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Abstract. Group key exchange (GKE) protocols can be used to guarantee confidentiality and group authentication in a variety
of group applications. The notion of provable security subsumes the existence of an abstract formalization (security model) that
considers the environment of the protocol and identifies its security goals. The first security model for GKE protocols was pro-
posed by Bresson, Chevassut, Pointcheval, and Quisquater in 2001, and has been subsequently applied in many security proofs.
Their definitions of AKE- and MA-security became meanwhile standard. In this paper we show that the technical construction
of their model opens some problems w.r.t. the definition of MA-security. We revise the original model and provide extended
definitions for AKE- and MA-security considering attacks of malicious participants and a new notion of backward secrecy.
Finally, we describe a generic solution (compiler) which provides both of these requirements and show feasibility of our model
by proving security of this compiler using standard cryptographic assumptions.
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1 Introduction

MOTIVATION. Security of many privacy-preserving multi-party applications like encrypted group communication for
audio/video conferences, chat systems, computer-supported collaborative workflow systems, or secure server repli-
cation systems depends on group key exchange (GKE) protocols. Security of those latter is therefore critical. The
paradigm of provable security is used across the modern literature to prove in a mathematical way, and under rea-
sonable assumptions, that a cryptographic scheme achieves the required security goals. Such proofs are usually con-
structed using a formal setting that specifies: (1) the computing environment (involved users, their trust relationship,
cryptographic parameters, communication. . . ), (2) the adversarial environment and (3) the definitions of some concrete
security goals. Security of earlier GKE protocols [3,5,17,29,33,34,39,41–43] has been analyzed heuristically based on
informal definitions so that some of them have been broken later, e.g., [37,38]. In particular some fundamental notions,
like key secrecy [22], resistance against known-key attacks [16, 44], implicit and explicit key authentication [17, 36],
and forward secrecy [28, 36] were not formally defined at that time. In 2001 Bresson, Chevassut, Pointcheval, and
Quisquater [15] introduced the first computational (game-based) security model (referred to as the BCPQ model) de-
signed for GKE protocols. They adopted some ideas previously proposed by Bellare and Rogaway [7,9] in the context
of two- and three-party key establishment protocols. The BCPQ model, as well as its refinements [12, 13] and vari-
ants [14, 25, 30, 31], have been meanwhile used in many GKE security proofs including [1, 11–15, 24, 25, 30–32] and
became de facto standard. Therefore, it is immense important that the definitions provided by these models are correct
and general enough to be applicable for any GKE protocol, regardless of its concrete specification.

MODULARITY OF PROTOCOL DESIGN. Since GKE protocols are used as building blocks for high-level applications,
it is interesting to design them in a modular way: applications that make use of these protocols may have specific
security goals, and thus it is desirable that a specific GKE protocol can provide the corresponding properties. Modular
design allows to build such “à la carte” protocols. In order to provide these modular constructions in a generic way,
so-called “compilers” have been developed, e.g., [30, 31]. They allow designers to enhance security of a protocol in
a black-box manner, that is, independently of the implementation of the protocol being enhanced. In general, security
enhancement means enlarging the class of adversaries the protocol can deal with, or adding new security properties.



CONTRIBUTIONS AND ORGANIZATION We start with the brief overview of the BCPQ model and its security def-
initions. In Section 3 we point out a problem between the technical core of the BCPQ model – the notion of part-
nering – and its definition of MA-security. In Section 4 we analyze some well-known variants of the BCPQ model,
i.e., [25,30,31], from the perspective of general applicability (independence of protocol design), technical construction
of partnering, and MA-security whereby focusing on possible attacks carried out by malicious participants. By mali-
cious participants we mean legitimate protocol participants who are fully controlled by the adversary. We emphasize
that consideration of malicious participants makes sense in the scope of MA-security but not of AKE-security that
deals with the secrecy of the group key since malicious participants learn the established group key anyway.

After identifying some drawbacks in the mentioned variants we propose in Section 5 an extended computational
security model with the main goal to revise the definition of MA-security such that it considers attacks of malicious
participants. Our extended model is based on the more powerful BCPQ refinement from [13] that considers AKE-
security in the presence of (partial) internal state corruptions. We also introduce an additional notion of backward
secrecy which leads to new corruption models in case of AKE-security.

In order to show that our extended model is feasible, i.e., practical enough to construct reductionist security proofs,
in Section 6 we describe a compiler C-AMA that satisfies our stronger definitions of AKE- and MA-security for any GKE
protocol and prove its security under standard cryptographic assumptions. Our compiler is actually a combination of
the well-known compiler for AKE-security from [31] (we use a slightly modified version) and the compiler proposed
in [30] that achieves security against insider attacks in the sense of [30].

2 Overview of the BCPQ Model

The BCPQ model extends the methodology introduced by Bellare and Rogaway [8,9] to a group setting. Each protocol
participant Ui ∈ ID3, i = 1, . . . , n is modeled by an unlimited number of instances called oracles and denoted Πsi

i

(si-th instance of Ui) that can be involved in different concurrent executions of P. Each user Ui is assumed to have
a long-lived key LLi (either symmetric or asymmetric). The BCPQ model uses session ids to define the notion of
partnering which is the technical construction used in the definition of all security goals. A session id of an oracle
Πsi

i is defined as SID(Πsi
i ) := {SIDij | Uj ∈ ID} where SIDij is the concatenation of all flows that Πsi

i exchanges
with another oracle Π

sj

j . According to the BCPQ model two oracles Πsi
i and Π

sj

j are called directly partnered,
denoted Πsi

i ↔ Π
sj

j , if both oracles accept (compute the session key) and if SID(Πsi
i ) ∩ SID(Πsj

j ) 6= ∅. Further,
oracles Πsi

i and Π
sj

j are partnered if, in the graph GSIDS := (V,E) with V := {Πsl
l | Ul ∈ ID, l = 1, . . . , n} and

E := {(Πsl
l ,Π

sl′
l′ )|Πsl

l ↔ Π
sl′
l′ }, there exists a sequence of oracles (Π

sl1
l1

,Π
sl2
l2

, . . . ,Π
slk
lk

) with lk > 1, Πsi
i = Π

sl1
l1

,

Π
sj

j = Π
slk
lk

, and Π
sl−1

l−1 ↔ Πsl
l for all l = l2, . . . , lk. This kind of partnering is denoted Πsi

i ! Π
sj

j . The BCPQ
model uses graph GSIDS to construct (in polynomial time |V |) the graph of partnering GPIDS := (V ′, E′) with V ′ = V
and E′ = {(Πsl

l ,Π
sl′
l′ ) |Πsl

l ! Π
sl′
l′ }, and defines the partner id for an oracle Πsi

i as PIDS(Πsi
i ) = {Πsl

l |Π
si
i !

Πsl
l ∀ l ∈ {1, n} \ {i}}.

The BCPQ model considers a Probabilistic Polynomial-Time (PPT) adversary A which while executed is allowed
to send messages to the oracles (and invoke the protocol execution) via a Send query, reveal the session key computed
by an oracle via a Reveal query, obtain a long-lived key of a user via a Corrupt query (note that the oracle’s internal
state information is not revealed), and ask a Test query to obtain either a session key or a random number. Using this
adversarial setting the BCPQ model specifies two security goals for a GKE protocol: AKE-security and MA-security,
both based on the notion of partnering. We emphasize that the above definition of partnering has been further used in
the BCPQ variants proposed in [12–14] and these models in turn have been used in security proofs of GKE protocols
in [12–15].

For the AKE-security the model requires that, during its execution, adversaryA asks a single Test query to a fresh
oracle. An oracle Πsi

i is fresh if (1) it has accepted, (2) no oracle has been asked for a Corrupt query before Πsi
i

3 ID is a set of n participants involved in the current protocol execution and is part of a larger set that contains all possible participants.
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accepts, and (3) neither Πsi
i nor any of its partners have been asked for a Reveal query. A GKE protocol is said to

be AKE-secure if A cannot guess which value it has received in response to its Test query, i.e., the session key or
a random number, significantly better than at random. This definition of AKE-security, applied with an appropriate
definition of freshness, subsumes the following earlier informal definitions:

– key secrecy [22] (a.k.a implicit key authentication [36]) which requires that each legitimate protocol participant is
assured that no other party except for other legitimate participants learns the established group key;

– resistance against known-key attacks [16, 44] meaning that an adversary who knows group keys of previous ses-
sions must not be able to compute subsequent session keys, key independence [33] meaning that an adversary who
knows a proper subset of group keys must not be able to discover any other group keys;

– perfect forward secrecy [22,28,36] requiring that the disclosure of long-term keying material must not compromise
the secrecy of the established keys from earlier protocol runs.

The definition of MA-security in the BCPQ model captures the fact that it is hard for a computationally bounded
adversary A to impersonate any participant Ui through its oracle Πsi

i . For a GKE protocol among n users to be
MA-secure, the probability that there exists at least one oracle Πsi

i which accepts with |PIDS(Πsi
i )| 6= n − 1 is

required to be negligible. In other words, for such protocols, the authors claim that if each participating oracle Πsi
i

accepts with |PIDS(Πsi
i )| = n− 1 then no impersonation attacks could have occurred — thus the informal notion of

mutual authentication [8]4 meaning that each participating oracle is assured of every other oracle’s participation in the
protocol is satisfied.

Further, we point the reader’s attention to the following claims given by the authors of [15]:

In the definition of partnering, we do not require that the session key computed by partnered oracles be the
same since it can easily be proven that the probability that partnered oracles come up with different session
keys is negligible. [15, Footnote 3]

We are not concerned with partnered oracles coming up with different session keys, since our definition of
partnering implies the oracles have exchanged exactly the same flows. [15, Section 7.4]

If these claims hold then the above definition of MA-security additionally captures the following informal security
goals earlier specified in the literature:

– key confirmation [36] meaning that each protocol participant must be assured that every other protocol participant
actually has possession of the computed group key,

– explicit key authentication [36], i.e., key confirmation and mutual authentication at the same time.

In Section 3 we explain why the definition of MA-security might not be general enough for GKE protocols. We do
not pretend having broken some provably MA-secure scheme. In contrast, we explain why, if every participating oracle
Πsi

i accepts with |PIDS(Πsi
i )| = n − 1, it does not necessarily mean that the considered protocol provides mutual

authentication and key confirmation. To do so, we exhibit cases where an impersonation attack may likely result in
different group keys accepted by different partnered oracles.

3 Problems with the Definition of MA-Security in the BCPQ Model

PROBLEMS. We provide examples for the following two scenarios:

1. there exists GKE protocols where an active adversary A can impersonate one of the participants through its oracle
but nevertheless every participating oracle Πsi

i accepts with |PIDS(Πsi
i )| = n− 1

2. there exists GKE protocols where each participating oracle Πsi
i accepts with |PIDS(Πsi

i )| = n − 1 but there are
at least two partnered oracles that have computed different keys.

4 introduced originally for two-party protocols
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Note that these problems become visible only in the group setting with at least three protocol participants: therefore,
it does not concern the original notion of mutual authentication by Bellare and Rogaway [7] defined via matching
conversations. Before we give examples using a concrete GKE protocol we provide an abstract description of our
idea. Figure 1 shows the abstract messages denoted mi (index i specifies the order in which messages have been sent)
that have been exchanged between the oracles (at least three participants are required) during the honest execution
of any GKE protocol from [12–15]. A concrete equivalent message of each abstract message mi can be found in the
corresponding up- or downflow stage of any of these GKE protocols.

Πs1
1 Πs2

2 Πs3
3

m1 m1 m2 m2

m3m3m3

Fig. 1. Honest execution of protocols in [12–15]. By mi at the begin-
ning of the arrow we mean the original message sent by the oracle,
and by mi at the end of the arrow we mean the corresponding mes-
sage received by another oracle.

Πs1
1 Πs2

2 Πs3
3

m1 m̃1 m2 m2

m3m3m3

Fig. 2. Protocol execution where A impersonates U1

Obviously, Figure 1 shows a correct execution of the protocol since no message is modified. Figure 3 specifies the
session ids of the oracles Πs1

1 , . . . ,Πs3
3 during this honest protocol execution using the construction from the BCPQ

model.

SID(Πsi
i ) SIDi1 SIDi2 SIDi3

SID(Πs1
1 ) ∅ m1 m3

SID(Πs2
2 ) m1 ∅ m2|m3

SID(Πs3
3 ) m3 m2|m3 ∅

Fig. 3. SID(Πsi
i ) in the honest protocol execution

SID(Πsi
i ) SIDi1 SIDi2 SIDi3

SID(Πs1
1 ) ∅ m1 m3

SID(Πs2
2 ) m̃1 ∅ m2|m3

SID(Πs3
3 ) m3 m2|m3 ∅

Fig. 4. SID(Πsi
i ) in the protocol execution with impersonation of U1

To show the first problem we consider the case whereA impersonates U1 and modifies message m1 to m̃1 (Figure
2) such that SID21 = m̃1 (Figure 4). We cannot generally assume that all oracles accept after this modification but
we may assume that there exists protocols for which this is the case (our example later is such a protocol where
the oracles nevertheless accept). If so, we show that every participating oracle Πsi

i accepts with |PIDS(Πsi
i )| = 2.

To that goal, we need to show that Πsi
i ! Π

sj

j (or Πsi
i ↔ Π

sj

j ) still holds for any two participating Πsi
i and

Π
sj

j . Thus we need to look more precisely on the session ids of the oracles. First note that SID12 = m1. Though
SID(Πs1

1 )∩SID(Πs2
2 ) = {m1,m3}∩{m̃1,m2|m3} = ∅ and thus Πs1

1 6↔ Πs2
2 , we still have SID(Πs1

1 )∩SID(Πs3
3 ) =

{m1,m3} ∩ {m3,m2|m3} = m3 and SID(Πs3
3 ) ∩ SID(Πs2

2 ) = {m3,m2|m3} ∩ {m̃1,m2|m3} = m2|m3 so that
Πs1

1 ! Πs2
2 (and Πs1

1 ↔ Πs3
3 and Πs2

2 ↔ Πs3
3 as well). Hence, |PIDS(Πsi

i )| = 2 for every Πsi
i : all oracles are still

partnered though the impersonation attack. Oracle Πs2
2 having received a different message than the one originally

sent by Πs1
1 , this may result in different group keys computed by Πs1

1 and Πs2
2 .

CONCRETE EXAMPLE. Consider the GKE protocol described in the same paper as the BCPQ model [15] but without
the additional confirmation round; this additional round belongs to a concrete protocol design but not to a general
security model; it is not required that a protocol uses this additional round to achieves MA-security.

Recall, our goal is to show that despite of the acceptance of each participating oracle Πsi
i with |PIDS(Πsi

i )| = 2
mutual authentication and key confirmation are not necessarily provided.

The protocol proceeds as described in Figure 5; [m]Ui denotes a message m signed by Πsi
i , and V (m) ?= 1 its

verification; g is a generator of a cyclic group of prime order p. Upon computing K = gx1x2x3 each oracle derives
the resulting group key k := H(ID, FL3,K) with a random oracle H : {0, 1}∗ → {0, 1}l where l is the security
parameter. Now we consider that Πs1

1 chooses x1 ∈ Z?
p but A drops the original message [Fl1]U1 and replays a
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Πs1
1 Πs2

2 Πs3
3

X3 := {gx1x2 , gx1x3 , gx2x3}

x1 ∈R Z∗
p; X1 := {g, gx1}

Fl1 := {ID, X1} [Fl1]U1

x2 ∈R Z∗
p; X2 := {gx1 , gx2 , gx1x2}

V (Fl1)
?
= 1

Fl2 := {ID, X2}

[Fl2]U2

x3 ∈R Z∗
p;

V (Fl2)
?
= 1

Fl3 := {ID, X3}
K := (gx1x2)x3

[Fl3]U3

V (Fl3)
?
= 1 V (Fl3)

?
= 1

K := (gx2x3)x1 K := (gx1x3)x2

Fig. 5. Execution of the protocol in [15] with three participants

corresponding message from some previous protocol execution. The replayed message is likely to be [F̃ l1]U1 with
F̃ l1 := (ID, X̃1) and X̃1 := {g, gfx1} for some x̃1 6= x1. Obviously, Πs2

2 can still verify the replayed message,
i.e., V (F̃ l1) = 1 holds. It is easy to see that X2 = {gfx1 , gx2 , gfx1x2} and X3 := {gfx1x2 , gfx1x3 , gx2x3} so that Πs1

1

computes K = gx1x2x3 whereas Πs2
2 and Πs3

3 compute another value, i.e., K = gfx1x2x3 . Thus the derived group
keys are different. Though (without the confirmation round) all oracles accept since all signature verifications remain
correct. Moreover, similarly to the abstract problem description above, we show that |PIDS(Πsi

i )| = 2 for every
Πsi

i , i ∈ {1, 2, 3}, i.e., SID(Πs1
1 ) ∩ SID(Πs3

3 ) = {[Fl1]U1 , [Fl3]U3} ∩ {[Fl3]U3 , [Fl2]U2 |[Fl3]U3} = [Fl3]U3 and
SID(Πs3

3 ) ∩ SID(Πs2
2 ) = {[Fl3]U3 , [Fl2]U2 |[Fl3]U3} ∩ {[F̃ l1]U1 , [Fl2]U2 |[Fl3]U3} = [Fl2]U2 |[Fl3]U3 .

This illustrates the case where |PIDS(Πsi
i )| = 2 and yet the protocol does not provide mutual authentication

and key confirmation. We stress, again, that this does not contradict the MA-security of the proposed protocol when
the additional round is executed. However, there may exist other protocols (including our example) for which this
statement is not true (if the MA-security is tentatively achieved with other techniques), and thus it is worth studying
the generality/applicability of MA-security definition in the BCPQ model.

Furthermore, we stress that the more general definition of MA-security should also consider attacks by malicious
protocol participants (the BCPQ model had no intention to consider such scenario). For example, as noted in [21]
many BCPQ-like models fail to provide security against unknown key-share attacks [10] because they do not consider
malicious (corrupted) participants during the protocol execution. It is interesting to notice that, while malicious par-
ticipants surely break the AKE-security (session key indistinguishability), their actions against MA-security left some
open questions: though the work by Katz and Shin [30] provides a partial solution, it is worth noticing that protection
(i.e., resilience) has no satisfying solution yet. It is a subject of future work to be able to detect and eliminate the
dishonest players in such a way that the remaining, honest ones, can compute a common key.

4 Discussion on Technical Constructions of some BCPQ-Variants and their Definitions of
MA-Security

A VARIANT BY KATZ AND YUNG. The modification by Katz and Yung [31] (denoted as the KY model) suggests a
different construction of partner ids and session ids. The partner id of an oracle Πsi

i consists of the identities of all
group members who intend to participate in the protocol and is defined straight after the invocation of the protocol
execution. Hence, opposite to the BCPQ model, this set is known before the protocol completes. Further, the session id
of Πsi

i is simply the concatenation of all messages that Πsi
i has sent or received during the protocol execution. Note that

the KY model was proposed in the context of a GKE protocol over a broadcast channel. Obviously, in this case every
oracle computes the same session id. However, the KY model fails in protocols where some messages are sent over
unicast, e.g., in protocols from [12–15]. Note, however, that any construction of session ids based on the concatenation
of exchanged message flows has one significant drawback — it becomes available after the protocol termination only.
Since some protocols use uniqueness of session ids as protection against replay and protocol interference attacks it is
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desirable to have a unique session id prior to the protocol termination. The partnering between two oracles holds if they
have equal partner ids and equal session ids. Note that the KY model does not provide own definition of MA-security
but refers to the one in the BCPQ model. Due to the different construction of partnering the identified problems in the
BCPQ model have no consequences here.

Finally, another limitation of the KY model is that it is not intended for considering malicious participants.

A VARIANT BY DUTTA et al. The modification by Dutta et al. [25] is similar to the KY model regarding the con-
struction of partner ids. However, they define a session id of an oracle Πsi

i as {(U1, s1), . . . , (Un, sn)} where each
pair (Uj , sj), j ∈ {1, . . . , n} corresponds to the oracle Π

sj

j of the protocol participant Uj , and say that two oracles are
partnered if they have equal partner ids and equal session ids. In order to keep session ids unique the authors require the
uniqueness of oracles for each new session. To have this notion made sense, [23] suggests to use a counter value as an
additional parameter which should be increased for every new oracle of the user. Though this makes unique session ids
available prior to the protocol termination, it forces the counter to be saved after each execution and protected against
modifications. A more practical approach seems to be using nonces in each new protocol execution (excluding the
highly improbable case of collisions). Note also that [25] and [23] had no intentions to consider mutual authentication
and key confirmation.

A VARIANT BY KATZ AND SHIN. Katz and Shin [30] proposed a different security model (referred to as the KS
model) for GKE protocols, and provide a security analysis in the framework of Universal Composability (UC) [19].
The KS model provides the first formal treatment of GKE protocols security in the presence of malicious participants.
The KS model is an extension of the BCPQ and KY models. The partner ids and the partnering relationship between
the oracles is similar to the KY model but unique session ids are assumed to be provided by some high-level application
mechanism.

Among other things, the KS model defines security against insider attacks as a combination of two requirements:
agreement and security against insider impersonation attacks:

– the adversary A is said to violate agreement if there exist two partnered oracles Πs
i and Πt

j such that neither
Ui nor Uj is corrupted but Πs

i and Πt
j have accepted with different session keys. Intuitively, this considers key

confirmation in case that all other participants are malicious (corrupted);
– the adversary A is said to impersonate Uj to (accepting) Πs

i if Uj is uncorrupted and belongs to the (expected)
partner id of Πs

i but in fact no oracle Πt
j is partnered with Πs

i . In other words, the instance Πs
i computes the

session key and Ui believes that Uj does so, but in fact an adversary has participated in the protocol on behalf of
Uj ; a protocol is said to be secure against insider impersonation attacks if for any party Uj and any instance Πs

i ,
A cannot impersonate Uj to Πs

i under the (stronger) condition that neither Uj nor Ui is corrupted at the time Πs
i

accepts.

Obviously, the last requirement assumes the existence of at least two uncorrupted participants, but allows the adversary
to corrupt other participants: an active adversary can thus generate fresh messages on behalf of other participants.
Intuitively, security against insider impersonation attacks considers mutual authentication and unknown key-share
resilience in the presence of malicious participants. Note that the KS model does not describe what relationship do
their formal definitions have with the well-known informal definitions. Their security analysis holds in the framework
of UC-security, based on the simulatability approach [18] rather than on a reductionist approach [6, 35].

Further, in addition to their model, Katz and Shin proposed a compiler to turn any GKE protocol which is secure in
the BCPQ model into a protocol which is secure in their UC-based model, and provided simulatability-based security
proofs for this case. However, they left open the question whether their definitions of agreement and security against
insider impersonation attacks are practical enough for the construction of reductionist security proofs (even though
UC-security is considered to be stronger).
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5 Revised and Extended Computational Security Model for GKE Protocols

In the following we propose a new variant of the BCPQ model while considering malicious participants We provide
an alternative definition (which we call MA-security to keep consistency with all previous models) that can be used to
replace definitions of agreement and security against insider impersonation attacks of the KS model. One advantage
is that, for the same requirements, our model needs only one definition (and consequently one reductionist proof)
whereas in the KS model two definitions are needed. Furthermore, we prove that our definition really unifies the
informal notions of key confirmation, mutual authentication and unknown key-share resilience in the presence of
malicious participants while the KS model does not explicitly prove this.

Our variant is based on the refined BCPQ model as presented in [13], a refinement that considers strong corrup-
tions, i.e., attacks against internal states. We also extend the original definition of AKE-security (in a modular way)
considering a new requirement which we call backward secrecy.

5.1 Protocol Participants, Variables

USERS, INSTANCE ORACLES. We consider U as a set of N users. Each user Ui ∈ U may hold a long-lived key LLi

generated by some probabilistic algorithm GenLL(1κ), and can have an unlimited number of instances Πs
i , s ∈ N

called oracles which can be involved in distinct concurrent executions of the GKE protocol P. For each concurrent
execution of P we consider a group G ⊆ U of size n ∈ [1, N ]. For every participating group member Ui ∈ G there
exists a corresponding instance Πs

i , so we sometimes use G to denote the set of oracles of group members involved in
the execution of P. Every Πs

U maintains an internal state information states
U which is private and used by the oracle

to compute the group key.

SESSION GROUP KEY, SESSION ID, PARTNER ID. During each execution each Πs
i computes the session group key

ks
i ∈ {0, 1}κ. Every session is identified by a session id sid. We stress that unique session ids are either provided

by a high-level application (which implicitly assumes that such session ids are available within the environment) or
specified in the actual protocol description prior to the protocol execution (for example via nonces). We define the
partner id of Πsi

i as pidsi
i := {Uj |Uj ∈ G} and say that two oracles Πsi

i and Π
sj

j are partnered if Ui ∈ pid
sj

j ,
Uj ∈ pidsi

i and sidsi
i = sid

sj

j . Intuitively, oracles of all members who participate in the same session of P are
considered as partners.

INSTANCE ORACLE STATES: STAND-BY, PROCESSING, ACCEPTED, TERMINATED. Once an oracle Πs
U is initial-

ized it turns into a stand-by state where it waits for the protocol execution to be invoked. Upon receiving such invo-
cation Πs

U learns pids
U (and possibly sids

U ) and turns into a processing state where it communicates and processes
messages according to the protocol specification, maintaining states

U . The oracle Πs
U remains in this state until it

collects enough information to compute ks
U . As soon as ks

U is computed Πs
U accepts. Then processing of messages

may continue until the oracle finally terminates. If the protocol execution fails then Πs
U terminates without having ac-

cepted, i.e., ks
U is set to some undefined value. Acceptance can be modeled by a boolean variable which is initially set

to false and toggles to true as soon as ks
U is set. Note that once the oracle is terminated it can no longer be initialized.

The oracle is said to be used if it has been already initialized.

5.2 Definition of a Group Key Exchange Protocol

Definition 1 (GKE Protocol). A group key exchange protocol P is an interactive protocol between the oracles Πs1
1 ,

. . ., Πsn
n with Ui ∈ G until all oracles turn into the terminated state.

CORRECTNESS. The following definition allows to exclude “useless” GKE protocols.

Definition 2 (Correctness). A GKE protocol P is correct if for any honest protocol execution between the oracles
Πs1

1 , . . ., Πsn
n with Ui ∈ G, sids1

1 = . . . = sidsn
n , all oracles accept with the same session group key k.

All schemes in this paper are assumed to satisfy the correctness requirement.
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5.3 Adversarial Model

QUERIES TO THE INSTANCE ORACLES. The adversary A is represented by a PPT machine and is assumed to have
complete control over all communication in the network. It may interact with group members by making the following
oracle queries:

– Setup(G): The GKE protocol P is executed between the unused oracles Πs1
1 , . . ., Πsn

n , each related to a corre-
sponding group member Ui ∈ G. A is given the transcript of the execution.

– Send(Πs
U ,m): A receives the response which Πs

U would have generated after having processed the message m
according to the description of P (this can be the empty string if m is incorrect). A new execution of P is invoked
via a Send(‘setup’,Πs

U ,G) query.
– RevealKey(Πs

U ): A is given the session group key ks
U . This query is answered only if Πs

U has accepted.
– RevealState(Πs

U ): A is given the internal state information states
U .5

– Corrupt(U): A is given the long-lived key LLU .
– Test(Πs

U ): This query will be used to model the AKE-security of a GKE protocol. It can be asked by A at any
time, to any oracle having accepted, but only once during the entire attack. The query is answered as follows: the
oracle generates a random bit b. If b = 1 then A is given ks

U , and if b = 0 then A is given a random string.

A passive adversary can only ask queries Setup, RevealKey, and Test, while an active adversary can additionally
execute the query Send. In addition, they might be allowed to ask RevealState and/or Corrupt queries, depending
on the considered scenario. These separations are used to define security goals in a modular way.

FORWARD SECRECY. The notion of forward secrecy allows to distinguish between damages (in previously completed
sessions) that result from actions of the adversary in the current session. Similar to [13] we distinguish between weak-
forward secrecy (wfs) where the adversary is additionally allowed to ask Corrupt queries, and strong-forward secrecy
(sfs) where it is additionally allowed to ask Corrupt and RevealState queries.

BACKWARD SECRECY. The notion of backward secrecy is symmetric to that of forward secrecy in the sense that
it considers damages to the AKE-security of future sessions after actions of the adversary in past/current sessions.
The notion might seem useless at first glance (such actions can make secrecy just impossible), however, there might
exist intermediate actions, such as corruptions of internal states, that do not compromise future session keys (or at
least not all of them). We distinguish between weak-backward secrecy (wbs) where the adversary is allowed to ask
RevealState queries, and strong-backward secrecy (sbs) where the adversary is additionally allowed to ask Corrupt
queries6.

Note that in our definition of AKE-security (Definition 6) that models key secrecy, the adversary is a non-
participating party and not a malicious participant, even in case that it reveals long-lived keys prior to the protocol
execution. In order to consider only non-participating adversaries we introduce the following notion of α-fresh ses-
sions.

ORACLE FRESHNESS, CORRUPTION MODELS, ADVERSARIAL SETTINGS. The notion of freshness for an oracle
Πs

U is needed to distinguish between various definitions of security with respect to different flavors of backward or
forward secrecy. Each flavor α ∈ {wbs,wfs,sbs,sfs} leads to a different definition of freshness.

Definition 3 (α-Freshness). In the execution of P the oracle Πs
U is

– wbs-fresh if: (1) no RevealState queries have been made by A in the current or any further execution, and (2)
after Πs

U has accepted neither it nor any of its partners has been asked for a RevealKey query until the next
execution of P;

5 This kind of the adversarial query has previously been mentioned by Canetti and Krawczyk in their model for two-party protocols [20].
6 In case of backward secrecy Corrupt queries are more damageable than RevealState queries because the long-lived keys are usually used

for authentication and their knowledge allows the adversary to impersonate users in subsequent sessions and learn the session group key.
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– wfs-fresh if: (1) no Corrupt queries have been made by A in the current or any previous execution, and (2) after
Πs

U has accepted neither it nor any of its partners has been asked for a RevealKey query until the next execution
of P;

– sbs-fresh if: (1) neither Corrupt nor RevealState queries have been made by A in the current or any further
execution, and (2) after Πs

U has accepted neither it nor any of its partners has been asked for a RevealKey query
until the next execution of P;

– sfs-fresh if: (1) neither Corrupt nor RevealState queries have been made by A in the current or any previous
execution, and (2) after Πs

U has accepted neither it nor any of its partners has been asked for a RevealKey query
until the next execution of P.

We say that a session is α-fresh if all participating oracles are α-fresh.

The notion of α-fresh sessions becomes important in security proofs in order to distinguish between “honest” and “cor-
rupted” sessions. Intuitively, the above definitions are to be used as follows. In each of the secrecy cases considered,
either the adversary is not allowed to ask some “bad” queries, more precisely such queries are allowed but immedi-
ately make the oracle unfresh. The scenario aims to delimit the “bad” queries. To properly manage the adversarial
capabilities for each scenario of freshness, we distinguish between the following corruption models.

Definition 4 (Corruption Model β, Adversary Aβ). A PPT adversary Aβ is an adversary that acts with respect to
the corruption model β according to the following definition:

– wcm (weak corruption model): A passive adversary Awcm is given access to the queries Setup and RevealKey. If
active, it can also ask Send queries.

– wcm-bs (weak corruption model for backward secrecy): A passive adversary Awcm-fs is given access to the
queries Setup, RevealKey and RevealState. If active, it can also ask Send queries.

– wcm-fs (weak corruption model for forward secrecy): A passive adversaryAwcm-fs is given access to the queries
Setup, RevealKey and Corrupt. If active, it can also ask Send queries.

– scm (strong corruption model): A passive adversary Ascm is given access to the queries Setup, RevealKey,
RevealState and Corrupt. If active, it can also ask Send queries.

A concrete proof AKE-security needs to specify capabilities of the adversary depending on the intended freshness
type. Combining definitions for freshness and corruption we obtain a set of possible adversarial settings (α, β) ∈
{(∅,wcm), (wfs,wcm-fs), (wbs,wcm-bs), (sbs,scm), (sfs,scm)}, where ∅ denotes the freshness type for GKE
protocols that do not provide any form of forward or backward secrecy.

Remark 1. In practice long-lived keys are mostly used to achieve authentication rather than the actual group key
computation. It is thus intuitively clear that if an adversary is able to corrupt a group member (obtaining its long-
lived key) then it can impersonate that member in subsequent sessions. Therefore, achieving AKE-security in the
(sbs,scm) sense would require the long-lived keys to be fresh for each new execution, a contradiction with the
long-lived key terminology. To the contrary, the adversarial setting (wbs,wcm-bs) appears of great interest since
it concerns only oracle internal state information and is independent of any long-term secrets. Moreover we argue
that (wbs,wcm-bs) is important since in previous models [13, 30] a persistent internal state is used in both past and
future sessions, and thus, while forward secrecy looks at (state) corruptions in later sessions, backward secrecy must
legitimately look at state corruptions in previous sessions.

5.4 Security Goals

In this section we describe security goals for a GKE protocol. Our security definitions state requirements for the session
group key accepted by an oracle.
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AKE-SECURITY. We now give a formal definition of AKE-security (indistinguishability of session group keys).

Definition 5 (Gameake−b
Aβ ,P (κ)). Let P be a correct GKE protocol and b a uniformly chosen bit. Consider an adversarial

setting (α, β) sampled from {(∅,wcm), (wbs, wcm-bs), (wfs,wcm-fs), (sbs,scm), (sfs,scm)} and an (active)
adversary Aβ . We define game Gameake−b

Aβ ,P (κ) as follows:

– after initialization Aβ interacts with instance oracles using queries;
– if Aβ asks a Test query to an α-fresh oracle Πs

U which has accepted, it receives either key1 := ks
U (if b = 1) or

key0 ∈R {0, 1}κ (if b = 0);
– Aβ continues interacting with instance oracles;
– when Aβ terminates, it outputs a bit trying to guess which case it was dealing with.

The output of Aβ is the output of the game. The advantage function of Aβ in winning the game is defined as

Advake
Aβ ,P(κ) :=

∣∣2 Pr[Gameake−b
Aβ ,P (κ) = b]− 1

∣∣
Based on this definition we specify the requirement of AKE-security of a GKE protocol P as follows.

Definition 6 (KE-Security, AKE-Security). P is a AKE-secure protocol with α-secrecy (AGKE-α) if for any active
PPT Aβ the advantage Advake

Aβ ,P(κ) is negligible. Note, if α = ∅, we say that P is a AKE-secure protocol. When
restricting to passive adversaries, we say that P is KE-secure with α-secrecy (GKE-α).

We emphasize that at this step we do not consider malicious participants (users), but only (partially) corrupted oracles
for dealing with forward- and backward-secrecy.

MA-SECURITY. In the following we propose a new definition of MA-security that considers an adversary who is
allowed to corrupt and act on behalf of participants during the protocol execution.

Definition 7 (Gamema
Ama,P(κ), MA-Security). Let P be a correct GKE protocol and Gamema

Ama,P(κ) the interaction be-
tween instance oracles and an active adversaryAma that is allowed to query Send, Setup, RevealKey, RevealState,
and Corrupt. We say that Ama wins if at some point during the interaction there exist:

– an uncorrupted user Ui whose instance oracle Πsi
i has accepted with ksi

i ,
– another user Uj with Uj ∈ pidsi

i that is uncorrupted at the time Πsi
i accepts,

such that:

– either there is no instance oracle Π
sj

j with (pidsj

j ,sid
sj

j ) = (pidsi
i ,sidsi

i ),
– or there exists an instance oracle Π

sj

j with (pidsj

j ,sid
sj

j ) = (pidsi
i ,sidsi

i ) that has accepted with k
sj

j 6= ksi
i .

The probability of this event is denoted Succma
Ama,P(κ). We say that P is a MA-secure GKE protocol (MAGKE) if this

probability is negligible for any PPT adversary Ama.

Note we do not deal with α-fresh sessions since malicious participants learn established keys implicitly. Also in
Gamema

Ama,P(κ) the adversarial Test query is useless.
In the following we present some claims to illustrate the relationship between our definition of MA-security and

the related mostly important informal notions concerning key confirmation, mutual authentication and unknown key-
share resilience, since this relationship may be difficult to see at first sight (note that [30] does not provide such claims
for its definitions of agreement and security against insider impersonation attacks).

The informal definition of key confirmation [36] means that each protocol participant must be assured that every
other protocol participant actually has possession of the computed group key. The notion of mutual authentication
introduced in [8] for two-party protocols when considered for group key exchange protocols means that each identified
protocol participant is known to actually possess the established group key. Note that this requirement is similar to
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explicit key authentication [36]. The related requirement called unknown key-share resilience surfaced in [22] means
that an active adversary must not be able to make one protocol participant believe that the key is shared with one party
when it is in fact shared with another party. Note that the adversary may be a malicious participant and does not need
necessarily to learn the established key [10].

The missing formalism of the original informal definitions allows only argumentative proofs for our claims. We
also stress that none of the previously proposed models provides such claims for their definitions.

Claim. If P is a MAGKE protocol then it provides key confirmation and mutual authentication (explicit key authentica-
tion) in the sense of [36].

Proof. If P does not provide key confirmation and mutual authentication then there exists at least one honest participant
Ui ∈ G whose oracle Πsi

i has accepted with a session group key ksi
i and there exists at least one another honest

participant Uj ∈ pidsi
i whose oracle Π

sj

j has accepted with a different session group key k
sj

j 6= ksi
i . According to

Definition 7 this is a successful attack against the MA-security of P. This, however, contradicts to the assumption that
P is a MAGKE protocol. ut

Claim. If P is a MAGKE protocol then it is resistant against unknown key-share attacks in the sense of [10].

Proof. If P is not resistant against unknown key-share attack then there exist at least two honest participants Ui and Uj

whose oracles Πsi
i resp. Π

sj

j participating in the same protocol execution hold different partner ids pidsi
i 6= pid

sj

j

such that w.l.o.g. Uj ∈ pidsi
i and Ui 6∈ pid

sj

j . According to Definition 7 in any MAGKE protocol for every honest
participant Uj ∈ pidsi

i there must exist a corresponding oracle Π
sj

j with (pidsj

j ,sid
sj

j ) = (pidsi
i ,sidsi

i ). Note
this implies pidsj

j = pidsi
i . Therefore, since P is a MAGKE protocol the probability that Πsi

i and Π
sj

j hold different
partner ids is negligible. ut

6 Compiler for AKE-Security and MA-Security under Standard Assumptions

6.1 Security-Enhancing Compilers and their Goals

Imagine, there exists a black-box implementation of a GKE protocol which should be used by some group application.
Assume this GKE implementation provides strong security properties but not all of them are in fact needed for the
application. This means that some communication or computation resources are uselessly spent, resulting in a less
efficient high-level application.

Assume, on the other hand, that the given GKE implementation does not satisfy all security requirements desired
for the particular group application. Instead of designing and implementing a new GKE protocol in an ad-hoc fashion,
it is desirable to have a generic technique which can be applied to the given black-box implementation in order to
enhance its security.

We are thus concerned with the following question. What is a good strategy for the implementation of GKE
protocols? Of course this depends on the relationship between the protocol and the application using it. Should the
protocol be designed for a very specific application (and not likely to be re-used), it might be better to consider
all stated requirements in the implementation and optimize the protocol accordingly. However, what to do if the
GKE implementation should be flexible and easily modifiable, in order to be reused by various applications without
any significant additional effort? Obviously, a good strategy (though not always optimal) is to implement a GKE
protocol in a modular way: one starts with the basic implementation that satisfies the most common set of security
requirements, then continues with the implementation of optional modules that can be added to provide extended
security requirements. The main goal of security-enhancing GKE protocol compilers is to enable secure construction
of GKE protocols in such a modular way.

Definition 8 (Security-Enhancing GKE Protocol Compiler C). A security-enhancing GKE protocol compiler C is a
procedure which takes as input a GKE protocol P and outputs a compiled GKE protocol CP with additional security
properties not provided by P.
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6.2 Overview on Compilers for GKE Protocols

The requirement on KE-security, i.e., key indistinguishability with respect to passive adversaries states the basic se-
curity requirement for any GKE protocol. To the contrary, the requirement of AKE-security may be optional. For
example, if a network or a high-level application provides authentication implicitly then it is sufficient to use a KE-
secure protocol. Therefore, it is reasonable to specify AKE-security as an additional property and design a compiler
which adds AKE-security to any KE-secure protocol. Katz and Yung proposed in [31] the following compiler which
provides AKE-security. It uses a digital signature scheme Σ (see Appendix A for details).

Definition 9 (Compiler for AKE-Security by Katz and Yung [31])). Let P be a GKE protocol, and Σ := (Gen,
Sign, Verify) a digital signature scheme. A compiler for AKE-security, denoted C-A, consists of an an initialization
algorithm and modified protocol execution defined as follows:

Initialization: In the initialization phase each Ui ∈ U generates own private/public key pair (sk′i, pk′i) using
Σ.Gen(1κ′). This is in addition to any key pair (ski, pki) used in P.

The protocol: This is an interactive protocol between the partnered oracles Πs1
1 , . . ., Πsn

n invoked prior to any
operation execution of P. Each Πsi

i chooses a random nonce ri ∈R {0, 1}κ and sends Ui|0|ri to every partnered
oracle Π

sj

j . After Πsi
i receives Uj |0|rj from all partnered oracles it computes nonces := U1|r1| . . . |Un|rn.

Then, members of G execute P with the following changes:
– If Πsi

i is supposed to send a message Ui|t|m then it computes additionally σi := Σ.Sign(sk′i, t|m|nonces)
and outputs a modified message Ui|t|m|σi.

– If Πsi
i receives Uj |t|m|σj it checks whether (1) Uj ∈ pidsi

i , (2) t is the next expected sequence number,

and (3) Σ.Verify(pk′j , t|m|nonces, σj)
?= 1. If any of these verifications fail then Πsi

i terminates without
accepting; otherwise it proceeds according to the specification of P upon receiving Uj |t|m.

– After Πsi
i computes the session group key ksi

i in the execution of P it accepts with this key.

Katz and Yung proved security of this compiler in the KY model that does not consider strong corruptions. From
the perspective of our model their security proofs consider the adversarial settings (∅,wcm) and (wfs,wcm-fs).
Further, the compiler in [31] assumes that each sent message is of the form Ui|t|m where t is a sequence number
which starts with 0 and is incremented each time an oracle Πsi

i sends a new message. Before any received message
is processed by the original protocol P the compiler checks whether this message is expected or not with respect to
the next expected sequence number. Note that Katz and Yung introduced sequence numbers in order to simplify the
description of their proof. We argue that it is possible to omit sequence numbers in the compiler due to the following
reasons. First, it is reasonable to assume that any GKE protocol simply fails to process a message which is unexpected
according to its natural specification, i.e., we consider verification of sequence numbers as job of the underlying
protocol P7. Note also that sequence numbering in [31] restarts for each new execution of the protocol. Thus, sequence
numbers do not provide any additional security advantages for the protocol (e.g., they do not protect against replay
attacks). Second, in order to check whether a message is expected or not the compiler must explicitly know the total
number of messages required in the protocol execution. Thus, these numbers should be additionally given as input
to the compiler. This additional effort must be applied for each GKE protocol to be used with the compiler. Thus,
compiler has to be configured each time a different GKE protocol is used. This can be considered as an additional
inconvenience, especially if the protocol’s implementation is available as a “black-box” that allows access only to the
established group key.

The first compiler for key confirmation and mutual authentication in GKE protocols was proposed by Bresson et
al. [15] based on a cryptographic hash function. However, their proof was performed with respect to the definition

7 By doing so we can consider, in the proof of such compiler, a passive adversary who is allowed to delete or delay messages, or deliver them
out of order but not actively inject new messages. This would make our passive adversary stronger and closer to the “authenticated-links
model adversary” described by Canetti and Krawczyk [20]. However, we do not consider this stronger passive adversary within our model
in order to keep the model more general. Note that the reliability and the order integrity for delivered messages may not necessarily be part
of a concrete GKE protocol but also of some underlying network protocol.
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of MA-security in the BCPQ model that does not consider security against malicious participants and they also used
non-standard assumptions of the Random Oracle Model [8].

The following construction by Katz and Shin [30] has been designed for secure GKE protocols in the framework
of Universal Composability (UC) [19] and can be used to turn any AKE-secure GKE protocol into a UC-secure GKE
protocol that provides security against insider attacks (see Section 4). It requires a digital signature scheme Σ, and a
collision-resistant pseudo-random function f (see Appendix A for details).

Definition 10 (Compiler for Security against Insider Attacks by Katz and Shin [30]). Let P be a GKE protocol,
Σ := (Gen, Sign, Verify) a digital signature scheme, F :=

{
fk

}
k∈{0,1}κ a function ensemble with range {0, 1}λ,

λ ∈ N and domain {0, 1}κ, and sidsi
i is a unique session id. A compiler for security against insider attacks consists

of an initialization algorithm and a protocol defined as follows:

Initialization: In the initialization phase each Ui ∈ U generates own private/public key pair (sk′i, pk′i) using
Σ.Gen(1κ′). This is in addition to any key pair (ski, pki) used in P

The protocol: After an oracle Πsi
i accepts with (ksi

i , pidsi
i , sidsi

i ) in P it computes µi := fk
si
i

(v0) where v0 is
a constant public value and Ksi

i := fk
si
i

(v1) where v1 6= v0 is another constant public value. Next, Πsi
i erases its

local state information except for µi, Ksi
i , pidsi

i , and sidsi
i . Then, Πsi

i computes a signature σi := Σ.Sign(sk′i,
µi|sidsi

i |pid
si
i ) and sends Ui|σi to every partnered oracle Π

sj

j with Uj ∈ pidsi
i .

After Πsi
i receives Uj |σj from its partnered oracle Π

sj

j it checks whether Σ.Verify(pk′j , µi|sidsi
i |pid

si
i and

σj)
?= 1. If this verification fails then Πsi

i terminates without accepting; otherwise after having received and
verified these messages from all other partnered oracles it accepts with the session group key Ksi

i .

We would like to draw the reader’s attention to the session IDs sids. Working in the UC framework, Katz and
Shin assume that these session ids are unique and specified by some high-level application. In this case the above
compiler can be proven to satisfy our MA-security requirement. We stress that existence of such unique session ids is
of great importance so that some additional communication rounds are required to set up such session ids if they are
not provided by the high-level application (see [4] for setting up session ids in the UC framework). Intuitively, leaving
out session ids would allows replay attacks against the compiled protocol as illustrated in the following.

Imagine, the adversary Ama corrupts n − 2 participants (except for Ui and Uj) in some previous session and
behaves honestly in another session. Thus, he learns the key k̄ti

i computed in that session and the message Ui|σ̄i sent
by Πti

i during the compiler round of that session. Remind, σ̄i is computed on pidti
i and µ̄i = f

k̄
ti
i
(v0). After the

compiled protocol is executed Ama invokes a new session with the same protocol participants. Thus, users Ui and Uj

participate via fresh oracles Πsi
i and Π

sj

j , respectively. Note also that we have pidsi
i = pidti

i . Let us assume thatAma

can influence Π
sj

j in some way such that it computes k
sj

j = k̄ti
i and Πsi

i computes a different key ksi
i 6= k̄ti

i . ThenAma

intercepts (and drops) the original message Ui|σi and replays Ui|σ̄i to Π
sj

j . Because µj = f
k

sj
j

(v0) = f
k̄

ti
i
(v0) = µ̄i,

oracle Π
sj

j verifies σ̄i successfully but k
sj

j 6= ksi
i (which results in K

sj

j 6= Ksi
i ). Thus, uncorrupted oracles Πsi

i and
Π

sj

j accept with different session keys.

6.3 Compiler C-AMA

Our compiler denoted C-AMA and defined in the following can be used to provide both AKE- and MA-security for
any GKE protocol P which satisfies the basic requirement of (unauthenticated) KE-security. In fact it can be seen as
a sequential combination of the KY and KS compilers8 discussed in the previous section. C-AMA is based on digital
signatures and collision-resistant pseudo-random functions (see Appendix A for details) and can be proven secure in

8 We omit sequence numbers used in the KY compiler due to the arguments in the previous section.
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the standard model. Note also, we use nonces to achieve uniqueness of protocol sessions and security of concurrent
executions, in particular we do not rely on session ids given by a high-level application.9

Definition 11 (Compiler for AKE-Security and MA-Security C-AMA). Let P be a GKE protocol, Σ := (Gen, Sign,
Verify) a digital signature scheme, F :=

{
fk

}
k∈{0,1}κ a function ensemble with range {0, 1}λ, λ ∈ N and domain

{0, 1}κ. A compiler for AKE-security and MA-security, denoted C-AMA, consists of an algorithm INIT and a protocol
AMA defined as follows:

INIT: In the initialization phase each Ui ∈ U generates own private/public key pair (sk′i, pk′i) using Σ.Gen(1κ′).
This is in addition to any key pair (ski, pki) used in P.

AMA: This is an interactive protocol between the partnered oracles Πs1
1 , . . ., Πsn

n invoked prior to the execution of
P. Each Πsi

i chooses a random AMA nonce ri ∈R {0, 1}κ and sends Ui|ri to every partnered oracle Π
sj

j with
Uj ∈ pidsi

i . After Πsi
i receives Uj |rj from all partnered oracles Π

sj

j with Uj ∈ pidsi
i it computes sidsi

i := r1|
. . . |rn. Then it invokes the execution of P and proceeds as follows:

– If Πsi
i in P outputs a message Ui|m then in C-AMAP it computes additionally σi := Σ.Sign(sk′i, m|sid

si
i ) and

outputs a modified message Ui|m|σi.
– If Πsi

i receives a message Uj |m|σj from its partnered oracle Π
sj

j it checks whether Σ.Verify(pk′j , m|sidsi
i ,

σj)
?= 1. If this verification fails then Πsi

i turns into the stand-by state without accepting; otherwise it proceeds
according to the specification of P upon receiving Uj |m.

– After an oracle Πsi
i computes ksi

i in the execution of P it computes an AMA token µi := fk
si
i

(v0) where v0 is
a constant public value, a signature σi := Σ.Sign(sk′i, µi|sidsi

i |pid
si
i ) and sends Ui|σi to every partnered

oracle Π
sj

j with Uj ∈ pidsi
i .

– After Πsi
i receives Uj |σj from its partnered oracle Π

sj

j it checks whether Σ.Verify(pk′j , µi|nonces, σj)
?=

1. If this verification fails then Πsi
i turns into the stand-by state without accepting; otherwise after having

received and verified these messages from all other partnered oracles it accepts with the session group key
Ksi

i := fk
si
i

(v1) where v1 6= v0 is another constant public value, and erases its private state information
including ksi

i .

SECURITY ANALYSIS. Theorem 1 shows that C-AMA adds AKE-security to any KE-secure GKE protocol. While we
do not consider the adversarial setting (sbs,scm) for the reasons mentioned in Remark 1, we do consider (wbs,
wcm-bs) and (sfs,scm). By contrast, the original proof in [31] considers only the weaker settings (∅,wcm) and
(wfs,wcm-fs).

The standard definition of EUF-CMA-security for Σ and definitions of collision-resistance and pseudo-randomness
for F can be found in Appendix A. Further, by qs we denote the total number of executed protocol sessions during the
duration of the attack.

Theorem 1 (AKE-Security of C-AMAP). Let (α, β) ∈ {(∅,wcm), (wbs, wcm-bs), (wfs,wcm-fs), (sfs,scm)} be
an adversarial setting, let P be a GKE-α protocol, and Aβ an active adversary launching at most qs sessions of P.
Then if Σ is EUF-CMA and F is pseudo-random, C-AMAP is AGKE-α and

Advake
Aβ ,C-AMAP(κ) ≤ 2NSucceuf-cmaΣ (κ) +

Nq2
s

2κ−1
+ 2qsAdv

ke
P (κ) + 4qsAdv

prf
F (κ).

Proof. In our proofs we use a well-known proving technique called sequence of games [40] which allows to reduce
complexity of “reductionist” security proofs for complex cryptographic protocols, and became meanwhile standard
for security proofs of group key exchange protocols, e.g., [1, 13, 14, 24, 25, 32].

9 However, if such unique session ids are provided then similar to the KS compiler we can omit the very first communication round where
participants exchange their nonces.
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We define a sequence of games Gi, i = 0, . . . , 4 and corresponding events Winake
i as the events that the output bit

b′ of Gi is identical to the randomly chosen bit b in Gameake−b
Aβ ,C-AMAP(κ). The queries made by Aβ are answered by a

simulator S.
Game G0: This game is the real game Gameake−b

Aβ ,C-AMAP(κ) played between S andAβ . Remind, the (unique) Test query
can be asked only during an α-fresh session, and is answered either with random string or with the actual session key
Ksi

i .
Game G1: This game is identical to G0 with the only exception that the simulator fails and sets b′ at random if Aβ

asks a Send query on some Ui|m|σ (or Ui|σ) such that σ is a valid signature that has not been previously output by an
oracle Πsi

i before querying Corrupt(Ui). In other words the simulation fails if Aβ outputs a successful forgery; such
event is denoted Forge. Hence,

|Pr[Winake
1 ]− Pr[Winake

0 ]| ≤ Pr[Forge]. (1)

In order to estimate Pr[Forge] we show that usingAβ we can construct a EUF-CMA forgerF against the signature
scheme Σ as follows. F is given a public key pk and has access to the corresponding signing oracle. During the
initialization of C-AMAP, F chooses uniformly at random a user Ui∗ ∈ U and defines pk′i∗ := pk . All other key pairs,
i.e., (sk′i, pk′i) for every Ui6=i∗ ∈ U are generated honestly using Σ.Gen(1κ). F generates also all key pairs (ski, pki)
with Ui ∈ U if any are needed for the original execution of P. The forger simulates all queries of Aβ in a natural way
by executing C-AMAP by itself, and by obtaining the necessary signatures with respect to pk′i∗ from its signing oracle.
This is a perfect simulation for Aβ since by assumption no Corrupt(Ui∗) may occur (otherwise F would not be able
to answer it). Assuming Forge occurs, Aβ outputs a new valid message/signature pair with respect to some pk′i; since
i∗ was randomly chosen and the simulation is perfect, Pr[i = i∗] = 1/N . In that case F outputs this pair as its forgery.
Its success probability is given by Pr[Forge]/N . This implies

Pr[Forge] ≤ NSucceuf-cmaF ,Σ (κ). (2)

Game G2: This game is identical to G1 except that the simulator fails and sets b′ at random if an AMA nonce ri is
used by any uncorrupted user Ui in two different sessions. We call this event RepAMA. If qs is the total number of
protocol sessions, the probability that a randomly chosen AMA nonce ri appears twice is bounded by q2

s/2κ for one
given user. Since there are at most N users we obtain

|Pr[Winake
2 ]− Pr[Winake

1 ]| ≤ Pr[RepAMA] ≤ Nq2
s

2κ
(3)

Note that in this game the same value for sidsi
i does not repeat in any two different sessions where at least one user

remains uncorrupted. This excludes possible replay attacks in C-AMAP because the value sidsi
i is used to generate

signatures of all sent messages.
Game G3: This game is identical to G2 except that a random value sampled from {0, 1}κ is used instead of k in the
AMA protocol of C-AMA in all α-fresh sessions. Having excluded forgeries and replay attacks on C-AMAP we can use the
advantage of a passive adversary A∗β against the original protocol P to upper-bound

|Pr[Winake
3 ]− Pr[Winake

2 ]| ≤ qsAdv
ke
A∗

β ,P(κ). (4)

Note that since k is erased at the end of each C-AMAP execution the adversary A∗β in the corresponding corruption
model β cannot learn the real value of k used in any α-fresh session since the adversarial setting (α, β) disallows
RevealKey, RevealState or Corrupt queries in α-fresh sessions.
Game G4: This game is identical to G3 except that the session group key K and AMA token µ are replaced with
random values in all α-fresh sessions (the same random value must be used for each AMA token µi observed by the
adversary). We are allowed to do this since in this game k, used for the computation of K and µ, is replaced by a
random value (as a result of the previous game). We get

|Pr[Winake
4 ]− Pr[Winake

3 ]| ≤ 2qsAdv
prf
A,F (κ). (5)
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Obviously, in this game Aβ gains no advantage from the obtained information and cannot, therefore, guess b better
than by a random choice, i.e.,

Pr[Winake
4 ] =

1
2

(6)

Considering Equations 2 to 6 we get:

Pr[Gameake−b
Aβ ,C-AMAP(κ) = b] = Pr[Winake

0 ]

≤ NSucceuf-cmaF ,Σ (κ) +
Nq2

s
2κ

+ qsAdv
ke
A∗

β ,P(κ) + 2qsAdv
prf
A,F (κ) +

1
2
.

This results in the desired inequality (we omit notations for F , A∗β and A at the right side of the inequality)

Advake
Aβ ,C-AMAP(κ) ≤ 2NSucceuf-cmaΣ (κ) +

Nq2
s

2κ−1
+ 2qsAdv

ke
P (κ) + 4qsAdv

prf
F (κ).

ut

Theorem 2 shows that C-AMA also provides MA-security for any GKE protocol P. Note that our definition of MA-
security allows malicious participants. Therefore, opposed to the BCPQ compiler [15], we are not concerned about the
AKE-security of P in this case.

Theorem 2 (MA-Security of C-AMAP). For any GKE protocol P, if Σ is EUF-CMA and F is collision-resistant, then
C-AMAP is MAGKE, and

Succma
Ama,C-AMAP(κ) ≤ NSucceuf-cmaΣ (κ) +

Nq2
s

2κ
+ qsSucccoll

F (κ).

Proof. We define a sequence of games Gi, i = 0, . . . , 2 and corresponding events Winma
i meaning that Ama wins in

Gi. The queries made by Ama are answered by a simulator S.
Game G0: This game is the real game Gamema

Ama,C-AMAP(κ) played between S and Ama. Remind, the goal of Ama is
to achieve that there exists an uncorrupted user Ui whose corresponding oracle Πsi

i accepts with Ksi
i and another user

Uj ∈ pidsi
i that is uncorrupted at the time Πsi

i accepts and either does not have a corresponding oracle Π
sj

j with
(pidsj

j ,sid
sj

j ) = (pidsi
i ,sidsi

i ) or has such an oracle but this oracle accepts with K
sj

j 6= Ksi
i .

Game G1: This game is identical to G0 with the only exception that the simulation aborts if Ama asks a Send query
on a message Ui|m|σ (or Ui|σ) such that σ is a valid signature that has not been previously output by an oracle Πsi

i

before querying Corrupt(Ui), i.e., the simulation fails if Ama outputs a successful forgery. According to Equation 2
we obtain,

|Pr[Winma
1 ]− Pr[Winma

0 ]| ≤ NSucceuf-cmaΣ (κ) (7)

Game G2: This game is identical to G1 except that the simulator aborts if an AMA nonce ri is used by any uncorrupted
user Ui in two different sessions. Similar to Equation 3 we get

|Pr[Winma
2 ]− Pr[Winma

1 ]| ≤ Nq2
s

2κ
(8)

Note that this prevents attacks where Πsi
i during any session of the AMA protocol receives a replayed message of the

form Uj |m|σ̄j or Uj |σ̄j where Uj is uncorrupted and σ̄j is a signature computed by its oracle in some previous session.
Note that Πsi

i does not accept unless it successfully verifies all required σj for all Uj ∈ pidsi
i in the AMA protocol of

C-AMA. Having excluded forgeries and replay attacks we follow that for every user Uj ∈ pidsi
i that is uncorrupted at

the time Πsi
i accepts there exists a corresponding instance oracle Π

sj

j with (pidsj

j ,sid
sj

j ) = (pidsi
i ,sidsi

i ). Thus,
according to Definition 7 Ama wins in this game only if any of these oracles has accepted with K

sj

j 6= Ksi
i .
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Assume thatAma wins in this game. Then there exist two uncorrupted oracles Πsi
i and Π

sj

j that have accepted with
Ksi

i = fk
si
i

(v1) resp. K
sj

j = f
k

sj
j

(v1) where ksi
i resp. k

sj

j are corresponding keys computed during the execution of P

such that Ksi
i 6= K

sj

j . Having eliminated forgeries and replay attacks between the oracles of any two uncorrupted users
we follow that messages exchanged between Πsi

i and Π
sj

j have been delivered without any modification. In particular,
oracle Πsi

i received the signature σj computed on µj = f
k

sj
j

(v0) and Π
sj

j received the signature σi computed on

µi = fk
si
i

(v0). Since both oracles have accepted we have µi = µj ; otherwise oracles cannot have accepted because
signature verification would fail. The probability that Ama wins in this game is given by

Pr[Ksi
i 6= K

sj

j ∧ fk
si
i

(v0) = f
k

sj
j

(v0)] = Pr[fk
si
i

(v1) 6= f
k

sj
j

(v1) ∧ fk
si
i

(v0) = f
k

sj
j

(v0)] ≤ qsSucccoll
F (κ).

Thus,
Pr[Winma

2 ] ≤ qsSucccoll
F (κ). (9)

Considering Equations 7 to 9 we get the desired inequality

Succma
Ama,C-AMAP(κ) = Pr[Winma

0 ]

≤ NSucceuf-cmaΣ (κ) +
Nq2

s
2κ

+ qsSucccoll
F (κ).

ut

7 Conclusion

In this paper we have analyzed several computational (game-based) security models for group key exchange protocols
from the perspective of their technical construction and informal definitions of key confirmation, mutual authentication,
and unknown-key share resilience. We were able to identify some problems with the definition of MA-security in the
BCPQ model which is foundational for many subsequently proposed models. We thus proposed an extended model
with a revised definition of MA-security considering attacks of malicious protocol participants and showed unifying
relationship between our formal definition and the previously proposed informal notions.

In order to prove soundness and feasibility of our definitions we have described a generic solution, in form of the
compiler C-AMA (as a combination of KY and KS compilers), that adds AKE- and MA-security to “passively” secure
GKE protocols, and we proved its security under standard assumptions. The provided proofs also imply that (i) the
KY compiler [31] satisfies even stronger definitions of AKE-security (w.r.t. the various adversarial settings concerning
forward- and backward-secrecy defined in our model), and (ii) the KS compiler [30] satisfies our revised definition of
MA-security.
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A Cryptographic Primitives Used by the Compiler C-AMA

Definition 12 (Digital Signature Scheme). A signature scheme Σ := (Gen, Sign, Verify) consists of the following
algorithms:

Gen: A probabilistic algorithm that on input a security parameter 1κ, κ ∈ N outputs a secret key sk and a public key
pk.

Sign: A probabilistic algorithm that on input a secret key sk and a message m ∈ {0, 1}∗ outputs a signature σ.
Verify: A deterministic algorithm that on input a public key pk, a message m ∈ {0, 1}∗ and a candidate signature

σ outputs 1 or 0, meaning that the signature is valid or not.

Definition 13 (EUF-CMA Security10). A digital signature scheme Σ := (Gen, Sign, Verify) is said to be exis-
tentially unforgeable under chosen message attacks (EUF-CMA) if for any PPT algorithm (forger) F that receives a
public key pk and can access to a signing oracle Sign(sk, ·), the probability that F outputs a pair (m, σ) such that
Verify(pk, m, σ) = 1 but m was never part of a query Sign(sk,m) is negligible. By Succeuf-cmaF ,Σ (κ) we denote the
probability that F outputs a successful forgery.

In the following we briefly describe the notion of pseudo-random functions. Informally, a pseudo-random function
(PRF) is specified by a random key k, and can be easily computed given this key. However, if k remains secret, the
input-output behavior of PRF is indistinguishable from that of a truly random function with same domain and range.
The following definition is taken from [27, Definition 3.6.9].

Definition 14 (Efficiently Computable Generalized Pseudo-Random Function Ensemble F ). An ensemble of fi-
nite functions F :=

{{
fk : {0, 1}p(κ) → {0, 1}p(κ)

}
k∈{0,1}κ

}
κ∈N where p : N → N is upper-bounded by a polyno-

mial, is called an (efficiently computable) pseudo-random function ensemble if the following two conditions hold:

1. Efficient computation: There exists a polynomial-time algorithm that on input k and x ∈ {0, 1}p(κ) returns fk(x).
2. Pseudo-randomness: Choose uniformly k ∈R {0, 1}∗ and a function f̃ in the set of all functions with domain and

range {0, 1}p(κ). Consider a PPT adversary A asking queries of the form Tag(x) and participating in one of the
following two games:

– Gameprf−1
A,F (κ) where a query Tag(x) is answered with fk(x),

10 There exists a stronger security requirement called strong EUF-CMA [2]. It allows F to produce a forgery (m, σ) for a message m that was
already queried to the signing oracle, provided that σ was not returned by the signing oracle. However, in our compiler we do not need this
stronger property.
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– Gameprf−0
A,F (κ) where a query Tag(x) is answered with f̃(x).

At the end of the execution A outputs a bit b trying to guess which game was played. The output of A is also the
output of the game. The advantage function of A in winning the game is defined as

Advprf
A,F (κ) :=

∣∣2 Pr[Gameprf−b
A,F (κ) = b]− 1

∣∣.
We say that F is pseudo-random if Advprf

A,F (κ) is negligible.

By an (efficiently computable) pseudo-random function we mean a function fk ∈ F for some random k ∈R {0, 1}∗.

Remark 2. As noted in [27] there are some significant differences between using PRFs and the Random Oracle Model
(ROM) [8]. In ROM, a random oracle that can be queried by the adversary is not keyed. Still, the adversary is forced to
query it with chosen arguments instead of being able to compute the result by itself. Later, in the implementation the
random oracle is instantiated by a public function (usually a cryptographic hash function) that can be evaluated by the
adversary directly. To the contrary, when using PRFs, the oracle contains either a pseudo-random function or a random
function. The pseudo-random function is keyed and the key is supposed to be kept secret from the adversary. This
requirement is also preserved during the implementation. Hence, in any case (theoretical or practical) the adversary
is not able to evaluate the pseudo-random function by itself as long as the key is kept secret. Thus, with PRFs there
is no difference between theoretical specification of the function and its practical instantiation. This is one of the
reasons why security proofs based on pseudo-random functions instead of random oracles can be carried out in the
standard model. Another reason is that existence of pseudo-random functions follows from the existence of one-way
permutations, which is a standard cryptographic assumption.

Additionally, we require the following notion of collision-resistance of pseudo-random function ensembles. This
definition is essentially the one used by Katz and Shin [30]. The same property has previously been defined in [26] and
denoted there as fixed-value-key-binding property of a pseudo-random function ensemble. We also refer to [30] for a
possible construction based on one-way permutations and for the proof of Lemma 1).

Definition 15 (Collision-Resistance of F ). Let F be a pseudo-random function ensemble. We say that F is collision-
resistant if there is an efficient procedure Sample such that for all PPT adversaries A the following advantage is a
negligible function in κ:

Succcoll
A,F (κ) := Pr

v ← Sample(1κ);
k, k′ ← A(1κ, v)

:
k, k′ ∈ {0, 1}κ∧

k 6= k′∧
fk(v) = fk′(v)


Lemma 1. If one-way permutations exist then there exist collision-resistant pseudo-random functions.
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