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Abstract

Designing public key encryption schemes withstanding chosen ciphertext attacks, which
is the highest security level for such schemes, is generally perceived as a delicate and intricate
task, and for good reason. In the standard model, there are essentially three well-known but
quite involved approaches. This state of affairs is to be contrasted with the situation for
semantically secure encryption schemes, a much weaker security notion that only guarantees
security in the absence of active attack but that appears to be much easier to fulfill, both
conceptually and practically. Thus, the boundary between passive attack and active attack
seems to make up the dividing line between which security levels are relatively easily achieved
and which are not. Our contributions are two-fold.

First, we show a simple, efficient black-box construction of a public key encryption scheme
withstanding chosen ciphertext attack from any given semantically secure one. Our scheme
is q-bounded in the sense that security is only guaranteed if the adversary makes at most q
adaptive chosen ciphertext queries. Here, q is an arbitrary polynomial that is fixed in advance
in the key-generation. Our work thus shows that whether or not the number of active,
adversarial queries is known in advance is the dividing line, and not passive versus active
attack. In recent work, Gertner, Malkin and Myers show that such black-box reductions
are impossible if instead q is a polynomial that only depends on the adversary. Thus, in a
sense, our result appears to be the best black-box result one can hope for. Second, we give a
non-blackbox reduction from bounded chosen ciphertext security to semantic security where
the length of the public/secret keys and ciphertexts drops from quadratic to linear in q,
compared to our black-box construction. This latter scheme, however, is only of theoretical
interest as it uses general NP-reductions, and our blackbox construction is in fact much more
practical.

Keywords: Black-box construction, chosen-ciphertext security

1 Introduction

Designing public key encryption schemes withstanding chosen ciphertext attacks, which is the
highest security level for such schemes, is generally perceived as a delicate and intricate task,
and for good reason. In the standard model, there are essentially three approaches known.
The first approach, pioneered by Naor and Yung [15] in the early 1990s, and subsequently
extended by Dolev, Dwork and Naor [7], and later Sahai [20] and Lindell [14], is based on
the use of non-interactive zero knowledge for NP. This leads to schemes based on quite general
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cryptographic assumptions that are of theoretical significance only. The second is due to Cramer
and Shoup [3, 4, 5] and is based on hash-proof systems. This leads to quite practical schemes
based on several concrete number-theoretical assumptions. The third and most recent approach
is due to Canetti, Halevi and Katz [2], and relies on identity-based cryptography.

This state of affairs is to be contrasted with the situation for semantically secure encryption
schemes, a much weaker security notion that only guarantees security in the absence of active
attack: the design of such schemes appears to be a much easier task, given the relative abundance
of quite practical schemes that have been shown to exists under several different assumptions,
including general assumptions such as trapdoor one-wayness [10]. Thus, the boundary between
passive attack and active attack seems to make up the dividing line between which security
levels are relatively easily achieved and which are not. Our contributions are two-fold.

First, we show a simple, efficient black-box construction of a public key encryption scheme
withstanding chosen cipher-text attack from any given semantically secure one. Our scheme is
q-bounded in the sense that security is only guaranteed if the adversary makes at most q adaptive
chosen cipher-text queries. Here, q is an arbitrary polynomial that is fixed in advance in the
key-generation. Technically, our result is a combination of techniques from [2, 6]. However, it
appears that the implications for black-box constructions of chosen ciphertext secure encryption
from semantically secure encryption as we deduce them here have not been reported before.

Our work thus shows that whether or not the number of active, adversarial queries is known
in advance is the dividing line, and not passive versus active attack. In recent work, Gertner,
Malkin and Myers [9] show that such black-box reductions are impossible if instead q is a
polynomial that only depends on the adversary. Thus, in a sense, our result appears to be the
best black-box result one can hope for.

Second, the size of the public key, that of the secret key and the size of the cipher-text all
depend quadratically on the bound q. Building on recent work by Pass, Shelat and Vaikun-
tanathan [17], we also give a non-blackbox reduction from bounded chosen cipher-text security
to semantical security where this dependence is linear. This latter scheme, however, is only of
theoretical interest as it uses general NP-reductions.

1.1 Black-Box reductions

One natural task in modern cryptography is to relate different primitives to eachother. In such
reductions we assume that some primitive P exists and we want to infer that some different
primitive Q also exists, i.e. that primitive Q can be constructed from P. If in the construction
of Q there are only oracle-calls to the primitive P and no special structure of P is used, we speak
of a black-box construction. If Q can be construction from P in a black-box way, we write QP .
Almost all known constructions in cryptography are indeed black-box (such as the equivalence
of one-way functions and digital signatures [19, 13, 10]).

In terms of negative results, Impagliazzo and Rudich initiated a line of research showing
that certain block-box reductions cannot exist. In particular [12] shows a black-box separation
between key agreement and one-way functions. Recently, Gertner, Malkin and Myers [9] show
a certain black-box separation between chosen-ciphertext secure encryption and semantically
secure encryption schemes. More formally, they prove the following.

Theorem [9] There exists no black box reduction that from a given semantically secure pke =

(kg, enc, dec) constructs a chosen-ciphertext secure PKE = (KGkg,enc,dec, ENCkg,enc,dec, DECkg,dec).

This is contrasted by our main result.
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Main Theorem For any fixed polynomial q(k), there exists a black-box reduction that from
a given semantically secure pke = (kg, enc, dec) constructs a q(k) bounded chosen-ciphertext

secure PKE = (KGkg, ENCkg,enc, DECkg,dec).

Note that the black-box separation result from [9] only holds for reductions where decryption
DEC itself does not make calls to enc (re-encryption). Our black-box reduction of q bounded
CCA encryption falls exactly into this category, i.e. our construction does not use re-encryption.

1.2 Non black-box constructions

While most of the known reductions in cryptography are black-box, there are some interesting
reductions that ore non black-box, i.e. the construction ofQ from P may make use of a particular
structure of P (for example, P’s circuit representation). Most importantly, all constructions of
chosen-ciphertext secure encryption from generic assumptions (such as the existence of enhanced
trapdoor permutations) are non black-box [7, 20, 14]. This also includes the more recent result by
Pass, Shelat and Vaikuntanathan [17] who give a non-blackbox reduction from non-malleability
to semantical security, without any further complexity theoretic assumption. While the size of
the public key from our black-box q bounded chosen-ciphertext construction was quadratic in
q, we build on [17] to improve this result using non back-box techniques.

Theorem For any fixed polynomial q(k), there exists a (non-black-box) reduction that from
any given semantically secure PKE scheme constructs a q(k)-bounded chosen ciphertext secure
PKE scheme. The size of the public key in that construction is linear in q(k).

The above non black-box construction even reaches the stronger security level of q(k)-
bounded chosen-ciphertext non-malleability. We remark that, even though the parameters of
our non black-box construction only depend linearly on q(k), due to the use of generic NP-
reductions its overall complexity only compares favorably to our black-box construction for very
large polynomials q(k).

1.3 Organization

After fixing some notation in Section 2 we formally define q(k)-bounded chosen-ciphertext se-
curity for PKE scheme in Section 3. In Section 4 we formally state our main result and provide
a proof by presenting our black-box constructions. Finally, Section 5 deals with the mentioned
non black-box extensions.

1.4 A remark on related work

We have recently sent a copy of our note to the authors of [17]. In immediate return, we re-
ceived an unpublished manuscript [16] of theirs whose main result and techniques are essentially
identical to our subresult from Section 5, i.e., a non black-box reduction from q-bounded chosen-
ciphertext security to semantic security. They have also pointed out to us that at the very end
of their presentation of [17] at CRYPTO’06 they have announced this non black-box result,
including a very brief indication on a guiding observation.

We have achieved our subresult on non black-box reductions from Section 5 entirely indepen-
dently, and only motivated by a (theoretical) efficiency issue prompted by our main result from
Section 4, i.e., our black-box reduction from q-bounded chosen-ciphertext security to semantic
security. Nevertheless, we do believe that the main result from their manuscript [16] predates
our non black-box result from Section 5. We stress, however, that their manuscript [16] does
not claim anything similar to our main result.
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2 Notation

If x is a string, then |x| denotes its length, while if S is a set then |S| denotes its size. If

k ∈ N then 1k denotes the string of k ones. If S is a set then s
$

← S denotes the operation
of picking an element s of S uniformly at random. We write A(x, y, . . .) to indicate that A is

an algorithm with inputs x, y, . . . and by z
$

← A(x, y, . . .) we denote the operation of running
A with inputs (x, y, . . .) and letting z be the output. We write AO1,O2,...(x, y, . . .) to indicate
that A is an algorithm with inputs x, y, . . . and black-box access to oracles O1,O2, . . . and by

z
$

← AO1,O2,...(x, y, . . .) we denote the operation of running A with inputs (x, y, . . .) and Black-
box access to oracles O1,O2, . . ., and letting z be the output.

3 Public-Key Encryption

Definition 3.1 A triple pke = (kg, enc, dec) is a public-key encryption (PKE) scheme, if kg and
enc are probabilistic PTA, and dec is a deterministic polynomial-time algorithm. For consistency,
we require that for all k ∈ N, all messages M , it must hold that Pr[dec(sk , enc(pk , M)) = M ] = 1,

where the probability is taken over the above randomized algorithms and (pk , sk)
$

← kg(1k).

Definition 3.2 For a function q(k) : N→ N, we define the security notion of indistinguishability
against q-bounded CCA adversaries (IND-q-CCA). For an adversary A = (A1,A2) we define
the advantage function

Advind-q-cca
PKE ,A (k) = Pr[Expind-q-cca-1

PKE ,A (k) = 1]− Pr[Expind-q-cca-0
PKE ,A (k) = 1]

where, for b ∈ {0, 1}, Expind-q-cca-b
PKE ,A is defined by the following experiment.

Experiment Expind-q-cca-b
PKE ,A (k)

(pk , sk)
$

← KG(1k)

(M0, M1,St1)
$

← A
DEC(sk ,·)
1 (pk) s.t. |M0| = |M1|

c∗
$

← ENC(pk , Mb)

b′
$

← A
DEC(sk ,·)
2 (c∗,St1)

If b 6= b′ then return 0 else return 1.

The adversary (A1,A2) is restricted to ask at most q(k) queries to the decryption oracle DEC in
total in each run of the experiment, and none of the queries in the second stage may contain c∗.
PKE scheme PKE is said to be indistinguishable against q bounded chosen-ciphertext attacks
(IND-q-CCA secure in short) if the advantage function Advind-q-cca

PKE ,A (k) is a negligible function
in k for all adversaries A = (A1,A2) with PPT A1, A2.

We have the following relation to the standard security definitions for PKE schemes. Scheme
PKE is said to be

• indistinguishable against chosen-plaintext attacks [11] (semantically secure or IND-CPA)
if it is IND-0-CCA secure.

• indistinguishable against chosen-ciphertext attacks [18] (IND-CCA) if it is IND-q-CCA
secure for any polynomial q(k).

4



4 Black-box construction of bounded CCA secure encryption

4.1 Overview

The general outline of our construction is as follows. First, as demonstrated by Canetti, Halevi,
and Katz [2], every identity-based encryption scheme can be transformed into a chosen-ciphertext
secure PKE scheme. Second, a semantically secure PKE scheme implies a “q(k)-resilient”
identity-based encryption scheme. (The notion of q-resilient security in the context of identity-
based encryption means that the scheme guarantees security as long as at most q private keys
are established.) The latter result is only implicitly contained in a paper about key-insulated
public-key cryptosystems by Dodis, Katz, Xu, and Yung [6]. A closer observation of the combi-
nation of the two results already reveals the construction of our q(k)-bounded chosen-ciphertext
secure PKE scheme. Since both transformations are black-box our main result can be obtained.
However, it appears that the implications for black-box constructions of chosen ciphertext secure
encryption from semantically secure encryption as we deduce them here have not been reported
before.

Theorem 4.1 For any fixed q(k), there exists a black-box reduction that from a given semanti-
cally secure (kg, enc, dec) constructs a q bounded chosen-ciphertext secure PKE (KGkg, ENCkg,enc,
DECkg,dec).

Here we give direct proof of this theorem that bypasses the notion of identity-based encryption
alltogether.

4.2 Building blocks

Cover-free families. We start by recalling cover-free families. If S, T are sets, we say that
S does not cover T if T 6⊆ S. Let d, q, s be positive integers, and let F = (Fi)1≤i≤s be a family
of subsets of {1, . . . , d}. We say that family F is q-cover-free over {1, . . . , d}, if for each subset
Fi ∈ F and each S that is the union of at most q sets in (F1, . . . , Fi−1, Fi+1, . . . , Fs), it is the
case that S does not cover Fi. Furthermore, we say that F is l-uniform if all subsets in the
family have size l. We use the following fact [8]: there is a deterministic PTA that on input
integers s, q returns l, d, F where F = (Fi)1≤i≤s is a l-uniform q-cover-free family over {1, . . . , d},
for l = d/4q and d ≤ 16q2 log(s). In the following we let SUB denote the resulting deterministic
PTA that on input s, q, t returns Ft. We call Ft = SUB(s(k), q(k), t) the subset associated to
index t ∈ {1, . . . , s(k)}.

For our construction we will need a cover-free family with the parameters

s(k) = 2k, d(k) = 16kq2(k), l(k) = 4kq(k) . (1)

One-time signatures. We need a one-time signature scheme OTS = (sigkg, sign, vfy) [13]. We
require that this scheme be secure in the sense of strong unforgeability against one-time attacks.
We assume that the verification keys which are part of the output by sigkg are bitstrings of size k
which we interpret as natural numbers in {1, . . . , 2k}. One-time signatures can be constructed in
a black-box way from semantically secure encryption. This follows by combining the observation
that semantically secure encryption implies one-way functions, the fact that one-way functions
imply universal one-way hash functions [19], and the result that universal one-way hash functions
imply strong one-time signatures [13, 10]. All transformations are black-box. The implied OTS
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Algorithm KGkg(1k)
Define s(k) = 2k, d(k) = 16kq2(k), l(k) = 4kq(k) as in Equation (1)

for i = 1, . . . , d(k) do (pk i, sk i)
$

← kg(1k).
PK ← (pk1, . . . , pkd(k)) ; SK ← (sk1, . . . , skd(k))

Return (PK ,SK )

Algorithm ENCkg,enc(PK ,M)

(verk , sigk)
$

← sigkgkg(1k)
Let Fverk = {s1, . . . , sl(k)} be the

subset associated to verk

Pick random M1, . . . ,Ml(k) s.t. M =
⊕l(k)

i=1 Mi

For j = 1, . . . , l(k) do cj
$

← enc(pksj
,Mj)

c ← (c1, . . . , cl(k))

σ
$

← signkg(sigk , c)
Return C ← (c, verk , σ)

Algorithm DECkg,dec(SK , C)
Parse C as (c, verk , σ)

If vfykg(verk , c, σ) = ⊥ then return ⊥.
Let Fverk = {s1, . . . , sl(k)} be the

subset associated to verk
Parse c as (c1, . . . , cl(k))
For j = 1, . . . , l(k) do Mj ← dec(sksj

, cj)
M ←M1⊕ . . .⊕Ml(k)

Return M

Figure 1: Black-box construction of an IND-q-CCA secure PKE scheme PKE =
(KGkg, ENCkg,enc, DECkg,dec) from any semantically secure PKE scheme pke = (kg, enc, dec)

algorithms make black-box calls to evaluations of the one-way function which itself makes black-
box calls to kg.1 Hence, there exists a black-box reduction that from a given semantically secure
(kg, enc, dec) constructs a strongly unforgeable one-time signature OTS = (sigkgkg, signkg, vfykg).

4.3 The construction

Let q(k) : N→ N be a function. We build a PKE scheme PKE = (KG, ENC, DEC) with black-box
access to pke = (kg, enc, dec) as follows.

PKE key generation generates d independent instances of public/secret key pairs of pke.
Encryption first creates a random key-pair of the one-time signature scheme to create a verifica-
tion/signing key. The resulting verification key uniquely refers to a subset Fverk = {si1 , . . . sil} ⊆
{1, . . . , d(k)} of the base set of the cover-free family. The message M is shared using an all-
or-nothing transform into random l parts subject to M = M1⊕ . . .⊕Ml, and each share Mi is
encrypted using public key pk si

. The final ciphertext consists of the one-time verification key,
the l concatenated ciphertexts, and a signature of the latter concatenated ciphertexts using the
one-time signing key. We stress that encryption is stateless. Decryption first checks the signa-
ture using the verification key contained in the ciphertext. If the signature is valid, it reverses
the encryption process using the set of secret keys (sk i)1≤i≤l, where Fverk = {si1 , . . . sil} is again
uniquely derived from the verification key. Finally, combining the resulting plaintexts by XOR
yields the message.

A more formal description is given in Figure 1. In general we can also use any computationally
secure AONT (e.g., the black-box construction from [1] based on oneway functions) to decrease
ciphertext size.

The public and secret keys have size polynomial (quadratic) in the maximal number of
decryption queries q(k), which is the limitation of the scheme. Also note that the upper bound
q(k) must be known in advance as a parameter of the construction.

The following proves our main result, Theorem 4.1.

1The oneway function fk(·) is defined as fk(r) = pk , where (pk , sk)← kg(1k, r).
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Claim 4.2 If pke = (kg, enc, dec) is semantically secure then PKE = (KGkg, ENCkg,enc, DECkg,dec)
as described in Figure 1 is indistinguishable against q bounded chosen-ciphertext attacks.

Proof: (Sketch.) Assume there exists an adversary A against the IND-q-CCA security of PKE .
We show that then there exists either an adversary B against the semantical security security
of pke or an adversary C against the strong unforgeability of OTS .

We first describe adversary B.

Setup. Given security parameter k, adversary B sets up a random instance (verk ∗, sigk∗) of the
signature scheme via sigkg(1k). Let Fverk∗ be the subset associated to index verk ∗, where
Fverk∗ = {f∗

1 , . . . , f∗
l(k)}. Adversary B picks a random

f∗ $

← Fverk∗ . (2)

B generates independent pairs of keys (pk i, sk i) for i ∈ {1, . . . , d(k)} \ {f ∗}. The public
key PK is as (pk1, . . . , pkd), where the “rogue key” pk f∗ is the public key provided by B’s
experiment for semantical security of pke. Hence, B knows all secret keys sk 1, . . . , skd(k),
except skf∗ .

Adversary A is run on PK answering to its queries as follows.

Challenge query. Adversary B will generate A’s challenge ciphertext with respect to the sig-
nature pairs (verk∗, sigk∗) generated during setup. Adversary B receives the two messages

M∗
0 , M∗

1 from A and, for 1 ≤ i ≤ l(k), picks random messages Mi. Let M =
⊕l(k)

i=1 Mi and
let i∗ ∈ {1, . . . , l(k)} such that f ∗ = fi∗ . For c ∈ {0, 1} define Mi∗,c = Mi∗ ⊕M ⊕M∗

c

such that M∗
c = Mi∗,c ⊕

⊕

i6=i∗ Mi. Adversary B forwards Mi∗,0, Mi∗,1 to the surrounding

semantical security experiment and receives a pke challenge ciphertext c∗
i∗ for message

Mi∗,b for unknown b. Then A’s ciphertext vector c∗ = (c∗1 , . . . , c∗
l(k)) is filled for i 6= i∗ by

encrypting c∗i
$

← enc(pkf∗i
, Mi). Finally, c∗ = (c∗1 , . . . , c∗

l(k)) is signed using the one-time

signing key sigk∗ to obtain σ∗. Adversary A’s challenge ciphertext is C∗ = (c∗, verk∗, σ∗).
Note that C∗ is a correctly distributed PKE ciphertext for B’s challenge message M ∗

b .

Decryption queries. Suppose A makes a decryption query C = (c, verk , σ) containing a valid
signature σ (satisfying vfy(verk , c) 6= ⊥). Let Fverk be the subset associated to index verk .
We distinguish between the following mutually exclusive cases:

1. verk = verk∗. If (c, σ) = (c∗, σ∗) then A made an illegal query with C = C∗. If
(c, σ) 6= (c∗, σ∗) then A has broken the strong unforgeability of the one-time signature
scheme.

2. verk 6= verk∗, f∗ 6∈ Fverk . In that case B knows all secret keys sk i for i ∈ Fverk and
hence can correctly decrypt.

3. verk 6= verk∗, f∗ ∈ Fverk . Adversary B returns a random bit and terminates. Denote
this event by FAIL.

Output. Eventually, A outputs a guess bit b′. B outputs the same bit b′ and terminates.

This completes the description of B.

If FAIL does not happen B has the same probability of winning the semantical security ex-
periment as A. We claim that Pr[¬FAIL] is bounded by 1/l(k). For 1 ≤ i ≤ q, let verk i be
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the verification key from A’s ith decryption query. By the properties of the q cover-free family
we have that Fverk∗ 6⊆

⋃q
i=1 Fverk i

, that means that there exists an element f ∈ Fverk∗ such
that f 6∈

⋃q
i=1 Fverk i

. As long as B picked this f∗ = f in Equation (2) at the beginning of the
experiment from the set Fverk∗ of cardinality l(k), event FAIL does not happen. Now the claim
follows since A’s simulation is independent of the choice of f ∗.

Remark 4.3 We stress that it is important for our construction that the number of subsets s(k)
is super-polynomial in k. One could try to trivially build q(k) bounded CCA secure encryption
PKE from semantically secure pke using a public/secret key vector of size q(k) and defining
the subsets Fi as {i}, for 1 ≤ i ≤ s(k) := q(k). For encryption, a message gets encrypted
using pk verk , where verk ∈ {1, . . . , q(k)} is one of the q(k) distinct public keys of pke, and verk
is a random verification key of the signature scheme. However, since there are only q(k) many
possible choices of verification keys one can break the scheme as follows. First guess (verk ∗, sigk),
where verk∗ is the verification key used for the (yet unknown) challenge ciphertext. Then make
decryption queries of the form (c, verk ∗, sign(sigk , c)) for arbitrary pke ciphertexts c. This way,
with probability 1/q(k), any CCA attack to the original scheme pke translates to a CCA attack
of PKE ; if pke gets insecure after one single CCA1 decryption query so does PKE .

Remark 4.4 It might be interesting to explore what (additional) security properties PKE sat-
isfies once invoked with a scheme pke that itself is not only IND-CPA secure, but, say, NM-
CPA secure. Unfortunately, we cannot hope that PKE is NM-CPA secure, independent of
pke’s security: say that adversary A receives a challenge ciphertext C∗ = (c∗, verk∗, σ∗) with
c∗ = (c1, . . . , cl) and Fverk∗ = {s∗1, . . . , s

∗
l }. Then A may be able to construct l(k) ciphertexts

C(1), . . . , C(l) such that C(i) is associated with a subset F (i) with s∗i ∈ F (i) 6= Fverk, and the
vector c(i) consists only of 0-encryptions except for c∗i . The XOR of the decryptions of C(i) is
precisely the challenge plaintext, hence this is a successful malleability attack.

On the other hand, IND-CCA1 security of pke implies that PKE is secure against IND-
attackers that have full access to a decryption oracle in the first phase of the attack (i.e., before
receiving the challenge ciphertext) but only limited access (limited to q queries) to it in the
second attack phase. (The reduction is essentially the same as the one above.)

5 A non-black-box bounded CCA secure construction

5.1 Overview

If one is willing to sacrifice the black box property of the construction from the previous section,
a significant gain in efficiency is possible. Namely, we work with the construction from [17].
This construction takes any IND-CPA secure public key encryption scheme pke and transforms
it (in a non-black-box way) into a scheme nmpke that is non-malleable under chosen-plaintext
attacks. This transformation first constructs a certain type of designated-verifier non-interactive
zero knowledge (DV-NIZK) proof system from pke and then employs the paradigm from [15, 7]
to achieve non-malleability.

However, as [17] points out, nmpke may generally not be CCA secure. The reason is that the
constructed DV-NIZK proof system used in nmpke is insecure under (sequential) composition.
However, we show that already a slight tweak in their DV-NIZK construction suffices to achieve
precisely the form of composability needed to prove nmpke IND-q-CCA secure. This results in
an overall construction of an IND-q-CCA scheme with a public key of size linear in q.

Formally, we show the following:
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Theorem 5.1 For any fixed polynomial q(k), there exists a (non-black-box) reduction that
from any given semantically secure (kg, enc, dec) constructs an IND-q-CCA secure PKE PKE .
The size of the public key in that construction PKE is linear in q.

5.2 The DV-NIZK scheme of [17]

The construction of [17] takes an IND-CPA secure public key encryption scheme pke = (kg, enc, dec)
and uses it as follows to generate a DV-NIZK proof system (D, P, V ), where ` := k and
(P1, V1, P2, V2) is a suitable Σ-protocol for zero-knowledge proofs:

• Sampling algorithm: D(1k) chooses f = (f1, . . . , f`) ∈ {0, 1}
` and generates 2` pke keypairs

(pk i,j , sk i,j) (where i ∈ {1, . . . , `} and j ∈ {0, 1}). Output is (pp, sp) where

pp = (pk0,1, pk1,1, . . . , pk0,`, pk1,`)

and
sp = (f, skf1,1, . . . , skf`,`).

• Prover: P (pp, x, w) generates triples

(ai, si)← P1(x, w)

cb,i ← P2(s, b)

αb,i ← encpkb,i
(cb,i)

for all i ∈ {1, . . . , `} and b ∈ {0, 1}. Output of the prover is π := ((ai, α0,i, α1,i))
`
i=1.

• Verifier: V (pp, sp, x, π) parses π as π = ((ai, α0,i, α1,i))
`
i=1 and checks if for all i ∈

{1, . . . , `} and mi := decskfi,i
(αfi,i), it holds that V2(ai, fi, mi) accepts. If all V2 instances

accept, V also accepts, otherwise, V rejects.

In other words, non-interactivity is achieved by “predistributing” the choices for the challenge
bits bi in form of the secret keys sk fi,i. The verifier only knows the secret keys sk fi,i corresponding
to his (fixed in advance) “virtual choices” of bi = fi. Because these choices are fixed once and
for all and cannot be changed during the protocol, the randomness that the verifier may employ
is limited in some sense by `. For that reason, there is a simple attack on the soundness property
of the protocol, once an adversary may ask questions about the validity of, say, ` proofs of his
choice. This adversary may take correct proofs for arbitrary valid statements, then substitute
one encryption αb,i and will then learn from the (in-)validity of the whole proof whether fi = b
or not.

5.3 Our modification

Note that [17] only consider ` = k, and so the scheme completely breaks down after k such
questions. On the other hand, it seems intuitive that if we take ` = q + k, then at least q such
questions can be tolerated without giving up the soundness property. It turns out that this is
true, and actually all that is needed to make the whole construction of [15, 7, 17] IND-q-CCA
secure.

Definition 5.2 (q-adaptive security) Let q = q(k) be a polynomial, and let (D, P, V ) be
a designated verifier non-interactive zero-knowledge proof system for an NP-language L with
witness relation RL in the sense of [17]. We say that (D, P, V ) has q-adaptive security iff there
is a negligible function µ, such that
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1. (q-adaptive soundness.) For every prover algorithm B and every k ∈ N,

Pr
[

(pp, sp)← D(1k) ; (x, π)← BO
q
pp,sp(pp) : x 6∈ L but V (pp, sp, x, π) = 1

]

≤ µ(|x|),

where the oracle Oq
pp,sp returns V (pp, sp, x, π) on input (x, w), but only for the first q

queries. That is, Oq
pp,sp provides B with the possibility to check the validity of q adaptively

chosen proofs.

2. (Strong adaptive zero-knowledge.) For every PPT theorem chooser A, there exists
a simulator S = (S1, S2) such that the outputs of the following experiments are indistin-
guishable.

Experiment ZKA(k)

(pp, sp)← D(1k)
(x, w, stateA)← A(pp, sp)
π ← P (pp, x, w)
If (x, w) 6∈ RL, output ⊥
Else output (pp, sp, x, π, stateA)

Experiment ZKA(k)

(pp′, sp′, state)← S1(1
k)

(x, w, stateA)← A(pp′, sp′)
π′ ← S2(pp

′, sp′, state)
If (x, w) 6∈ RL, output ⊥
Else output (pp′, sp′, x, π′, stateA)

This is the “adaptive zero-knowledge” requirement from [17, Definition 5], with the
additional information sp resp. sp′ for A.

If those properties hold for every polynomial q, then we say that (D, P, V ) enjoys poly-adaptive
security.

Note that B is not computationally restricted. Also, we deviate slightly from the notation
in [17], since with [17, Definition 5], it is not completely clear how x is chosen in the (non-
adaptive) soundness requirement and how |x′| relates to |x|.

We make two claims: first, for any q, our small modification makes the construction from [17]
q-adaptively secure (in contrast to the original construction, which is not k-adaptively secure as
argued above). Second, any q-adaptively secure DV-NIZK can be used to transform IND-CPA
secure encryption into IND-q-CCA secure encryption (or even IND-CCA secure encryption in
the case of q =“poly”) using the construction from [15, 7, 17].

This second statement leaves of course open the question whether there is a (possibly even
black-box) transformation from IND-CPA secure encryption to poly-adaptively secure DV-NIZK
proofs. Namely, this would imply a transformation from IND-CPA secure encryption to IND-
CCA secure encryption; this would not contradict [9], since the implied construction is in any
case non-black box (since the techniques from [15, 7, 17] are), whereas [9] treats the case of
black-box constructions.

Claim 5.3 Let q = q(k) be a polynomial. Then the scheme (D, P, V ) from Section 5.2 with
` := q(k) + k is a designated verifier non-interactive zero-knowledge proof system in the sense
of [17, Definition 5] that is q-adaptively secure in the sense of Definition 5.2.

Proof: (Sketch.) The DV-NIZK property (including strong adaptive zero-knowledge) is stan-
dard and carries over from the scheme in [17] (which only uses ` = k instead of ` = q(k) + k).

As for the q-adaptive soundness requirement, first note that the underlying NIZK proof system
(P1, V1, P2, V2) used in (D, P, V ) (i.e., Blum’s hamiltonicity protocol) does not allow for tuples

10



(x, a, c0, c1) such that x 6∈ L and both (a, 0, c0) and (a, 1, c1) are accepting transcripts (in the
sense V2(x, a, b, cb) = 1 for b = 0, 1). Such tuples simply don’t exist.

So to succeed in the q-adaptive soundness experiment, an adversary B must produce an x 6∈ L
and i (encrypted) tuples (ai, c0,i, c1,i) with the following property. Namely, for all i ∈ {1, . . . , `},
there is exactly one bi with V2(x, ai, bi, cb,i) = 1, and it holds that bi = fi for the fi contained
in the secret key sp. So information-theoretically, f = (f1, . . . , f`) ∈ {0, 1}

` can be extracted
from a successful DV-NIZK proof forger B. However, the public key sp is independent of f , and
B may get at most q = ` − k bits of information about f from its oracle Oq

pp,sp. Information
theoretic arguments show that hence, no B can “guess” (in an information-theoretic sense) f
with non-negligible probability, and thus any given B must be unsuccessful in the q-adaptive
soundness experiment.

The next claim shows how to use the DV-NIZK to obtain IND-q-CCA security. This uses
the construction of [17] that is in turn based on the construction of [7]. This latter construction
was already used to achieve non-malleability even under chosen-ciphertext attacks (NM-CCA),
which implies IND-CCA. In fact, the modification below achieves non-malleability in a setting
where the adversary may, before generating the final forged ciphertext vector, ask for a limited
number of decryption queries. Let’s call this notion NM-q-CCA (a formal definition is obtained
by equipping the adversary in the NMEb experiment from [17] with a limited decryption oracle
DEC as in Definition 3.2). With the standard reduction, NM-q-CCA security is seen to imply
IND-q-CCA security.

Claim 5.4 Let q be a polynomial. Let (D, P, V ) be a designated verifier non-interactive zero-
knowledge proof system in the sense of [17, Definition 5] that is q-adaptively secure in the sense
of Definition 5.2. Then, (D, P, V ) can be used in the construction of [17] to achieve NM-q-
CCA (and thus IND-q-CCA) security. If q =“poly”, then even NM-CCA (and thus IND-CCA)
security is achieved.

Proof: (Sketch.) First, recall the scheme PKE scheme PKE constructed in [17] from (D, P, V )
and an IND-CPA secure PKE scheme pke. In PKE , encryptions of m are of the form (c, π,vksig, σ),
where c = (c1, . . . , ck) is a vector of pke encryptions of m, π is a DV-NIZK proof that all the
encryptions in c are encryptions of the same message, and σ is a signature of (c, π) under a
signing key corresponding to vksig.

Just as in [7], this whole construction is already geared towards NM-CCA security, and it fails to
achieve full CCA security in the case ` = k considered in [17] only because of the weak soundness
property of the employed DV-NIZK scheme. In fact, we only discuss the changes to the proof
of [17] necessary to take care of the additional decryption oracle available to a q-CCA adversary
attacking PKE .

The games NMEb and NME
(i)
b (with b = 0, 1 and i = 1, 2) now allow the adversary to ask

decryption queries in an adaptive manner. In these games of course, this can be done since the
experiment itself knows all the secret keys, including the DV-NIZK key sp that is required to

check the validity of a DV-NIZK proof. (In the case of the NME
(2)
b games, decryption of CCA

decryption queries must be performed just like the decryption of the final forged ciphertext.)
However, during some reductions which are performed when relating these games, an adversary
A in the, say, NMEb experiment is mapped to a, say, adversary B on the zero-knowledge property
of the DV-NIZK. In all cases relevant here, such a B internally simulates A and needs to simulate
a NMEb setting for A. We will now go through the necessary changes to enable B to answer the
additional decryption queries made by A.
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First, in Claim 1 of [17], the experiments NMEb and NME
(1)
b (for b = 0, 1 respectively) are shown

equivalent by a reduction on the adaptive zero-knowledge property of the DV-NIZK. Specifically,
a theorem-chooser/distinguisher pair (Azk, Dzk) on the DV-NIZK is constructed such that Azk

internally simulates the first stage (up to the generation of the challenge ciphertext) of the
NMEb experiment, and Dzk internally simulates the second stage. Azk generates all encryption
and signature keypairs on its own, but takes the DV-NIZK public key pp from the adaptive
zero-knowledge experiment. Thus, Azk is generally not able to decrypt PKE ciphertexts since
it cannot check the validity of the DV-NIZK part π. (Note that Dzk is able to decrypt since it
is supplied with the corresponding DV-NIZK secret key sp by the zero-knowledge experiment.)

However, since we assume a DV-NIZK with a strong adaptive zero-knowledge property, in the
corresponding reduction already Azk knows sp and can thus answer decryption queries already
before the challenge ciphertext is known. This is the only difference in the proof of Claim 1.

In Claim 2, the probability for the event badNIZK(Expt) that the adversary breaks the soundness

of the DV-NIZK (in Expt ∈ {NMEb, NME
(1)
b , NME

(2)
b }) must be shown negligible.

For Expt = NMEb, this is done by constructing an adversary As on the soundness property
of the DV-NIZK. Here, As internally simulates the complete NMEb experiment (except for the
final decryption of the forged ciphertext vector) and generates all keypairs except the DV-NIZK
key on its own. The DV-NIZK public key pp is taken from the soundness experiment; since in
the [17] CPA setting, no decryptions are necessary, this is sufficient. However, in our q-CCA
setting, As might need to answer up to q decryption queries in the NMEb experiment, and thus
needs to check the validity of up to q DV-NIZK proofs. Fortunately, this is exactly what an
adversary against the assumed q-adaptive soundness property can do by using Oq

pp,sp.

Then, Pr
[

NME
(1)
b

]

≈ Pr [ NMEb ], follows similarly (only now by a reduction on the strong

adaptive zero-knowledge property as before). Now we cannot show Pr
[

NME
(1)
b

]

= Pr
[

NME
(2)
b

]

(as in [17]), but we can show Pr
[

NME
(1)
b

]

≈ Pr
[

NME
(2)
b

]

, which sufficient for the further

argument. The reason that we cannot show equality is that the view of an adversary in the

Pr
[

NME
(i)
b

]

experiments is identical for i = 1, 2 only under the condition that the answers to

CCA decryption queries do not differ (for i = 1, 2; note that in experiment NME
(2)
b , decryption is

performed differently than in NME
(1)
b ). However, such decryption queries are answered differently

only if event badNIZK or event badSig (which indicates that the adversary forged a signature)

happens. The probability that one of these events occurs in NME
(1)
b is negligible, and thus

Pr
[

NME
(1)
b

]

≈ Pr
[

NME
(2)
b

]

follows.

In Claim 3 (which completes the proof in [17]), no properties of the DV-NIZK are used.

Remark 5.5 With a small modification to the construction, one can do without the strong
adaptive zero-knowledge property of the DV-NIZK (and instead only rely on the “ordinary,”
adaptive zero-knowledge property from [17] where the theorem-chooser does not get the secret
key sp). Namely, one can use PKE as an IND-q-CCA secure key encapsulation mechanism
(KEM) that on its own chooses a random message to encrypt instead of an IND-q-CCA se-
cure PKE scheme. In this setting, a challenge ciphertext can be generated at the start of the
experiment, and the need for the strong adapative zero-knowledge property in the changes to
Claim 1 vanishes. Combined with an IND-CCA data encapsulation mechanism (which can be
constructed from any one-way function), we obtain an IND-q-CCA secure PKE scheme.
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