
Identity Based Key Encapsulation with Wildcards

James Birkett1, Alexander W. Dent1, Gregory Neven2, and Jacob Schuldt1

1 Information Security Group,
Royal Holloway, University of London,

Egham, TW20 0EX, UK.
{j.m.birkett,a.dent,jacob.schuldt}@rhul.ac.uk

2 Department of Electrical Engineering, Katholieke Universiteit Leuven,
Kasteelpark Arenberg 10, 3001 Heverlee, Belgium;

and Département d’Informatique, Ecole Normale Supériure,
45 Rue d’Ulm, 75005 Paris, France.
Gregory.Neven@esat.kuleuven.be

Abstract. We propose a hybrid (KEM/DEM) model for the recently pro-
posed primitive of identity-based encryption with wildcards (WIBE), and
confirm that the hybrid construction is secure. We also propose new chosen-
ciphertext secure WIBE schemes that have somewhat more efficient security
reductions and some performance benefits. Our first construction is a generic
one from any one-way secure WIBE in the random oracle model, the second
is a direct construction in the standard model.

1 Introduction

One of the major obstacles for the deployment of public-key cryptography in the
real world is the secure linking of users to their public keys. While typically solved
through public-key infrastructures (PKI), identity-based encryption [15, 14, 9, 7] can
avoid some of the costs related to PKIs because it simply uses the identity of a user
(e.g., her email address) as her public key. This way, Bob can for example send an
encrypted email to Alice by encrypting it under her identity alice@cs.univ.edu,
which only Alice can decrypt using the secret key that only she can obtain from a
trusted key distribution centre.

Abdalla et al. [1] recently proposed a very intuitive extension to this idea by
allowing the recipient identity to contain wildcards. A ciphertext can then be de-
crypted by multiple recipients with related identities. For example, Bob can send
an encrypted email to the entire computer science department by encrypting un-
der identity *@cs.univ.edu, or to all system administrators in the university by
encrypting under identity sysadmin@*.univ.edu.

As is the case for most public-key and identity-based encryption schemes, the
identity-based encryption with wildcards (WIBE) schemes of [1] can only be used
to encrypt relatively short messages, typically about 160 bits. To encrypt longer
messages, one will have to resort to hybrid techniques: the sender uses the WIBE
to encrypt a fresh symmetric key K and encrypts the actual message under the key
K. The basic construction has been used within the cryptographic community for
years, dating back to the work of Blum and Goldwasser in 1984 [4], but its security
for the case of public-key encryption was not properly analysed until the work of
Cramer and Shoup [10]. In their model, the encryption scheme consists of a separate
key encapsulation mechanism (KEM), and data encapsulation mechanism (DEM).

In this paper, we propose a KEM-DEM model for WIBE schemes, and prove
that the combination of a CPA/CCA secure KEM and a CPA/CCA secure DEM
yields a CPA/CCA WIBE scheme. This result may be rather unsurprising, but its
proof is necessary to validate the use of hybrid techniques for the case of WIBEs,

in the same way that it was necessary for the public-key [10] and identity-based [3]
cases. Furthermore, it may be noted that subtleties can arise in the proving of such
results, for example in the case of certificateless KEMs [3].

More interestingly, we present constructions for CCA-secure WIBEs. Security
against adaptive chosen-ciphertext attacks [13] is generally considered to be the
required security level for most practical uses. Previous constructions of L-level
CCA-secure WIBEs [1] have either required the user to store 2L private keys or
have suffered from a security reduction in which the security of a level L WIBE was
related to the security of a level 2L+2 HIBE. This reduction comes at a huge cost.
Since the security of all currently known WIBE schemes degrades exponentially
with the number of levels, the resulting WIBE will necessarily be restricted to only
half of the (already small) original hierarchy depth. One could consider replacing
the one-time signature scheme with a MAC, as done for the case of (H)IBE schemes
in [8], but even if one manages to overcome the subtleties in the proof the scheme
still suffers from the very limited hierarchy depth.

Instead, we present direct CCA-secure constructions of WIB-KEMs, which in
combination with a CCA-secure DEM immediately yield new CCA-secure WIBEs.
We first present a generic construction in the random oracle model [2] along the lines
of Dent [11] from any WIBE that is one-way secure under chosen-plaintext attack,
a much weaker requirement yielding very efficient schemes. This construction could
also be considered a potential method for producing secure HIBEs. Next, we present
a construction in the standard model based on the variant of the Waters encryption
scheme [17] suggested by Kiltz and Galindo [12]. This scheme falls within the Boneh-
Boyen framework [5].

2 Definitions

2.1 Notation

We will use the following notation in this paper:
Sn denotes the set of vectors (s1, . . . , sn), where si ∈ S.

We will also use this notation for strings of length n.
S∗ denotes the set of arbitrary length vectors, i.e

⋃
i∈Z Si.

x
$← S x is an element selected uniformly at random from the set S.

x ← A(y, z) x is the output of running the algorithm A with two inputs, y and
z. A may be deterministic or probabilistic.

x ← A(y, z; r) x is the output of running the probabilistic algorithm A(y, z), but
with randomness given by r.

x ← AO(y, z) x is the output of A(x, y) when run with access to an oracle O.

2.2 Syntax of WIBEs, WIB-KEMs and DEMs

WIBEs A pattern P is a tuple (P1, . . . , Pl) ∈ ({0, 1}∗∪{∗})l, for some l ≤ L, where
L is the maximum number of levels. An identity ID = (ID1, . . . , IDl′) “matches”
the pattern P if l′ ≤ l and for all 1 ≤ i ≤ l′, IDi = Pi or Pi = ∗. We write this as
ID ∈∗ P .

A WIBE scheme consists of the following algorithms:

– Setup generates a master key pair (mpk,msk).
– KeyDer(dID, IDl+1) takes the secret key dID for ID = (ID1, . . . , IDl), generates

a secret key dID′ for the identity ID′ = (ID1, . . . , IDl+1). The root user, who
has identity ε = (), uses dε = msk as his private key. This will be used to derive
keys for single level identities.

– Encrypt(mpk, P,m) encrypts a message m ∈ {0, 1}∗ intended for all identities
matching a pattern P , and returns a ciphertext C.

– Decrypt(dID, C) decrypts ciphertext C using the secret key dID for an identity
ID ∈∗ P and returns the corresponding message m. If the encryption is invalid,
the Decrypt algorithm “rejects” by outputting ⊥.

We will overload the notation for key derivation, writing KeyDer(msk, ID) to
mean repeated application of the key derivation function in the obvious way.

Soundness requires that for all key pairs (mpk, msk) output by Setup, all 0 ≤
l ≤ L, all patterns P ∈ ({0, 1}∗ ∪ {∗})l, all identities ID such that ID ∈∗ P , and
all messages m ∈ {0, 1}∗:

Pr [Decrypt(KeyDer(msk, ID), Encrypt(mpk, P, m)) = m] = 1 .

WIB-KEMs We will now define an Identity-Based Key Encapsulation Mechanism
with Wildcards (WIB-KEM). A WIB-KEM consists of the following algorithms:

– Setup and KeyDer algorithms are defined as in the WIBE case.
– Encap(mpk, P) takes the master public key mpk of the system and a pattern

P , and returns (K, C), where K ∈ {0, 1}λ is a one-time symmetric key and C
is an encapsulation of the key K.

– Decap(mpk, dID, C) takes a private key dID for an identity ID ∈∗ P and an en-
capsulation C, and returns the corresponding secret key K. If the encapsulation
is invalid, the Decap algorithm “rejects” by outputting ⊥.

A WIB-KEM must satisfy the following soundness property: for all key pairs
(mpk, msk) output by Setup, all 0 ≤ l ≤ L, all patterns P ∈ ({0, 1}∗ ∪ {∗})l, and
all identities ID ∈∗ P ,

Pr [K ′ = K : (K, C) ← Encap(mpk, P); K ′ ← Decap(KeyDer(msk, ID), C)] = 1 .

HIBEs and HIB-KEMs can be thought of as special cases WIBEs and WIB-
KEMs restricted to patterns without wildcards.

DEMs A DEM consists of a pair of deterministic algorithms:

– Encrypt(K,m) takes a key K ∈ {0, 1}λ, and a message m of arbitrary length
and outputs a ciphertext C.

– Decrypt(K, C) takes a key K ∈ {0, 1}λ and outputs either the corresponding
message m or the “reject” symbol ⊥.

The DEM must satisfy the following soundness property: for all K ∈ {0, 1}λ, for
all m ∈ {0, 1}∗,

Pr[Decrypt(K, Encrypt(K,m)) = m] = 1 .

2.3 Security Models

Security games for WIBEs, WIB-KEMs and DEMs are presented in Figure 1. In
all four games, s is some state information and O denotes the oracles the adversary
has access to. In the OW-WID game, M denotes the message space of the WIBE.
This will depend on the system parameters.

IND-WID security game for WIBEs:

1. (mpk, msk) ← Setup
2. (P ∗, m0, m1, s) ← AO1 (mpk)

3. b
$← {0, 1}

4. C∗ ← Encrypt(mpk, P ∗, mb)
5. b′ ← AO2 (C∗, s)

OW-WID security game for WIBEs:

1. (mpk, msk) ← Setup
2. (P ∗, s) ← AO1 (mpk)

3. m
$←M

4. C∗ ← Encrypt(mpk, P ∗, m)
5. m′ ← AO2 (C∗, s)

IND-WID security game for WIB-KEMs:

1. (mpk, msk) ← Setup
2. (P ∗, s) ← AO1 (mpk)
3. (K0, C

∗) ← Encap(mpk, P ∗)

4. K1
$← {0, 1}λ

5. b
$← {0, 1}

6. b′ ← AO2 (Kb, C
∗, s)

IND security game for DEMs:

1. (m0, m1, s) ← A1()

2. K
$← {0, 1}λ

3. b
$← {0, 1}

4. C∗ ← Encrypt(K, mb)
5. b′ ← AO2 (C∗, s)

Fig. 1. Security games for WIBEs, WIB-KEMs and DEMs

Security of WIBEs In both WIBE security games, A has access to a private key
extraction oracle, which given an identity ID outputs dID ← KeyDer(msk, ID).
In the CCA model only, A also has access to a decryption oracle, which on input
(C, ID), returns m ← Decrypt(KeyDer(msk, ID), C).

The adversary wins the IND-WID game if b′ = b and it never queried the key
derivation oracle on any identity matching the pattern P ∗. Furthermore, in the
CCA model, the adversary must never query the decryption oracle on (C∗, ID),
for any ID matching the pattern P ∗. We define the advantage of the adversary as
ε = |2 Pr[b′ = b]− 1|.

The adversary wins the OW-WID-CPA game if m′ = m and it never queried
the key derivation oracle on any identity matching the pattern P ∗. We define the
advantage of the adversary to be ε = Pr[m′ = m].

Security of WIB-KEMs In the IND-WID game for WIB-KEMs, A has access
to a private key extraction oracle, which given an identity ID outputs dID ←
KeyDer(msk, ID). In the CCA model only, A also has access to a decapsulation
oracle, which on input (C, ID), returns K ← Decap(KeyDer(msk, ID), C).

Again, the adversary wins the IND-WID game if b′ = b and it never queried the
key derivation oracle on any identity matching the pattern P ∗. Furthermore, in the
CCA model, the adversary must never query the decapsulation oracle on (C∗, ID),
for any ID matching the pattern P ∗. We define the advantage of the adversary as
ε = |2 Pr[b′ = b]− 1|.

Security of DEMs In the IND-CPA game for DEMs, the adversary has access to
no oracles. In the IND-CCA model, A2 may call a decryption oracle, which on input
C 6= C∗ returns m ← Decrypt(K, C). Note that this oracle is only available in the
second phase of the attack. The adversary wins if b′ = b. We define the advantage
of the adversary as ε = |2Pr[b′ = b]− 1|.

Definition 1 A WIBE (resp. WIB-KEM) is (t, qK , ε) IND-WID-CPA secure if all
time t adversaries making at most qK queries to the key derivation oracle have
advantage at most ε in winning the IND-WID-CPA game described above.

Definition 2 A WIBE (resp. WIB-KEM) is (t, qK , qD, ε) IND-WID-CCA secure
if all time t adversaries making at most qK queries to the key derivation oracle and
at most qD queries to the decryption (resp. decapsulation) oracle have advantage at
most ε in winning the IND-WID-CCA game described above.

The (t, qK , ε) IND-HID-CPA and (t, qK , qD, ε) IND-HID-CCA security of a HIBE
and HIB-KEM are defined analogously.

Definition 3 A WIBE is (t, qK , ε) OW-WID-CPA secure if all time t adversaries
making at most qK queries to the key derivation oracle have advantage at most ε in
winning the OW-WID-CPA game described above.

Definition 4 A DEM is (t, qD, ε) IND-CCA secure if all time t adversaries mak-
ing at most qD decryption queries in the the IND-CCA game described above has
advantage at most ε.

In the random oracle model, the adversary has access to one or more random
oracles. When working in this model, we will add the number of queries made to
the oracle as a parameter, so for example we would say a WIBE is (t, qK , qD, qH , ε)
IND-WID-CCA secure, where qH is the total number of hash queries. The other
definitions may be adapted in a similar manner.

2.4 Tiered HIBEs and WIBEs

In a HIBE or WIBE, we often consider an identity sequence (ID1, ID2, . . . , IDl)
derived from a sequence of text delimited by special delimiter characters. For ex-
ample,

alice@cs.univ.edu 7→ (edu, univ, cs, alice)

The characters . and @ allow us to split up the text string into the hierarchy.
However, there is a slight problem with this e-mail example. The two delimiters have
slightly different meanings. Anything to the left of the @ delimit denotes the group
to which the e-mail identity belongs and anything to the right of the @ delimiter
denotes the identity of the member of the group. This could be a problem. Consider
the two e-mail addresses:

leonhard.euler@maths.berlin.edu 7→ (edu, berlin, maths, euler, leonhard)
leonhard@euler.maths.berlin.edu 7→ (edu, berlin, maths, euler, leonhard)

Despite being separate e-mail addresses, these they have the same identity sequence
in the hierarchy. The problem is compounded when one considers identity-based
encryption with wildcards. It is unclear whether a message encrypted using the
pattern (edu, berlin, maths, euler, ∗) should be decrypted by anyone with an e-
mail address on the server euler.maths.berlin.edu or by anyone with the surname
euler with an e-mail address on the server maths.berlin.edu.

We solve this problem by introducing the concept of a tiered HIBE or WIBE.
In a k-tier HIBE, a text string is mapped into k sequences of identities. Hence, a
normal HIBE can be considered a 1-tier HIBE. The above e-mail example can be
considered a 2-tier HIBE/WIBE. The first tier is the name of the server and the
second tier is the name of the user with an e-mail account on that server. Hence,

leonhard.euler@maths.berlin.edu 7→ ((edu, berlin, maths), (euler, leonhard))
leonhard@euler.maths.berlin.edu 7→ ((edu, berlin, maths, euler), (leonhard))

It is clear that the two different e-mail addresses lead to two different tiered se-
quences of identities. For a particular decryption key, we may distinguish between
two types of tier:

– A delegation tier. If a user has a decryption key for the identity sequence
(ID1, ID2, . . . , IDl) at a delegation tier, then they may deduce the decryption
key for the identity sequence (ID1, ID2, . . . , IDl, IDl+1) at that tier, where the
same identity sequences are used at all other tiers and IDl+1 is any bit-string.

– A non-delegation tier. If a user has a decryption key for the identity sequence
(ID1, ID2, . . . , IDl) at a non-delegation tier, then they may not deduce the
decryption key for the identity sequence (ID1, ID2, . . . , IDl, IDl+1) at that tier,
for any value of IDl+1.

Boneh, Boyen and Goh [6] call this limited delegation. Any HIBE can be turned
into a k-tier HIBE where the first k−1 tiers are non-delegatable and the k-th tier is
delegatable using a suitable encoding scheme. Consider the tiered identity sequence:

((ID1,1, ID1,2, . . . , ID1,l(1)),
(ID2,1, ID2,2, . . . , ID2,l(2)),
. . . ,

(IDk,1, IDk,2, . . . , IDk,l(k)))

This maps onto the normal HIBE identity

([1]||ID1,1, [1]||ID1,2, . . . , [1]||ID1,l(1), [2]||ID2,1, [2]||ID2,2, . . . , [k]||IDk,l(k))

where [i] is the binary representation of i in dlog ke-bits. The corresponding encoding
for WIBEs is

([1], ID1,1, [1], ID1,2, . . . , [1], ID1,l(1), [2], ID2,1, [2], ID2,2, . . . , [k], IDk,l(k))

We also note that any Boneh-Boyen-Goh style scheme [6], including the Waters
HIBE scheme [17], the Kiltz-Galindo KEM [12] and the Waters WIBE [1], can be
turned into a k-tiered HIBE or WIBE. In such schemes, the public parameters
contain one or more group elements u for each possible level of the HIBE. In a
tiered HIBE or WIBE, the public parameters contain one or more group elements
u for each combination of level and tier. Key derivation, encryption and decryption
proceed in the logical manner. Furthermore, for all these schemes it is possible to
derive keys that are either delegatable or non-delegatable at each tier [6].

3 Security of the Hybrid Construction

Suppose we have an IND-WID-CCA secure WIB-KEM (Setup, KeyDer, Encap, Decap)
and an IND-CCA secure DEM (Encrypt,Decrypt). Let us also suppose that the
length λ of keys generated by the WIB-KEM is the same as the length of keys used
by the DEM. Then, following the method of [10], we can combine them to form a
WIBE (Setup, KeyDer,Encrypt′,Decrypt′) as follows:

– Encrypt′(mpk, P,m): Compute (K, C1) ← Encap(mpk, P), C2 ← Encrypt(K, m).
Return C = (C1, C2).

– Decrypt′(dID, C): Parse C as (C1, C2). If the parsing fails, return ⊥. Otherwise,
compute K ← Decap(dID, C1). If Decap rejects, output ⊥. Finally, compute
m ← Decrypt(K,C2), and output m.

Theorem 5 Suppose there is a (t, qK , qD, ε)-adversary A = (A1,A2) against IND-
WID-CCA security of the hybrid WIBE. Then there is a (tB, qK , qD, εB)-adversary
B = (B1,B2) against the IND-WID-CCA security of the WIB-KEM and a (tC , qD, εC)-
adversary C = (C1, C2) against the IND-CCA security of the DEM such that:

tB ≤ t + qDtDec + tEnc

tC ≤ t + qD(tDec + tDecap + tKeyDer) + qKtKeyDer + tEncap + tSetup

ε = εB + εC

where tEnc is the time to run the DEM’s Encrypt algorithm, tDec is the time to run
the DEM’s Decrypt algorithm, tSetup is the time to run Setup, tDecap is the time to
run Decap and tKeyDer is the time to run KeyDer.

The theorem and proof are straightforward generalisations to the WIBE case of
those in [10]. The proof is given in the full version of the paper (and in Appendix A).

4 Generic CCA Secure WIB-KEMs in the Random Oracle
Model

One approach to building systems secure against adaptive chosen ciphertext attacks
is to first construct a primitive that is secure against passive attacks, and use some
generic transformation to produce a system secure against the stronger adaptive
attacks. We will apply a method proposed by Dent in [11] which converts an OW-
CPA secure probabilistic encryption scheme into an IND-CCA KEM. We will use
the same idea to convert an OW-WID-CPA secure WIBE scheme into an IND-WID-
CCA secure WIB-KEM. Suppose we have an OW-WID-CPA secure probabilistic
WIBE:

WIBE = (Setup,KeyDer, Encrypt,Decrypt)

with message space M. We will write Encrypt(mpk, P ∗,m; r) to mean running the
encryption algorithm with inputs (mpk, P ∗,m) using a ρ-bit string of randomness
r. We require that for all master keys mpk generated by Setup, all patterns P , all
messages m ∈M and all ciphertexts C:

|{r ∈ {0, 1}ρ : Encrypt(mpk, P, m; r) = C}| ≤ γ

where γ is a parameter of the scheme.
The only difficulty in applying the method of Dent [11] is that we must re-encrypt

the recovered message as an integrity check. In the WIBE setting, this means we
must know the pattern under which the message was original encrypted. Hence,
we require an efficient algorithm W which on input C = Encrypt(mpk, P, m) where
P = (P1, . . . , Pl) is a pattern, returns the set W = {i ∈ Z : Pi = ∗}. This is certainly
possible with the Waters and BBG based WIBEs presented in [1]. If a scheme does
not already have this property, it could be modified so that the set W is included
explicitly as a ciphertext component. W can then be used to give an algorithm P,
which on input (ID, C), where C is a ciphertext and ID = (ID1, . . . , IDl) is an
identity, returns the pattern P = (P1, . . . , Pl) given by Pi = ∗ for i ∈ W(C) and
Pi = IDi otherwise.

We will use WIBE to construct an IND-WID-CCA secure WIB-KEM

WIBE-KEM = (Setup, KeyDer,Encap,Decap)

using two hash functions H1 : {0, 1}∗ → {0, 1}ρ and H2 : {0, 1}∗ → {0, 1}λ, where
λ is the length of keys output by the WIB-KEM. The Encap and Decap algorithms
are given by:

– Encap(mpk, P): Choose a random message m
$← M. Compute r ← H1(m),

K ← H2(m) and compute C ← Encrypt(mpk, P, m; r). Return (K,C)

– Decap(dID, C): Compute m ← Decrypt(dID, C). If m = ⊥, return ⊥. Compute
r ← H1(m), and K ← H2(m) and check that C = Encrypt(mpk, P(ID,C),m; r).
If so, return K, otherwise return ⊥.

Theorem 6 Suppose there is a (t, qK , qD, qH , ε) adversary A against the IND-
WID-CCA security of the WIB-KEM in the random oracle model. Then there is a
(t′, qK , qH , ε′) adversary B against the OW-WID-CPA security of the WIBE, where:

ε′ = (ε− qD

(1
|M| + γ

)
)/(qD + q1 + q2)

t′ ≤ t + qHtH + qDqHtEnc

where tH is the time to look up a hash value from the list, and tEnc is the time taken
to do an encryption.

This proof of this theorem is a straightforward generalisation of the result of
Dent [11]. The proof is given in the full version of the paper (and in Appendix B).

5 A CCA Secure WIB-KEM without Random Oracles

5.1 The Kiltz-Galindo HIB-KEM

We present a construction for a WIB-KEM based on the Kiltz-Galindo HIB-KEM
[12]. This construction is based on the Waters HIBE [17] and belongs to the Boneh-
Boyen family of identity-based encryption schemes [5]. The construction presented
in this section uses bilinear maps and target collision resistant hash functions. We
briefly recall the definitions here:

Definition 7 (Bilinear map) Let G = 〈g〉 and GT be multiplicative groups of
prime order p. We say that e : G × G → GT is an admissible bilinear map if the
following hold true:

– For all a, b ∈ Zp we have e(ga, gb) = e(g, g)ab.
– e(g, g) is not the identity element of GT.
– e is efficiently computable.

Definition 8 (Target collision resistant hash function) A family F{k∈K} : G→
Zp of hash functions with key space K is called (t, ε)-target collision resistant if all
time t algorithms A have advantage at most ε, where the advantage of an algorithm
is defined by

Pr[x 6= y ∧ Fk(x) = Fk(y) : k
$← K;x $← G; y ← A(k, x)]

In principle, a key k for the hash function should be included as part of the public
parameters, but to simplify the description of the scheme, we will treat the family
of hash functions as if it were a fixed function.

We recall the Kiltz-Galindo HIB-KEM [12] in Figure 2. Note that the identities
at each level are assumed to be n bits long i.e., IDi ∈ {0, 1}n, and we set

[IDi] = {1 ≤ j ≤ n : the j-th of IDi is one} .

Furthermore, we let the function h1 : G→ Z∗p denote a target collision resistant hash
function. The security of the Kiltz-Galindo scheme rests on the bilinear decisional
Diffie-Hellman (BDDH) problem.

Definition 1 (BDDH problem). We say that the BDDH problem in G is (t, ε)-
hard if

∣∣∣Pr
[
A(ga, gb, gc, e(g, g)abc) = 1 : a, b, c

$← Zp

]

− Pr
[
A(ga, gb, gc, e(g, g)d) = 1 : a, b, c, d

$← Zp

] ∣∣∣ ≤ ε

for any algorithm A running in time at most t.

Kiltz and Galindo proved the following security result of their scheme.

Theorem 9 If the BDDH problem in G is (t′, ε′)-hard and the hash function h is
(th, εh) target collision resistant, then the Kiltz-Galindo HIB-KEM is (t, qK, qD, ε)
IND-HID-CCA secure, where t = t′−O(ε−2 ·ln(ε−1)+q), ε′ = O((nq)L ·(ε+q/p))+εh

and q = qK + qD.

Algorithm Setup:

v1, v2, α
$← G ; z ← e(g, α)

ui,j
$← G for i = 1 . . . L, j = 0 . . . n

mpk ← (v1, v2, u1,0, . . . , uL,n, z)
msk ← α
Return (mpk ,msk)

Algorithm KeyDer(d(ID1,...,IDl), IDl+1):
Parse d(ID1,...,IDl) as (d0, . . . , dl)

sl+1
$← Z∗p ; d′l+1 ← gsl+1

d′0 ← d0 ·
(
ul+1,0

∏
j∈IDl+1

ul+1,j

)sl+1

Return (d′0, d1, . . . , dl, d
′
l+1)

Algorithm Encap(mpk , ID):
Parse ID as (ID1, . . . , IDl)

r
$← Z∗p ; C0 ← gr ; t ← h1(C0)

For i = 1 . . . l do

Ci ←
(
ui,0

∏
j∈[IDi]

ui,j

)r

Cl+1 ← (vt
1v2)

r

K ← zr

Return (K, (C0, . . . , Cl+1))

Algorithm Decap(d(ID1,...,IDl), C):
Parse d(ID1,...,IDl) as (d0, . . . , dl)
Parse C as (C0, . . . , Cl+1)
t ← h1(C0)
If any of (g, C0, vt

1v2, Cl+1)
or (g, C0, ui,0

∏
j∈[IDi]

ui,j , Ci), i = 1 . . . l

is not a DH tuple then K ←⊥
else K ← e(C0, d0)/

∏l
i=1 e(Ci, di)

Return K

Fig. 2. The Kiltz-Galindo HIB-KEM scheme.

Note that the Kiltz-Galindo scheme generates keys which are elements of the
group GT, and we will follow this practice in our construction of the WIB-KEM.
However, our definition of a WIB-KEM requires that the keys it generates are
bitstrings. This discrepancy can be overcome by hashing the group element used as
the key using a smooth hash function. A hash function h : GT → {0, 1}λ is ε-smooth
if for all K ∈ {0, 1}λ and for all z ∈ G∗T, the probability

Pr[h(zr) = K : r
$← Zp] = 1/2λ + ε

5.2 The Kiltz-Galindo WIB-KEM

We attempt to build a WIB-KEM using a similar approach to that of Kiltz-Galindo
[12] using the techniques of Abdalla et al. [1]. A naive implementation might try to
construct an encapsulation algorithm as follows:

Algorithm Encap(mpk , P):
Parse P as (P1, . . . , Pl)
r

$← Z∗p ; C0 ← gr ; t ← h1(C0)
For i = 1 . . . l do

if Pi 6= ∗, then

Ci ←
(
ui,0

∏
j∈[Pi]

ui,j

)r

else
Ci ← (ur

i,0, . . . , u
r
i,n)

Cl+1 ← (vt
1v2)r

K ← zr

Return (K, (C0, . . . , Cl+1))

However, such an implementation would be insecure in the IND-WID-CCA model.
An attacker could output a challenge pattern P ∗ = (∗) and would receive a key K
and an encapsulation (C0, C1, C2) where C0 = gr∗ and C1 = (ur∗

0 , . . . , ur∗
n). It would

be simple for the attacker then to construct a valid encapsulation of the same key
for a particular identity ID by setting C ′1 ← ur∗

0

∏
j∈[ID] u

r∗
i . Thus, submitting the

identity ID and the ciphertext (C0, C
′
1, C2) to the decryption oracle will return the

correct decapsulation of the challenge.
This attack demonstrates the importance of knowing the location of the wild-

cards that were used to create an encapsulation. We solve this problem by using
a two tier version of the Kiltz-Galindo HID-KEM. The first tier is used to encode
the identity of the recipient as usual. The second tier is used to specify the loca-
tions of the wildcards in an encapsulation. Our scheme makes use of a bilinear map
e : G × G → GT and a target collision resistant hash function, h1 : G → Zp. We
will also make use of a function h2, which on input of a pattern P = (P1, . . . , Pl),
returns a bitstring b1b2 . . . bl, where bi = 1 if Pi is a wildcard, otherwise bi = 0.
Note that two patterns P1, P2 have wildcards in the same location if and only if
h2(P1) = h2(P2).

– Setup : Pick random elements v1, v2, v3, α
$← Zp and compute z ← e(α, g) where

g is the generator of G. Furthermore, pick elements ui,j
$← G for 1 ≤ i ≤ L

and 0 ≤ j ≤ n, and elements wj
$← G for 0 ≤ j ≤ L. The master public

key is mpk = (v1, v2, v3, u1,0, . . . , uL,n, w0, . . . , wL, z) and the master secret is
msk = α.

– KeyDer(msk, ID1) : Pick s1
$← Zp. Compute d0 ← α(u1,0

∏
j∈[ID1]

u1,j)s1 and
d1 ← gs1 . The private key for ID1 is (d0, d1). This can be thought of as an
example of the next algorithm where the decryption key for the null identity is
d0 ← α.

– KeyDer(dID, IDl+1) : Parse the private key dID for ID = (ID1, . . . , IDl) as
(d0, . . . , dl). Pick sl+1

$← Zp and compute d′l+1
$← gsl+1 . Lastly, compute

d′0 ← d0 ·
(
ul+1,0

∏
j∈[IDl+1]

ul+1,j

)sl+1

.

The private key for ID′ = (ID1, . . . , IDl, IDl+1) is dID′ = (d′0, d1, . . . , dl, d
′
l+1).

– Encap(mpk, P) : Parse the pattern P as (P1, . . . , Pl) ∈ ({0, 1}n ∪ {*})l. Pick
r

$← Z∗p, set C0 ← gr, and for 1 ≤ i ≤ l compute Ci as

Ci ←
{(

ui,0

∏
j∈[Pi]

ui,j

)r if Pi 6= *(
ur

i,0, . . . , u
r
i,n

)
if Pi = * .

Furthermore, set
Cl+1 ←

(
w0

∏
j∈[h2(P)] wj

)r

If Pi = * we will use the notation Ci,j to mean the jth component of Ci i.e.
ur

i,j . Finally, compute t ← h1(C0), and Cl+2 ← (vt
1v2)r. The ciphertext C =

(C0, . . . , Cl+2) is the encapsulation of key K = zr.
– Decap(dID, C) : Parse dID as (d0, . . . , dl′) and C as (C0, . . . , Cl+2). First com-

pute t ← h1(C0) and h2(P), where P is the pattern under which C was en-
crypted. Note that h2(P) is implicitly given by C, even though P is not. Test
whether

(g , C0 , vt
1v2 , Cl+2)

(g , C0 , w0

∏
j∈[h2(P)] wj , Cl+1)

(g , C0 , ui,0

∏
j∈[IDi]

ui,j , Ci) for 1 ≤ i ≤ l, Pi 6= * (1)

(g , C0 , ui,j , Ci,j) for 1 ≤ i ≤ l, Pi = *, 0 ≤ j ≤ n

are all Diffie-Hellman tuples. If not, return ⊥. Otherwise, decapsulate key by
first setting

C ′i ←
{

Ci if Pi 6= *
Ci,0

∏
j∈[IDi]

Ci,j if Pi = *
for 1 ≤ i ≤ l′

and then computing K ← e(C0, d0)/
∏l′

i=1 e(C ′i, di).

Soundness. Given a correctly formed encapsulation C = (C0, . . . , Cl+2) of a key
K = zr for a pattern P , it can be verified that decapsulation of C with a private
key dID = (d0, . . . , dl′) for ID ∈∗ P yields the correct key since

e(C0, d0)∏l′

i=1 e(C ′i, di)
=

e
(
gr, α

∏l′

i=1

(
ui,0

∏
j∈[IDi]

ui,j

)si
)

∏l′

i=1 e
((

ui,0

∏
j∈[IDi]

ui,j

)r
, gsi

)

=
e(gr, α)

∏l′

i=1 e
(
gr,

(
ui,0

∏
j∈[IDi]

ui,j

)si
)

∏l′

i=1 e
((

ui,0

∏
j∈[IDi]

ui,j

)r
, gsi

)

= e(g, α)r

= zr

Thus the scheme is sound.

Theorem 10 If the Kiltz-Galindo HIB-KEM is (t, qK, qD, ε) IND-HID-CCA secure
then the WIB-KEM scheme described above is (t′, qK, qD, ε′) IND-WID-CCA secure,
where t′ = t−O

(
(nL+LqK+qD)texp+nLqDtmul

)
, ε′ ≥ ε/2L and texp and tmul are the

time it takes to compute an exponentiation and a multiplication in G, respectively.

Proof. The proof is by contradiction. Suppose that there is a (t′, qK, qD, ε′)-adversary
A against the IND-WID-CCA security of the scheme. We will use this adversary
to construct a (t, qK, qD, ε)-adversary B for the Kiltz-Galindo HIB-KEM. In the
construction of B, we will use similar ideas to those presented in [1].

Let mpk = (v1, v2, u1,0, . . . , uL,n, z) be the master public key given to B by a
HIB-KEM challenger. Firstly, B will attempt to guess the positions of the wildcards
in the challenge pattern P ∗ that A will produce, and randomly picks a set of integers
W ⊆ {1, . . . , L}, corresponding to the levels at which the wildcards appear. Based
on this guess, B defines a “projection” that maps identities from the WIB-KEM to
identities in the HIB-KEM. This projection will enable B to use its own oracles when
responding to queries made by A. Define the function π(i) : {1, . . . , L} → {0, . . . , L}
as

π(i) =
{

0 if i ∈ W
i− |{j : j ≤ i and j ∈ W | if i 6∈ W

Given an identity ID′ = (ID′
1, . . . , ID′

l) in the WIB-KEM, B will “project” ID′

to an identity ID in the HIB-KEM by setting IDπ(i) ← ID′
i whenever π(i) 6= 0.

This corresponds to removing all components ID′
i having π(i) = 0 (i.e. components

at level i where i ∈ W). We will use the notation ID = (ID′
i)π(i) 6=0 to describe

that ID is obtained from projecting ID′ to the HIB-KEM. Besides constructing a
projection, B computes a master public key mpk′ = (v1, v2, v3, u

′
1,0, . . . , u

′
L,n, z) for

the WIB-KEM by reusing the values v1, v2 and z from mpk, setting v3 ← gβv where
βv

$← Zp and for all 1 ≤ i ≤ L and 0 ≤ j ≤ n setting u′i,j ← gβi,j where βi,j
$← Zp

if i ∈ W and u′i,j ← ui,j otherwise. Finally, B runs A with mpk′ as input.

Key derivation queries To make the notation easier to follow, we define the
functions Hi(IDi) = ui,0

∏
j∈[IDi]

ui,j and H ′
i(ID′

i) = u′i,0
∏

j∈[ID′
i]

u′i,j for all 1 ≤
i ≤ L. Now, B responds to the queries as follows: On input ID′ = (ID′

1, . . . , ID′
l′),

B constructs ID = (ID′
i)π(i) 6=0 as described above. Then B queries its HIB-KEM

key derivation oracles with input ID to get a private key d = (d0, . . . , dl). From this
key, a private key d′ = (d′0, . . . , d

′
l′) for ID′ is computed as

d′0 ← d0

∏
{i : i∈W}H ′

i(ID′
i)

ri , d′i ←
{

gri if i ∈ W
dπ(i) if i 6∈ W

where ri
$← Zp. It is easy to see that this will yield a correctly formed private key

since d′i = gri for all 1 ≤ i ≤ l′ and

d′0 = α
∏
{i : i6∈W}Hπ(i)(ID′

i)
ri

∏
{i : i∈W}H ′

i(ID′
i)

ri

= α
∏
{i : i6∈W}

(
uπ(i),0

∏
j∈[ID′

i]
uπ(i),j

)ri ∏
{i : i∈W}H ′

i(ID′
i)

ri

= α
∏
{i : i6∈W}

(
u′i,0

∏
j∈[ID′

i]
u′i,j

)ri ∏
{i : i∈W}H ′

i(ID′
i)

ri

= α
∏l′

i=1 H ′
i(ID′

i)
ri

Decapsulation queries On input (ID′, C ′), where C ′ = (C ′0, . . . , C
′
l′+1) is an

encapsulation for a pattern P , B checks that C ′ is a valid encapsulation as done in
the Decap algorithm, shown in equation 1. If the encapsulation is invalid, it returns
⊥, otherwise B constructs an encapsulation C = (C0, . . . , Cl+1) of the same key
in the HIB-KEM. This is done by considering each element in C ′, discarding C ′i if
π(i) = 0, and setting

C0 ← C ′0, Cπ(i) ←
{

C ′i,0
∏

j∈[ID′i]
C ′i,j if Pi = *

C ′i if Pi 6= *
and Cl+1 ←

C ′l′+1

(C0)βvh2(P)
.

The length of C is l + 1 = l′ + 1− |W |. Note that the position of the wildcards can
easily be determined from C ′, and this is all the information about P that is needed.
Let zr be the key encapsulated by C ′. C is known to be a valid encapsulation of zr

for the identity ID = (ID′)π(i)6=0, since C0 = C ′0 = gr,

Cl+1 =

(
v

h1(C0)
1 v

h2(S)
3 v2

)r

(gr)βvh2(S)
=

(
v

h1(C0)
1 v

h2(S)
3 v2

)r

v
rh2(S)
3

=
(
v

h1(C0)
1 v2

)r and

Cπ(i) =
(

u′i,0
∏

j∈[ID′i]
u′i,j

)r

=
(

uπ(i),0

∏
j∈IDπ(i)

uπ(i),j

)r

= H
(
IDπ(i)

)r
.

Now B simply submits (ID,C) to its own HIB-KEM decryption oracle to obtain
zr, which it then forwards to A.

At the end of the first phase of the simulation, A returns a challenge pattern P ∗.
If W , chosen by B in the beginning of the simulation, does not describe the position

of the wildcards in P ∗, B aborts. Otherwise, the projection of P ∗ will correspond to
an identity ID∗ = (P ∗i)π(i) 6=0 in the HIB-KEM. B returns this identity ID∗ as its
own challenge identity in the HIB-KEM security game. B’s challenger will respond
with (Kb, C

∗) where b is a secret random bit chosen by the challenger, C∗ is the
encapsulation of K0, and K1 is a random key. Let K0 = zr for a value r known only
by B’s challenger. From C∗ = (C∗0 , . . . , C∗l+1), B constructs an encapsulation of zr

for P ∗ in the WIB-KEM by setting

C ′∗0 ← C∗0 , C ′∗i ←
{

C∗π(i) if i 6∈ W(
(C∗0)βi,0 , . . . , (C∗0)βi,n

)
if i ∈ W

and C ′∗l′+1 ← C∗l+1(C
∗
0)βvh2(P).

Since C∗0 = gr, (C∗0)βv = vr
3 and (C∗0)βi,j = (u′i,j)

r, it is easy to see that C ′∗ is a
valid encapsulation of zr for the pattern P ∗ in the WIB-KEM. After computing
C ′∗, B submits (Kb, C

′∗) to A as a response to the challenge pattern P ∗.
During the second phase of the simulation, A can make key derivation queries

for identities ID 6∈* P ∗ and decapsulation queries for any pair (ID′, C ′) other than
(ID, C∗) for some ID ∈∗ P ∗. B will respond to these queries as in the first phase.
At the end of the second phase, A will return a bit b′ which is a guess on b in the
challenge (Kb, C

′∗). B simply forwards b′ to the HIB-KEM challenger as its own
guess on b.

Note that if A makes a decapsulation query (ID′, C ′) which is mapped onto
the challenge identity and encapsulation (ID∗, C∗) in the HIB-KEM, then it could
potentially correspond to a query which is legal in the WIB-KEM but not in the
HIB-KEM. However, since the WIB-KEM encapsulation is valid and B checks that
C ′l′+1 correctly encodes the location of the wildcards, we know that C ′ must have
wildcards in the same locations as C∗, and hence they are equal. Thus, such a query
is also illegal in the WIB-KEM.

This completes the description of the simulation. It remains to analyse the suc-
cess probability of B. Let E1 be the event that B aborts because of an incorrect
guess of W , and let SA be the event that A correctly guesses the value of b. We
have that

Pr[B succeeds] = Pr[¬E1 ∧ SA]
= Pr[¬E1] Pr[SA|¬E1]

Since W is chosen independently and at random, we have Pr[¬E1] = 1/2L. Lastly,
since B provides a perfect simulation if it does not abort, we have that Pr[SA|¬E1] =
ε′ and hence

Pr[B succeeds] = ε ≥ ε′

2L
.

Thus, the theorem follows. ut
Note that, as is the case for all known HIBE and WIBE schemes, the security

of our WIB-KEM degrades exponentially with the maximal hierarchy depth L. The
scheme can therefore only be used for relatively small (logarithmic) values of L. We
leave the construction of a WIBE-KEM with polynomial efficiency and security in
all parameters as an open problem. Any solution to this problem would directly
imply a WIBE and a HIBE scheme with polynomial security as well, the latter of
which has been an open problem for quite a while now.

6 Conclusion

We have extended the concept of WIBE to Key Encapsulation, and used this idea to
provide methods to construct CCA secure WIBE schemes, in both the random oracle
and standard models, which are much more efficient than the earlier constructions.

References

1. Michel Abdalla, Dario Catalano, Alexander W. Dent, John Malone-Lee, Gregory
Neven, and Nigel P. Smart. Identity-based encryption gone wild. In ICALP (2),
pages 300–311, 2006.

2. Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for
designing efficient protocols. In ACM CCS 93, pages 62–73, Fairfax, Virginia, USA,
November 3–5, 1993. ACM Press.

3. Kamel Bentahar, Pooya Farshim, John Malone-Lee, and Nigel P. Smart. Generic
constructions of identity-based and certificateless KEMs. Cryptology ePrint Archive,
Report 2005/058, 2005. http://eprint.iacr.org/.

4. Manuel Blum and Shafi Goldwasser. An efficient probabilistic public-key encryption
scheme which hides all partial information. In G. R. Blakley and David Chaum,
editors, CRYPTO’84, volume 196 of LNCS, pages 289–299, Santa Barbara, CA, USA,
August 19–23, 1984. Springer-Verlag, Berlin, Germany.

5. Dan Boneh and Xavier Boyen. Secure identity based encryption without random or-
acles. In Matthew Franklin, editor, CRYPTO 2004, volume 3152 of LNCS, pages
443–459, Santa Barbara, CA, USA, August 15–19, 2004. Springer-Verlag, Berlin, Ger-
many.

6. Dan Boneh, Xavier Boyen, and Eu-Jin Goh. Hierarchical identity based encryption
with constant size ciphertext. In Ronald Cramer, editor, EUROCRYPT 2005, volume
3494 of LNCS, pages 440–456, Aarhus, Denmark, May 22–26, 2005. Springer-Verlag,
Berlin, Germany.

7. Dan Boneh and Matthew K. Franklin. Identity-based encryption from the Weil pairing.
In Joe Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 213–229, Santa
Barbara, CA, USA, August 19–23, 2001. Springer-Verlag, Berlin, Germany.

8. Dan Boneh and Jonathan Katz. Improved efficiency for CCA-secure cryptosystems
built using identity-based encryption. In Alfred Menezes, editor, CT-RSA 2005, vol-
ume 3376 of LNCS, pages 87–103, San Francisco, CA, USA, February 14–18, 2005.
Springer-Verlag, Berlin, Germany.

9. Clifford Cocks. An identity based encryption scheme based on quadratic residues.
In Bahram Honary, editor, Cryptography and Coding, 8th IMA International Confer-
ence, volume 2260 of LNCS, pages 360–363, Cirencester, UK, December 17–19, 2001.
Springer-Verlag, Berlin, Germany.

10. Ronald Cramer and Victor Shoup. Design and analysis of practical public-key en-
cryption schemes secure against adaptive chosen ciphertext attack. SIAM Journal of
Computing, 33:167–226, 2004.

11. Alexander W. Dent. A designer’s guide to KEMs. In K. Paterson, editor, Cryptography
and Coding: 9th IMA International Conference, volume 2898 of LNCS, pages 133–151.
Springer-Verlag, Berlin, Germany, 2003.

12. Eike Kiltz and David Galindo. Direct chosen-ciphertext secure identity-based key
encapsulation without random oracles. In ACISP, pages 336–347, 2006.

13. Moni Naor and Moti Yung. Public-key cryptosystems provably secure against chosen
ciphertext attacks. In 22nd ACM STOC, Baltimore, Maryland, USA, May 14–16,
1990. ACM Press.

14. Ryuichi Sakai, Kiyoshi Ohgishi, and Masao Kasahara. Cryptosystems based on pairing.
In SCIS 2000, Okinawa, Japan, January 2000.

15. Adi Shamir. Identity-based cryptosystems and signature schemes. In G. R. Blakley
and David Chaum, editors, CRYPTO’84, volume 196 of LNCS, pages 47–53, Santa
Barbara, CA, USA, August 19–23, 1985. Springer-Verlag, Berlin, Germany.

16. Victor Shoup. Sequences of games: a tool for taming complexity in security proofs,
2004.

17. Brent Waters. Efficient identity-based encryption without random oracles. In Ronald
Cramer, editor, EUROCRYPT 2005, volume 3494 of LNCS, pages 114–127, Aarhus,
Denmark, May 22–26, 2005. Springer-Verlag, Berlin, Germany.

A Proof of security for the hybrid construction

We first restate the theorem of Section 3:

Theorem 11 Suppose there is a (t, qK , qD, ε)-adversary A = (A1,A2) against IND-
WID-CCA security of the hybrid WIBE. Then there is a (tB, qK , qD, εB)-adversary
B = (B1,B2) against the IND-WID-CCA security of the WIB-KEM and a (tC , qD, εC)-
adversary C = (C1, C2) against the IND-CCA security of the DEM such that:

tB ≤ t + qDtDec + tEnc

tC ≤ t + qD(tDec + tDecap + tKeyDer) + qKtKeyDer + tEncap + tSetup

ε = εB + εC

where tEnc is the time to run the DEM’s Encrypt algorithm, tDec is the time to run
the DEM’s Decrypt algorithm, tSetup is the time to run Setup, tDecap is the time to
run Decap and tKeyDer is the time to run KeyDer.

Proof. The proof is structured as a sequence of games. Let Game 1 be the original
game played by A against the WIBE.

If we write the operations of the hybrid scheme out in full, the game is as follows:

1. (mpk, msk) ← Setup
2. (P ∗,m0,m1, s) ← AO1 (mpk)
3. b

$← {0, 1}
4. (K∗, C∗1) ← Encap(mpk, P ∗)
5. C∗2 ← Encrypt(K∗,mb)
6. b′ ← AO2 ((C∗1 , C∗2), s)

In the above, O represents the oracles that A is given access to. Since we are
working in the CCA model, these are the key derivation oracle, which on input ID
returns KeyDer(msk, ID), and the decryption oracle, which on input (ID, (C1, C2))
returns

Decrypt(Decap(KeyDer(msk, ID), C1), C2) .

A wins if both b′ = b, and it never requested the decryption key for any identity
ID matching the pattern P ∗ or queried the decryption oracle on (ID, (C∗1 , C∗2)).
Let S1 be the event that A wins Game 1.

We now define a modified game, Game 2, as follows:

1. (mpk, msk) ← Setup
2. (P ∗,m0,m1, s) ← AO1 (mpk)
3. b

$← {0, 1}
4. (K, C∗1) ← Encap(mpk, P ∗)
5. K∗ $← {0, 1}λ

6. C∗2 ← Encrypt(K∗,mb)
7. b′ ← AO2 ((C∗1 , C∗2), s)

The decryption oracle is modified so that in the second phase, after the chal-
lenge ciphertext (C∗1 , C∗2) has been issued, if it is queried on (ID, (C∗1 , C2)), where
C2 6= C∗2 , and ID is any identity matching the pattern P ∗, then it simply returns
Decrypt(K∗, C2). Let S2 be the event that A wins Game 2.

We now describe the (tB, qK , qD, εB)-adversary B = (B1,B2) against the IND-
WID-CCA security of the WIB-KEM. B1 takes a master public key mpk and runs
A1(mpk) which outputs (P ∗, m0, m1, s). It sets s′ = (P ∗,m0,m1, s) and outputs
(P ∗, s′).

B2 receives (K∗, C∗1 , (P ∗, m0, m1, s)) as input and then chooses a random bit
d

$← {0, 1}. It then computes C∗2 ← Encrypt(K∗, md) and runs A2((C∗1 , C∗2), s),
which outputs a bit d′. If d′ = d, B2 outputs 0, otherwise it outputs 1.

Key Derivation Queries: To respond to A’s key derivation queries, B simply
forwards the query to its own key derivation oracle.
Decryption Queries If A makes a decryption query on (ID, (C1, C2)), B queries
its decapsulation oracle on (ID, C1) and obtains a key K. If K = ⊥, B returns
⊥, otherwise it returns m ← Decrypt(K, C2). In the second phase, B2 responds as
before, except if it is queried on (ID, (C∗1 , C2)) for any ID ∈∗ P ∗ and C2 6= C∗2 , it
returns Decrypt(K∗, C2).

It is clear that if B’s challenger chooses bit b = 0, then the key K∗ is the correct
key encapsulated in C∗1 , so A’s view of the game is exactly as in Game 1. This
implies that

Pr[S1] = Pr[d′ = d|b = 0] = Pr[b′ = 0|b = 0] .

Similarly, if the challenger chooses bit b = 1, then the key K∗ is chosen at
random, so A’s view of the game is exactly as in Game 2. So

Pr[S2] = Pr[d′ = d|b = 1] = Pr[b′ = 0|b = 1]

Combining these results and noting that

εB = |2Pr[b′ = b]− 1| = |Pr[b′ = 0|b = 0]− Pr[b′ = 0|b = 1]

we get that
|Pr[S2]− Pr[S1]| = εB .

Running Time B runs A, performs one DEM decryption per decryption query
that A makes, and performs one DEM encryption for the challenge so B runs in
time

t′ ≤ t + qDtDec + tEnc .

Finally, there is a (tC , qD, εC)-adversary C = (C1, C2) against the IND-CCA se-
curity of the DEM such that

|Pr[S2]| = εC .

C1 generates (mpk, msk) ← Setup. It then runs A1(mpk) which outputs a tuple
(P ∗, m0, m1, s). It sets s′ = (P ∗,mpk, msk, s) and outputs (m0,m1, s

′). C2 receives
(C∗2 , s′) from the challenger, parses s′ as (P ∗,mpk,msk, s) and computes (K,C∗1) ←
Encap(mpk, P ∗). Finally, it runs A2((C∗1 , C∗2), s) which outputs b′, and C2 outputs
b′.

Key Derivation Queries To respond to A’s key derivation queries, C simply uses
the KeyDer algorithm and the master secret key which it knows.
Decryption Queries If A makes a decryption query on (ID, (C1, C2)) for some
C1 6= C∗2 , B computes Decrypt(Decap(KeyDer(msk, ID), C1), C2). In the second
phase, it responds to queries where C1 = C∗1 by passing C2 to it’s own decryption
oracle and returning the result.

A’s view of this simulation is identical to Game 2, since the key used by the
IND-CCA challenger is randomly chosen and unrelated to the encapsulation C∗1 , so

|Pr[S2]− 1
2
| = |Pr[b′ = b]− 1

2
| = εC .

Running Time C runs Setup, runs A, performs one KEM encapsulation in the
challenge phase and performs qK key derivation operations, and qD decryptions,
decapsulations and key derivations. So C runs in time

tC ≤ t + qD(tDec + tDecap + tKeyDer) + qKtKeyDer + tEncap + tSetup .

Combining these results, we get

ε = εB + εC .

ut

B Proof of security for the generic construction

We will prove this using a sequence of games in the manner of [16]. In particular,
we will need the following lemma:

Lemma 1 (Difference Lemma). Let A, B and F be events, and suppose that
A ∧ ¬F is equivalent to B ∧ ¬F . Then Pr[A]− Pr[B] ≤ Pr[F].

The lemma is proved in [16].

Proof (Proof of Theorem 6).
Let Game 1 be the original attack game against the WIB-KEM. We define a

modified game, Game 2, which is the same as Game 1, but in Game 2, the adversary
may not query the Decap oracle on (ID, C∗) for any identity ID ∈∗ P ∗ at any time.
In the second phase this is already forbidden, but we must consider the possibility
that it makes such a query in the first phase.

Let E1 be the event that A queries the decapsulation oracle on the challenge
encapsulation in the first phase. Then Pr[E1] ≤ qD/|M|. This follows since each
message has exactly one valid encapsulation for a given pattern, and in the first
phase the adversary has no information about the challenge encapsulation.

By the difference lemma, the advantage of A in Game 2 is at least

ε2 ≥ ε− qD

|M| .

We now define a modified game, Game 3, which is the same as Game 2, but we
respond to the oracle queries as follows:

– Hash queries: The H1 and H2 oracles are simulated by making use of two lists,
H1-list and H2-list, which are initially empty. To respond to the adversary’s
query Hi(x), we first check if there is a pair (x, h) in the Hi-list. If so, we return
h, otherwise we query h ← Hi(x) to the real oracle, append (x, h) to the Hi-list
and return h.

– KeyDer queries: These are handled as in the original game.
– Decap queries: To respond to a decapsulation query on (ID, C), we look for

a pair (m,h) in the H1-list which satisfies Encrypt(mpk, P(ID,C),m; h) = C.
If one exists, we compute K ← H2(m) using the method described above and
return K. Otherwise we return ⊥.

Game 3 proceeds exactly as Game 2 unless the following happens: Let E2

be the event that A makes a decapsulation query on (ID, C) such that m =
Decrypt(dID, C) and C = Encrypt(mpk, P(ID, C),m; H1(m)), but A has not yet
queried H1 on m. Pr[E2] ≤ qDγ by definition of γ. Thus the advantage of A in
Game 2 is at least

ε3 = ε2 − γqD .

Let E3 be the event that A queries H1 or H2 on m = Decrypt(dID, C∗), for some
ID ∈ P ∗. Since A has advantage ε3, it must make this query with probability at
least ε3.

We now construct an OW-WID-CPA adversary B = (B1,B2) using A as an
oracle. B handles all oracle queries as in Game 3 – passing key derivation queries to

its own oracle and using H1 and H2-lists to answer decryption queries. Note that
the simulation may add an entry to the H2-list whenever A makes an H2 oracle
query. Hence, the size of the H2-list is bounded by qH2 + qD. The simulation only
adds an entry to the H1-list when a H1 oracle query is made; hence, the size of the
H1 list is bounded by qH1 .

B1 simply takes a master public key mpk, and runs A1(mpk). A returns (P ∗, s),
which B simply returns to its own challenger.

B2 takes (C∗, s), generates a random bitstring K∗ $← {0, 1}λ and runs A2 on
((K∗, C∗), s). When A2 terminates, B chooses a random message m from either the
H1-list or H2-list and returns this as its guess for the challenge message.

B simulates the environment of Game 3 exactly, at least until A queries H1 or
H2 on m = Decrypt(dID, C∗). Since A cannot detect this difference without making
one of these oracle queries, it must still make one with probability ε3 as before, and
B wins if it then chooses the correct value of m from the list.

B must perform one hash list lookup for each hash query made by A, while
for each decryption query, it must perform at most qH encryptions to find the
corresponding entry in the hash list, so it’s running time is t′ + qHtH + qDqHtEnc

as claimed.
The claim now follows. ut

