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Abstract

The ring signature allows a signer to leak secrets anonymously, without the risk of identity
escrow. At the same time, the ring signature provides great flexibility: No group manager, no
special setup, and the dynamics of group choice. The ring signature is, however, vulnerable to
malicious or irresponsible signers in some applications, because of its anonymity. In this paper, we
propose a traceable ring signature scheme. A traceable ring scheme is a ring signature except that
it can restrict “excessive” anonymity. The traceable ring signature has a tag that consists of a list of
ring members and an issue that refers to, for instance, a social affair or an election. A ring member
can make any signed but anonymous opinion regarding the issue, but only once (per tag). If the
member submits another signed opinion, possibly pretending to be another person who supports
the first opinion, the identity of the member is immediately revealed. If the member submits the
same opinion, for instance, voting “yes” regarding the same issue twice, everyone can see that these
two are linked. The traceable ring signature can suit to many applications, such as an anonymous
voting on a BBS, a dishonest whistle-blower problem, and unclonable group identification. We
formalize the security definitions for this primitive and show an efficient and simple construction.

1 Introduction

A ring signature scheme allows a signer to sign a message while preserving anonymity behind a group,
called a “ring,” which is selected by the signer. A verifier can check the validity of the signature,
but cannot know who generated it among all possible ring members. In addition, two signatures
generated by the same singer are unlinkable. Namely, it is infeasible for the verifier to determine
whether the signatures are generated by the same signer. This notion was first formally introduced
by Rivest, Shamir, and Tauman [31], and since then, this topic has been studied extensively, in, for
instance [26, 10, 1, 24, 23, 7]. The ring signature is related to group signature, due to [15], but it is
incomparable. Although the group signature [15, 11, 3, 2, 5, 8, 22, 6] also allows a signer to generate
a signer-ambiguous (and unlinkable) signature, it has a group manager that has the power to revoke
the anonymity of any signer if necessary. A group manager must establish a special type of key
assignment to create a group, and hence it is difficult to change the group dynamically. In addition,
some people say that the group manager is too strong because he can even revoke the anonymity of
a honest signer. On the other hand, a ring signature scheme has no group manager, no special setup,
and allows ad-hoc group formation. In other words, a signer can choose as a “ring” an arbitrary set of
possible signers (who in advance registered themselves to PKI) including himself, and sign a message
using only his own secret key. However, the ring signature does not have an anonymity revocation
protocol in general.

Anonymity is not always good. While the group signature has too strong a traceability charac-
teristic, an ordinary ring signature scheme has nothing at all to restrict anonymity. In this paper,
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we consider a ring signature scheme with some “gentle” restrictions, which only prohibits “excessive”
anonymity in some applications. Informally, we consider “one-more unforgeability” and “double-
spending traceability” in the context of a ring signature.

Initially, these two notions appeared in the context of a blind signature scheme and a restricted
blind signature scheme, as in [12] and [14], respectively. In the blind signature scheme, a user interacts
with a signer a number of times and has the signer sign a blind message (in this stage, the signer may
know the identity of the user). After the user transformed it to the “blind” signature, it cannot be
traced to the user even by the signer. However, the user who obtained the blind signature from the
signer cannot generate a “one-more” new signature. This property is called one-more unforgeability.
The restricted blind signature has an additional property called “double-spending traceability,” so
that if a user “spends” a signature twice, he can be traced later [14, 29, 9]. Such a property can
be used in the “off-line” anonymous e-cash systems. Note that the identity of a honest user is not
threatened, even by the real signer.

We incorporate these properties into the ring signature by introducing formal security requirements.

1.1 Our Contribution: Formalization and Construction

In this paper, we introduce the concept of a traceable ring signature. It preserves the flexibility of the
ring signature: No group manager, no special setup for sharing secrets among members in a group,
and the dynamics of group choice. It implies that the identity of a signer is never escrowed by a special
person or group. A traceable ring signature has a tag L = (issue, pkN ), where pkN is the set of public
keys of the ring members and issue refers to, for instance, an id of an election or some social issue.
A ring member can sign a message using his own secret key and the verifier can verify the signature
on the message with respect to tag L, but cannot know who generated the signature among all the
possible ring members in L. If the signer signed the same message again with the same tag, everyone
can see that the two signatures are linked, whereas if he signed a different message with the same tag,
then not only is it evident that they are linked, but the anonymity of the signer is revoked. Informally,
the security requirements we provide for this primitive are given below:

• Public Traceability - Anyone who creates two signatures for different messages with respect
to the same tag can be traced, where the trace can be done only with pairs of message/signature
pairs and the tag.

• Tag-Linkability (One-more unforgeability) - Every two signatures generated by the same
signer with respect to the same tag are linked, that is, the total number of signatures with
respect to the same tag cannot exceed the total number of ring members in the tag, if every any
two signatures are not linked.

• Anonymity - As long as a signer does not sign on two different messages with respect to the
same tag, the identity of the signer is indistinguishable from any of the possible ring members.
In addition, any two signatures generated with respect to two distinct tags are always unlinkable.
Namely, it is infeasible for anyone to determine whether they are generated by the same signer.

• Exculpability - No one can entrap an innocent ring member by outputting the signature(s),
such that they designate the target member by using the public traceability procedure. This
should be infeasible even if the attacker corrupts all ring members but the target and even after
he has seen polynomially-many signatures generated by the target member.

These security goals must be preserved under the attacking model, which is called the adversarially-
chosen key and ring attack [7]. Recently, Bender, Katz, and Morselli considered new stronger attacking
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models for the ring signature [7]. Our attacking model is related to their attacking models. In addition,
our security model follows their models in the sense that the role of PKI is minimal, namely it only
maintains the global public-key list properly, which implies that malicious PKI can’t harm a honest
signer.

On one hand, our attacking goals (or security goals) are related to those of the group signature [6].
We stress that the standard unforgeability requirement (as in an ordinary ring signature) is unnecessary
for the traceable ring signature because the combined requirements for tag-linkability and exculpability
imply unforgeability. We give the formal security definitions later in Sec. 2.2.

We show how to construct an efficient and conceptually-simple traceable ring signature scheme on
an ordinary Abelian group, on which the DDH and discrete logarithm problems are hard, by using
the Fiat-Shamir transformation.

1.2 Applications

There are several applications for the traceable ring signature.
An anonymous voting on a BBS - Suppose that some group of people is discussing some issue on a

bulletin board via the Internet and wish to vote anonymously among themselves on that issue. They
could write to the bulletin board anonymously; however, they do not want to engage a trusted party
or establish a heavy setup protocol just for this vote. In addition, it is expected that some people in
the group won’t vote. An ordinary ring signature cannot be used here because it cannot restrict a
member to only one vote. A traceable ring signature however can be applied to this case 1.

A dishonest whistle-blower problem - The ring signature allows secrets to be leaked anonymously.
However, a malicious or irresponsible person may distribute misleading information. Suppose that a
high-ranking official leaks secret information to journalist Alice. She makes this information public
as coming from someone reputable while protecting the anonymity of the source based on the ring
signature generated by the official with respect to the ring of all high-ranking officials. At the same
time, however, journalist Bob publishes the opposite information with another ring signature with
respect to the same ring of all high-ranking officials. Then, Alice and Bob want to know if the
inconsistency comes from distinct sources or if they have been fooled by a dishonest person without
revealing their sources before they have known betrayal. The traceable ring signature can prevent the
official from distributing inconsistent information to both sides and enable Alice and Bob to officially
blame him because he can be publicly traced.

An unclonable group identification “without the group manager” - Recently, Damg̊ard, Dupont,
and Pedersen proposed the notion of the unclonable group identification [17]. The traceable ring
signature can be applied to this application. The original unclonable group identification requires a
group manager, but the traceable ring signature does not.

A traceable ring signature scheme is “functionally” related to a restricted blind signature. Hence,
it can be applied to a very primitive “off-line” anonymous e-cash system.

Another possible application is, for instance, k-times anonymous authentication [32]. Any traceable
ring signature scheme can be efficiently transformed into a traceable ring signature scheme with k-times
anonymity defined as in [32], but see also Sec. 6.2.

1We are aware of the fact that public traceability makes any anonymous signature primitive lose the deniability
property as discussed in Sec. 2.3. However, it is sometimes more problematic to establish a trusted authority in some
realistic situation. In case of pursuiting deniability, we can incorporate the technique of a receipt-free voting scheme [28]
into a traceable ring signature scheme. In that case, a trusted party is necessary but only for the receipt-freeness. The
other security properties of the traceable ring signature mentioned above hold true even against a dishonest trusted
party.
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1.3 Related Works

Linkable ring signatures [24, 34, 25, 33, 4] are closely related to the traceable ring signature. A linkable
ring signature scheme is a ring signature scheme with the property that two signatures generated by
the same signer with respect to the same ring can be linked, although it doesn’t need satisfy the
anonymity revocation property. The earlier papers about linkable ring signatures [24, 25] didn’t
consider a realistic threat that a dishonest signer makes a honest signer accused of “double-spending”
(The schemes in [24, 25] are vulnerable to the attack. See Sec. 3, where our first-step protocol is
substantially the same as the schemes in [24, 25]). The recent papers [34, 4] take care of this problem,
which makes the security conditions more complicated. Our security definitions of the traceable ring
signature works also on the linkable ring signature, if the tracing algorithm is appropriately modified,
which implies that the unforgeability requirement is unnecessary also for a linkable ring signature
scheme 2. Recently, Tsang and Wei proposed a short linkable ring signature [33], based on a short
group identification from [18], which allows for a shorter length of communication than our proposed
scheme as the number of the ring members grows huge. Their scheme is, however, not a ring signature
in our sense, because it is necessary for a trusted party to set up the parameter of an accumulator
and the scheme is vulnerable to a dishonest trusted party 3. In addition, it doesn’t provide public
traceability. To our knowledge, only the proposal in [34] seems to satisfy our security conditions
including the anonymity revocation property, but our scheme is simpler and more efficient than that
scheme.

The restricted blind signature [14, 29, 9, 27], including its variant [32], is functionally related to the
traceable ring signature. In the restricted blind signature, however, the user must interact with the
signer (corresponding to the group manager) to obtain a blind signature, which corresponds to a special
setup with the group manager. This setup may seem somehow similar to the registration to PKI. In
particular, the k-times anonymous authentication [32] is closer, because it allows a user to use the
“blind signature” permanently (similar to a public-key), once he obtained it from the signer. However,
the (restricted) blind signature, including the k-times anonymous authentication, cannot allow ad-hoc
group formation. After the signer issues the blind signatures to the user, an arbitrary subgroup
including the user cannot be selected as a ring and the services cannot be exclusively restricted to the
subgroup.

Recently, Damg̊ard, Dupont, and Pedersen proposed unclonable group identification [17]. It is
functionally very close to the k-times anonymous authentication in the sense that after a user obtains
a “coin” from the group manager, he can utilize it permanently. However, it does not allow for ad-hoc
group formation, either.

A traceable signature scheme [21] is a group signature scheme with traceability (in particular, from
a signature to a user), but it requires a group manager.

2 Traceable Ring Signature: Definitions

2.1 Notations and Syntax

For probabilistic algorithm A, we write y ← A(x1, . . . , xn) to denote the experiment of running A for
given (x1, . . . , xn), selecting r uniformly from an appropriate domain, and assigning the result of this
experiment to the variable y, i.e., y := A(x1, . . . , xn; r). For probability spaces, X1, . . . , Xk, and k-ary
predicate φ, we write Pr[x1 ← X1; x2 ← X2; · · · : φ(x1, . . . , xk)] to denote the probability that the

2In [4], this implication has been suggested.
3The accumulater used in [33] is based on factoring where an RSA modulus n is a system parameter, while the

factoring should be kept secret.
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predicate φ(x1, . . . , xk) is true after the experiments, “x1 ← X1; x2 ← X2; · · · ”, are executed in that
order. Let ε, τ : N→ [0, 1](⊂ R) be positive [0, 1]-valued functions. We say that ε(k) is negligible in k
if, for any constant c > 0, there exists a constant, k0 ∈ N, such that ε(k) < (1/k)c for any k > k0. We
say that τ(k) is overwhelming in k if ε(k) , 1 − τ(k) is negligible in k. For ordered finite set S, we
denote by aS vector (ai)i∈S . For n ∈ N, we often write N to denote an ordered set (1, . . . , n).

We refer to an ordered public key set pkN = (pk1, . . . , pkn) as a ring. We define a traceable ring
signature scheme as indicated below.

Syntax. A traceable ring signature scheme is a tuple of algorithms, Σ = (Gen,Sig,Ver,Trace),
such that, for k ∈ N, the following is true.

• Gen: A probabilistic polynomial-time (in k) algorithm that takes security parameter k ∈ N and
outputs a public/secret-key pair (pk, sk).

• Sig: A probabilistic polynomial-time (in k) algorithm that takes a secret key, ski, where i ∈ N ,
tag L = (issue, pkN ), and message m ∈ {0, 1}∗, and that outputs signature σ.

• Ver: A deterministic polynomial-time (in k) algorithm that takes tag L = (issue, pkN ), message
m ∈ {0, 1}∗, and signature σ, and outputs a bit.

• Trace: A deterministic polynomial-time (in k) algorithm that takes tag L = (issue, pkN ), and
two message/signature pairs, {(m,σ), (m′, σ′)}, and outputs one of the following strings: “indep,”
“linked,” or pk, where pk ∈ pkN .

For simplicity, we often write (pkN , skN ) ← Gen(1k) to denote the experiment of (pki, ski) ←
Gen(1k) for i ∈ N and assigning (pkN , skN ) := (pki, ski)i∈N .

As an ordinary signature scheme, a traceable ring signature scheme must satisfy the following
correctness conditions: For every k ∈ N, every n ∈ N, every i ∈ N := {1, . . . , n}, every issue ∈ {0, 1}∗,
and every m ∈ {0, 1}∗, if (pkN , skN ) ← Gen(1k), and σ ← Sigski

(L,m), where L = (issue, pkN ), it
holds with an overwhelming probability (in k) that Ver(L, m, σ) = 1.

Public Traceability - A traceable ring signature scheme requires that the following condition
holds: For every k ∈ N, every n ∈ N, every i, i′ ∈ N := {1, . . . , n}, every issue ∈ {0, 1}∗, and every
m,m′ ∈ {0, 1}∗, if (pkN , skN ) ← Gen(1k), σ ← Sigski

(L, m), where L = (issue, pkN ), and σ′ ←
Sigski′ (L, m′), it holds with an overwhelming probability (in k) that

Trace(L,m, σ,m′, σ′) =





“indep” if i 6= i′,
“linked” else if m = m′,

pki otherwise .

In addition, if m 6= m′, Trace never output “linked.” Public traceability is a correctness condition,
that is, it does not assure that the opposite holds. However, if a traceable signature scheme has
tag-linkability (as well as public traceability), Trace(L,m, σ,m′, σ′) = “indep” implies that these
two signatures are generated by different signers. If it has exculpability, Trace(L,m, σ,m′, σ′) = pki

implies that they are signed by the same signer i. Note that Trace(L,m, σ,m, σ′) = “linked” doesn’t
mean that they are always generated by the same signer (because anyone can make a “dead” copy of
any signature).

2.2 Security Definitions

In this section, we describe the formal security definitions for the traceable ring signature. We give
three requirements: tag-linkability, anonymity, and exculpability. As mentioned earlier, the “standard
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unforgeability” requirement is unnecessary for the traceable ring signature. We discuss this more
formally later.

The tag-linkability is significantly different from the other two requirements in the sense that it is
to defend the system, not the users. Hence, we assume all users (signers) are potential cheaters, which
leads to the model that a central adversary generates all the public/secret keys for the users. On the
other hand, anonymity and exculpability are to protect the user(s) from the rest of players, including
the system provider and the adversarial users. In these settings, an adversary is given the target
public key(s) and allowed to append a polynomial number (in total) of new public keys to the global
public-key list in any timing. Possibly, these public-keys can be related to the given target key(s).
We assume that the global public-key list is maintained properly: A public-key should be referred to
only one user and vice versa. The adversary is basically allowed to choose an arbitrary subring in the
global public-key list, when it accesses the signing oracle(s) with respect to the target user(s). We
call such an attack the adversarially-chosen-key-and-ring attack, which is inspired by Bender, Katz,
and Morselli [7] for new strong attacking models for the ring signature. Our security model also
follows their models in the sense that the role of PKI is minimal, namely it only maintains the global
public-key list properly, which implies that security requirements hold true against malicious PKI.

We give the formal definitions of the security requirements as follows.

Tag-Linkability - Let F be a probabilistic algorithm modeled as an adversary. It takes security
parameter k ∈ N and outputs L = (issue, pkN ) and (n + 1) message/signature pairs, {(m(1),σ(1)), . . .,
(m(n+1),σ(n+1))}, where pkN = (pk1, . . . , pkn). We define the advantage of F against Σ to be

Advforge
Σ (F )(k) , Pr[ExptF (k) = 1]

where ExptF (k) are:

1.
(
L, {(m(1),σ(1)), . . ., (m(n+1),σ(n+1))}

)
← F (1k);

2. Return 1 iff

• Ver(L,m(i), σ(i)) = 1 for all i ∈ {1, . . . , n + 1}, and

• Trace(L,m(i), σ(i),m(j), σ(j)) = “indep” for all i, j ∈ {1, . . . , n + 1}, where i 6= j.

Definition 2.1 We say that Σ is tag-linkable if for any probabilistic polynomial-time (in k) algorithm
F , Advforge

Σ (F )(k) is negligible in k.

Anonymity - Let D be a probabilistic algorithm modeled as an adversary. Let (pk0, pk1) be the
two target public keys, where (pk0, sk0) and (pk1, sk1) are generated by Gen(1k). Let b ∈ {0, 1}
be a random hidden bit. D starts the game with target (pk0, pk1). D may do the following things
polynomial number of times in an arbitrary order: D may append new public keys to the global
public-key list and may access three signing oracles, Sigskb

, Sigsk0
, and Sigsk1

, where

• Sigskb
is the challenge signing oracle with respect to skb for signing (L,m), and

• Sigsk0
(resp. Sigsk1

) is the signing oracle with respect to sk0 (resp. sk1) for signing (L,m).

Here we assume that L should include both pk0, pk1; that is, pk0, pk1 ∈ pkN for L = (issue, pkN ). In
addition, the following condition must hold:

• Let (L,m) and (L′,m′) be queries of D to the challenge signing oracle Sigskb
. Then L 6= L′ or

m = m′.
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• Let (L, m) be a query of D to Sigskb
and let (L̃, m̃) be a query of D to Sigsk0

or Sigsk1
. Then

L 6= L̃.

Finally, D outputs a bit b′. We define the advantage of D against Σ as

Advanon
Σ (D)(k) , Pr




(pk0, sk0), (pk1, sk1) ← Gen(1k);
b ← {0, 1};
b′ ← DSigskb

,Sigsk0
,Sigsk1 (pk0, pk1)

: b = b′


− 1

2
.

Definition 2.2 We say that Σ is anonymous if, for every probabilistic polynomial-time (in k) adver-
sary D, the advantage Advanon

Σ (D)(k) is negligible in k.

Remark 2.3 Our anonymity definition corresponds to Definition 3 in [7], which is not the strongest
among their three definitions. It is, however, impossible for a traceable ring signature scheme to
satisfy the strongest definition in [7], because the strongest definition requires that an adversary cannot
distinguish which target generated the signature even when the adversary is given one of the target
secrets; namely, all but one secret key in the ring is exposed. This condition and the public traceability
cannot hold simultaneously.

Exculpability - Let A be a probabilistic algorithm as an adversary. Let pk be the target public
key where (pk, sk) is generated by Gen(1k). A starts the game with the target pk. A may do the
following things a polynomial number of times in an arbitrary order. A may append new public
keys to the global public-key list and may ask the signing oracle with respect to sk, Sigsk, to sign
any (L̃, m̃), where L̃ = ( ˜issue, pkÑ ), only with the restriction that pk ∈ pkÑ . Finally, A outputs
two pairs, (L,m, σ) and (L,m′, σ′), where L = (issue, pkN ). Here they should satisfy pk ∈ pkN ,
Ver(L,m, σ) = 1, and Ver(L,m′, σ′) = 1. In addition, the following conditions cannot occur.

• Both pairs, (L,m, σ) and (L,m′, σ′), exist in the query/answer list between A and Sigsk, or

• There exists (L,m, σ̂) and (L,m′, σ̂′) in the query/answer list between A and Sigsk and they
are linked to (L,m, σ) and (L,m′, σ′), respectively. It is, however, allowed that one of them is
linked to one of the outputs of A.

We say that A entraps a player with respect to pk if Trace(L,m, σ,m′, σ′) = pk. We define the
advantage of A against Σ, to be

Adventrap
Σ (A)(k) , Pr


 (pk, sk) ← Gen(1k);

(L,m, σ), (L, m′, σ′) ← ASigsk(pk)
: Trace(L,m, σ,m′, σ′) = pk


 .

Definition 2.4 We say that Σ is exculpable if, for any probabilistic polynomial-time adversary A,
Adventrap

Σ (A)(k) is negligible in k.

Remark 2.5 In relation to the adaptively-chosen insider corruption attack: One might think
that the exculpability definition could be stronger when there are not only one but polynomially-many
targets and the adversary can adaptively request the corruption of the target signers and finally attack
one of the remaining uncorrupted targets. However, it is obvious that if an traceable ring signature
satisfies this version of exculpability, then it also satisfies the improved definition, because the number
of the ring members are at most polynomial (in security parameter k).
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2.3 Discussion

As mentioned earlier, a standard unforgeability requirement (as defined in an ordinary ring signature)
is unnecessary for a traceable ring signature scheme. In other words, the unforgeability requirement is
not essential for the traceable ring signature. We define unforgeability as the inability of an adversary
that takes all public-key pkN and, after having access to the signing oracle with (L,m, i), outputs
(L′,m′, σ′), L′ = (issue ′, pkN ′) and N ′ ⊂ N , such that (L′,m′) never asked to the signing oracle. Here,
for query (L,m, i), where L = (issue, pkN ) and i ∈ N ⊂ N , the signing oracle returns Sigski

(L,m).
Then, we have the following result.

Theorem 2.6 If a traceable ring signature scheme is tag-linkable and exculpable, then it is unforgeable.

Proof. Suppose for contradiction that there is an adversary A′ against unforgeability. Let (L,m, σ)
be the output of A′, where L = (issue, pkN ). Then, consider n independent pairs {(L,m(1),σ(1)),
. . ., (L,m(n),σ(n))}, such that m(i) 6= m and Ver(L, m(i), σ(i)) = 1 for all i ∈ {1, . . . , n}. If every
n + 1 pairs are independent, then it contradicts tag-linkability. Therefore, there is an i ∈ {1, . . . , n}
such that Trace(L,m, σ,m(i), σ(i)) = pk ∈ pkN , because m(i) 6= m (Remember that Trace never
outputs “linked” if m(i) 6= m). This case, however, contradicts the exculpability requirement, because
we can construct adversary A against exculpability, by using A′ as a black box oracle as follows.
For simplicity, we assume, without loss of generality, that A takes all public-keys as the targets, as
discussed in Remark 2.5. A feeds all public-keys to A′. For any query of A′, A asks the signing oracle
the answer and returns it to A′. A′ finally outputs (L,m, σ), where L = (issue, pkN ). Then, A asks
for n queries and obtains (L,m(1),σ(1)), . . ., (L,m(n),σ(n)), where m(i) 6= m for all i. Since there is
an i such that Trace(L,m, σ,m(i), σ(i)) = pk ∈ pkN , A outputs (L, m, σ) and (L,m(i), σ(i)), which
contradicts exculpability.

We note that a traceable ring signature always provides efficient confirmation and disavowal proto-
cols (where we don’t assume that these protocol are zero-knowledge). If a member of the ring wants to
prove a signature is generated by himself, he makes another signature for a different message with the
same tag, which reveals his identity. Similarly, if a member of the ring wants to prove a signature is not
generated by himself, he submit another signature for an arbitrary message with the same tag, which
is independent of the previous signature. In some application it is undesirable, but any anonymous
authentication primitive with public traceability (or linkability) cannot avoid this property, such as
a linkable ring signature, a blind signature, unclonable group identification and k-times anonymous
authentication.

3 Towards Our Scheme

Although our proposal is not very complicated, we construct our scheme step by step to understand
more easily the concept behind our design.

Let us keep in mind the undeniable signature scheme proposed by Chaum [13]: Letting yi = gxi ∈ G
be a public key of player i, the Chaum’s undeniable signature on message M is σi = H(M)xi ∈ G,
where H denotes a hash function. Now let M = issue||pkN where pkN = (pk1, . . . , pkn) are a vector of
n public-keys. Pick up at random (n−1) elements, σj ’s, from G, where j 6= i. Then, set a NP-language

L , {(yN , h, σN )) | ∃ i ∈ N such that logg(yi) = logh(σi).},

where h = H(issue||yN ) and σN = (σ1, . . . , σn).
Then, consider a zero-knowledge based signature (using secret xi) on this language. It is well-known

that such a signature can be constructed by applying the technique of Cramer et al. [16] (one-out-of
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n honest-verifier zero-knowledge) to the Fiat-Shamir technique. The signature on m is then (σN , p),
where p = (c, z) is a (non-interactive) proof on L and c = H(σN , a, m), where a is computed by p. We
call this our first-step construction.

Suppose now that this scheme is applied to anonymous voting on BBS, where each user can write on
BBS anonymously. Let L = (issue, pkN ), where issue denotes the vote id number and pkN corresponds
to the authorized voters. Each voter simply sends message “yes” or “no” along with signature (σN , p)
to a bulletin board via a sender-anonymous channel (such as the Internet in practice). If proof p is
sound, a cheating player, say i, could not vote twice because it turns out σi = σ′i = hxi , which takes
the risk of revealing his identity.

However, this construction does not work well when an adversary is one of the voters. The problem
is that an adversarial player, say j, can entrap an innocent player, say i, or at least void the first vote,
with a significant probability. Player j waits for someone to send the first vote, say (“yes,′′ (σN , p)), to
the bulletin board. After seeing this signature, he generate a valid signature (σ′N , p′) on message “no,”
using secret key xj , following a valid signing procedure, except that he sets σ′i = σi and σ′k 6= σk for all
k 6= i. He then sends (“no,′′ σ′N , p′) to the board. If the first vote is really generated by player i, player
i cannot deny the second vote, because the second vote is a valid signature potentially generated by
player i. At least, player i would lose his first vote, because he cannot prove which of two votes are
valid.

Our solution is to make signer i fix every σj , j 6= i, depending on (L,m) and σi. More precisely,
each point (j, logh(σj)) is forced to be on the line defined by (i, logh(σi)) and (0, logh(H(L,m))).
Intuitively, to generate a signature that will pass verification, player i must set σi = hxi , while to
entrap player j, he must set at the same time that (j, logh(σj)) lies on the line defined by (i, logh(σi))
and (0, logh(H(L,m))), which seems intractable. On the other hand, suppose that signer i gener-
ates two signatures, σN and σ′N , on m and m′, m 6= m′, with respect to the same tag L. Every
(j, logh (σj)) derived from the first σN lies on the line defined by (i, logh (σi)) and (0, logh(H(L,m))),
whereas every (j, logh (σ′j)) derived from the second σ′N does on the line defined by (i, logh (σi)) and
(0, logh(H(L,m′))). Since the first line intersects with the second line at (i, logh(σi)) and these are
not the same line (because H(L,m) 6= H(L, m′)), it holds that σi = σ′i and σj 6= σ′j for all j 6= i,
which implies that the identity of the cheating player is traced. We formally prove in Sec. 5 that this
approach successfully works. Interestingly, this scheme is more efficient than the first-step construction
described above in terms of communication traffic.

4 An Efficient Traceable Ring Signature Scheme

In this section, we describe our proposal.
Let G be a multiplicative group of prime order q and let g be a generator of G. Let H : {0, 1}∗ → G,

H ′ : {0, 1}∗ → G, and H ′′ : {0, 1}∗ → Zq be distinct hash functions (modeled as random oracles in the
security statements below). These above are public parameters.

The key generation for player i is as follows: Player i picks up random element xi in Zq and
computes yi = gxi . The public key of i is pki = {g, yi, G} and the corresponding secret key is
ski = {pki, xi}. The player i registers his public-key to PKI.

We denote by N = {1, . . . , n} an ordered list of n players. We let pkN = (pk1, . . . , pkn) be an
ordered public-key list for set N . Let issue be an arbitrary string in {0, 1}∗.

Signing protocol : To sign message m ∈ {0, 1}∗ with respect to tag L = (issue, pkN ), using the
secret-key ski, proceed as follows:

1. Compute h = H(L) and σi = hxi , using xi ∈ Zq.
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2. Set A0 = H ′(L,m) and A1 =
(

σi
A0

)1/i
.

3. For all j 6= i, compute σj = A0A
j
1 ∈ G. Notice that every (j, logh(σj)) is on the line defined by

(0, logh(A0)) and (i, xi), where xi = logh(σi).

4. Generate signature (cN , zN ) on (L,m), based on a (non-interactive) zero-knowledge proof of
knowledge for the relation derived from language

L , {(L, h, σN )) | ∃ i′ ∈ N such that logg(yi′) = logh(σi′).},

where σN = (σ1, . . . , σn), as follows:

(a) Pick up random wi ← Zq and set ai = gwi , bi = hwi ∈ G.

(b) Pick up at random zj , cj ← Zq, and set aj = gzjy
cj

i , bj = hzjσ
cj

j ∈ G for every j 6= i.

(c) Set c = H ′′(L,A0, A1, aN , bN ) where aN = (a1, . . . , an) and bN = (b1, . . . , bn).

(d) Set ci = c −∑
j 6=i cj (mod q) and zi = wi − cixi (mod q). Return (cN , zN ), where cN =

(c1, . . . , cn) and zN = (z1, . . . , zn), as a proof of L.

5. Output σ = (A1, cN , zN ) as the signature on (L,m).

Verification protocol: To verify signature σ = (A1, cN , zN ) on message m with respect to tag L,
check the following:

1. Parse L as (issue, pkN ). Check g, A1 ∈ G, ci, zi ∈ Zq and yi ∈ G for all i ∈ N . Set h = H(L)
and A0 = H ′(L,m), and compute σi = A0A

i
1 ∈ G for all i ∈ N .

2. Compute ai = gziyci
i and bi = hziσci

i for all i ∈ N .

3. Check that H ′′(L,m, A0, A1, aN , bN ) ≡ ∑
i∈N ci (mod q), where aN = (a1, . . . , an) and bN =

(b1, . . . , bn).

4. If all the above checks are successfully completed, accept, otherwise reject.

Tracing protocol: To check the relation between (m,σ) and (m′, σ′), with respect to the same tag
L where σ = (A1, cN , zN ) and σ′ = (A′1, c

′
N , z′N ), check the following:

1. Parse L as (issue, pkN ). Set h = H(L) and A0 = H ′(L,m), and compute σi = A0A
i
1 ∈ G for all

i ∈ N . Do the same thing for σ′ and retrieve σ′i, for all i ∈ N .

2. For all i ∈ N , if σi = σ′i, store pki in TList, where TList is initially an empty list.

3. Output pk if pk is the only entry in TList; “linked” else if TList = pkN ; “indep” otherwise
(i.e., TList = ∅ or 1 < #TList < n).
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5 Security

In this section, we give security proofs for our traceable ring signature scheme.
Before proving tag-linkability for our scheme, we prove the following useful lemmas. We consider

adversary A against our signature scheme above. A is given 1k and allowed to access the random
oracles, H ′ and H ′′, at most qH′ and qH′′ times, respectively. Here it is not necessary that A is
polynomial-time bounded. Then, we have the following lemmas.

Lemma 5.1 Suppose that A outputs valid pair (L,m, σ).

1. The probability that #{i ∈ N | logh(σi) = logg(yi)} < 1 is at most qH′′
q , whereas

2. The probability that #{i ∈ N | logh(σi) = logg(yi)} > 1 is at most qH′
q ,

where the probability is taken over the choices of H ′,H ′′ and the inner coin tosses of A.

Proof. Case 1 (#{i ∈ N | logh(σi) = logg(yi)} < 1): Ver(L,m, σ) = 1 implies that ai = gziyci
i ∈ G

and bi = hziσci
i ∈ G for i ∈ N , which means that logg(ai) = zi+ci·logg(yi) and logh(bi) = zi+ci·logh(σi)

for i ∈ N . Note that if logg(yi) 6= logh(σi), ci is determined. Hence, Case 1 implies that all ci’s, where
i ∈ N , are uniquely determined. Since H ′′ is a random oracle, for any given (L,m,A0, A1, aN , bN ),
the probability that H ′′(L,m, A0, A1, aN , bN ) =

∑
i∈N ci (mod q), is at most q−1. Therefore, for any

A with at most qH′′ queries to random oracle H ′′, the probability of Case 1 is at most qH′′
q .

Case 2 (#{i ∈ N | logh(σi) = logg(yi)} > 1): Since σi = A0A
i
1 ∈ G for i ∈ N , every point

(i, logh(σi)), i ∈ N , is on line y = logh(A1)x + logh(A0). Case 2 implies that at least two points,
(i, logg(yi))’s, are on the line, which means, when pkN are fixed, the line is determined, so logh(A0)
and logh(A1) are determined. However, we also need logh(A0) = logh(H ′(L(issue, pkN ),m)), where
H ′(L,m) is determined independently of the above line, because H ′ is a random oracle. Actually, the
probability that logh(H ′(L,m)) = logh(A0) is at most q−1 for given (L, m). Hence, for any adversary
A with at most qH′ number of queries to random oracle H ′, the probability of Case 2 is at most qH′

q .

Lemma 5.2 Suppose A is defined above and it outputs (L,m(1), σ(1)) and (L,m(2), σ(2)), such that
Trace(L,m(1), σ(1),m(2), σ(2)) = “indep”. Let TList be the list defined above in our tracing protocol.

Then, the probability that 1 < #TList is
q2
H′
2q , where the probability is taken over the choices of H ′

and the inner coin tosses of A.

Proof. By 1 < #TList, the line defined by σ(1) intersects with the line defined by σ(2) at least at two
points, which means that the two lines coincide. Hence, A

(1)
0 = H ′(L,m(1)) and A

(2)
0 = H ′(L,m(2)),

because logh A
(1)
0 = logh A

(2)
0 where h = H(L). Therefore, the advantage of A is bounded by the

probability that A can find a collision of outputs of H ′, which is
q2
H′
2q .

Theorem 5.3 (Tag-Linkability) Our proposed scheme is tag-linkable in the random oracle model.

Proof. Suppose for contradiction that there is adversary F that takes 1k and successfully outputs tag
L = (issue, pkN ) and {(m(1), σ(1)), . . . , (m(n+1), σ(n+1))}.

Based on lemma 5.2, Trace(L,m(i), σ(i),m(j), σ(j)) = “indep,” for all i, j, means that, (with an

overwhelming (i.e., 1− q2
H′
2q ) probability), σ

(i)
k 6= σ

(j)
k holds, for all i, j, k, where 1 ≤ i, j ≤ n + 1, i 6= j,

and 1 ≤ k ≤ n. On the contrary, by Case 1 of Lemma 5.1, for every i, where 1 ≤ i ≤ n+1, there exist
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k ∈ N such that logg(yk) = logh(σ(i)
k ) (with at least (1 − (n+1)qH′′

q ) probability). Since 1 ≤ k ≤ n,

there exist i, j, k such that σ
(i)
k = σ

(j)
k , which contradicts the assumption (if the advantage of F exceeds

max(
q2
H′
2q ,

(n+1)qH′′
q )).

Therefore, the probability that F can forge the proposed scheme above is at most max(
q2
H′
2q ,

(n+1)qH′′
q ),

where qH′ and qH′′ denotes the number of queries of F to random oracles, H ′ and H ′′, respectively.

Before proceeding other theorems, we define a protocol, commonly used in some of the following
proofs.

Procedure of SimNIZK.
On input: (L,m, h,A0, A1).
Output: (cN , zN ).

1. For all i ∈ N , pick up at random zi, ci ←U Zq, and set ai = gziyci
i , bi = hziσci

i ∈ G, where
σi = A0A

i
1.

2. Set H ′′(L,m, A0, A1, aN , bN ) as c :=
∑

i∈N ci, where aN = (a1, . . . , an) and bN = (b1, . . . , bn). If
H ′′(L,m, A0, A1, aN , bN ) has been already booked as a different value in query/answer list QH′′ ,
then output “failure,” otherwise

3. Output (cN , zN ), where cN = (c1, . . . , cn) and zN = (z1, . . . , zn).

We now show the following theorem.

Theorem 5.4 (Anonymity) Our proposed scheme is anonymous under the decisional Diffie-Hellman
assumption in the random oracle model.

Proof. Suppose that there is an adversary D with advantage ε, which means that, by definition, D
can correctly guess b with probability ε + 1

2 . We now construct an algorithm A to solve the decisional
Diffie-Hellman problem. Let (g1, g2, u, v) be a given instance, where g1, g2, u, v ∈ G. When (g1, g2, u, v)
is a DDH tuple, logg1

(u) = logg2
(v) holds. We construct A as follows:

1. A is given instance (g1, g2, u, v).

2. A picks up at random b ← {0, 1}.
3. A sets g := g1, yb := u and, picking up at random t ∈ Zq, y1−b := ybg

t.

4. A feeds y0, y1 to D.

5. In case D submits a fresh query to random oracles, H ′ and H ′′, A picks up random elements in
G and Zq respectively, to reply with. Then, A stores the query/answer pairs in the lists, QH′

and QH′′ , respectively.

6. In case D submits a fresh query to random oracle H, A picks up at random r1, r2 ← Zq and
returns g1

r1g2
r2 . Then, A stores the value as well as (r1, r2) in query/answer list QH .

In this simulation, if A picks up the same gr1
1 gr2

2 again, namely, H(L) = H(L′) happens for
L 6= L′, A aborts. However, such an event happens at most qH

q , which is negligible in k, where
qH denotes the total number of queries of D to H.
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7. In case D submits a query (L,m) to Sigskb
, A sets gr1

1 g2
r2 as h := H(L) and σb := ur1vr2 ,

picking up at random r1, r2 ∈ Zq. Then, A picks up a random element A0 as H ′(L,m). If H(L)
and H ′(L,m) have been already stored in QH and QH′ , respectively, A uses these stored values.
A sets A1 and σN , by using A0 and σb. Then, A simulates a NIZK proof on language

L , {(L, h, σN )) | ∃ i′ ∈ N such that logg(yi′) = logh(σi′).},

following procedure SimNIZK described above to get (cN , zN ), where cN = (c1, . . . , cn) and
zN = (z1, . . . , zn). If SimNIZK succeeds, A returns σ = (A1, cN , zN ) to D, otherwise A halts.

8. In case D submits a query (L,m) to Sigsk0
, if b = 0 do the same thing as in Step 7. Otherwise,

A sets gr1
1 g2

r2 as h := H(L) and σ0 := ur1vr2(gr1
1 gr2

2 )t, picking up at random r1, r2 ∈ Zq. Then,
A picks up a random element A0 as H ′(L,m). If H(L) and H ′(L, m) have been already stored
in QH and QH′ , respectively, A uses these stored values. A sets A1 and σN , by using A0 and
σ0. Then, A simulates a NIZK proof on language

L , {(L, h, σN )) | ∃ i′ ∈ N such that logg(yi′) = logh(σi′).},

following procedure SimNIZK described below to get (cN , zN ), where cN = (c1, . . . , cn) and
zN = (z1, . . . , zn). If SimNIZK succeeds, A returns σ = (A1, cN , zN ) to D, otherwise A halts.

9. In case D submits a query (L,m) to Sigsk1
, do the same thing as in Step 8.

10. Finally, D outputs b′. If b = b′, A output 1, otherwise A flips a coin b′′ ∈ {0, 1} to output.

The advantage of A against the DDH problem is defined as

Pr[A(g1, g2, u, v) = 1 | (g1, g2, u, v) ∈ DDH]− Pr[A(g1, g2, u, v) = 1 | (g1, g2, u, v) 6∈ DDH].

We say that A succeeds in simulation if no collision happens in simulating random oracle H and
SimNIZK succeeds in simulating proofs for all queries of D to the signing oracles. SimNIZK fails
in generating a proof with at most probability qH′′

q , where qH′′ denotes the total number of queries
of D to H ′′. Hence, the probability that SimNIZK fails at least once in this game is bounded by
qSig·qH′′

q , where qSig denotes the total number of queries of D to the signing oracles.
We evaluate the following probabilities on the condition that A succeeds in simulation.
Notice that if (g1, g2, u, v) is a DDH tuple and a reply of the signing oracles, Sigskb

, Sigsk0
, and

Sigsk1
, is identical to the real signature using skb, sk0, and sk1, respectively (on the condition that

SimNIZK succeeds in simulating a proof).
On the other hand, if it is a random tuple, hidden bit b is perfectly independent of the adversary’s

view.
Hence, we have Pr[b = b′|(g1, g2, u, v) ∈ DDH] = ε + 1

2 by assumption and Pr[b = b′|(g1, g2, u, v) 6∈
DDH] = 1

2 .
Therefore, Pr[A(g1, g2.u, v) = 1|(g1, g2, u, v) ∈ DDH] = Pr[b = b′|(g1, g2, u, v) ∈ DDH] + Pr[b 6=

b′|(g1, g2, u, v) ∈ DDH] ·Pr[b′′ = 1|(g1, g2, u, v) ∈ DDH ∧ b 6= b′] =
(
ε+ 1

2

)
+

(
1−

(
ε+ 1

2

))
·12 = ε

2 + 3
4 .

On the other hand, Pr[A(g1, g2, u, v) = 1|(g1, g2, u, v) 6∈ DDH] = Pr[b = b′|(g1, g2, u, v) 6∈ DDH]
+Pr[b 6= b′|(g1, g2, u, v) 6∈ DDH] ·Pr[b′′ = 1|(g1, g2, u, v) 6∈ DDH ∧ b 6= b′] = 1

2 + 1
2 · 1

2 = 3
4 .

Based on this estimation, the advantage of A is 1
2 · ε, if A succeeds in simulation. Therefore, the

advantage of A is bounded by

1
2
· ε− qH

q
− qSig · qH′′

q
.
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To suppress the advantage of A to be negligible in k, ε must be negligible in k.

Before proceeding to the exculpability statement, we prove the following lemma. Let A be an
adversary against exculpability for our scheme. Let qH′ , qH′′ denote the total number of queries to
the random oracles, H ′,H ′′, respectively. Here it is not necessary that A is polynomial-time bounded.
Then, we have the following.

Lemma 5.5 When A entraps player i, the probability that logh(σi) 6= logg(yi) is at most
(n−1)(n−2)q2

H′
2q +

qH′′
q . The probability is taken over the choices of H ′,H ′′ and the inner coin tosses of A.

Proof. Assume that logh(σi) 6= logg(yi). Based on lemma 5.1, if Ver(L,m, σ) = 1, the probability
that #{i ∈ N | logh(σi) = logg(yi)} < 1 is at most qH′′

q . Hence, for σ and σ′ that A outputs, there are
j, k ∈ N , with an overwhelming probability, such that logh(σj) = logg(yj) and logh(σ′k) = logg(yk),
which implies that

logh(yj) = logh(A1) · j + logh(A0) (1)
logh(yk) = logh(A′1) · k + logh(A′0). (2)

Since logh(σi) 6= logg(yi), it holds that j, k 6= i.
By assumption, line y = logh(A1) · x + logh(A0) intersects with line y = logh(A′1) · x + logh(A′0) at

x = i. Hence, we have

logh(A1) · i + logh(A0) = logh(A′1) · i + logh(A′0). (3)

By (1), (2), and (3), we have

A · logh(A0) + B · logh(A′0) = C, (4)

where A,B, C are fixed when i, j, k, logg(yj) and logg(yk) are fixed. Remember that A0 = H ′(L,m)
and A′0 = H ′(L,m′) must hold, where L = (issue, pkN ). Note that H ′(L, m),H ′(L, m′) are fixed after
i, j, k, logg(yj) and logg(yk) are fixed. Hence, the probability that A0 and A′0 satisfy (4) is at most
q2
H′
2q , because H ′ is a random oracle.

The probability that A0, A
′
0 satisfy (4) is the same in every j, k ∈ N − {i}, j 6= k; Hence, the

probability that logh(σi) 6= logg(yi) is at most
(n−1)(n−2)q2

H′
2q + qH′′

q .

When adversary A entraps player i, there are two possibilities: One is the case that A really forges
the signature of player i (possibly, after seeing her/his real signature). Namely, it is the case that
logh(σi) = logh(σ′i) = logg(yi). The other case logh(σi) = logh(σ′i) 6= logg(yi), means that A does not
forge the signatures of player i but, letting σ, σ′ be generated by A, the i-th entries of them, σi and
σ′i, are the same. This lemma implies that if A entraps player i, it is the case, with an overwhelming
probability, that A has really forged a signature of player i.

Theorem 5.6 (Exculpability) Our proposed scheme is exculpable under the discrete logarithm as-
sumption in the random oracle model.

A very rough strategy for proving the theorem is as follows: Based on lemma 5.5, we know that
if an adversary A against exculpability for our scheme can entraps the target player i, then it is
the case with an overwhelming probability that A has actually forged a signature of player i, i.e.,
logh σi = logg yi. In addition, by lemma 5.1, we realize that that it is “never” a potential signature of
any other player at the same time, i.e., logh σj 6= logg yj , for j 6= i (with an overwhelming probability).
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This implies that by the standard rewinding, we have ci 6= c′′i for the target i, which breaks the discrete
log of the target yi and leads to the contradiction.

Proof. Suppose that there is adversary A that takes pk and entraps the player with respect to pk.
Then, we can construct algorithm A′ that solves the discrete logarithm problem. Let g, Y ∈ G be a
given instance of discrete logarithm problem. The goal of A′ is to output logg Y . We construct A′ as
follows.

Without loss of generality, we assume that the id number of the target player is i. Hence, A′ sets
yi := Y and feeds pki = {yi, g} to adversary A.

A may access the random oracles, H, H ′,H ′′, and the signing oracle, at most qH , qH′ , qH′′ and
qSig times, respectively. In case A submits a fresh query to random oracles, H ′ and H ′′, A′ picks up
random elements in G and Zq respectively, to use as a reply, maintaining the query/answer lists, QH′

and QH′′ , respectively. In case A submits a fresh query to random oracle H, A′ picks up random
v ∈ Zq and return gv to A, maintaining query/answer list QH . In case A submits query (L̃, m̃), to the
signing oracle, A′ returns σ as follows.

1. Pick up random v ∈ Zq, to set value h̃ := H(L̃) as gv. Pick up random Ã0 as H ′(L̃, m̃). If H(L̃)
and H ′(L̃, m̃) have been already booked in QH and QH′ , respectively, use these stored values.
Set σ̃i := yv

i .

2. Compute Ã1 and σ̃N . Then use SimNIZK on input (L̃, m̃, h̃, Ã0, Ã1). SimNIZK returns
(c̃N , z̃N ) except for a negligible probability qH′′

q . If SimNIZK fails in simulating a proof, then
A′ aborts.

The probability that SimNIZK fails at least once in this game is bounded by qSig·qH′′
q .

3. Return σ̃ = (Ã1, c̃N , z̃N ) and store the query/answer pair in the list QSig.

Finally, A outputs (L,m, σ) and (L,m′, σ′). A entraps player i with probability ε, which is the
advantage of A. Then, A′ works as follows. Since at least one of (L,m, σ) and (L,m′, σ′) is not an
entry in QSig, A′ renames the value (L, m, σ) and rename the other (L,m′, σ′) (If both are not an entry
in QSig, A′ swaps the names at random). Then, A′ picks up a new random element c′′ ∈ Zq, where if c′′

is identical to the first H ′′(L,m,A0, A1, aN , bN ), A′ halts. However, this occurs only with probability
q−1. Then, A′ runs A again on the same random coins except that c′′ := H ′′(L, m,A0, A1, aN , bN ).
There is some probability that A finally outputs (L,m, σ′′) (and another pair (L, ., .)) such that σ′′

= (A1, c
′′
N , z′′N ). As studied in [30], such an event happens with probability 1

qH′′
ε, on the condition that

A succeeds in the first run. Then, A′ checks that ci 6= c′′i . If ci = c′′i , A′ halts, otherwise output z′′i −zi

ci−c′′i
,

which implies that A′ outputs logg(Y ) on input (g, Y, G), because ai = gziyci
i = gz′′i y

c′′i
i and yi = Y .

We now claim that the probability that ci 6= c′′i is overwhelming in k: By lemma 5.5, if adversary A
entraps player i, it is the case with an overwhelming probability that A has really forged the signature
of player i; namely, logh(σi) = logg(yi). On one hand, since c 6= c′′, there is at least a t ∈ N , such that
ct 6= c′′t . By lemma 5.1, however, the possibility that #{i ∈ N | logh(σi) = logg(yi)} > 1 is at most qH′

q .
Therefore, we conclude t = i because at least, logh(σi) = logg(yi).

To sum up, the success probability of A′ is bounded by

ε2

qH′′
− 1

q
− qSigqH′′

q
− (n− 1)(n− 2)q2

H′

2q
− qH′′

q
− qH′

q
.

To suppress the advantage of A′ to be negligible in k, ε, the advantage of A, must be negligible in
k.
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Remark 5.7 (On-Line Extractor) The standard rewinding strategy works well on our scheme in
the game of exculpability but it only provides a loose security reduction. Actually, for adversary A that
runs in time T with advantage ε, we construct algorithm A′ breaking the discrete-log problem in time
T ′ ≈ 2T with probability ε′ ≈ ε2

q′′H
in the proof of Theorem 5.6. Based on Fischlin’s technique [19], we

can replace, at a small efficiency cost, our non-interactive zero-knowledge part in the signing protocol
with one for which there is an on-line extractor; that is, one can extract the secret witness from the
adversary without rewinding. Here, if A attacks the new scheme in time T with advantage ε, then
there is algorithm A′ breaking the discrete-log problem in time T ′ = O(T ) with probability ε′ ≈ ε.

6 Some Other Remarks

6.1 Threshold version of Traceable Ring Signature.

The extension of our proposal to a t-out-of-n traceable ring signature is straightforward. Let S be the
set of t signers. First of all, each signer in S makes signature his own σi = hxi , where h = H(L), and
distributes σi to the other signers. Then, each signer in S computes every other signature σi, i 6∈ S, as
point (i, logh σi) lies on a polynomial curve of degree t, y = α(x), uniquely defined from (t+1) points,
(0, logh A0), (k1, xk1), . . . , (kt, xkt), where A0 = H ′(L,m) and S = {k1, ..., kt}. Actually, each signer in
S can locally compute σi, i 6∈ S, as σi =

∏t
j=0(Aj)ij ∈ G for all i 6∈ S, where A0 = H(L,m) ∈ G, and

Aj =
∏

k∈S(σk/A0)mj,k ∈ G for j = 1, ..., t, where




m1,k1 · · · m1,kt

...
. . .

...
mt,k1 · · · mt,kt


 =




k1
1 · · · k1

t

...
. . .

...
kt

1 · · · kt
t




−1

is the inverse matrix of van der Monde matrix. Notice that there exists a polynomial of degree t,
α(x) ∈ Zq[x], such that A0 = hα(0) ∈ G and σi = hα(i) ∈ G for every i. Then they collaborate and
generate a NIZK based signature on (L,m), p, by applying the technique of [16], with respect to the
language

L , {(L, h, σN )) | ∃S ⊂ N such that #S ≥ t and logg(yi) = logh(σi) for i ∈ S}.

Finally, the signers output signature σ = (A1, . . . , At, p), where p = (β(x), zN ) and β(x) is a polynomial
of degree (n− t) in Zq[x].

6.2 k-Times Anonymity on the Same Tag

Any traceable ring signature scheme can be efficiently transformed into a traceable ring signature
scheme with k-times anonymity in the sense of [32], where the k-times anonymity means that a signer
is allowed to sign messages with respect to the same tag at most k times without being traced. It is
simply obtained by regarding (i,Sigsk((L, i),m)) as a signature on m, with respect to tag L, where the
verifier checks if Ver((L, i), m) = 1 and 1 ≤ i ≤ k (Here the signer need not publish i in order). It is
obvious that the identity of a signer is not revealed if the signer is enough careful not to issue the same
index twice on the same tag. We, however, remark that this implementation has a weakness in the
unlinkability property, while it satisfies the condition of the k-time anonymity defined in [32], because
whether or not the two signatures are generated by the different signers can be easily determined, if
the two signatures have the same tag and index. The scheme appeared in [32] substantially has the
same problem, too.
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