci
ph

er
te

ch
no

lo
gy

a 
bl

oc
k 

ci
ph

er
te

ch
no

lo
gy

a 
bl

oc
k 

ci
ph

er
te

ch
no

lo
gy

a 
bl

oc
k 

ci
ph

er
te

ch
no

lo
gy

 
Fig. 1: Hash function based on block cipher technology 
 
We show that block ciphers should be used in hash functions in another way than we 

have seen so far. We call them special block ciphers (SBC) and we formulate their properties. 
This new cryptographic primitive surpasses the classical conception of block ciphers. The 
basic property of SBC is that an attacker can have full control over its key. With this 
requirement, the block ciphers have not been designed yet. Therefore, contemporary block 
ciphers are not too suitable for being used in hash functions. We have to subordinate the 
design of these block ciphers to the aforesaid new demand that the attacker has full control 
over the plaintext and the key. SBC is not only a theoretical conception, a practical example 
of it is given in Appendix 2 and [Kli06b].  

NMAC/HMAC security proofs are based on the facts that f and g are independent 
random oracles (in NMAC) and E is an ideal block cipher (in HMAC). If we dispose of a 
special block cipher, we can use it directly as a random oracle in the NMAC construction 
(Fig. 3), which is more general than HMAC construction (Fig. 4). This construction we call 
SNMAC (Special NMAC) according to the usage of the special block cipher in the NMAC 
model. Note that HMAC model uses a classical block cipher. If we would replace it by a 
special block cipher in a meaningful way, we will obtain SNMAC also. So SNMAC 
construction is a kind of trade-off between HMAC and NMAC. We will get it from below by 
"strengthening" of HMAC (using a special block cipher instead of classical one) or from 
above by "weakening" NMAC (using a special block cipher instead of ideal random oracles). 

We propose the SNMAC conception as a candidate for the new generation of hash 
functions. It is computationally resistant against preimage and collision attacks, in the limit it 
is indifferentiable from a random oracle and its construction enables variable designs using 
various SBC. SNMAC uses the special block cipher in the compression function in a special 
way, according to the expression hi = SBChi-1 || mi(Const0). It exploits the fact that for decades 
the block ciphers were designed in such a way that from the knowledge of any amount of 
plaintexts and ciphertexts it was computationally infeasible to determine the encryption key. 
Thus the construction SNMAC is protected against preimage attack inherently, since the 
preimage of a compression function corresponds to the key of SBC. Furthermore, the 
construction uses the property that SBC with a fixed plaintext and a variable key behaves as a 
random oracle. 

The paper is organized as follows: In Section 2, definitions of NMAC and HMAC are 
reminded. In Section 3, the main theorems about security of NMAC/HMAC are presented. In 
Section 4, the new concepts of block ciphers and hash functions, SBC and SNMAC, are 
introduced. Examples of instances of SBC and SNMAC are presented in Section 5. We 
conclude in Section 6. Proofs of main theorems are presented in Appendix 1. Appendices 2 
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and 3 contain the definition of a special block cipher DN (Double Net) and a hash function 
HDN (Hash Double Net) as a SNMAC construction, based on DN. 

2. Definitions of NMAC and HMAC 
Basic construction. In practice, we meet the necessity to hash messages in parts. For 
instance, when we get the message as a sequence from the communication channel and we do 
not have enough memory for saving the whole stream. Let us imagine the hash function as a 
finite automaton. After processing a part of the message, we obtain some internal state of the 
automaton, which is called a context in the case of hash function. This context and the next 
part of the message is the input into the next step of the automaton. The starting state of the 
automaton we call initializing value. Thus, we obtain the basic model based on using the 
compression function f (Fig. 1). From the natural requirement that the compression function is 
defined for the constant input width, we obtain the necessity of message padding and its 
splitting into blocks with the same length. Thus, we obtain the classical Merkle-Damgard's 
model of an iterative hash function, which is the principle of all modern hash functions 
[Mer89] [Dam89].  
 

f

a part of the
message

K
bits

n bitsan old context a new contextn bits
 

Fig. 2: An iterative hash function 
 
Suddenly, it is exactly this model that has those three generic weaknesses; independently on 
the content of the compression function f. Especially, it enables us to find multicollisions and 
multi-preimages in an easier way than in the case of a random oracle ([Jou04], [KS05]). 
However, we cannot leave the natural construction based on the iterative principle ([Mer89], 
[Dam89], [BCK96]). Therefore, we have to put up with the fact that the hash function of the 
new generation will not be theoretically resistant to multicollision and multi-preimage attacks. 
Appropriate defense should be here their computational complexity. We have to design these 
functions in such a way that the attacks would demand too many operations. In the 
construction on Fig. 3 and 4, the final conversion functions are used. This is a precaution 
against the third generic attack through the message extension. It will not avoid the attack 
theoretically [GHA06], but it will make it practically negligible. Because the functions f and g 
are different (the case of NMAC), it will not be easy to use h(M) for computing h(M || N). The 
computation of h(M) ends by operation g, whereas in computing h(M || N) there is the 
operation f used in that place. When we use two random oracles f and g, we obtain the 
construction NMAC (Fig. 3) according to [BCK96], [CDMP05]. When we built these oracles 
using a block cipher for instance in the Davies-Meyer form [MMO85], we obtain construction 
HMAC (Fig. 4) according to [BCK96], [CDMP05]. Note that formally it is a little bit 
different definition from HMAC defined for instance in [RFC2104].  
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Fig.3: Definition of hash function NMAC (cf. [BCK96], [CDMP05]) 
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Fig. 4: Definition of hash function HMAC (cf. [BCK96], [CDMP05]) 
 
In both HMAC and NMAC models, we suppose that the message is padded (by bit 1, zero 
bits, length of the original message) to blocks of the same length of K bits, similarly as in the 
case of SHA-2.  

3. Security of Hash Functions HMAC and 
NMAC 

In this section, we present theorems on HMAC and NMAC resistance against preimage and 
collision attacks. Theorems 1 to 4 contain quantitative estimates of probabilities of finding a 
collision or a preimage, in dependence of the number of operations at the attacker's disposal. 
The estimates are very tight, since the lower and upper boundaries are of the same order. 
Proofs of Theorems 1 to 4 are presented in Appendix 1. 
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From Theorems 1 to 4, it follows that the attacker has to do roughly 2n/2 operations for finding 
a collision and roughly 2n operations for finding a preimage. Therefore, the hash functions 
HMAC and NMAC behave as random oracles in these situations. 
 
In the following, we will use a usual definition of the black-box model of a block cipher 
according to [BRS02]. 

3.1. Theorems on HMAC security 
Let us denote BC(K, n) the set of all block ciphers E, which has K bits key and n bits block. 
Let E be a randomly chosen block cipher from the set BC(K, n), i.e. E  BC(K, n), where 
the symbol  M denotes a random choice of an object from the set M. 

⎯⎯←$

⎯⎯←$

 
Black-box model ([BRS02], p. 322). Our model is the one dating to Shannon [S49] and used 
for works like [W84], [KR96], [EM91]. Let us fix a key length K and a block length n of a 
block cipher E. An adversary A is given an access to oracles E and E-1

, where E is a random 
block cipher E: {0, 1}K  x {0, 1}n → {0, 1}n  and E-1 is its inverse. That is, each key k∈{0, 1}K 
denotes a randomly selected permutation Ek = E(k, *) on {0, 1}n, and the adversary is given 
oracles E and E-1

. The latter one, on input (k, y), returns the element x such that y = Ek(x). 
A_E_E-1(σ) denotes the algorithm chosen according to a parameter σ. Even though we will 
assume HMAC with K ≥ n, some proofs are still valid for K < n as well. For the final 
operation in HMAC, it is necessary to pad n bits long variable hL to K bits long value. We 
denote this operation as hL_pad. It means padding hL by K - n zero bits. We denote HMACE 

(or shortly HMAC) the hash function HMAC based on a block cipher E according to Fig. 4.   
 
Conventions ([BRS02], p. 328). For the remainder of this paper, we assume the following 
significant conventions. First, an adversary does not ask any oracle query for which the 
response is already known; namely, if A asks a query Ek(x) and this returns y, then A does not 
ask a subsequent query of Ek(x) or E-1

k(y); and if A asks E-1
k(y) and this returns x, then A does 

not ask a subsequent query of E-1
k(y) or Ek(x). Second, when a (collision-finding) adversary A 

for HMAC outputs M and M´, adversary A has already computed HMAC(M) and HMAC(M´), 
in the sense that A has made the necessary E or E-1 queries in all iterations during evaluation 
HMAC(M) and HMAC(M´). Similarly, when an (inverting adversary) A for HMAC outputs a 
message M, we assume that A has already computed HMAC(M), in the sense that A has made 
the necessary E or E-1 queries in all iterations during evaluation HMAC(M).  

3.2. HMAC preimage resistance 
Theorem 1. HMAC preimage resistance. 
Let Pr_E_σ = Pr[E   BC(K, n); σ  {0, 1}⎯⎯←$ ⎯⎯←$ n; M A_E_E⎯⎯← -1(σ): HMACE(M) = σ] 
be the probability of the event that for a randomly chosen hash value σ and a randomly 
chosen block cipher E the adversary A_E_E-1 (using the algorithm A_E_E-1(σ)) will obtain 
the value of the message M, where HMACE(M) = σ, i.e. he or she will find a preimage for σ. 
Let us denote Adv_inv_HMAC[n](q) = Max {Pr_E_σ} where the maximum is taken over all 
adversaries A_E_E-1(σ) that ask at most q oracle queries (i.e., E queries plus E-1 queries). 
Choose n ∈ N and K ≥ n. Then for any 1 ≤ q < 2n  

.2/*0.1 (q) AC[n]Adv_inv_HM2/*3.0 nn qq ≤≤  
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3.3. HMAC collision resistance 
Theorem 2. HMAC collision resistance. 
Denote the advantage of A in finding collisions in HMAC as the real number 
Adv_coll_HMAC[n](A) = Pr[E BC(K, n); (M, M´)  A: M´ ≠ M & HMAC⎯⎯←$ ⎯⎯←$ E(M) = 
HMACE(M´)]. For any 1 ≤ q we define Adv_coll_HMAC[n](q) = 
Max{Adv_coll_HMAC[n](A)} where the maximum is taken over all adversaries A_E_E-1 that 
ask at most q oracle queries (i.e., E queries plus E-1 queries). Choose n ∈ N and K ≥ n ≥ 3. 
Then for any 1 < q ≤ 2n/2  

.2/)1(*5.1 MAC[n](q)Adv_coll_H2/)2(*158.0 nn qqqq −≤≤−  

3.4. Theorems on NMAC security 
Let us denote RO(p, q) the set of all random oracles with p bits long input and q bits long 
output. We denote NMACf,g or shortly NMAC such a construction of NMAC defined above 
that uses random oracles f ∈ RO(K + n) and g∈ RO(n, n). Let A_f_g denotes an adversary 
(any algorithm), which has an access to oracles f and g. A_f_g(σ) denotes the algorithm 
chosen according to a parameter σ. 
  
Conventions (cf. [BRS02], p. 328). In the case of NMAC, we assume the following 
significant conventions, similar to HMAC. When a (collision-finding) adversary A for NMAC 
outputs M and M´, the adversary A has already computed NMAC(M) and NMAC(M´) in such 
a sense that A has made the necessary f and g queries in all iterations during the evaluation of 
NMAC(M) and NMAC(M´). Similarly, when an (inverting adversary) A for NMAC outputs a 
message M, we assume that A has already computed NMAC(M) in such a sense that A has 
made the necessary f and g queries in all iterations during the evaluation of NMAC(M).  

3.5. NMAC preimage resistance 
Theorem 3. NMAC preimage resistance. 
Let Pr_f_g_σ = Pr[f RO(K + n, n); g RO(n, n); σ {0,1}⎯⎯←$ ⎯⎯←$ ⎯⎯←$ n; M  
A_f_g(σ):  NMAC(M) = σ] be the probability of the event that for a randomly chosen hash 
value σ and a randomly chosen oracles f and g the adversary A_f_g  (using the algorithm 
A_f_g(σ)) will obtain the value of the message M, such that NMAC(M) = σ, i.e. he or she will 
find a preimage for σ. Let us denote Adv_inv_NMAC[n](q) = Max {Pr_f_g_σ} where the 
maximum is taken over all adversaries A_f_g_σ that ask at most q oracle queries (i.e., f 
queries plus g queries). Choose n ∈ N. Then for any 1 ≤ q < 2

⎯⎯←

n  
.2/*0.1(q) AC[n]Adv_inv_NM2/ * 0.3 nn qq ≤≤  

3.6. NMAC collision resistance 
Theorem 4. NMAC collision resistance. 
Denote the advantage of A in finding collisions in NMAC as the real number  
Adv_coll_NMAC[n](A) = Pr[f RO(K + n, n); g RO(n, n); (M, M´)  A: M´ ≠ 
M &  NMAC(M) =  NMAC(M´)]. For any 1 ≤ q define Adv_coll_NMAC[n](q) = Max 
{Adv_coll_NMAC[n](A)} where the maximum is taken over all adversaries A_f_g that ask at 
most q oracle queries (i.e., f queries plus g queries). Choose n ∈ N. Then for any 1 < q ≤ 2

⎯⎯←$ ⎯⎯←$ ⎯⎯←$

n/2  
.2/)1(*5.0(q) MAC[n]Adv_coll_N2/)2(*158.0 nn qqqq −≤≤−  
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4. A New Concept of SBC and SNMAC 
In this section, we will introduce a concept of the special block cipher. Basing on the concept, 
we will define the hash function SNMAC. Recall the reasons that caused the problems of 
contemporary hash functions from MD and SHA families: 

• block ciphers, used in compression functions, are processing the key and plaintext in 
fundamentally different ways (inhomogeneously), 

• block ciphers, used in compression functions, enable controlling changes of one input 
(a plaintext or a key) by changes of the other one, 

• component functions enable propagation of differences from inputs to differences in 
outputs, 

• component functions are weakly nonlinear, there are highly probable linear relations 
between their inputs and outputs. 

 
Biham [Bih05] proposed to start using block cipher technology in hash functions. We have on 
mind such building blocks that are strongly nonlinear and resistant to differential and linear 
cryptanalysis. So, let us assume that in the compression function f, hi = f(hi-1, mi), we will use 
a block cipher. We even use it several times, if necessary. 

In contemporary attacks on hash functions, the changes in hi-1 and mi are made 
simultaneously in such a way that the appropriate differences in hi occur. Since the function f 
is built from a block cipher and the attacker is able to manipulate with all variables (hi-1, mi) of 
f, he or she is able to manipulate with all variables, which enter the block cipher. Thus, in the 
case of hash functions, there is an extra situation that the attacker has a chance to manipulate 
both key and plaintext of the block cipher being used. This ability is independent on the way 
in which the block cipher is incorporated in the hash function. 

There have been studied a lot of ways on how to use block ciphers in the constructions 
of hash functions. Nevertheless, any classical block cipher has never been designed under the 
assumption that the attacker would have the chance to manipulate with its key howsoever. 
Conversely, the key is usually processed by weaker functions than the data entry in majority 
of modern ciphers. For instance, in the case of TripleDES it is a linear function, in the case of 
AES it is a weak nonlinear function.  
 
Homogeneity. To guarantee the impossibility of using weaknesses either in the data entry or 
in the key entry processing, we demand all variable bits of used block cipher to be processed 
with the equal quality and in a similar way. We call this property as homogeneity. We also 
demand homogeneity for the output bits of the block cipher. An example of homogeneously 
processed input and output bits could be for instance a random substitution box (a 
permutation), despite of the fact that the output bit functions could be very different. Classical 
block ciphers fulfill the requirement of homogeneity almost never. Almost all modern block 
ciphers process the key by weaker functions than the functions, which process the data entry. 
On the other hand, the set of key bits and the set of data bits are both processed separately 
homogeneously almost every time. Thus we can achieve the requirement of homogeneity by 
setting the key or the data of a classical block cipher to a constant, whereas the remaining 
entry will be processed homogeneously. 
 
Special block cipher (SBC) and a special NMAC (SNMAC). Let us assume that the 
property of homogeneity of a block cipher (E), used in a compressing function (f), we will 
achieve by leading all input bits X = hi-1 || mi of a compressing function (i.e. data block mi and 
a context hi-1) to the plaintext and the key will be set as a constant: f(X) = EConst0(X). The 
compression function f should be one-way to prevent preimage attack, however, that this 
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construction does not meet. On the other hand, for decades, the block ciphers have been 
developed in such a way that it is computationally infeasible to derive the key from the 
knowledge of plaintext-ciphertext pairs. If we use this fact, we naturally obtain the 
construction f(X) = EX(Const0), i.e. all variable bits lead to the key entry of the block cipher 
and the block cipher is used only with a constant plaintext. Therefore, further on, we will 
assume only the construction f(X) = EX(Const0). In this case, we call E a special block cipher. 
This name is appropriate, because E is used only with two different constant plaintexts 
(Const0 for the oracle f and Const1 for the oracle g). On the base of SBC and NMAC we can 
now define the hash function SNMAC, as is illustrated in Fig. 5. 
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Fig. 5: Definition of SNMAC, based on SBC and NMAC 
 
The concept of the special block cipher is new, so that its definition could be further refined. 
For the security proofs of SNMAC we will need the property that E: {0, 1}K x Const0 → {0, 
1}n : (k, Const0) → y = Ek(Const0) = f(k) and E: {0, 1}K x Const1 → {0, 1}n : (k, Const1) → y 
= Ek(Const1) = g(k) are random oracles with respect to the variable key. For f and g to be 
high-quality functions for any choice of constants Const0 a Const1, we will demand that E: {0, 
1}K x {0, 1}n → {0, 1}n : (k, x) → y = Ek(x) is high quality as a whole mapping with a variable 
plaintext and a variable key. 
 
All differential and linear attacks, which are successful in hash functions, are in the case of 
SBC transformed into differential and linear attacks using the key. Therefore, contrary to 
contemporary block ciphers, in the case of SBC we will especially demand the resistance 
against differential and linear attacks, leading from the key entry. We can extend this demand 
also to the data entry (as it was variable) and to a combination of key and data entry. So, we 
demand that there are no differential nor linear relations between variables (k, x) and y = Ek(x) 
with usable probability. In other words, the requirements on SBC are the same as on 
contemporary block cipher plus the necessity of stronger processing of the key. The key in 
SBC should be processed with the same cryptographic quality as the plaintext in classical 
block ciphers. So, what can we say about SBC:  
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A special block cipher E: 
• processes the key on the same quality level as the data entry,  
• processes all key bits on the same quality level (homogeneously), 
• in opposite to classical block ciphers it will be natural to use it with the key length 

usually many times greater then the block length, e.g. K = 4096, resp. 8192 and n = 
256, resp. 512, 

• is designed using block cipher technology,  
• is not primarily designed for data encryption,  
• it is used in a hash function with a constant plaintext, all variable bits enter E through 

the key entry,  
• assuming the SBC has also a variable plaintext, it should be cryptographically strong 

classical block cipher, 
• the attacker is able to manipulate with the key in any way. 

The definition of SBC is not completed yet, further research is necessary. 
 
Definition. Hash function SNMAC.  The hash function SNMAC is an iterative hash 
function of the NMAC type ([BCK96], [CDMP05]), which uses a special block cipher E with 
n bits long block and K bits long key. It has a compression function f and a final conversion g, 
where  
f: {0, 1}K → {0, 1}n : X → EX(Const0), 
g: {0, 1}n → {0, 1}n : X → EX || NULL(Const1), 
K ≥ n, Const0 and Const1 are different constants and NULL denotes the string of K - n zero 
bits. Hashing of a message m has three steps. 
Step 1. Padding  
We pad the message m by one bit 1, then by the smallest number (allowing an empty string) 
of bits 0 and by 128bit long number (which represents the length of the original message m in 
bits) in such a way, that the length of the padded message is the smallest (L) multiple of the 
number K - n, where L is an appropriate natural number. We divide this padded message into 
L blocks of K - n bits, m = m1 ||  ... || mL-1 ||  mL.  
We define (Fig. 4) h0 as a constant (initializing value). 
Step 2. Iterations 
hi = f(hi-1 || mi), i = 1, ..., L, 
Step 3. Final conversion 
SNMAC( ) = g(hL). 
 
The attacker's goal. The encryption key was the main goal in the case of the classical block 
ciphers. In the case of the special block cipher, the attacker has even the ability to manipulate 
with the key. So there is a question what is its goal now. Because hash function SNMAC is 
based on SBC, the attacker's  goal will be a preimage or a collision of SBC. More generally, 
the goal will be the ability to control the relationship between the input and the output of the 
special block cipher in any way. It could lead to finding some properties that differentiate the 
hash function from random oracle. We will have to fix the classical block cipher. For the 
classical block ciphers, any manipulation with the key is quite an unnatural requirement. They 
are not prepared for it and don't have the defensive precautions against it. The key expansion 
is usually weak, incomparable with the data processing. Therefore, the key processing should 
be strengthened to the level of processing of the plaintext in contemporary block ciphers. 
 
Why is it not desirable to use a high-quality classical block cipher in the hash function 
construction? From the work of Coron et al. [CDMP05] and Theorems in Section 3, it 
follows that the NMAC and HMAC constructions are computationally secure against collision 
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and preimage. Would not it be therefore sufficient to use a high-quality classical block cipher 
in the HMAC construction? The answer is negative. The disadvantage of current block 
ciphers is that they process the key and data alternatively (by the different way), 
inhomogeneously and with different cryptographic strength. This inhomogeneity was used for 
attack to block ciphers and to hash functions (see for instance [BDK03], [BDK05], [HKL05], 
[KBP05], [KHL04], [KKH04], [KLS04], [KML02], [SKH04], [Kli06a], [YWYP06] and 
currently [BDK07]). From the present attacks on hash functions, it follows that the values of 
data and the contexts have the same cryptographic value and, therefore, they should be 
processed homogeneously (with the same quality). No one classical block cipher has this 
property. Also, no one classical block cipher was built with the assumption that the attacker 
has full control over the key. Thus the SBC design will be different from the classical block 
ciphers, even if it can use their proven building blocks. 
 

5. A Concrete Instance of SBC and 
SNMAC 

The SNMAC construction based on SBC is general and it enables to use various instances of 
SBC. As an instance of a SBC we proposed the algorithm DN (Double Net). Using this 
algorithm in the SNMAC construction, we obtained the hash function called HDN (Hash 
Double Net ). The descriptions of DN and HDN are presented in Appendices 2 and 3. Source 
codes, test samples, etc. will be available on [Kli06b]. DN has the key length 8192 bits and 
the block length 512 bits. HDN has 512-bits code and the speed of hashing is 3 – 4 times 
lower than for SHA-512. The lower speed of HDN with respect to SHA-512 is 
comprehensible after a comparison of both functions. SHA-512 uses weaker internal 
nonlinear functions, whereas HDN integrates block cipher technology and a large security 
margin.  

6. Conclusion 
Generic problems of hash functions showed a need for a new hash function concept proposal. 
New security proofs enable to use the constructions NMAC/HMAC, which were proposed by 
Bellare et al. in 1996 [BCK96]. In this paper, we, for the first time, prove quantitative 
estimations of resistance of these constructions against preimage and collision attacks. It also 
follows from here that they are computationally resistant to multicollisions and multi-
preimages as well. Coron et al. [CDMP05] at CRYPTO 2005 showed that NMAC/HMAC are 
random oracles in the limit.  Together with the quantitative proofs proposed, this gives very 
good guarantees to security of these constructions. 

The second part of the paper deals with the practical construction of functions 
NMAC/HMAC and the proposals of hash function SNMAC on the base of a block cipher. We 
show that block ciphers should be used in hash functions in another way than so far. We call 
them special block ciphers (SBC) and we formulate their properties. This new cryptographic 
primitive surpasses the classical conception of block ciphers. The basic property of SBC is 
that an attacker has full control over its key. With this requirement the block ciphers have not 
been designed yet. Therefore, contemporary block ciphers are not too suitable for being used 
in hash functions.  

We propose a new class of hash functions called SNMAC as NMAC construction 
using a special block cipher. This concept is a candidate for the new generation hash 
functions. It is computationally resistant to preimage and collision attacks, it is a random 
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oracle in the limit and it enables various proposals using different instances of the special 
block cipher. 

As an example we also propose a special block cipher DN (Double Net) and define a 
hash function HDN (Hash Double Net) as the SNMAC construction based on DN. 
 
Acknowledgements. I am grateful to Tomas Rosa for many helpful comments and inspiring 
suggestions on the previous versions of the paper. 
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8. Appendix 1: Proofs of Theorems 
In our proofs, we will use the following lemma.  
Lemma 1. 
(1) for every x∈ <0, 1> it holds that 1 - e-x  ≥ (1 - e-1) x, 
(2) for every x∈ <0, 1> it holds that e-x  ≥ 1 - x, 
(3) for every x ∈ (0, 1) and q ∈ N it holds that 1 - qx ≤ (1 - x)q, 
(4) for every x ∈ (0, 1) and q ∈ N it holds that (1 - x/q)q ≤ e-x. 
Proof. It follows from properties of power and exponential functions. 
 

8.1. Proof of Theorem 1 
We will show that it holds  . (q) AC[n]Adv_inv_HM2/*3.0 ≤nq
Let E be a block cipher chosen randomly from the set BC(K, n) and σ is a value chosen 
randomly from the set R = {0, 1}n. It is sufficient to prove that Pr_E_σ ≥ 0.3 * q/2n for a 
particular adversary A defined at our will. Let us define our adversary. The adversary A looks 
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for K bits long block m, for which h1 = Em(h0) xor h0 and Eh1_pad(IV) = σ. While doing this, 
she asks the oracle E at most q  times at all. She does not ask the oracle E-1. For every 1 ≤ i ≤ 
q/2 she  chooses the key arbitrarily and asks the oracle E for the value of Eki(h0). She 
computes yi = Eki(h0) xor h0 and obtains the value Hi = HMACE(ki) = Eyi_pad(IV) from the 
oracle. If Hi = σ for some i, the adversary found preimage of hash value σ and returns M = ki 
as the message. If Eyi_pad(IV) is not equal to σ for any 1 ≤ i ≤ q/2, she returns a negative 
answer. From the definition of the random block cipher, it follows that if we fix the plaintext x 
(here x = h0 or x = IV), then the mapping {0,1}K  → {0,1}n : k → Ek(x) is a random oracle 
with K bits long input and n bits long output. Therefore, {yi}1 ≤ i ≤ q contains q/2 independent 
random values from the set {0, 1}n and {yi_pad}1 ≤ i ≤ q/2 is the set of q/2 independent values 
from the set {0, 1}K. Under the same assumption (now x = IV), it follows that {Hi}1 ≤ i ≤ q/2 is 
the set of q/2 randomly chosen values from the set {0, 1}n. The probability P that there is the 
value σ in the set {Hi}1 ≤ i ≤ q/2 is equal to  
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using Lemma 1 (4), (1), and the fact that q/2n+1< 1, qed. 
 
Now we will show that  .2/*0.1 (q) AC[n]Adv_inv_HM nq≤
Let E be a randomly chosen block cipher from the set BC(K, n) and σ is a randomly chosen 
value from the set R = {0, 1}n. Let A denote an adversary. It is sufficient to prove that Pr_E_σ 
≤ q/2n. Even if the adversary has the best strategy, he can use only queries to oracles E and E-

1. During the activity of the adversary A, the oracle E is creating a list of records of queries 
and answers (ki, xi, yi) and the oracle E-1 is creating the list of (kj, xj, yj), where the input of E is 
(ki, xi) and the output is yi = Eki(xi); the input of E-1 is (kj, yj) and output is xj = E-1

kj(yj). In these 
lists, we distinguish the cases xi = IV, xi ≠ IV, yj = σ, and yj ≠ σ. Altogether we have 
q1 queries to E of the type (ki, IV, yi), 
q3 queries to E of the type (ki, ≠IV, yi), 
q2 queries to E-1 of the type (kj, xj, σ), 
q4 queries to E-1 of the type (kj, xj, ≠σ),  
where q1 + q2 + q3 + q4 ≤ q.  
If the algorithm A is successful, then there is at least one record, where yi = σ in the list (q1) or 
there is at least one record, where xj = IV in the list (q2). It is unnecessary to examine queries 
in the lists (q3) and (q4). From the definition of the random block cipher it follows that if we 
fix the plaintext x (here x = IV), then the mapping {0,1}K  → {0,1}n : k → Ek(x) is a random 
oracle with K bits long input and n bits long output. Therefore the set {yi}1 ≤ i ≤ q1 from the list 
(q1) is the set of q1 random values from the set {0, 1}n. From the definition of random block 
cipher it follows that if we fix the ciphertext y (here y = σ for any σ) then the mapping {0,1}K  
→ {0,1}n : k → E-1

k(σ) is a random oracle with K bits long input and n bits long output. 
Therefore, the set {xj}1 ≤ j ≤ q2 from the list (q2) is the set of q2 randomly chosen values from 
the set {0, 1}n.  The probability P that there is the value σ in the set {yi}1 ≤ i ≤ q1 or that there is 
a value IV in the set {xj}1 ≤ j ≤ q2 is equal to  
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We used here Lemma 1 (3). This finishes the proof of Theorem 1. 
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8.2. Proof of Theorem 2 
We will show that it holds  .MAC[n](q)Adv_coll_H2/)2(*158.0 ≤− nqq
It is sufficient to prove that for a particular 
adversary A defined at our will. Let us define her. The adversary A looks for colliding 
messages x

nqq 2/)2(*158.0 MAC[n](A)Adv_coll_H −≥

i ≠ xj, which contain only one K bit long block including the padding:  
yi = Exi(h0) and E(yi ⊕  h0)_pad(IV) = σ and 
yj = Exj(h0) and E(yj ⊕  h0)_pad(IV) = σ for some σ.  
Note that the collision can occur  

(1) after the encryption of h0 (yi = yj) or  
(2) in the second step after the encryption of IV by different keys (yi ⊕ h0)_pad and (yj ⊕ 

h0)_pad.   
Procedure of the adversary corresponds to these two possibilities. The adversary asks the 
oracle E at most q times at all. She makes q1 queries for the encryption of the value h0 and q2 
queries for the encryption of the value IV, q1 = q2 = q/2. For i, 1 ≤ i ≤ q1, the adversary A 
chooses K bits long keys ki arbitrarily and will obtain the values yi = Eki(h0) from the oracle, 
what creates the list (ki, h0, yi). If there are two equal values yi and yj in the third position, she 
obtains the collision for messages ki and kj. If not, the list contains q1 different random values 
in the first item and the adversary continues by creating the second list. For every 1 ≤ i ≤ q2 
she takes values yi from the first list and from the oracle E she obtains values Yi = E(yi ⊕ 

h0)_pad(IV). She creates the list ((yi ⊕ h0)_pad, IV, Yi)1 ≤ i ≤ q2. If there are two equal values Yi 
and Yj in the third position, she will obtain the collision for messages ki and kj. If not, the 
adversary returns a negative response (collision not found). Let us denote p the probability 
that the adversary A will find a collision by this procedure, and P that she does not. From the 
definition of the random block cipher, it follows that if we fix the plaintext x (here x = h0 and 
x = IV), then the mapping {0,1}K  → {0,1}n : k → Ek(x) is a random oracle with K bits long 
input and n bits long output. Therefore, {yi}1 ≤ i ≤ q1 is the set of q1 random values from the set 
{0, 1}n and {(yi ⊕ h0)_pad}}1 ≤ i ≤ q1 is the set of q1 values from the set {0, 1}K

. Under the same 
assumption {Yi}1 ≤ i ≤ q2 is the set of q2 random values from the set {0, 1}n.  The probability 
that the adversary does not find a collision either in q1 steps (1) or in q2 steps (2) is  
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We used here the fact (2) from Lemma 1 and that q1 = q2 = q/2. The probability that there will 
be a collision, is 

 We used here 
the fact (1) from Lemma 1, i.e. 1 - e

.2/)2(*158.02/)4/)2((*)1(11 1)1(2/)4/)2(( nnqq qqqqeePp
n

−≥−−≥−≥−= −−−

-x ≥ (1-e-1)x for all 0 ≤ x ≤ 1. In the role of x, there is the 
expression x = (q(q-2)/4)/2n. According to our assumptions, we have q ≤ 2n/2, so that x ≤ 1/4, 
i.e. x ≤ 1 and the treatment was correct. The proof is finished. 
 
Now we will show that   .2/)1(*5.1 MAC[n](q)Adv_coll_H nqq −≤
We have to prove  for any adversary A. Even if the 
adversary has the best strategy, she can use only queries to oracles E and E

nqq 2/)1(*5.1 MAC[n](A)Adv_coll_H −≤
-1. We can model 
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the activity of the adversary A by her queries. We create the table T of records (x, h, y, h ⊕ y), 
where the adversary chooses the key x and one of the values y or h. She will obtain y = Ex(h) 
from the oracle E or h = E-1

x(y) from the oracle E-1. The fourth item (h ⊕ y) is for an 
informative purpose only. The table T can have at most q records. Because the attacker will 
not ask the oracles if she knows the answer, we can assume that there are no two records with 
the same values (x, h) or (x, y). The attack does not succeed if q records fulfill the table. The 
attacker is searching for colliding messages M ≠ M´, which have several K bits long blocks 
including the padding. The messages can differ in a number of blocks. If there is a collision, 
there are two cases: 

• Internal collision. In this case, the collision occurred before the final operation.  
• Final collision. In this case, the collision occurred after the final operation and it has 

occurred nowhere before the final operation. 
Internal collision 
Let us elaborate the internal collision first. In this case, there has to be created a record (xi, hi-

1, yi, hi-1 ⊕ yi) in the table T during processing the first message and a record (xj, hj-1, yj, hj-1 ⊕ 
yj), during processing the second message, where i ≠ j are indexes of oracle’s records (they are 
not indexes of blocks of messages), (xi, hi-1) ≠ (xj, hj-1) and hi-1 ⊕ yi = hj-1 ⊕ yj. For a fixed i = 
2, ..., q, let us denote Ci the event that there is an index j, 1 ≤ j < i such that j-th and i-th 
records in the table have the same values in the fourth position. Denote Pr[Ci] probability of 
this event. Let us denote t the number of records j in the table T, 1 ≤ j < i, for which xj = xi in 
the first position and hj-1 ≠ hi-1 in the second position. It holds 0 ≤ t ≤  i - 1. In these records, 
we have the same key (xi) and t different values h in the second position. So we already have 
recorded t different values Exi(h) in the third position for a given key xi and for t different 
values h. Therefore the answer yi = Exi(hi) on i-th query (hi) the oracle chooses (randomly) 
from the set of 2n - t values. Because hi is a constant, the expression yi ⊕ hi is also taken 
randomly from the set of 2n - t values. The probability that it equals to one value from the set 
of (at most) (i - 1) values in the fourth position of the table T, is less or equal to (i - 1)/ (2n - t). 
So it holds We used the fact that from the 
definition of the random block cipher it follows that for any fixed k∈{0,1}

)).1(2/()1()2/()1( ]Pr[Ci −−−≤−−≤ iiti nn

K the mapping 
{0,1}n  → {0,1}n : x → Ek(x) is a random permutation on {0,1}n. Because i ≤ q ≤ 2n/2 ≤ 2n-1 
+1, it holds . Let P1

i 2/)1())1(2/()1( ]Pr[C −−≤−−−≤ nn iii int denotes the probability that 
there is an internal collision in the table T. We have  

.2/)1(
2

1]Pr[...]Pr[]Pr[
2

132int
n

q

i
nq qqiCCCP −=
−

≤+++= ∑
=

−

Final collision 
Now, we will assume that there is a final collision and no internal collision. Let us denote Pfin 
the probability of such an event. For the simplicity, we assume that in the table T there are 
only records with the value IV in the second position (we eventually decrease q). Since we 
assume that K ≥ n, the key for the final operation is n bits long value hN, which is eventually 
padded by zero bits to K bits long key. From the final collision, it follows that in the table T 
there are at least two records with different keys xi ≠ xj in the first position, with the same 
value IV in the second position and with the same value in the third position Exi(IV) = Exj(IV). 
For i = 2, ..., q, let us denote Ci the event that there is j, 1 ≤ j < i such that j-th record and i-th 
record in the table have the same values in the third position, i.e. Exi(IV) = Exj(IV). Let Pr[Ci] 
denotes the probability of that event. Since the mapping {0, 1}K → {0, 1}n : k → Ek(IV) is the 
random oracle, the value Exi(IV) is chosen randomly from the set of all 2n values, so that 
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ni 2/)1( ]Pr[Ci −≤ . If there is a final collision, then there an event Ci, for some 2 ≤ i ≤ q, must 
have occurred. From here, we have 

.2/)1(
2

1]Pr[...]Pr[]Pr[ 1

2
32

+

=

−≤
−

≤+++≤ ∑ n
q

i
nqfin qqiCCCP  

Total estimate 
If the adversary finds a collision, it has to be either internal or final. From here, it follows  

.,2/)1(*5.12/)1(2/)1( MAC[n](A)Adv_coll_H 1
int qedqqqqqqPP nnn

fin −=−+−≤+≤ +  

8.3. Proof of Theorem 3 
We will show that it holds  .(q) AC[n]Adv_inv_NM2/ * 0.3 ≤nq
It suffices to proof that Pr_f_g_σ ≥ 0.3 * q/2n for a particular adversary A defined at our will. 
Let us define our adversary. The adversary A looks for one K bits long block m, for which h1 
= f(m, h0) and g(h1) = σ. While doing this she asks q1 times the oracle f and q2 times the oracle 
g, where q1 = q2 = q/2. For every 1 ≤ i ≤ q1, she chooses ki arbitrarily and obtains the value yi 
= f(ki, h0) from the oracle f and the value Hi = g(yi) from the oracle g. If Hi = σ for some i, the 
adversary found a preimage of the hash value σ and returns as the message M = ki. If Hi is not 
equal to σ for any 1 ≤ i ≤ q1, she returns a negative answer. Since f is a random oracle, the set 
{yi}1 ≤ i ≤ q1 contains q1 random values from the set {0, 1}n. Since g is a random oracle, the set 
{Hi}1 ≤ i ≤ q2 is the set of q2 randomly chosen values from the set {0, 1}n.  The probability P 
that there is the value σ in the set {Hi}1 ≤ i ≤ q2 is equal to  

,2/*3.02/*6.02/*)1(1
2
111 22

1)1(2/)4( 2

2
nnnq

q

n qqqeeP
n

=≥−≥−≥⎟
⎠
⎞

⎜
⎝
⎛ −−= −−   

using Lemma 1 (4), (1) and the fact that <1, qed. nq 2/
 

Now we will show that  .2/(q) AC[n]Adv_inv_NM nq≤
Let A be an adversary (an algorithm) and σ be a hash value. It is sufficient to prove that 
Pr_f_g_σ ≤ q/2n. During the activity of the adversary A, the oracle f is creating a list of 
records (xi, hi, zi), where zi = f(xi, hi), and the oracle g is creating a list of q2 records (hj, yj), 
where yj = g(hj) and q1 + q2 ≤ q. If the algorithm A succeeds, then there is at least one record 
in the second list, where yj = σ. From the definition of the random oracle g, it follows that the 
set {yj}1 ≤ j ≤ q2 is a set of q2 randomly chosen values from the set {0, 1}n. The probability P 
that there is the value σ in the set {yj}1 ≤ j ≤ q2 is equal to  

nn
q

n qqP 2/2/
2
111 2

)3(
2

≤≤⎟
⎠
⎞

⎜
⎝
⎛ −−=  using Lemma 1 (3). The proof is finished. 

 
 

8.4. Proof of Theorem 4 
We will show that it holds 
  .2/)2(*158.0 MAC[n](q)Adv_coll_N nqq −≥
It is sufficient to prove that for a particular 
adversary A defined at our will. Let us define her. The adversary A looks for colliding 
messages x

nqq 2/)2(*158.0 MAC[n](A)Adv_coll_N −≥

i ≠ xj, which contain only one K bit long block including the padding: 
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We have   
yi = f(xi, h0) and g(yi) = σ  and 
yj = f(xj, h0) and g(yj) = σ  for some σ. 
Note that the collision can occur 

• in the first step (yi = yj) or  
• in the second step (yi ≠ yj), after final operation g 

Procedure of the adversary corresponds to these two possibilities. She makes q1 queries to 
oracle f and q2 queries to oracle g, where q1 = q2 = q/2. For every 1 ≤ i ≤ q1, the adversary A 
chooses K bits long inputs xi arbitrarily and obtains the list of records (xi, h0, yi), where yi = 
f(xi, h0). If there are two equal values yi and yj in the third position, she has the collision for 
messages xi and xj. If not, the adversary continues by creating the second list. For every 1 ≤ i ≤ 
q2, she takes values yi from the first list and from the oracle g she obtains values Yi = g(yi). 
She creates the list (yi, Yi)1 ≤ i ≤ q2. If there are two equal n bits long values Yi and Yj in the third 
position, she has the collision for messages xi and xj. If not, the adversary returns a negative 
response (collision not found). Let us denote p the probability that the adversary A will find a 
collision by this procedure, and P that she doesn't. From the definition of the random oracle f, 
it follows that {yi}1 ≤ i ≤ q1 is the set of q1 random values from the set {0, 1}n. From the 
definition of the random oracle g, it follows that {Yi}1 ≤ i ≤ q2 is the set of q2 randomly chosen 
values from the set {0, 1}n.  The probability that the adversary will not find a collision in q1 + 
q2 oracle calls is  
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We used here the fact (2) from Lemma 1 and that q1 = q2 = q/2. The probability that there will 
be a collision, is  

.2/)2(*158.02/)4/)2((*)1(11 1)1(2/)4/)2(( nnqq qqqqeePp
n

−≥−−≥−≥−= −−−  
We used here the fact (1) from Lemma 1, i.e. 1 - e-z ≥ (1-e-1)z for all 0 ≤ z ≤ 1. In the role of z, 
there is the expression z = (q(q-2)/4)/ 2n. According to presumptions we have q ≤ 2n/2, so that  
z ≤ 1 and the treatment was correct. The proof is finished. 
 
Now, we will show that  .2/)1(*5.0 (q) MAC[n]Adv_coll_N nqq −≤
It suffices to prove that  for any adversary A and 1 
< q ≤ 2

nqq 2/)1(*5.0 (A) MAC[n]Adv_coll_N −≤
n +1 (for greater q the right side of the target inequality is greater then one). We can 

model the activity of the adversary A by his queries to oracles f and g. The oracle f creates a 
table Tf of records (x, h, y), where (x, h) is the input, taken by the adversary, and y = f(x, h) is 
the response. The oracle g creates a table Tg of records (X, Y), where X is the input, taken by 
the adversary and Y = g(X) is the response. Let us denote q1 number of queries to oracle f and 
q2 number of queries to oracle g. We have q ≤ q1 + q2. The attacker A is searching for 
colliding messages M ≠ M´, which have several K bits long blocks including the padding. The 
messages can differ in a number of blocks. If there is a collision, there are two cases: 

• Internal collision. In this case, the collision occurred before the final operation g.  
• Final collision. In this case, the collision occurred after the final operation and it has 

occurred nowhere before the final operation g. 
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Internal collision 
Let us elaborate the internal collision first. In this case, there has to be created a record (xi, hi-

1, hi = f(xi, hi-1)) in the table Tf during processing of the first message and a record (xj, hj-1, hj = 
f(xj, hj-1)) during processing of the second message, where i ≠ j are indexes of oracle’s records 
(they are not indexes of blocks of messages), (xi, hi-1) ≠ (xj, hj-1) and hi = hj, where xi is some K 
bits long block of the first message and xj is some K bits long block of the second message. 
For fixed i = 2, ..., q, let us denote Ci the event that there is an index j, 1 ≤ j < i, such that j-th 
and i-th records in the table Tf have the same values in the third position, whereas (xi, hi-1) ≠ 
(xj, hj-1). Denote Pr[Ci] probability of this event. Since f is a random oracle, it chooses the 
answer yi to i-th query randomly from the set of 2n values. The probability that it equals to one 
value from the set of values in the third position in the table Tf is less or equal to (i - 1)/2n, i.e. 

 Let P.2/)1( ]Pr[Ci
ni −≤ int denote the probability that there is an internal collision. We have 
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Final collision 
Now, we will assume that there is a final collision and no internal collision. The oracle g 
creates the table Tg with records (Xi, g(Xi)), 1 ≤ i ≤ q2. Denote Pfin the probability of the final 
collision. For fixed i = 2, ..., q2, let us denote Ci the event that there is j, 1 ≤ j < i, such that j-th 
record and i-th  record in the table Tg have the same values in the second position, i.e. g(Xi) = 
g(Xj). Let Pr[Ci] denote the probability of such an event. Since g is a random oracle, the value 
g(Xi) is chosen randomly from the set of all 2n values, so that  If there is a 
final collision, then there was an event C

.2/)1( ]Pr[Ci
ni −≤

i for some 2 ≤ i ≤ q2. Therefore, we have 
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Total estimate 
If the adversary finds a collision, it has to be either internal or final. From here, it follows   
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qed. 

9. Appendix 2: Definition of the Special 
Block Cipher DN (Double Net) 

Will be added soon, after the approval of its publications.  

10. Appendix 3: Definition of the Hash 
Function HDN (Hash Double Net) 

Will be added soon, after the approval of its publications. 
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