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Abstract

In this paper we provide an analytical survey on security issues that are relevant

for group key exchange protocols. We start with the description of the security re-

quirements that have been informally described in the literature and widely used to

analyze security of earlier group key exchange protocols. Most of these definitions were

originally stated for two-party protocols and then adapted to a group setting. These

informal definitions are foundational for the later appeared formal security models for

group key exchange protocols whose development, strengths, and weaknesses are also

described and analyzed.
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1 Group Key Establishment

The establishment of group keys is fundamental for a variety of security mechanisms

in group applications like groupware, computer-supported collaborative work (CSCW)

systems, digital conferences, replication and synchronization systems, file and data sharing

systems. For example, group keys can be utilized by symmetric encryption schemes for

the purpose of confidentiality which is one of the most frequent security requirements in

group applications; also message authentication codes require group keys for the purpose

of group authentication and integrity. Thus, it is important to have mechanisms that

provide group members with shared secret keys. We classify possible mechanisms based

on the following definitions from [MvOV96, Chapter 12] which we adopt to a group setting.

Definition 1 (Group Key Establishment) Group key establishment is a protocol or

process whereby a shared secret becomes available to two or more parties, for subsequent

cryptographic use.

This general definition can further be shaped in two different classes: group key

transport/distribution and group key exchange/agreement.

Definition 2 (Group Key Transport/Distribution) Group key transport/distribution

is a protocol or process of group key establishment where one party creates or otherwise

obtains a secret value, and securely transfers it to the other(s).

The main characteristic of group key transport protocols is that the group key k is

chosen by a single party and then securely transferred to all group members. This definition

leaves open whether a party which chooses the group key must be a group member. It

is also imaginable to have some trusted third party (TTP) that chooses group keys on

behalf of the group. Also the requirement on secure transfer of group keys forebodes the

existence of secret communication channels between the party that chooses group keys

and other group members.

Definition 3 (Group Key Exchange/Agreement) Group key exchange/agreement is

a protocol or process of group key establishment where a shared secret is derived by two or

more parties as a function of information contributed by, or associated with, each of these,

(ideally) such that no party can predetermine the resulting value.

Obviously, in group key exchange protocols all group members have to interact in order

to compute the group key. The main difference to group key transport techniques is that

no party is allowed to choose the group key on behalf of the whole group. Also, group key



HGI Network and Data Security Group Technical Report 2006/02 5

exchange protocols do not require the existence of secure channels between participants

since no secure transfer takes place.

Note that regardless of which group key establishment technique is used by an ap-

plication the resulting group key must remain secret from unauthorized parties in order

to guarantee the expected requirements from the utilized cryptographic mechanisms, like

encryption schemes or message authentication codes.

Both group key establishment techniques can be analyzed in context of either static or

dynamic groups. Of course it is always possible to establish the group key for the modified

group by re-starting the protocol. However, this may be inefficient if groups are large

or the protocol is computationally expensive. Therefore, many group key establishment

protocols designed for dynamic groups provide more efficient operations for addition and

exclusion of group members.

1.1 Group Key Transport/Distribution

In group key transport/distribution protocols the party which chooses group keys on behalf

of the group is given enormous power and may, therefore, influence the security of the

protocol. Whether a group application allows this kind of trust relationship depends surely

on its goals and the environment in which it is executed. However, it seems evident that

group key transport protocols are primarily used in group applications with centralized

control over the group admission process. In these scenarios the party acting as group

authority (GA) may also be in charge for the choice of the group key and its distribution

to other members.

Obviously, the most challenging task in group key transport protocols is its protection

during the protocol execution.

The following general mechanism is usually applied in group key transport protocols,

e.g. [BD94, HY98]. After the party which is responsible for the choice of the group key

chooses the key it encrypts it via an appropriate encryption scheme and distributes it to all

other group members. Both, symmetric and public-key encryption schemes can be used for

this purpose. In case that the applied scheme is symmetric the existence of shared secret

keys between this party and each group member is indispensable. This means, that group

members have to exchange secret keys with that party pairwise before it proceeds with

the group key distribution. Another solution is to apply public-key encryption schemes

which do not require any pre-shared secrets between group members and the central party,

e.g. in [MY99]. However, public-key encryption is usually less efficient than symmetric

encryption. Therefore, if group keys are distributed frequently, e.g. due to frequent group

membership changes, then symmetric cryptography performs better.
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The core of many group key distribution protocols builds a mechanism called key

hierarchy [WGL98, WHA99]. It arranges group members at the leaves of a logical tree

and assigns some secret value to each node of the tree. The secret value at the root of

the tree represents the group key or a secret material which can be used to derive the

group key via some additional transformations. The goal of the distribution process in

key hierarchies is to provide each group member with the information which it can use

to compute all secret values in its path up to the root, including the group key. Key

hierarchies are popular in dynamic group key distribution protocols for multicast and

broadcast encryption, e.g. [WGL98, WHA99, Bri99, WCS+99, NNL01, SM03], since they

provide various mechanisms based on modification of the logical tree structure to enhance

protocol efficiency upon dynamic group changes.

1.2 Group Key Exchange/Agreement

The only trust assumption in group key exchange protocols is that members trust each

other not to reveal any information which can be used to derive the group key to any third

party which is not a valid member of the group. Especially, group members do not trust

each other during the computation of the group key which should be composed of individual

contributions of all group members. Thus, in contrast to group key transport protocols

the design of group key exchange protocols is more challenging due to the distributed

computation process of the group key.

Many group key exchange protocols, e.g., [BD94, AST98, BCPQ01, BCP01, BCP02a,

BCP02b, BDS03, KY03, CHL04, KLL04, DBS04, KPT04a, KPT04b, DB05a, DB05b,

BD05, ABCP06] can be seen as modifications of the two-party key exchange protocol

proposed by Diffie and Hellman in their seminal paper [DH76] or of the pairing-based pro-

tocol proposed by Joux [Jou00]. These protocols allow two or three parties upon exchange

of information over a public channel to compute the shared key using specific discrete

mathematical constructions which prevent eavesdroppers from learning the resulting key

value.

1.3 Session Keys

Usually, group keys returned by group key establishment protocols are not used directly in

the application. Instead, additional transformations are applied in order to derive further

keys, so-called session keys, which are used by different security mechanisms within the

application. For example, if an application requires confidentiality and group authentica-

tion then one session key is derived for the encryption scheme and another session key is

derived for the message authentication code. Transformations which are used to derive
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session keys are usually one-way, i.e., given the output of the transformation it is com-

putationally infeasible to obtain the input. Thus, even if a session key is leaked it is still

hard to compute the original group key. The use of different session keys provides addi-

tional security in terms of independence of applications and deployed security mechanisms

since leakage of one session key does not imply leakage of other session keys. Thus for

example, if a third party learns the session key used for group authentication then it can

authenticate itself as a group member but is not able to decrypt encrypted group messages.

Furthermore, session keys are ephemeral, i.e., they are valid for a short period of time.

For example, digital conferences should use a different session key for each communication

session. The use of ephemeral keys decreases the chance of cryptanalytic attacks. Also in

dynamic groups any change of group membership should result in new session keys. In

case that the group is static but application execution lasts long, e.g., if groupware is used

in some long-term project, it is reasonable to refresh session keys periodically.

2 Survey on Informal Security Definitions

Security properties of cryptographic schemes are usually defined based on certain assump-

tions about the adversary whose goal is to break these properties. In case of cryptographic

protocols it is common to distinguish between passive and active adversaries. A passive

adversary, usually, only eavesdrops the communication channel without being able to mod-

ify or inject messages. An active adversary is more powerful since it is assumed to have a

complete control over the communication channel resulting in its ability to alter sent mes-

sages or inject own messages during the execution of the protocol. In particular, an active

adversary is able to mount so-called man-in-the-middle attacks. Additionally, security of

a cryptographic protocol may depend on the behavior of its participants. Obviously, it is

more challenging for a protocol to guarantee its security properties in case where legiti-

mate participants are malicious, or dishonest, and do not act according to the protocol

specification.

In the following we consider blocks of related security notions which we describe fol-

lowing the chronology of their appearance in the literature. We also specify which type of

the adversary is reasonable to be assumed for each notion.

2.1 Semantic Security and Known-Key Attacks

The notion of key privacy, also called key confidentiality or key secrecy [DvOW92], was

surfaced by Diffie and Hellman [DH76], and described later in the context of group key

establishment [SSDW90, BD94]. According to the definition of Burmester and Desmedt
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[BD94] a group key establishment protocol guarantees privacy if it is computationally

infeasible for a passive adversary to compute the group key k. Obviously, similar definition

should hold against an active adversary who is not a legitimate protocol participant. A

stronger definition of key privacy requires the indistinguishability of the computed group

key from a random number. This is in spirit of the requirement called semantic security

and described by Goldwasser and Micali [GM84].

The notion of known-key security [YS90, Bur94], strengthens the above requirements

by assuming a stronger adversary who knows the group keys of past sessions. The related

notion of key freshness [MvOV96] requires that the protocol guarantees that the key is

new, that is participants compute group keys which have not been used in the past. Steiner

et al. [STW98] introduced the notion of key independence in the context of dynamic group

key exchange protocols meaning that previously used group keys must not be discovered

by joined group members and that former group members must not be able to compute

group keys used in the future. Obviously, this definition considers that the adversary was

a legitimate protocol participant or may become one in the future.

Kim et al. [KPT00, KPT01] summarized the above requirements as follows: weak

backward secrecy guarantees that previously used group keys must not be discovered by

new group members; weak forward secrecy guarantees that new keys must remain out

of reach of former group members; computational group key secrecy guarantees that it

is computationally infeasible for a passive adversary to discover any group key; forward

secrecy guarantees that a passive adversary who knows a contiguous subset of old group

keys cannot discover subsequent group keys; backward secrecy guarantees that a passive

adversary who knows a contiguous set of group keys cannot discover any preceding group

keys; key independence guarantees that a passive adversary who knows any proper subset

of group keys cannot discover any other group key. Note that the last four requirements

do not make any assumptions about the group membership of the adversary. In their

subsequent work, Kim et al. [KPT04b] introduced the decisional group key secrecy whereby

a passive adversary must not be able to distinguish the group key from a random number.

Although [KPT00, KPT01] use passive adversaries in their definitions, it is mentioned that

the same security requirements should also hold in the presence of active adversaries.

Remark 1 Unfortunately, Kim et al.’s definitions concerning (weak) forward secrecy are

in conflict with the commonly used meaning of the term forward secrecy (see Section 2.4

for further details).
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2.2 Impersonation Attacks

Security against impersonation attacks in the context of group key establishment was

addressed by Burmester and Desmedt [BD94] and defined as a property of the protocol

where an impersonator together with active or passive adversaries should be prevented

from the computation of the group key. By an impersonator [BD94] denotes an adversary

whose goal is to replace a legitimate participant in the execution of the protocol (thus

impersonator is not considered to be a malicious participant). Further, [Bur94, BD93]

extend the notion of known-key attacks by requiring that an active adversary who knows

past session keys must not be able to impersonate one of the protocol participants.

The notion of entity authentication [BR93a], introduced by Bellare and Rogaway in

the context of two-party authentication protocols, specifies a process whereby one party

is assured of the identity of the second party involved in a protocol, and that the second

has actually participated, and is equivalent to the requirement on resistance against im-

personation attacks in the context of group key exchange protocols. The related notion

called (implicit) key authentication [MvOV96] requires that each legitimate protocol par-

ticipant is assured that no other party except for other legitimate participants learns the

established group key. According to this definition a group key exchange protocol is au-

thenticated if it provides (implicit) key authentication. Ateniese et al. [AST98] proposed a

requirement on group integrity meaning that each protocol participant must be assured of

every other protocol party’s participation in the protocol. Obviously, this notion is similar

to the requirement of the entity authentication applied to a group setting.

All of these impersonation/authentication requirements consider an adversary that is

not a legitimate protocol participant. Therefore, it is possible to consider them for group

key exchange protocols in the context of the requirements from the previous section, i.e.

that the indistinguishability of the group keys from random numbers remains preserved

with respect to the attacks of an active adversary.

Another related requirement called unknown key-share resilience surfaced in [DvOW92]

means that an active adversary must not be able to make one protocol participant believe

that the key is shared with one party when it is in fact shared with another party. Note

that the adversary may be a malicious participant and does not need necessarily to learn

the established key [BM03].

Finally, we mention key-compromise impersonation resilience [BWJM97]. This secu-

rity property prevents the adversary who obtains a long-term key of a user from being

able to impersonate other users to that one. Note that long-term keys are usually either

private keys used for signature generation or decryption, or shared passwords that remain

unchanged for a long period of time, and used primarily for the purpose of authentication
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rather than computation of the group key. Obviously, this attack concerns only protocols

whose goal is to establish a session key which is then used for the purpose of authentica-

tion. Therefore it is arguable whether this requirement is general for group key exchange

protocols, e.g. [KS05]. Note that if an adversary obtains long-lived keys of participants

then it can usually act on behalf of these participants in subsequent protocol executions.

Note also that key-compromise impersonation resilience cannot be guaranteed in group

key exchange protocols where participants use shared secret passwords for the purpose of

authentication during the protocol execution.

2.3 Key Confirmation and Mutual Authentication

The requirement called key confirmation [MvOV96] means that each protocol participant

must be assured that every other protocol participant actually has possession of the com-

puted group key. According to [MvOV96] key confirmation in conjunction with (implicit)

key authentication results in explicit key authentication, i.e., each identified protocol par-

ticipant is known to actually possess the established group key. The same goal states the

requirement of mutual authentication introduced in [BR93b] when considered for group key

exchange protocols. As noted in [AST98] key confirmation makes a group key exchange

protocol a more robust and a more autonomous operation. As noted in [BM03] key confir-

mation mechanisms may be used to provide resistance against unknown key-share attacks

mentioned in the previous section. We stress that the requirements on key confirmation

and mutual authentication should also be considered from the perspective of the attacks

by malicious protocol participants who try to prevent honest participants from computing

the same group key.

2.4 Perfect Forward Secrecy

The notion of (perfect) forward secrecy (sometimes called break-backward protection [MvOV96])

was surfaced by Günter [Gün90] and rephrased by Diffie et al. [DvOW92] as a property of

an authenticated key agreement protocol requiring that the disclosure of long-term keying

material does not compromise the secrecy of the established keys from earlier protocol

runs. The idea behind this notion is to maintain the protection of the secure traffic in

the future. Note that compromised long-term keys make future protocol runs nonethe-

less susceptible to impersonation attacks. A weaker form of (perfect) forward secrecy is

partial forward secrecy [BM03] which considers the case where one (or more but not all)

principals’ long-term keys become compromised.
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2.5 Key Control and Contributiveness

The issue of key control described by Mitchel et al. [MWW98] in the context of two-

party group key exchange protocols considers malicious protocol participants who wish to

influence the computation of the group key.

Ateniese et al. [AST98] introduced a notion of contributory group key agreement mean-

ing such protocols where each party equally contributes to the established group key and

guarantees its freshness (see also [Ste02]). This notion also subsumes the requirement of

unpredictability of the computed group keys. The authors defined additionally complete

group key authentication as a property of a group key exchange protocol whereby all parties

compute the same group key only if each of the parties have contributed to its computa-

tion. This notion can be seen as a combination of contributiveness and mutual (or explicit

key) authentication. Ateniese et al. [AST98] proposed further a more stronger notion of

verifiable contributory group key agreement meaning protocols where each participant is

assured of every other participant’s contribution to the group key. We stress that these

requirements should hold also in the presence of malicious protocol participants.

Another related requirement that is stated from the perspective of an adversary that

is not a malicious participant is key integrity [JT93] which requires that the established

group key has not been modified by the adversary, or equivalently only has inputs from

legitimate protocol participants. Ateniese et al. [AST98] extended the definition of key

integrity by requiring that the established group key is a function of only the individual

contributions of legitimate protocol participants such that extraneous contribution(s) to

the group key must not be tolerated even if it does not afford the adversary with any

additional knowledge. Obviously, this can be achieved if the protocol is contributory and

provides mutual authentication.

3 Analytical Survey on Formal Security Models

As already noted in the introduction provable security of cryptographic protocols can be

achieved using an appropriate security model that considers protocol participants, their

trust relationship, communication environment, and further relevant aspects, and contains

definitions of required security goals.

Unfortunately, there exist no common goodness criteria for the evaluation of such secu-

rity models. In our opinion a security model should be general meaning that its definitions

and assumptions should not depend on some concrete protocol implementation or design.

Further, a model should be self-contained, i.e., there should be no parameters whose speci-

fication is not defined within the model or depends on certain assumptions beyond it. This
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property is useful for the design of autonomous protocols. A model should be exact, that

is disallow any ambiguous interpretations for its definitions and requirements. A security

model should be modular, that is allow security proofs for the protocols that provide only

a subset of specified security goals. On the one hand, this property is useful to design pro-

tocols while considering their practical deployment in applications that may not require

the full range of security (for example, if a trade-off between security and efficiency is

needed); on the other hand, modularity allows construction of security-enhancing generic

solutions. Another advantage of modular security models is their possible extension by

additional security requirements which may become essential in the future.

In the following we provide an analytical survey of various security models proposed

for group key exchange protocols. In addition to the description we specify which of the

most important informal security requirements have been considered by the definitions of

a model, thereby focusing on semantic security or indistinguishability of the computed

group keys from random numbers considering known-key attacks and active adversaries,

key confirmation and mutual authentication with respect to malicious protocol partici-

pants, (perfect) forward secrecy, and the issues related to key control and contributive-

ness. Additionally, we judge models with respect to the specified goodness criteria. Note

that some of the models described in this section were proposed in the context of two-

or three-party key exchange protocols. However, they provide some interesting definitions

and constructions that became foundational for a variety of the later appeared security

models designed for the group setting.

3.1 Models by Bellare and Rogaway (BR, BR+)

3.1.1 BR

Bellare and Rogaway [BR93a] proposed the first computational security model for authen-

tication and security goals of two-party key exchange protocols which we refer to as the

BR model. This model allows reductionist proofs of security. Each protocol participant is

assumed to have an identity and a long-lived key. The adversary can initiate different ses-

sions between the same participants. It has an infinite collection of oracles Πs
i,j such that

each oracle represents participant i trying to authenticate participant j in session s. The

adversary communicates with the oracles via queries which contain sender and receiver

identities, the session id, and the actual message. Hence, the adversary is considered to

be active. However, the model assumes a benign adversary which faithfully forwards all

message flows between the oracles, and is, therefore, not allowed to modify the messages.

It can invoke any oracle to start the protocol execution. A variable κs
i,j keeps track of the

conversation between i and j in session s. The security goal of mutual authentication is
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defined based on the notion of matching conversations between the participants. Roughly,

this means that all messages sent by one participant have been subsequently delivered to

another participant without modification, and vice versa. According to the BR model a

protocol provides mutual authentication if for any polynomial time adversary the oracles

Πs
i,j and Πs

j,i have matching conversations and if one of the oracles, say Πs
i,j , accepts (does

not fail) then there is always another oracle Πs
j,i with the engaged matching conversation.

Note that from this definition mutual authentication also results in key confirmation since

the exchanged message flows, and thus computed keys, must be equal. The authors also

show the uniqueness of matching partners. Additionally, the adversary is allowed to ask

Reveal queries to obtain session keys computed by Πs
i,j . In order to model known-key

attacks the BR model specifies the notion of fresh oracles, i.e., an oracle Πs
i,j is fresh if

it has accepted (computed the session key) and no Reveal query was asked to Πs
i,j or to

its matching partner Πs
j,i. Further, the adversary is allowed to ask exactly one Test query

to any oracle which is fresh. In response to this query it receives either the real session

key computed by the oracle or a random number of the same range and has to decide

which value it has received. The BR model calls an authenticated key exchange protocol

secure if in the presence of the benign adversary both oracles, Πs
i,j and Πs

j,i, accept with

the equal session keys which are randomly distributed over the key space, and the success

probability of the adversary to decide correctly in response to the value obtained from its

Test query is non-negligibly greater that 1/2.

The main weakness of the BR model is that it disallows the adversary to modify

messages, or to corrupt participants obtaining their long-lived keys. Hence, the model

does not consider the notion of (perfect) forward secrecy. Further, the model does not

deal with attacks of malicious participants. Thus, definition of mutual authentication is

defined only for honest protocol participants, and no definitions concerning issues related

to key control and contributiveness are available in the BR model.

3.1.2 BR+

In their subsequent work, Bellare and Rogaway [BR95] extended the BR model to deal

with key distribution scenarios in a three-party setting which involves two participants

wishing to establish a shared key and a key distribution center (key server). Nonetheless,

this model, denoted BR+, is of particular interest for us since it provides some interesting

definitions which are also relevant for the models dealing with key exchange protocols.

The actions of the adversary are specified by a number of queries which it may ask to the

instances of parties participating in the protocol. Each party may have a multiple number

of instances and so participate in different sessions of the protocol. Using a SendPlayer
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or a SendS query the adversary can send messages to one of the participants or to the

key distribution center, respectively, that reply according to the protocol specification or

do not reply if the received message is unexpected. So the adversary is active. With a

Reveal query to a specified instance the adversary may obtain the final key computed by

that instance. Additionally, the adversary is allowed to ask Corrupt queries which return

the complete internal state of the instance to the adversary together with the long-lived

key of the party and allows the adversary to replace this long-lived key with any value of

its choice. Note that this kind of corruptions became later known as strong corruptions.

After an adversary asks a Corrupt query for some party all instances of this party use

the changed value for the long-lived key in all subsequent protocol executions. Although

the adversary is allowed to corrupt parties and reveal their session keys the security of

the protocol may also depend on instances of other parties who participate in the same

session. To consider all protocol participants the BR+ model specifies an abstractly defined

partner function which roughly speaking means that two instances are partnered if they

participate in the same session and compute the shared key. Further, at the end of its

execution the adversary asks a Test query to an instance which holds a fresh session key,

i.e., a key computed during the session such that no Reveal or Corrupt queries have been

previously asked to the instance or any of its partners. The adversary receives either

the session key computed by that instance or a random number of the same range, and

similar to the BR model must decide which value it has received. This security definition

subsumes the informal requirement on indistinguishability of computed group keys from

random numbers while also considering active adversaries.

The BR+ model has some weaknesses described in the following. Although the ad-

versary is allowed to reveal long-lived keys of participants through Corrupt queries it is

allowed to ask its Test query only at the end of its execution. Obviously, the adversary

may not use the knowledge of corrupted long-term keys to make its guess because of the

freshness requirement. Therefore, the model does not capture the requirement of (perfect)

forward secrecy. Second, the BR+ model does not deal with the attacks concerning key

confirmation or mutual authentication, neither with respect to honest participants nor to

malicious. This observation has also been mentioned in [CBH05]. Third, the BR+ model

does not consider attacks related to the issue of key control. This, however, is reasonable

since the model has been proposed for key distribution protocols for which such require-

ments are not relevant because of the trust assumption concerning the key server. The

partnering function in the BR+ model is not concretely specified. This contradicts to our

goodness criteria for the security models.
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3.2 Model by Bellare, Canetti, and Krawczyk (BCK)

Bellare, Canetti, and Krawczyk [BCK98] proposed a computational security model for

authentication and key exchange, which we denote as the BCK model. This model allows

security proofs based on the simulatability approach. The BCK model supports modular

constructions and deals with message-driven protocols, i.e., after being invoked by a party

the protocol waits for an activation which may either be caused by the arrival of a certain

message or by an external request (which may come from other processes executed by the

party). The authors essentially define two different adversarial models: authenticated-links

model (AM) and unauthenticated-links model (UM). The AM model considers a passive

adversary who has a full control over the communication channel but is assumed to deliver

messages faithfully without modifying any of them, however, is allowed to change their

delivery order. Further the adversary is allowed to activate any party using external

requests, but not own protocol messages. The UM model assumes that the adversary

is active, i.e., can activate parties with arbitrary incoming messages. Further, the BCK

model specifies the notion of emulation of protocols in UM using a so-called authenticator

which is considered to be a compiler translating the execution of a protocol in AM into

UM while preserving its security requirements. Similar to the BR+ model the BCK model

considers several executions of the protocols, and calls each execution a session. In order

to distinguish different sessions the model uses session ids which should be unique for the

sender and the receiver (recall that the model was defined for two parties). The adversary

in the AM and UM models is allowed to corrupt sessions such that it learns the internal

state associated with a particular session identified via unique session IDs for which the

model does not provide any concrete construction. Although the BCK model was proposed

in the context of two-party key exchange protocols, the authors tried to provide definitions

which also hold in a multi-party setting. They defined the notion of the ideal key exchange

and the ideal adversary. The ideal adversary is allowed to invoke any party to establish

the session key with any other party such that the adversary learns the transcript of the

exchanged protocol messages and the session id value, but not the established key. Further,

if the ideal adversary corrupts a session using the corresponding session id then it obtains

the established key for this session, and if the adversary corrupts a party then it obtains

all keys (including long-lived key) known to this party. Corrupted parties may continue

participating in the protocol. However, in this case the model allows the adversary to

choose the established keys. Therefore, no security definitions related to the requirement

on (perfect) forward secrecy are considered. For the same reason, the BCK model does

not provide any security definitions for the case in which honest participants interacting

with the adversary represented as a (subset of) malicious participant(s) try to contribute
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to the resulting group key. Hence, the BCK model does not consider attacks concerning

key control and unpredictability. Also, the BCK model does not capture possible attacks

of malicious participants against key confirmation and mutual authentication. Note that

the corrupt query reveals internal state information together with the long-lived key of

a party. This, however, disallows consideration of scenarios where long-lived keys are

revealed without revealing the internal state information (note that long-lived keys may

have a different protection mechanism). In order to define security goals the BCK model

specifies the notion of a global output of the protocol execution in the presence of the

adversary. It consists of cumulative concatenations of the outputs (sent messages) of all

parties and their random inputs, together with the output of the adversary which is a

function of its random input and all information seen by the adversary throughout its

execution. A key exchange protocol is called secure in the BCK model if the global output

of the ideal protocol execution is indistinguishable from the global output of the protocol

execution in either the AM or UM model. Note, this is the typical approach for security

models that allow security proofs based on simulatability/indistinguishability.

Interesting about the BCK model is that its modular construction allows to prove

protocol security in the AM model and then apply the described authenticator to obtain

a protocol which is secure in the UM model.

3.3 Model by Bellare, Pointcheval and Rogaway (BPR)

The following model proposed by Bellare, Pointcheval, and Rogaway in [BPR00], which

we denote BPR, is based on the previously described BR+ model, and was proposed

for two-party key exchange protocols. The authors provide a description assuming the

communication between a client and a server. Similar to the BR+ model each participant

may have different instances, called oracles. In addition to the queries Reveal and Test

which return the computed key of the instance respectively the computed session key or

a random number of the same range (in contrast to the BR+ model the adversary in the

BPR model may ask the Test query at any time during its execution and not only at the

end), the BPR model specifies Execute and Send queries. Execute queries can be used

by the adversary to invoke an honest execution of the protocol and obtain a transcript

of exchanged messages. The Send query allows the adversary to send messages to the

instances, i.e., behave actively. Send queries can also be used to achieve honest execution

(as Execute queries) simply by invoking the protocol execution at instances of adversary’s

choice and then forwarding messages between these instances without any modification.

However, Execute query allows on the one hand a better handling of dictionary attacks

in case where long-lived keys are shared passwords, because the adversary can be granted
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access to plenty of honest executions, and on the other hand it allows to treat passive

adversaries separately though the BPR model does not take use of this second advantage.

Additionally, the BPR model allows the adversary to ask Oracle queries in order to deal

with non-standard models, like the Random Oracle Model (ROM) [BR93b] or the Ideal

Cipher Model (ICM) [Sha49, Bla05]. In case when the protocol is designed to achieve

security in the standard model the Oracle query can be omitted. The BPR model specifies

two forms of a Corrupt query (unlike the previously described models): a strong form

(called strong corruption model) means that the adversary obtains the long-lived key of

the party and its internal state (excluding the session key), and a weak form (called weak

corruption model) means that the adversary obtains only the long-lived key of the party.

The model assumes the existence of unique session ids and specifies partner ids. The

partner id of an instance is a public value and consists of the identities of all parties with

which the oracle believes it has just exchanged the session key with. According to the BPR

model two oracles are partnered if they compute (accept with) equal session keys, equal

session ids, have each other’s identity as part of the computed partner ids, and there is no

other oracle who accepts with the same partner id. The BPR model defines two flavors

of session key freshness: a session key is fresh if there have been no Reveal queries to the

oracle or any of its partners, and no Corrupt queries at all; a session key is fs-fresh (fs for

forward secrecy) if there have been no Reveal queries to the oracle or any of its partners,

and if there have been no Corrupt queries prior to the Test query such that further Send

queries have been asked to the tested oracle. The latter means that the adversary can

corrupt participants before the test session but is then not allowed to send any messages

to the oracle whose key (or a random value instead) it later receives in response to its Test

query. Based on these two flavors the model provides two definitions of security against

known-key attacks: (1) security without forward-secrecy meaning that the adversary asks

a Test query to an oracle which holds a fresh session key, and (2) security with forward-

secrecy meaning that the adversary asks a Test query to an oracle which holds a fs-fresh

session key. Similar to the BR and BR+ models the goal of the adversary is to distinguish

whether it obtains a session key or a random number. Obviously, this security definition

subsumes the informal requirements related to the indistinguishability of group keys from

random numbers with respect to active adversaries. Furthermore, security proofs in which

the Test query is asked to an oracle holds a fs-fresh session key consider attacks related to

(perfect) forward secrecy.

Additionally, the BPR model gives a definition of server-to-client and client-to-server

authentication which are violated in case where a server respectively a client accepts with a

session key but does not have any partner. Mutual authentication is, therefore, violated if
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either a server-to-client or client-to-server authentication is violated (recall that the BPR

model was proposed for the two-party key exchange protocols).

In the BPR model partnering is defined using session ids. However, the authors do

not provide further details within the model concerning the construction of the unique

session ids. In the proposed protocol, however, they are constructed as a concatenation of

all flows exchanged between both participants. Note that this is an appropriate method

in case of two parties, however, cannot be generally applied to the multi-party case where

participants do not generally need to send each message to every other participant. Similar

to the BR+ model the BPR model does not consider attacks related to the issues of key

control and contributiveness.

3.4 Model by Canetti and Krawczyk (CK)

Canetti and Krawczyk [CK01] proposed a formal model, which we refer to as CK, based

on the methodology of the BR and BCK models. Similar to the BCK model the CK model

deals with message-driven protocols that involve only two parties. Different executions of

a protocol are called sessions which are identified by unique session ids. The CK model

describes the notion of matching sessions (related to the matching conversations in the

BR model), and treats participants of matching sessions as partners.

As the BCK model the CK model specifies an unauthenticated-links (UM) and an

authenticated-links (AM) adversarial models. In the UM model the adversary passes mes-

sages from one participant to another, but has control over their scheduling (including

initiation of the protocol), and is allowed to ask Reveal queries to obtain the computed

session keys and Corrupt queries to obtain all the internal memory of the party including

its long-lived key and specific session-internal information (such as internal state of incom-

plete sessions and session-keys of already completed sessions). From the moment a party

is corrupted it is fully controlled by the adversary. This models attacks against (perfect)

forward secrecy. Additionally, in the CK model the adversary is allowed to reveal internal

state of a party for an incomplete session without necessarily corrupting that party (we

call this RevealState queries). In the CK model a session becomes locally exposed if any of

these three queries (Reveal, RevealState, or Corrupt) have been asked to a party during

that session, and the session becomes exposed if it or any of its matching sessions are lo-

cally exposed. Further, the CK model specifies session expiration which can be performed

by a party causing the erasure of that session key and any session-specific information

from the party’s memory, and used in the model for the definition of security without

(perfect) forward secrecy. In the AM model the adversary has the same capabilities as in

the UM model, but is required to pass messages between the parties truly, i.e., without
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modifying them (this is comparable to a passive adversary who only eavesdrops the com-

munication). The UM and AM models are linked together over the emulation paradigm

based on authenticators as in the BCK model.

The CK model introduces the notion of session-key security as a security goal for the

key exchange protocols. The definition in the UM model allows the adversary to ask a

Test query (with similar response as in the BR, BR+, and BPR models) to a party during

the session which is completed, unexpired and unexposed at that time. Having asked

this Test query the adversary is allowed to continue with regular actions according to the

UM model but is not allowed to expose the test-session. At the end of its execution the

adversary has to output a guess concerning the response of the Test query. A protocol is

called session-key secure if for any UM-adversary holds that if any two parties complete

matching sessions then they compute the same session key, and that the probability of the

adversary’s correct guess is no more than 1/2 plus a negligible fraction. This definition

also captures informal requirements on indistinguishability notions considering known-key

attacks and active adversaries. Additionally, the CK model provides a weaker definition

of security for protocols in which no (perfect) forward secrecy is available or desirable.

For this purpose the model disallows session expirations. A protocol is called session-key

secure without (perfect) forward secrecy if it is session-key secure and the UM-adversary

is not allowed to corrupt any partner from the test-session, i.e., the security of the session

key can be no more guaranteed if any partner who computes this key gets corrupted. The

authors mention that similar definitions are applicable for the AM model.

Compared to the BCK and BR models, the CK model provides a stronger adversarial

setting since it allows RevealState queries. Interesting is that session-key security in the

CK model implies the known-key security of the protocol in the BR+ and BPR models. For

the proof of this fact and further analysis of the relations between the security definitions

in the BR, BR+, BPR and CK models we refer to the work of Choo, Boyd and Hitchcock

[CBH05]. Note that one drawback of the CK model in the context of key exchange is that

it leaves the construction of the session ids open, and this might have an impact on the

security of the protocols designed based on this model. Also the CK model does not deal

with the issues of key confirmation and mutual authentication as well as key control and

contributiveness.

3.5 Model by Shoup

Shoup [Sho99] proposed a modular formal model for secure key exchange between two

parties that can be seen as an extension of the BCK model. Shoup’s model considers

protocol composition, i.e., it contains security definitions for the case where the key ex-
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change protocol should be invoked by another high-level application protocol. The model

allows security proofs based on simulatability approach. It consists of two settings: the

ideal-world model and the real-world model (this is somewhat similar to the ideal key ex-

change process in the BCK model). For each setting there exists a different adversary.

For both the real-world and the ideal-world adversaries a transcript is generated which

consists of all occurred events and messages. The security of the protocol for every real-

world adversary means that there exists a corresponding ideal-world adversary, such that

the generated transcripts are computationally indistinguishable. Shoup’s model specifies

three corruption settings: static, adaptive, and strong adaptive corruptions.

In case of static corruptions the ideal model allows the ideal adversary to initialize the

party and its instance (oracle) using the identity of its partner, abort a session between two

instances, invoke a session between two instances using a so-called connection assignment

which specifies how the session key is computed, i.e., either honestly, or using the key of

another connection, or chosen by the adversary (compromised). The latter is available

only if this instance is not partnered with any other party’s instance. As noted by Shoup,

connection assignments are used instead of session ids to identify the connection between

two parties. Further, the ideal-world adversary is allowed to call the application query

which returns a partial information about the session key computed as a function within

the application protocol. Additionally, the ideal-world adversary is allowed to ask an

implementation query which simply adds the attached comment to the transcript. At

the end of the adversary’s execution a transcript which contains all actions (and outputs)

taken by the adversary is generated. In the real-world model there is an additional trusted

party which can be queried by the adversary in order to register the identities of the

parties. However, the model requires that if a party is registered by the adversary then

its identity should not be in the set of identities of the parties for which the adversary

used its initialization query. So the adversary is able to obtain a long-lived key for a party

which will not be initialized, and, therefore, will not participate actively in the honest

protocol execution (this is the reason for the notion of static corruptions). In this case the

model does not consider attacks concerning the interaction between honest and malicious

participants, that are issues of key confirmation and mutual authentication, (perfect)

forward secrecy, and key control. Instead of session invocations the real-world adversary is

allowed to deliver messages (via a corresponding query) to the instances who process them

and return a protocol-specific output together with a status information which specifies

whether the instance is waiting for further messages (continue), has already computed

the session key (accept), or is finished without being able to compute the key (reject).

At the end of the execution of the real-world adversary a transcript with all its actions
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is generated. For the setting of static corruptions Shoup specifies three security goals:

termination (each instance either accepts or rejects after a polynomially bounded number

of sessions), liveness (whenever the real-world adversary faithfully delivers all protocol

messages both instances accept with the same session key), and simulatability (for every

real-world adversary there exists a ideal-world adversary such that the transcripts of their

actions are computationally indistinguishable).

In case of adaptive corruptions the model extends the requirements from the setting of

static corruptions. The real-world adversary is additionally allowed to corrupt parties and

reveal their long-lived keys before their initialization, and then register them by the trusted

party. This enables the adversary to participate in the protocol on behalf of the corrupted

user. The same operation is available to the ideal-world adversary, however, the adversary

is allowed to choose a compromised connection assignment in its session invocation query

to a party’s instance either if this party is not partnered with any other party, or the party

is partnered with another corrupted party, or the party itself is already corrupted. These

changes capture the notions of key confirmation and mutual authentication, and (perfect)

forward secrecy.

The setting of strong adaptive corruptions extends the setting of adaptive corruptions

and considers a more powerful real-world adversary who obtains not only the long-lived

keys, but also the internal state information if this has not been previously erased by the

high-level application protocol. The same operation is given to the ideal-world adversary.

This kind of corruptions is comparable to the strong corruption model of the BPR model.

Additionally, Shoup’s model specifies similar security definitions for key exchange pro-

tocols between anonymous parties, i.e., parties whose identities are not registered with a

trusted party. In these protocols the established key is used to derive a password which

can be used for the purpose of authentication. Further, Shoup comparing his model to the

BR+ and BCK models showed equivalence of some security notions, e.g., the equivalence

of security against static and adaptive corruptions in the own model and the BR+ model.

As already noted Shoup’s model is strongly focused on the composition of key exchange

protocols with high-level application protocols. Therefore, it is unavoidable that some

definitions of the model rely on the assumptions about the application protocol, e.g.,

computation and erasure of session keys. Further, security definitions in Shoup’s model

do not consider attacks related to key control and contributiveness.

3.6 Model by Bresson, Chevassut, Pointcheval, and Quisquater (BCPQ)

The formal model proposed by Bresson, Chevassut, Pointcheval and Quisquater [BCPQ01],

which we refer to as the BCPQ model, is truly the first computational (game-based)



HGI Network and Data Security Group Technical Report 2006/02 22

security model which has been designed for group key exchange protocols. The BCPQ

model allows reductionist security proofs and extends the methodology used in the BR,

BR+, and BPR models to a group setting. Similar to the mentioned models each protocol

participant Ui ∈ ID1, i = 1, . . . , n is modeled by an unlimited number of instances,

called oracles and denoted Πsi
i (si-th instance of Ui), that can be involved in different

concurrent protocol executions. Each user Ui is assumed to have a long-lived key LLi

(either symmetric or asymmetric). As in the BPR model the BCPQ model uses session ids

to define the notion of partnering used in the definition of security goals. Unlike the BPR

model which assumes the existence of unique session ids the BCPQ model describes their

concrete construction. A session id of an oracle Πsi
i is defined as SID(Πsi

i ) := {SIDij | Uj ∈
ID} where SIDij is the concatenation of all flows that Πsi

i exchanges with another oracle

Πsj

j . According to the BCPQ model two oracles Πsi
i and Πsj

j are called directly partnered,

denoted Πsi
i ↔ Πsj

j , if both oracles accept (compute the session key) and if SID(Πsi
i ) ∩

SID(Πsj

j ) 6= ∅. Further, oracles Πsi
i and Πsj

j are partnered if there exists a graph GSIDS :=

(V,E) with V := {Πsl
l | Ul ∈ ID, l = 1, . . . , n} and E := {(Πsl

l ,Πsl′
l′ )| Πsl

l ↔ Πsl′
l′ } such that

there exists a sequence of oracles (Π
sl1
l1

,Π
sl2
l2

, . . . ,Π
slk
lk

) with lk > 1, Πsi
i = Π

sl1
l1

, Πsj

j = Π
slk
lk

,

and Πsl−1

l−1 ↔ Πsl
l for all l = l2, . . . , lk. This kind of partnering is denoted Πsi

i ! Πsj

j .

The BCPQ model uses graph GSIDS to construct (in polynomial time |V |) the graph of

partnering GPIDS := (V ′, E′) with V ′ = V and E′ = {(Πsl
l ,Πsl′

l′ ) | Πsl
l ! Πsl′

l′ }, and defines

the partner id for an oracle Πsi
i as PIDS(Πsi

i ) = {Πsl
l | Πsi

i ! Πsl
l ∀ l ∈ {1, n} \ {i}}.

The adversary A in the BCPQ model is allowed to send messages to the oracles (and

invoke the protocol execution) via Send queries, reveal the session key computed by the

oracles via Reveal queries, obtain long-lived keys of the users via Corrupt queries (note

that the oracle’s internal state information is not revealed, that is similar to the weak-

corruption notion in the BPR model), and ask a Test query to obtain either a session key

or a random number. Using this adversarial setting the BCPQ model specifies two security

goals for a group key exchange protocol: authenticated key exchange (AKE) security and

mutual authentication (MA) security, both based on the notion of partnering.

For the AKE-security the model requires that during its execution A which is given

access to the above mentioned queries asks a single Test query to an oracle which is fresh.

An oracle Πs
i is fresh if: (1) it has accepted, (2) neither Πs

i nor any of its partners have been

asked for a Corrupt query before Πs
i accepts, and (3) neither Πs

i nor any of its partners

have been asked for a Reveal query. A group key exchange protocol is said to be AKE-

secure if the probability that A correctly guesses which value it has received in response

to its Test query, i.e., the session key or a random number, is negligibly greater than that

1ID is a set of n participants involved in the current protocol execution and is part of a larger set that
contains all possible participants.
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of a random guess. This definition of AKE-security subsumes the informal security goals

related to the indistinguishability of group keys from random numbers with respect to

known group keys of other sessions in the presence of active adversaries, as well as the

requirement of (perfect) forward secrecy.

The definition of MA-security in the BCPQ model is intended to capture the intuitive

notion that it should be hard for a computationally bounded adversary A to imperson-

ate any participant Ui through its oracle Πsi
i . For this purpose the authors require that

the probability that during the execution of A which is given access to the above queries

(thereby Test query is irrelevant) there exists at least one oracle Πsi
i which accepts with

|PIDS(Πsi
i )| 6= n − 1 is negligible. In other words, if each participating oracle Πsi

i has

accepted with |PIDS(Πsi
i )| = n − 1 then no impersonation attacks could have occurred,

thus the informal notion of mutual authentication meaning that each participating oracle

is assured of every other oracle’s participation in the protocol is satisfied. In the following

paragraph (see also [BM06]) we show that this is not generally the case, i.e., that there

exists protocols where A impersonates Ui through some Πsi
i but nevertheless all participat-

ing oracles accept and remain partnered, i.e., |PIDS(Πsj

j )| = n− 1 for every participating

Πsj

j . Further, the authors claim

In the definition of partnering, we do not require that the session key com-

puted by partnered oracles be the same since it can easily be proven that

the probability that partnered oracles come up with different session keys is

negligible. [BCPQ01, Footnote 3]

We are not concerned with partnered oracles coming up with different ses-

sion keys, since our definition of partnering implies the oracles have exchanged

exactly the same flows. [BCPQ01, Section 7.4]

If these claims hold then the above definition of MA-security captures further informal

security goals related to key confirmation and mutual authentication (but only for honest

protocol participants). In the following paragraph (see also [BM06]) we explain that these

claims do not hold for just any GKE protocol either. We show that an impersonation

attack may likely result in different group keys accepted by different partnered oracles.

In fact we are able to show that the definition of MA-security in the BCPQ model is not

general enough to be used just for any GKE protocol, i.e., if in a GKE protocol every

participating oracle Πsi
i accepts with |PIDS(Πsi

i )| = n − 1 then it does not necessarily

mean that this protocol provides mutual authentication and key confirmation.

Additionally, we stress that the BCPQ model does not consider attacks aiming to reveal

the internal state information (strong corruptions) and attacks of malicious participants

aiming to control the resulting key value.
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Problems with the Definition of MA-Security in the BCPQ Model We pro-

vide examples for the following two problems: (1) there exists GKE protocols where an

active adversary A can impersonate one of the participants through its oracle but never-

theless every participating oracle Πsi
i accepts with |PIDS(Πsi

i )| = n − 1 (the definition of

MA-security in the BCPQ remains satisfied even though impersonation attacks have oc-

curred); (2) there exists GKE protocols where each participating oracle Πsi
i accepts with

|PIDS(Πsi
i )| = n − 1 but there are at least two partnered oracles that have computed

different keys (the definition of MA-security in the BCPQ remains satisfied even though

some of the oracles complete with different group keys). Note that these problems become

visible only in the group setting with at least three protocol participants. Therefore, it

does not concern the original definition of mutual authentication given by Bellare and

Rogaway [BR93a] based on matching conversations.

Before we give examples using a concrete GKE protocol we provide an abstract de-

scription. Figure 1 shows the abstract messages denoted mi (index i specifies the order in

which messages have been sent) that have been exchanged between the oracles (at least

three participants are required) during the honest execution of any GKE protocol from

[BCPQ01, BCP01, BCP02a, BCP02b]. A concrete equivalent message of each abstract

Πs1
1 Πs2

2 Πs3
3

m1 m1 m2 m2

m3m3m3

Figure 1: Example: Honest Execution of
Protocols in [BCPQ01, BCP01, BCP02a,
BCP02b]

SID(Πsi
i ) SIDi1 SIDi2 SIDi3

SID(Πs1
1 ) ∅ m1 m3

SID(Πs2
2 ) m1 ∅ (m2,m3)

SID(Πs3
3 ) m3 (m2,m3) ∅

Figure 2: Example: SID(Πsi
i ) in the Honest

Protocol Execution

message mi can be found in the corresponding up- or downflow stage of any of these GKE

protocols. By mi at the beginning of the arrow we mean the original message sent by the

oracle, and by mi at the end of the arrow we mean the corresponding message received

by another oracle. If both messages are equal then the original message was not modified

during the transmission.

Obviously, Figure 1 shows a correct execution of the protocol since there are no mod-

ified messages. Figure 2 specifies the session ids of the oracles Πs1
1 , . . . ,Πs3

3 during this

honest protocol execution using the construction from the BCPQ model. We assume

that the protocol is correct, thus it is clear that each participating oracle Πsi
i accepts

with |PIDS(Πsi
i )| = 2. To show the first problem we consider the case where A imper-

sonates U1 and modifies message m1 to m̃1 (Figure 3) such that SID21 = m̃1 (Figure

4). Our goal is to show that nevertheless every participating oracle Πsi
i accepts with

|PIDS(Πsi
i )| = 2. We cannot generally assume that all oracles accept after this modifica-
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Πs1
1 Πs2

2 Πs3
3

m1 m̃1 m2 m2

m3m3m3

Figure 3: Example: Protocol Execution
with Impersonation Attack

SID(Πsi
i ) SIDi1 SIDi2 SIDi3

SID(Πs1
1 ) ∅ m1 m3

SID(Πs2
2 ) m̃1 ∅ (m2,m3)

SID(Πs3
3 ) m3 (m2,m3) ∅

Figure 4: Example: SID(Πsi
i ) in the At-

tacked Protocol Execution

tion but we may assume that there exists protocols where this is the case (our example

later is such a protocol where the oracles nevertheless accept). With this assumption the

first part of our goal, i.e., the acceptance of every participating Πsi
i , is satisfied. In order

to show that |PIDS(Πsi
i )| = 2 holds for every Πsi

i we need to show that Πsi
i ! Πsj

j (or

Πsi
i ↔ Πsj

j ) still holds for any two participating Πsi
i and Πsj

j . For this purpose we need

to look more precisely on the session ids of the oracles. Note that SID12 = m1. Though

SID(Πs1
1 )∩SID(Πs2

2 ) = {m1,m3}∩{m̃1,m2|m3} = ∅ and thus Πs1
1 6↔ Πs2

2 , there still exists

a sequence of oracles Πs1
1 , Πs3

3 , Πs2
2 such that

SID(Πs1
1 ) ∩ SID(Πs3

3 ) =

= {m1,m3} ∩ {m3,m2|m3}

= m3

SID(Πs3
3 ) ∩ SID(Πs2

2 ) =

= {m3,m2|m3} ∩ {m̃1,m2|m3}

= m2|m3

so that Πs1
1 ! Πs2

2 . Note also that these equations imply the direct partnering Πs1
1 ↔ Πs3

3

and Πs2
2 ↔ Πs3

3 . Hence, we have shown that every Πsi
i , i ∈ {1, 2, 3} has |PIDS(Πsi

i )| = 2.

Thus all oracles are still partnered though the impersonation attack occurred whereby

Πs2
2 received a different message than the one originally sent by Πs1

1 . This may result in

different group keys computed by Πs1
1 and Πs2

2 .

In order to illustrate the described attack on a concrete example we consider the GKE

protocol described in the same paper as the BCPQ model [BCPQ01] but without the

additional confirmation round which the authors described independently of the protocol.

We stress that the additional confirmation round belongs to a concrete protocol design but

not to a general security model; otherwise the model cannot be applied to the protocols

that do not have this round. Recall, our goal is to show that despite of the acceptance

of each participating oracle Πsi
i with |PIDS(Πsi

i )| = 2 mutual authentication and key

confirmation are not necessarily provided. The protocol proceeds as described in Figure
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Πs1
1 Πs2

2 Πs3
3

X3 := {gx1x2 , gx1x3 , gx2x3}

x1 ∈R Z∗
p; X1 := {g, gx1}

Fl1 := {ID, X1} [Fl1]U1

x2 ∈R Z∗
p; X2 := {gx1 , gx2 , gx1x2}

V (Fl1)
?
= 1

Fl2 := {ID, X2}

[Fl2]U2

x3 ∈R Z∗
p;

V (Fl2)
?
= 1

Fl3 := {ID, X3}
K := (gx1x2)x3

[Fl3]U3

V (Fl3)
?
= 1 V (Fl3)

?
= 1

K := (gx2x3)x1 K := (gx1x3)x2

Figure 5: Example: Execution of the Protocol in [BCPQ01] with Three Participants

5 (for simplicity we consider three participants). [m]Ui denotes a digital signature on

m computed by the corresponding Πsi
i (the signature is attached to m), and V (m) ?= 1

its verification; g is a generator of a cyclic group of prime order p. Upon computing

K = gx1x2x3 each oracle derives the resulting group key k := H(ID, FL3,K) with a

cryptographic hash function H : {0, 1}∗ → {0, 1}l where l is the security parameter. In

order to apply the above attack we consider that Πs1
1 chooses x1 ∈ Z∗

p but A drops the

original message [Fl1]U1 and replays a corresponding message from some previous protocol

execution (note A can invoke several subsequent protocol executions with the same ID via

its Send query). The replayed message is likely to be [F̃ l1]U1 with F̃ l1 := (ID, X̃1) where

X̃1 := {g, gfx1} for some x̃1 6= x1 (since each xi is chosen at random for every new session).

Obviously, Πs2
2 can still verify the replayed message, i.e., V (F̃ l1) = 1 holds. It is easy

to see that X2 = {gfx1 , gx2 , gfx1x2} and X3 := {gfx1x2 , gfx1x3 , gx2x3} so that Πs1
1 computes

K = gx1x2x3 whereas Πs2
2 and Πs3

3 compute another value, i.e., K = gfx1x2x3 . This also

implies that the derived group keys are different. Note also that all oracles accept since

all signature verifications remain correct. Beside that we have (similar to the abstract

problem description above)

SID(Πs1
1 ) ∩ SID(Πs3

3 ) =

= {[Fl1]U1 , [Fl3]U3} ∩ {[Fl3]U3 , [Fl2]U2 |[Fl3]U3}

= [Fl3]U3

SID(Πs3
3 ) ∩ SID(Πs2

2 ) =

= {[Fl3]U3 , [Fl2]U2 |[Fl3]U3} ∩ {[F̃ l1]U1 , [Fl2]U2 |[Fl3]U3}

= [Fl2]U2 |[Fl3]U3

so that |PIDS(Πsi
i )| = 2 for every Πsi

i , i ∈ {1, 2, 3}. Thus, we could show that although all
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oracles accept with |PIDS(Πsi
i )| = 2 the protocol does not provide mutual authentication

and key confirmation. This contradicts to the idea behind the definition of MA-security in

the BCPQ model. Thus, it is not always true that if every Πsi
i accepts with |PIDS(Πsi

i )| =
n − 1 then mutual authentication and key confirmation are provided. Note that this is

true if the protocol from [BCPQ01] is executed with the additional confirmation round,

but there may exist other protocols (including our example) for which this statement is

not true. This shows that the definition of MA-security given in the BCPQ model is not

generally applicable just for any GKE protocol.

Furthermore, we stress that a more general definition of MA-security should also con-

sider possible attacks of malicious protocol participants those goal is to influence honest

participants to come up with different group keys. Note also that the construction of

session ids based on concatenation of exchanged messages has one significant drawback

- it becomes available only after the protocol is executed. However, some protocols use

uniqueness of session ids as protection against replay and protocol interference attacks. In

this case it is desirable to have a unique session id prior to the protocol execution.

3.7 Models by Bresson, Chevassut, and Pointcheval (BCP, BCP+)

3.7.1 BCP

In their subsequent work, Bresson, Chevassut, and Pointcheval [BCP01] extend the BCPQ

model to deal with dynamic group key exchange protocols where group membership may

change during the protocol execution. We denote this extended model BCP. According to

it a dynamic GKE protocol consists of: (a) an initialization algorithm executed for each

participant, (b) a setup protocol between all founding group members for the initialization

of the group and computation of initial session key, (c) a join protocol executed between

current group members and a set of joining members, and (d) a remove protocol executed

between the remaining group members after the exclusion of a subset of members from the

group. The protocols for setup, join, and remove are called operations. The BCP model

also specifies three additional queries, Setup, Join, and Remove, enabling an adversary

to invoke the corresponding operation between the protocol participants. The BCP model

defines AKE-security and MA-security as in the BCPQ model, i.e., based on the adver-

sary’s guess on the response of its Test query to a fresh oracle and based on the partnering

condition, respectively.

The BCP model has the same drawbacks as the BCPQ model concerning the security

of the protocol in case of the attacks that aim to reveal the internal state information of

the oracles, attacks by malicious participants, and definition of MA-security.
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3.7.2 BCP+

Bresson, Chevassut, and Pointcheval [BCP02a] revised their BCP model to cover attacks

based on the revealed internal state information of the oracles (strong corruptions). We

denote this revised model as BCP+. It assumes that the security-relevant internal state

information is maintained within a secure coprocessor, and that the long-lived keys of

participants are stored within a smart card. Therefore, the model specifies additional

queries which an adversary is allowed to ask, i.e., a Sendc query which allows the adversary

to communicate directly with the coprocessor, a Corruptc query which reveals the private

memory of the device together with all messages which have been exchanged between the

coprocessor and the smart card, a Sends query which allows the adversary to communicate

directly with the smart card, and a Corrupts query which reveals the oracle’s long-lived

key.

Further, the BCP+ model defines two flavors of forward secrecy: weak forward secrecy

(wfs) and strong forward secrecy (fs). For the case of weak forward secrecy the BCP+

model defines a weak corruption model in which the adversary is allowed to ask Send,

Setup, Join, Remove, Reveal, and Test queries (all of which are answered as in the BCP

model) as well as Sendc, Sends, and Corrupts queries. According to the weak corruption

model an oracle is called wfs-fresh if no Corrupts query has been asked by the adversary

since the beginning of its execution, and in the execution of the current operation the

oracle has accepted (holds the session key) and neither this oracle nor any of its partners

(although the model does not specify the definition of partnering it seems to be the same

as in the BCP model) have been asked for a Reveal query. The adversary must ask its

Test query to an oracle which is wfs-fresh.

Consequently, for the case of strong forward secrecy the BCP+ model defines a strong

corruption model in which the adversary may additionally ask Corruptc queries to obtain

the internal state of the coprocessor and all messages which have been exchanged between

the coprocessor and the smart card, and Reveal queries reveal not only the session key but

also all messages which have been exchanged between the oracle and its secure coprocessor.

An oracle is called fs-fresh if neither Corruptc nor Corrupts queries have been asked by

the adversary since the beginning of its execution, and in the execution of the current

operation the oracle has accepted and neither this oracle nor any of its partners have been

asked for a Reveal query. In the strong corruption model the adversary must ask its Test

query to an oracle which is fs-fresh.

The BCP+ model defines AKE-security of a GKE protocol using the adversary’s guess

for the response to its Test query as in the BCP model but can be of two types with

respect to the chosen corruption model. Hence, the BCP+ model considers definitions
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of semantic security with respect to known-key attacks and active adversaries as well

as (perfect) forward secrecy. The BCP+ model does not explicitly specify MA-security,

however, the authors mention that its definition can be taken from their BCP model.

Although the model deals with the attacks concerning internal states of participants it

still does not consider attacks of malicious participants, neither for MA-security nor for

the issues of key control and contributiveness. It is also arguable whether the assumptions

about the existence of smart cards and secure coprocessors for the protocol execution are

of major importance and should be considered within an abstract model. The ability of the

adversary to reveal the internal state information and the long-lived keys of participants

can also be modeled by corresponding queries without these assumptions. This would also

simplify the model.

3.8 Modifications of the BCPQ, BCP, and BCP+ Models

In this section we describe some existing modifications of the models in Sections 3.6 and

3.7.

3.8.1 Modification by Bresson, Chevassut, and Pointcheval

In [BCP02b] the authors slightly modified the BCPQ model to be used with group key

exchange protocols where authentication is achieved by the means of shared passwords. In

addition to Send, Reveal, Corrupt, and Test queries the adversary is allowed to ask an

Execute which models an honest protocol execution between the participants specified in

the query, or in other words the protocol is executed in the presence of a passive adversary.

This allows to provide tighter security proofs with respect to dictionary attacks because

the number of Send queries which an adversary is allowed to ask and that it actually

uses to try own passwords is independent of the number of Execute queries for which the

adversary obtains the transcript of an honest execution where participants use the shared

password.

3.8.2 Modification by Katz and Yung (KY)

Katz and Yung [KY03] revised the BCPQ model from the perspective of static group key

exchange protocols in which all messages are sent over a broadcast channel, i.e., received

by all participants. Similar as the modification in [BCP02b] the authors consider an

additional Execute query. However, the main difference to the BCPQ model is a different

construction of session ids and partner ids. The session id of an oracle Πs
i is simply the

concatenation of all message flows that were sent or received by Πs
i . Since each protocol

message is received by every protocol participant it is clear that at the end of an honest
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execution all participants compute the same session id. The partner id of an oracle Πs
i

consists of the identities of participants with whom the oracle intends to establish the

session key including Ui (note that in the BCPQ model Ui is not part of PIDS(Πs
i )). Note

that according to this definition partner ids are known in advance whereas in the BCPQ

model they become known at the end of the protocol execution. Therefore, the equality

of partner ids alone is not sufficient to decide whether oracles have actually participated

in the same protocol session or not. For this reason Katz and Yung define two oracles

as being partnered if they have equal partner ids and equal session ids. Also, Katz and

Yung slightly modified the definition of the freshness of an oracle, i.e., an oracle Πs
i is

fresh if the adversary did not ask a Send query to Πs
i or any of its partners after having

corrupted Ui or any of its partners, and neither Πs
i nor any of its partners have been asked

for a Reveal query. Hence, this modification allows the adversary to corrupt a party but

then the adversary is not allowed to participate in the protocol on behalf of the corrupted

party. This does not give the adversary any advantage compared to the definition of

freshness in the BCPQ model. For the definition of security of a protocol Katz and Yung

consider a modular approach. They call a protocol: (a) a secure group key exchange

protocol if a passive adversary which is not allowed to ask any Send queries (note that this

is the reason for the additional Execute query) is successful in its guess concerning the

Test query, and (b) a secure authenticated group key exchange protocol if the same holds

for an active adversary. However, their modifications do not explicitly consider mutual

authentication and key confirmation and also do not deal with the attacks of malicious

participants concerning the issues of key control and contributiveness. Note also that the

proposed construction of session ids can be used only in the group key exchange protocols

where each message is sent over a broadcast channel, i.e., received by each other party.

Thus, the model is not abstract enough.

3.8.3 Modification by Kim, Lee, and Lee

Kim, Lee, and Lee [KLL04] proposed a modification of the BCP model considering modifi-

cations done by Katz and Yung for the BCPQ model. In their model partner id of an oracle

Πs
i corresponds to the set of group members excluding the identity Ui, so that the partner

ids are already known prior to the execution of the protocol. The proposed model specifies

unique session ids for each oracle, however, the authors did not describe how these session

ids are constructed. Obviously, the same construction as in the modification by Katz and

Yung should be assumed, that is by the concatenation of all message flows. Two oracles

are defined to be partnered if: (1) their session ids are equal, (2) each oracle’s partner id

consists of identities of all other group members’ oracles, and (3) if the oracles compute
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equal session keys. Obviously, the latter requirement on the equality of computed session

keys is somehow redundant, because if oracles compute equal session ids which are built

by the concatenation of exchanged messages then they also compute equal session keys.

Note also that this modification has similar limitations as the modification by Katz and

Yung concerning protocols in which messages are not exchanged over a broadcast channel,

and it also does not deal with attacks related to mutual authentication and key control.

3.8.4 Modification by Dutta, Barua, and Sarkar

Dutta, Barua, and Sarkar [DBS04] proposed another variant of the BCPQ model. Similar

modifications have been later applied by Dutta and Barua [DB05b, DB05a, DB06] to the

BCP model for dynamic protocols and to the model in [BCP02b] for the password-based

authenticated protocols. The authors use the same construction of partner ids as Katz and

Yung, however, they proposed a different construction of session ids. Instead of using the

concatenation of exchanged messages the authors set the session id of an oracle Πs
i to be

a set of pairs {(U1, s1), . . . , (Un, sn)} where each pair (Uj , sj), j ∈ {1, . . . , n} corresponds

to the instance oracle Πsj

j of the protocol participant Uj , and say that two oracles are

partnered if they have equal partner ids and equal session ids.

In order to keep session ids unique the authors require the uniqueness of oracles for

each new session. In [DB05a] the authors suggest to use a counter value as an addi-

tional parameter which should be increased for every new oracle of the user. Though

this construction makes unique session ids available prior to the protocol execution it has

the following weakness if used in the actual protocol implementation: the counter value

must be saved after each execution of the protocol and, furthermore, it must be protected

from manipulation; otherwise, an adversary may reset it to some previous value and cause

impacts on the security of the protocol. A more practical approach seems to be using

random values (nonces) for each new initialization of the oracle. However, in this case one

has to consider possible collisions between nonces used in different sessions. Note that the

if session ids are not unique then an adversary may mount attacks based on interference

of different sessions, e.g., replay attacks.

3.9 Models by Katz and Shin (KS, UC-KS)

Katz and Shin [KS05] proposed two different security models for GKE protocols: a compu-

tational model (referred to as the KS model), and a model in the framework of Universal

Composability (UC) [Can01] (referred to as the UC-KS model). These models provide the

first formal treatment of security of GKE protocols in the presence of malicious partici-

pants.
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3.9.1 KS

The KS model is an extension of the BCPQ model and is also based on the modification

of the latter by Katz and Yung [KY03]. However, Katz and Shin assume that unique

session ids are already provided to the protocol by some high-level application protocol

whereas the BCPQ model and the mentioned extension provide their own construction

of the session ids. Partner ids of the oracles and the partnering relation are specified in

the same way as proposed by Katz and Yung. The KS model allows the adversary to

ask Execute, Send, Reveal, Corrupt and Test queries capturing the informal security

definitions of semantic security with respect to known-key attacks and active adversaries

as well as (perfect) forward secrecy. Similar to the BCP+ model the KS model specifies

two types of oracle freshness with respect to two different corruption models. In the weak

corruption model an oracle Πs
i is fresh if no Reveal query has been asked to Πs

i or to any

of its partners, and no Corrupt query has been asked to Ui or to any other participants in

the session before the oracles have computed the session key and terminated. In the strong

corruption model an oracle Πs
i is fresh if no Reveal query has been asked to Πs

i or to any

of its partners, and no Corrupt query has been asked to a party whose identity belongs

to the partner id of Πs
i before Πs

i has computed the session key and terminated. Thus, in

the strong corruption model the adversary is allowed to corrupt partners of Πs
i . Further,

in the strong corruption model the Corrupt query returns not only the long-lived key of

a party but also the internal state of any active oracle which belongs to this party. Based

on these two corruption models the KS model defines security of authenticated group key

exchange protocols based on the adversary’s guess with respect to its Test query (similar

to the AKE-security from the BCPQ model and its previously described variants).

Additionally, the KS model considers insider attacks executed by misbehaving, ma-

licious participants. It defines a security goal called agreement such that an adversary

violates agreement if there exist two oracles, Πs
i and Πs′

j , which are partnered and neither

Ui nor Uj are corrupted but Πs
i and Πs′

j have accepted with different session keys. In-

tuitively, this considers key confirmation in case that all other participants are malicious

(corrupted).

Further, the KS model says that A impersonates Uj to (accepted) Πs
i if Uj is uncor-

rupted and belongs to the partner id of Πs
i but in fact there exists no oracle Πs′

j which is

partnered with Πs
i . In other words, the oracle Πs

i computes the session key and Ui believes

that Uj does so, but in fact an adversary has participated in the protocol on behalf of Uj .

Note that there are no assumptions about the corruption of other protocol participants.

This is a subject of the following two different definitions of the protocol security against

impersonation attacks. A protocol is secure against outsider impersonation attacks if there
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exists a party Uj and an oracle Πs
i such that for any adversary A the probability that A

impersonates Uj to Πs
i and no parties which belong to the partner id of Πs

i are corrupted

before Πs
i accepts is negligible. Thus, the adversary is not allowed to corrupt protocol

participants during the execution of the protocol. Hence, an active adversary may try to

inject messages on behalf of Uj or manipulate messages sent by valid protocol participants.

Further, a protocol is secure against insider impersonation attacks if there exists a party

Uj and an oracle Πs
i such that for any adversary A the probability that A impersonates Uj

to Πs
i and neither Uj nor Ui are corrupted before Πs

i accepts is negligible. Obviously, this

(stronger) definition requires the existence of at least two uncorrupted protocol partici-

pants and allows the adversary to corrupt other participants. Intuitively, this requirement

considers mutual authentication and unknown key-share resilience in the presence of mali-

cious participants (note that [KS05] does not provide any relationship between its formal

definitions and the informal requirements mentioned in Section 2). Katz and Shin say

that an authenticated group key exchange protocol is secure against insider attacks if it

guarantees agreement and is secure against insider impersonation attacks.

3.9.2 UC-KS

The UC-KS model has a different concept (which is common for all UC-based models)

that describes what an ideal GKE protocol execution is. Security proofs carried out in

this model are based on the simulatability/indistingushability approach. This is different

to the security proofs carried out in the game-based security models that use the reduc-

tionist approach. Note that in addition to their models Katz and Shin proposed a compiler

that turns any GKE protocol which is secure in the BCPQ and KY models into a protocol

which is secure in the UC-KS model, and provided simulatability/indistingushability-based

security proofs for this case. However, no concrete reductionist proofs have been provided

to show that this compiler satisfies security against insider attacks defined in the game-

based KS model (this is important to be mentioned even though UC-security is considered

to be stronger). Therefore, it remains unclear whether definitions of agreement and se-

curity against insider impersonation attacks are practical enough for the construction of

reductionist security proofs. Another, more significant drawback of the KS/UC-KS models

is that the proposed security definitions do not consider the issues related to key control

and contributiveness. It can be shown that Katz and Shin’s compiler still allows malicious

participants to bias (predict) the resulting value of the session group key.
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3.10 Model by Bohli, Vasco, and Steinwandt (BVS)

Bohli, Vasco, and Steinwandt [BVS05] proposed in their unpublished work an extension

(which we refer to as the BVS model) of the BCPQ model and its modification by Katz and

Yung towards security goals in the presence of malicious participants. Their definitions

of session ids, partner ids, the notion of partnering, the adversarial queries, oracle fresh-

ness, and security of authenticated group key exchange are identical to those in [KY03].

Therefore, the BVS model captures indistinguishability of group keys from random num-

bers with respect to known-key attacks and active adversaries as well as (perfect) forward

secrecy. Additionally, the BVS model defines a security goal called session integrity which

is provided if all oracles of uncorrupted participants that have accepted with equal session

ids hold identical session keys and partner ids which encompass the identities of all honest

parties having accepted with the same session id. The second security goal defined by

the BVS model is strong entity authentication to an oracle Πs
i meaning that Πs

i accepts

and for all uncorrupted Uj which belong to the partner id of Πs
i there exists an oracle Πs′

j

which holds the same session id as Πs
i and Ui belongs to the partner id of Πs′

j . Intuitively,

compared to the KS model the definition of session integrity is related to the definition of

agreement, and the notion of strong entity authentication is similar to the security against

impersonation attacks. Therefore, a combination of session integrity and strong entity au-

thentication subsumes informal definitions of mutual authentication and key confirmation

in the presence of malicious participants.

The BVS model also deals with the issues of key control and contributiveness. The

adversary is given access to Execute, Send, Reveal, and up to t− 1 Corrupt queries and

has to output a tuple (i, s, χκ, a) where i and s correspond to an unused oracle Πs
i (oracle

is unused if it has not been initialized earlier) of an uncorrupted participant Ui, χκ is a

boolean-valued algorithm with κ := {k ∈ K| χκ(k) = true} such that K is a key space

and |κ| is polynomial in the security parameter, and a is some state information. Then

on input a the adversary tries to make Πs
i accept a session key k ∈ κ. In this second

stage the adversary is allowed to ask Execute, Send, Reveal, and Corrupt queries, but is

not allowed to corrupt Ui, and the total number of Corrupt queries in both stages should

remain ≤ t − 1. The BVS model defines a group key establishment protocol as being

t-contributory if the adversary succeeds with only negligible probability. In case that a

protocol is n-contributory where n is a number of protocol participants then the BSV model

calls it a key agreement. It is clear that the above definition enforces each participant to

provide own contribution to the computation of the session key. Unfortunately the authors

do not show feasibility of their contributiveness definition since their proofs are heuristic.

The BVS model has some drawbacks discussed in the following. First, the adversary



HGI Network and Data Security Group Technical Report 2006/02 35

is required to commit to a certain oracle Πs
i which remains uncorrupted and whose com-

putation of the session key it tries to influence. Hence, the adversary is not adaptive in

the sense that it can freely choose Πs
i during the second stage of the attack. Second, the

BCPQ model and consequently the BVS model disallows the adversary to reveal internal

states of the oracles (strong corruptions). Therefore, the model considers neither (perfect)

forward secrecy with respect to strong corruptions nor its definition of contributiveness

does capture attacks aiming to influence the computation of the session key by Πs
i using

the knowledge of its internal state information but without corrupting Ui. Third, it is not

clear how to specify the algorithm χκ, i.e., according to which criteria one can distinguish

whether the key computed by Πs
i is influenced by the adversary or is real in the sense of

the protocol.

4 Summary and Discussion

In the following we summarize results of our analysis of currently known security models

for group key exchange protocols. We focus on the BCPQ, BCP, BCP+, KY, KS/UC-KS,

and BVS models while leaving out security models specified only for two or three pro-

tocol participants. We also do not consider variations of the above models in [BCP02b,

KLL04, DBS04, DB05b, DB05a, DB06] since these are minor modifications, mostly of

technical nature, and without significant consequences for the actual security definitions.

Note that almost all considered models (BCPQ, BCP, BCP+, KY, KS, and BVS) have

been designed for reductionist security proofs whereas UC-KS has been designed for

simulatability/indistinguishability-based proofs. Still, the security requirements stated

in the UC-KS model correspond to those stated in the KS model. Table 4 provides a

comparison of these models. Columns two to five specify blocks of the most important

informally defined security requirements from Section 2 whereby

• IND is the requirement on the indistinguishability of the group key computed in one

session from a random value with respect to active adversaries and known group

keys of other sessions,

• MA is the requirement on mutual authentication between all participants of the

group key exchange protocol that also subsumes the requirement on key confirmation

and unknown key-share resilience (M points out that definitions of the model consider

malicious participants; H points out that definitions of the model consider only

honest participants;),

• FS is the requirement on (perfect) forward secrecy, in particular that IND still holds if

the adversary is able to reveal the long-lived keys of all participants in later sessions,
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• CON is the requirement on contributiveness of the group key exchange protocol, in

particular that each participant equally contributes to the resulting group key and

guarantees its freshness (this also subsumes the notion of key control and unpre-

dictability).

Table 1: Analysis of Security Models for Group Key Exchange Protocols

Model IND MA FS CON Strong Corr. S/D

BCPQ [BCPQ01] + H + - - S

BCP [BCP01] + H + - - D

BCP+ [BCP02b] + - + - + D

KY [KY03] + - + - - S

KS/UC-
KS

[KS05] + M + - + S

BVS [BVS05] + M + + - S

Additionally, Table 4 specifies whether the considered model provides definitions with

respect to strong corruptions, i.e., the adversary should be allowed to reveal internal

(private) information of protocol participants used in the protocol execution. This may

have consequences on the definitions of considering FS and CON. The last column provides

the type of the protocol dynamics considered by the model (S for static, D for dynamic).

4.1 Informal Requirements

Obviously, all considered security models provide definitions that consider the require-

ments on indistinguishability of computed group keys (IND) and forward secrecy (FS).

The requirement on mutual authentication and key confirmation has been found to be not

general enough in the definitions of the BCPQ and BCP models (see also [BM06]). Fur-

thermore, these definitions do not consider attacks of malicious participants. The BCP+

and KY models do not contain any definitions concerning MA-security. Only the KS/UC-

KS and BVS models provide sufficient definitions concerning mutual authentication, key

confirmation and unknown key-share resilience (MA) concerning attacks of malicious par-

ticipants. Note that BVS is the only model that considers issues concerning key control

and contributiveness (CON).
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4.2 Strong Corruptions

Only the BCP+ and KS/UC-KS models consider strong corruptions in their security def-

initions, however, only for the security requirement concerning forward secrecy (FS). The

BVS model as an extension of the KY model does not deal with strong corruptions so

that its definitions concerning key control and contributiveness are not strong enough.

We stress that the consideration of a more powerful adversary against key control and

contributiveness which is given access to strong corruptions is important since this kind

of the adversary is also considered for other requirements, e.g., FS.

4.3 Group Dynamics

Only the BCP model and its stronger variant BCP+ provide definitions concerning dy-

namic group key exchange protocols. All other models focus on static GKE protocols.

Note that dynamic protocols provide additional operations for the efficient update of the

group key upon occurring changes of the group formation. Due to the risk that efficiency

is achieved at the expense of weaker security it is important to consider these operations

in the stated security requirements.

4.4 Main Results

Obviously, the models BCP+, KS/UC-KS and BVS are the strongest currently available

security models for GKE protocols. However, all of them have various weaknesses as shown

previously in this paper. In particular, none of the currently existing security models

for group key exchange protocols provides sufficient security definitions that unify all

important informal security requirements from the earlier literature and consider malicious

participants, strong corruptions and dynamic operations at the same time. This fact

emphasizes the need of a more general security model that does not have the identified

limitations.
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