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Abstract: This paper proposes a new type of hash iterative structure ─ the ring-iterative structure 
with feedback which is subdivided into the single feedback ring iteration and the multiple feedback 
ring iteration, namely SFRI and MFRI. The authors prove that the SFRI structure is at least 
equivalent to the MD structure in security, and the MFRI structure is at least equivalent to the SFRI 
structure in security, analyze the resistance of MFRI, which results from the joint event on 
message modification, the endless loop on message modification and the incompatibility of the 
sufficient conditions, to the multi-block differential collision attack, and argue the ineffectiveness 
of the D-way second preimage attack on MFRI. The paper discusses the time and space expenses of 
MFRI, and points out the advantage of MFRI over the tree-iterative structure and the 
zipper-iterative structure. 
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1  Introduction 

It is well known that hash functions are primarily employed for digital signature, data integrity and 
message authentication code which are widely used in trust computing systems. The security of hash 
functions is the foundation of security of digital signature. 

At present, almost all famous hash functions ─ MD5, SHA-0, and SHA-1 [1] for example adopt the 
Merkle-Damgård (MD) iterative structure [2][3]. The design principle of this structure is that if there 
does not exist a computationally collision-resistant function h mapping a message of arbitrary 
polynomial length to a k-bit string, then there does not exist a computationally collision-resistant 
function f from m bits to k bits, where k < m [2]. Thereby, it has been universally thought that the 
problem of designing a collision-resistant hash function may be reduced to the problem of designing a 
collision-resistant compression function, namely iterative function. 

However, the multi-block differential collision attack on MD5、SHA-0 and SHA-1 [4][5][6] 
indicates that a collision-resistant compression function is not a sufficient condition of a 
collision-resistant hash function, but only a necessary condition [7]. It means that a secure and 
collision- resistant hash function will be based not only on a collision-resistant compression function, 
but also on a collision-resistant iteration structure. 
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Section 2 of this paper designs a new type of hash iteration structure, which is partitioned into the 
single feedback ring iteration and multiple feedback ring iteration, namely SFRI and MFRI. Section 3 
proves that the MFRI structure is more secure than the MD iterative structure, analyzes the security of 
MFRI against the multi-block differential collision attack and the D-way second preimage attack. 
Section 4 makes the performance analyses of the MFRI structure in time and space expenses. 

2  Design of Hash Ring-iterative Structures 

2.1 Single Feedback Ring Iteration 

Assume that a message to be hashed is X of l-bit length, and X is partitioned into n m-bit blocks X1, 
X2, …, Xn, where n = l / m and l is exactly divided by m, that is, the padding problem is neglected by 
us, which does not influence our discussion. 

Let IV be the initial value of the chaining variable, f be a compression function, every iterative 
output be Yi of k-bit length, where k ≤ m, i = 1, 2, …, n, and D be the last iterative output, namely the 
message digest. 

For the MD iterative structure, there are Y0 = IV, Yi = f (Yi – 1, Xi), and D = Yn. 
The single feedback ring iteration, shortly SFRI, is a simple structure. It feeds back the reverse code 

of the MD iterative output Yn into iterative box 1, sends the second output of iterative box 1 to iterative 
box n, and generates the message digest D last. See Figure 1. 

 
 
 
 
 
 
 
 

 

Figure 1: The Single Feedback Ring-iterative Structure 

In Figure 1, we define Xn + 1 = X1, Xn + 2 = Xn, and the message digest D = f (Xn + 2, f (Xn + 1, Yn)). 
Although the inputs X1 and Xn of box 1 and box n are employed twice, and they have respectively 

two outputs, it is not incompatible in logicality according to the above definitions. 
Notice that sign ‘ ’ denotes reversal operation, that is, the bits of a variable are rearranged in 
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reverse order. For example, the reverse code of ‘100110’ is ‘011001’.  

2.2 Multiple Feedback Ring Iteration 

The multiple feedback ring iteration, shortly MFRI, is a comparatively complex structure. It feeds 
back the modular sum of reverse codes of all iterative outputs into iterative box 1, sends the second 
output of iterative box 1 to iterative box n, and generates the message digest D last. See the following 
Figure 2. 
 
 
 
 
 
 
 
 
 
 

Figure 2: The Multiple Feedback Ring-iterative Structure 

According to the above diagram, we define Xn + 1 = X1, Xn + 2 = X2 ⊕ X3 ⊕ … ⊕ Xn, and the message 
digest D = f (Xn + 2, f (Xn + 1, Y1  Y2  …  Yn)), where sign ‘ ’ denotes modular addition 
operation.  

Here, we substitute Xn + 2 = X2 ⊕ X3 ⊕ … ⊕ Xn for Xn + 2 = Xn in the SFRI structure to make the last 
D depend relatively uniformly on X1, X2, …, and Xn. (X2 ⊕ X3 ⊕ … ⊕ Xn) may be regarded as a 
feedforward. 

Notice that the single feedback ring-iterative structure is primarily used to assist in proving the 
following theorem 1, and in practical applications, we should employ the multiple feedback 
ring-iterative structure. 

3  Security Analysis of Ring-iterative Structures 

3.1 At Least Equivalent to MD Structure in Security 

Assume that f is a compression function. It combines with any iteration structure to construct a 

IV 
f 

X1 

Y1 f 

X2 

Y2
f

X3

Yn Yn –1 
f

Xn

D 

f 

 

 

 



Design and Analysis of a Hash Ring-iterative Structure                        http://eprint.iacr.org/2006/384.pdf 

 4

one-way hash function H. 
Definition 1: For a given message M, if we can not find in polynomial time a message M′ ≠ M such 

that H(M′) = H(M), then H is called weakly collision-resistant.  
Definition 2: If we can not find in polynomial time any two messages M and M′ satisfying M′ ≠ M 

and H(M′) = H(M), then H is called strongly collision-resistant. 
Obviously, if a hash function is strongly collision-resistant, then it must be weakly 

collision-resistant. 

3.1.1 SFRI Structure Being at Least Equivalent to MD Structure in Security 

In cryptology, security is measured with time complexity of attack tasks, and thus, if either of two 
iteration structures is strongly collision-resistant, they both are said to equivalent in security. 
Theorem 1: The SFRI structure is at least equivalent to the MD structure in security. 
Proof:  
We temporarily neglect the existence of the operator  in the SFRI structure. The SFRI not 

containing the operator  is called the reduced SFRI. 
Let H1 be a hash function constructed with f and the MD structure, and H2 be another hash function 

constructed with f and the reduced SFRI structure. 
1) Hypothesize that H1 is strongly collision-resistant. 
We need to prove that H2 is also strongly collision-resistant.  
Proof by contradiction. 
Presume that H2 is not strongly collision-resistant, namely we can find the two messages M and M′ 

satisfying M ≠ M′ and H2(M) = H2(M′) in polynomial time. 
Suppose that M is exactly partitioned into n m-bit blocks X1, X2, …, Xn, and M′ is exactly partitioned 

into n′ m-bit blocks X′1, X′2, …, X′n′. 
In terms of the reduced SFRI structure, there are 

H2(M) = f (Xn, f (X1, Yn)), and H2(M′) = f (X′n′, f (X′1, Y′n′)), 
where Yn = H1(M), and Yn′ = H1(M′). 

Let M1 = M || X1 || Xn, and M′1 = M′ || X′1 || X′n′, where ‘||’ represents the concatenation of strings. By 
comparing the structures of H1 and H2, there are 

H2(M) = H1(M1), and H2(M′) = H1(M′1). 
Therefore, in polynomial time, we can find the two messages M1 and M′1 which satisfy M1 ≠ M′1 

and H1(M1) = H1(M′1). It is in direct contradiction to the hypothesis, so H2 is also strongly 
collision-resistant, which indicates that the security of H2 is not less than the security of H1. 

2) Hypothesize that H2 is strongly collision-resistant. 
We need to infer that H1 is also strongly collision-resistant. 
According to reference [5] and [6], define the message block differential as ∆Xi = X′i – Xi, and the 

iterative output differential as ∆Yi = Y′i – Yi. 
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In the SFRI, the collision differential characteristics will be ∆X1, ∆X2, …, ∆Xn, ∆Xn + 1, ∆Xn + 2 and 0 
= ∆Y0, ∆Y1, ∆Y2, …, ∆Yn, ∆Yn + 1, ∆Yn + 2 = 0. 

Note that ∆Xn + 1 = X′1 – X1 and ∆Xn + 2 = X′n – Xn. Thus, ∆X1 = ∆Xn + 1 and ∆Xn = ∆Xn + 2. 
If the attackers set ∆X1 = ∆Xn = ∆Yn = 0, then the attack on SFRI degenerates to the attack on the 

MD structure.  
Thereby, if H1 is not strongly collision-resistant, H2 is also not strongly collision- resistant. It is in 

direct contradiction to the hypothesis, so H1 is strongly collision-resistant, which means that the 
security of H1 is not less than the security of H2. 

To sum up, the reduced SFRI structure is equivalent to the MD structure in security. 
Considering the existence of the operator  in the SFRI, we say that the SFRI structure is at least 

equivalent to the MD structure in security.                                                

3.1.2 MFRI Structure Being at Least Equivalent to SFRI Structure in Security 

We also have the following theorem. 
Theorem 2: The MFRI structure is at least equivalent to the SFRI structure in security. 
Proof: 
In the SFRI structure, D = f (Xn + 2, f (Xn + 1, Yn)), where Xn + 1 = X1, and Xn + 2 = Xn. 
In the MFRI structure, D = f (Xn + 2, f (Xn + 1, Y1  Y2  …  Yn)), where Xn + 1 = X1, and Xn + 2 

= X2 ⊕ X3 ⊕ … ⊕ Xn. 
If we neglect the operations ( Y1  Y2  … ) and (X2 ⊕ X3 ⊕ … ⊕), for the reduced MFRI, D 

= f (Xn, f (X1, Yn)), which is the same as the digest output of the SFRI. It indicates that the reduced 
MFRI structure is equivalent to the SFRI structure in security. 

Considering the existence of the operations ( Y1  Y2  … ) and (X2 ⊕ X3 ⊕ … ⊕) in the 
MFRI, we say that the MFRI structure is at least equivalent to the SFRI structure in security.        

3.1.3 It Is Difficult to Find a Message Making Output of MFRI Equal That of SFRI 

Further, we have the following property. 
Property 1: It is difficult to find a message making the output of the MFRI structure equal that of 

the SFRI structure. 
Proof:  
Let the message M = X1 || X2 || … || Xn. 
If we can find in polynomial time a set of values of X1, X2, …, Xn which satisfies the two constraints  

( Y1  Y2  …  Yn) = Yn, and (X2 ⊕ X3 ⊕ … ⊕ Xn) = Xn, 
then the output of the MFRI structure will equal that of the SFRI structure. 

According to the definitions of the operators  and ⊕, we see that  
( Y1  Y2  …  Yn – 1) = u2k, and (X2 ⊕ X3 ⊕ … ⊕ Xn – 1) = 0, 

where u ∈[1, n – 1] is a positive integer, and k is the bit-length of Yi. 
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Y1 = f(IV, X1) 
Y2 = f(Y1, X2) 
…… 
Yn – 1 = f(Yn – 2, Xn – 1) 
(X2 ⊕ X3 ⊕ … ⊕ Xn – 1) = 0 
( Y1  Y2  …  Yn – 1) = 2k

Let u = 1 (if u equals other integers, it does not influence our discussion). In terms of the MFRI 
structure, the X1, X2, …, Xn – 1 must satisfy the following simultaneous equations:  
 
 
 
 
 
 
 
 
  Transparently, this equation system contains only two equations substantially, and has n – 1 
variables X1, X2, …, Xn – 1.  

No matter how X1, X2, …, Xn – 1 are sought, the easiest approach must contain the two steps:  
 Determine values of any n – 3 variables among X1, X2, …, and Xn – 1; 
 Compute the values of the other two variables according to the equation system.  

Without loss of generality, suppose that the values of X1, X2, …, Xn – 3 are determined. 
Further, the values of Xn – 2 and Xn – 1 need to be sought. 
According to (X2 ⊕ X3 ⊕ … ⊕ Xn – 1) = 0, Xn – 2 can be expressed with the variable Xn – 1, namely 

Xn – 2 = X2 ⊕ X3 ⊕ … ⊕ Xn – 3 ⊕ Xn – 1. 
According to ( Y1  Y2  …  Yn – 1) = 2k, Substitution for Y1, Y2, …, Yn – 1 yields 

f(IV, X1)  f(Y1, X2)  …  f(Yn – 3, Xn – 2)  f(Yn – 2, Xn – 1) = 2k. 
That is,  

f(IV, X1)  f(Y1, X2)  …  f(Yn – 3, X2 ⊕ X3 ⊕ … ⊕ Xn – 3 ⊕ Xn – 1)  f(Yn – 2, Xn – 1) = 2k, 
f(IV, X1)  f(Y1, X2)  …  f(Yn – 3, X2 ⊕ X3 ⊕ … ⊕ Xn – 3 ⊕ Xn – 1)  f(f(Yn – 3, X2 ⊕ X3  

⊕ … ⊕ Xn – 3 ⊕ Xn – 1), Xn – 1) = 2k. 
Clearly, seeking Xn – 1 from the above equation is at least equivalent to seeking a preimage of the 

compression function f. In terms of the one-wayness of f, it is infeasible in polynomial time to seek 
preimages of f. 

Therefore, we say that it is difficult to find a message making the output of the MFRI structure 
equal that of the SFRI structure.                                                        

Property 1 makes us incline to believe the MFRI is more secure than the SFRI. 

3.2 Resistance to the Multi-block Differential Attack 

3.2.1 Brief Presentation of the Multi-block Differential Attack 

Reference [4], [5] and [6] manifest the multi-block near differential attack on the hash functions 
MD4, MD5, SHA-0 and SHA-1. This attack consists of the following three steps: 
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(1) Find out a set of collision differential characteristics for M and M′ which are expected to 
produce a collision.  

(2) Derive a set of sufficient conditions which are described by the bits of the chaining variables, 
and ensure that the collision differential characteristics hold. 

(3) Modify the random message M through the single-step / multi-step or single-message / 
multi-message method in order to make almost all the sufficient conditions be satisfied. 

Assume that M is partitioned into n m-bit blocks X1, X2, …, Xn, and the iterative outputs are Y1, Y2, 
…, Yn = D in order. 

Assume that M′ is partitioned into n m-bit blocks X′1, X′2, …, X′n, and the iterative outputs are Y′1, 
Y′2, …, Y′n = D′, where n ≥ 2. 

According to reference [5] and [6], define the message differential as ∆Xi = X′i – Xi, and the iterative 
output differential as ∆Yi = Y′i – Yi. 

Notice that a differential is computed by modular integer subtraction ‘–’ in reference [5] and [6] 
while it is computed by exclusive or ‘⊕’ in other references. Obviously, the combination of these two 
sorts of differentials can bring more information to attackers. 

For the MD structure, assume that the collision differential characteristics are ∆X1, ∆X2, …, ∆Xn and 
0 = ∆Y0, ∆Y1, ∆Y2, …, ∆Yn = 0. 

It is should be noted that because the same compression function f is used when two different 
messages are hashed, the initial values of iteration are the same, namely ∆Y0 = 0. The ∆Yn = 0 
indicates that the collision (M, M′) is found out, and it is a goal which the attackers try to achieve. 
∆Yi is also the chaining variable difference. In terms of a concrete compression function, the 

attackers may set more detailed step-chaining variable differentials and round- chaining variable 
differentials [5][6][8]. 

3.2.2 MFRI Leading Block Modification to a Joint Event 

In the MFRI structure, let the collision differential characteristics be ∆X1, ∆X2, …, ∆Xn, 0 = ∆Y0, 
∆Y1, ∆Y2, …, ∆Yn, and the input chaining variable of the (n + 1)-th iteration be Y 

d 
n , then Y 

d 
n  = Y1  

Y2  …  Yn, where the superscript ‘d’ signifies time delay. Therefore, 
∆Y 

d 
n  = ( Y′1  Y′2  …  Y′n) – ( Y1  Y2  …  Yn) 

                   = ∆ Y1  ∆ Y2  …  ∆ Yn  
                   ≠ ∆Y1  ∆Y2  …  ∆Yn. 

For example, when A = 11010100, A′ = 00101011, and ∆A = 10101001, there are A = 00101011, 
A′ = 11010100, and ∆ A = 01010111, and so ∆ A ≠ ∆A. 
This brings extra difficulties to the attackers who employ the differential analysis method. 
From reference [5], [6] and [8], it is not difficult to understand that if there are not the multiple 

feedbacks, the modification to every block Xi is an independent event, and when the modification is 
made, it is feasible to consider ∆Xi and ∆Yi only relevant to the block Xi but not to other blocks. 
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However, when the multiple feedbacks exist, due to 
∆Y 

d 
n  = ( Y′1  Y′2  …  Y′n) – ( Y1  Y2  …  Yn), 

the modification to every block Xi will influence the corresponding Yi, and further influences ∆Y d 
n . 

Thereby, the modification to every block Xi changes into an joint event from an individual independent 
event. 

Assume that through message modification techniques the attackers can decrease the time 
complexity of a block near collision O(2k i). In terms of reference [5], [6] and [8], in the MD structure, 
the modification to every block is an independent event, and hence, the complexity of producing the 
n-block message collision is O(2k1 + 2k2 + … + 2kn). However, in the MFRI structure, the modification 
to every block become a part of the joint event, and hence, the probability that two n-block messages 
produce a collision is 1 / (2k 1 2k 2…2k n), namely, the complexity of producing the message collision 
increases to O(2k 1 + k 2 + … + k n). 

3.2.3 MFRI Leading Message Modification to an Endless Loop 

To ensure that the differential characteristics being set holds, every block has a set of sufficient 
conditions derived from f and ∆Yi, where ∆Yi is a chaining variable differential. For the hash functions 
MD4 and MD5, the length of every chaining variable is 128 bits, is exactly one of four 32-bit words. 
Therefore, in fact, every chaining variable consists of the four word variables a, b, c, and d. Because 
every block-iteration consists of several round-iterations, and every round-iteration consists of several 
step-iterations, the variables a, b, c, d may be further divided into a1, b1, c1, d1, a2, b2, c2, d2, …, as, bs, 
cs, ds in every block-iteration process. For example, in MD4, s = 12, and in MD5, s = 16. The values of 
ai, bi, ci, di in the sufficient conditions are expressed with 0, 1 or those prior to ai, bi, ci, di. For SHA-1, 
its chaining variable is composed of a, b, c, d, and e five word variables. The values of the sufficient 
conditions for a block collision are expressed with 0, 1 or those prior to ai. 

In the MFRI structure, because of feedback and Xn + 1 = X1, the second modification to X1 is needed. 
However, the second modification will surely influence the result of the first modification, that is, 
break the sufficient conditions satisfied and change the value of the chaining variable Y1, and further, 
cause Y2, Y3, …, Yn and the feedback Y d 

n  to produce alteration. Thus, the attackers need to modify X1 
once more. In this way, the MFRI structure will lead the modification to X1 and other blocks to an 
endless loop. 

3.2.4 MFRI Leading Sufficient Conditions for Collision to Incompatibility 

Due to Xn + 1 = X1, for the MFRI structure, a key problem is whether the two sets of sufficient 
conditions described with the chaining variables respectively in the 1-st iteration and (n + 1)-th 
iteration are compatible or not. If they are compatible, the two sets of sufficient conditions can be 
deduced theoretically. If they are contrary to each other, the two sets of sufficient conditions is 
radically impossibly deduced, and thus it is not ensured that the differential characteristics will hold 
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and that the collision for two messages can be found. 
Suppose that Λ = {a1, 1, a1, 2, …, a1, 32} is the set of 32 bits of the variable a1, then the size of its 

power set is |Þ (Λ)| = 232. Let P∩NE denote the probability that the intersection of any two nonempty 
subsets of Λ is empty, then 

P∩NE = (C1  
32 (231 – 1) + C2  

32 (230 – 1) + … + C31 
32 (21 – 1)) / (2C2    

|Þ (Λ)|) 
                    < (223 – 1) (C1  

32  + C2  
32  + … + C31 

32 ) / (231 232 – 1) 
                    = (223 – 1) (232 – 2) / (231 232 – 1) ≈ 1/212. 

Thereby, the probability that the intersection of any two nonempty subsets of Λ is nonempty is 
greater than (1 – 1/212), which means that probability at least 1 bit of the condition variable a1 
produces overlap in the 1-st iteration and (n + 1)-th iteration is greater than (1 – 1/212). 

We may as well suppose that a1, 1 overlaps, let a 

1  
1, 1 denote the condition value of a1, 1 in the 1-th 

iteration, and let a 

n+1 
1, 1 denote the condition value of a1, 1 in the (n + 1)-th iteration. If a 

1  
1, 1 = a 

n+1 
1, 1 = 0 

or 1, it indicates the two sets of sufficient conditions are compatible; otherwise the two sets of 
sufficient conditions are incompatible, that is, such two sets of sufficient conditions may impossibly 
exist simultaneously. Obviously, if the intersection contains only 1 bit, the probability of being 
incompatible is 1/2. If the intersection contains 2 bits, the probability of being incompatible is (1 – 
1/4). Suppose that Pa1, Pb1, Pc1, Pd1 = 1 / 2 or 1 represent respectively the probabilities that the 
intermediate chaining variables a1, b1, c1, d1 are condition-compatible in the 1-th iteration and (n + 
1)-th iteration. Then, for a1, b1, c1, and d1, the probability that the conditions are incompatible is (1 – 1 
/ (Pa1Pb1Pc1Pd1)). For the other intermediate chaining variables a2, b2, c2, d2 …, there exist similar 
conclusions. 

The above analysis manifests that in two different iterations of the same block, the probability that 
the condition bits produce overlap is close to 1, and the probability that the values of the overlapping 
bits are incompatible is greater than 1/2. 

3.3 Ineffectiveness of the D-way Second Preimage Attack 

Joux puts forward a attack method called D-way which is employed for seeking the second 
preimage of an output of a hash function based on the MD structure in reference [9]. For a given hash 
target value Y = H(M) ∈ {0, 1}k , the attackers first find 2 

d collisions on d-block messages M1, M2, …, 
M2d making Hd = H(M1) = H(M2) = … = H(M2d). Then, find the block Xd + 1 such that f (Hd, Xd + 1) = Y. 
In this way, the attackers succeed in seeking the second preimage with the message M. In terms of 
reference [9], the time complexity of this attack is O(d 2 k / 2 + 2 k). 

For a hash function based on the MFRI structure, because there are Xd + 1 = X1, Xd + 2 = X2 ⊕ X3 ⊕ … 
⊕ Xd, and X′d + 1 = X′1, X′d + 2 = X′2 ⊕ X′3 ⊕ … ⊕ X′d, even though ∆Y1 = ∆Y2 = … = ∆Yd = 0, it can not 
be ensured that ∆Yd + 1 = 0 and ∆Yd + 2 = 0. That is, it is intractable to find out two d-block messages M1 
and M2 for collision by the birthday attack [9]. Therefore, the D-way method is ineffective on hash 
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functions based on the MFRI structure. 

4  Performance Analysis of the Hash Ring-iterative Structure 

For the same message M, MFRI is two f mapping operations, n reverse code operations, n modular 
addition operations and (n – 1) exclusive OR operations more than the MD structure. Reverse code, 
modular addition and exclusive OR are fundamental operations, and they can not expend too much 
time. Hence, the MFRI structure has comparatively fast operation speed. The two extra variables in 
memory space need to be increased respectively for the feedforward and feedback values. The initial 
values of these two variables may be set to zero. Then, the feedforward variable admit X2, X3, …, and 
Xn one by one by exclusive OR, and the feedback variable admit Y1, Y2, … and Yn one by one 
by modular addition. 

At present, the tree structure and zipper structure for hash functions are also believed to be more 
secure than the MD structure [10][11]. However, the MFRI structure is more applicable than the tree 
structure since the compression mapping f in any existing hash function may be transplanted into the 
MFRI structure with no change, and is more efficient than the zipper structure since the number of 
time of operation on the mapping f in the MFRI structure is roughly half as many as in the zipper 
structure.  

5  Conclusions 

In this paper, we have proposed the ring-iterative structures with feedback, and proved that the 
MFRI structure is more secure than the MD structure. 

At the time every iteration output is fed back, first to do a reversal transform is important, which 
makes it impossible that ∆Y 

d 
n  is derived directly from ∆Y1, ∆Y2, …, and ∆Yn. 

It is known from section 3.1 that there is some comparability between the MFRI structure and the 
MD structure. The last two extra blocks in MFRI may be regarded as an extension of the MD padding. 
Therefore, for the same compression f, if the hash output of the MD structure is uniform, independent 
and random, the hash output of the MFRI structure is also uniform, independent and random. If the 
MD structure can cause the avalanche effect of the hash output, the MFRI structure can also cause the 
avalanche effect of the hash output. 

It is should be noted that for the input message X, only if it has at least two blocks does the MFRI 
structure take effect.  

For the existing hash functions ─ MD5 and SHA-1 for example, if their compression functions are 
extracted and transplanted into the MFRI structure, the preceding analysis shows that the existing 
attack methods will be ineffective on the newly forming hash functions. 
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