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Abstract

We derive a new algorithm for computing the Tate pairing on an elliptic curve over a finite
field. The algorithm uses a generalisation of elliptic divisibility sequences known as elliptic nets,
which are maps from Zn to a ring that satisfy a certain recurrence relation. We explain how
an elliptic net is associated to an elliptic curve and reflects its group structure. Then we give a
formula for the Tate pairing in terms of values of the net. Using the recurrence relation we can
calculate these values in linear time.

Computing the Tate pairing is the bottleneck to efficient pairing-based cryptography. The
new algorithm has time complexity comparable to Miller’s algorithm, and is likely to yield to
further optimisation.

Keywords: Tate pairing, elliptic curve, elliptic divisibility sequence, elliptic net, Miller’s algo-
rithm, pairing-based cryptography.

1 Introduction

Pairing-based cryptography, since it was introduced in the mid-1990’s, has had an ever-growing list
of applications. Although it was originally suggested as a means of reducing the discrete logarithm
problem on an elliptic curve to the discrete logarithm problem on a finite field [17, 12], considerable
excitement and research has since been generated by public-key cryptographic applications such as
Sakai, Ohgishi and Kasahara’s key agreement and signature schemes [20], Joux’s tri-partite Diffie-
Hellman key exchange [15], and Boneh and Franklin’s identity-based encryption scheme [4]. Good
overviews include [9, 19], while a very up-to-date research bibliography can be found at [3].

The bottleneck to pairing-based cryptographic implementations is the costly computation of
the pairing, which is most frequently the Tate or Weil pairing, the former being the most efficient.
The only polynomial time algorithm currently in use for these computations was given by Victor
Miller [18]. For an overview of the implemention of Miller’s algorithm, see [8, 14].

In this paper, we propose a new method of computing of the Tate pairing, arising from the
theory of elliptic nets. The theory of elliptic nets generalises that of elliptic divisibility sequences,
which were first studied by Morgan Ward in 1948 [28]. For Ward, these were integer sequences
h0, h1, . . . , hn, . . . satisfying the following two properties:

1. For all n, m ∈ Z+,
hm+nhm−n = hm+1hm−1h

2
n − hn+1hn−1h

2
m . (1)
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2. hn divides hm whenever n divides m.

Ward demonstrates that an elliptic divisibility sequence arises from any choice of elliptic curve and
point on that curve. We denote by σ(u; Λ) the Weierstrass sigma function of an elliptic curve.

Theorem 1 (M. Ward, 1948) Suppose E is an elliptic curve represented by C/Λ, and u ∈ C.
Then the sequence

hn :=
σ(nu; Λ)
σ(u; Λ)n2

forms an elliptic divisibility sequence.

Given a ring R and an abelian group A, an elliptic net is a map W : A → R satisfying the
following recurrence relation for p, q, r, s ∈ A:

W(p + q + s) W(p− q) W(r + s) W(r)
+ W(q + r + s) W(q − r) W(p + s) W(p)

+ W(r + p + s) W(r − p) W(q + s) W(q) = 0

When A = R = Z and W (1) = 1, the positive terms of an elliptic net satisfy Ward’s equation (1)
above. Under the further conditions that W (2)|W (4) and W (0) = 0, these terms form an elliptic
divisibility sequence. Theorem 5 in Section 2 relates elliptic nets over R = C to elliptic curves,
generalising Theorem 1. Theorems 6 and 7 allow us to extend this relationship to finite fields.

In Section 3, we will exploit these theorems to find a formula for the Tate pairing given by the
terms of an elliptic net. The main result, stated here, uses notation found in Sections 2.3 and 2.4.
In particular, W is an elliptic net W : ÊK → K, where ÊK is a finite-rank free abelian group with
a quotient π : ÊK → E.

Theorem 2 Fix a positive m ∈ Z. Let E be an elliptic curve defined over a finite field K containing
the m-th roots of unity. Let P , Q ∈ E(K), with [m]P = O. Choose S ∈ E(K) such that S /∈
{O,−Q}. Choose p, q, s ∈ ÊK such that π(p) = P , π(q) = Q and π(s) = S. Let W ∈WÊK

. Then
the quantity

Tm(P,Q) =
W (s + mp + q)W (s)
W (s + mp)W (s + q)

(2)

is a well-defined function Tm : E(K)[m] × E(K)/mE(K) → K∗/(K∗)m. Further, Tm(P,Q) =
τm(P,Q), the Tate pairing.

From Theorem 2, to calculate the Tate pairing only requires an efficient method of calculating
the terms of an elliptic net. Rachel Shipsey’s thesis [21] provides a double-and-sum method of cal-
culating the n-th term of an elliptic divisibility sequence in log n time. We generalise her algorithm
to elliptic nets in Section 4. This Elliptic Net Algorithm is an example of doing arithmetic on
elliptic curves via the arithmetic of elliptic nets. Rachel Shipsey’s work made use of this approach
to solve the elliptic curve discrete logarithm problem in certain cases. Her paradigm may well have
many other fruitful applications.

The Elliptic Net Algorithm in its current form is of complexity comparable to Miller’s algorithm,
and has potential for efficient implementations, since it is likely to yield to further optimisations.

In Section 2, we give the necessary mathematical preliminaries concerning the Tate pairing
and elliptic nets. In Section 3, we prove Theorem 2 and a corollary relating elliptic nets and the
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Tate pairing. In Section 4, we describe the algorithms necessary to compute elliptic nets, and
therefore the Tate pairing, efficiently. In Section 5, we make some brief remarks on optimisation
of the algorithms and the efficiency as compared with Miller’s algorithm. Finally, we make some
concluding remarks in Section 6.

2 Mathematical Preliminaries

2.1 Elliptic Functions Ψv

For a complex lattice Λ, let η : Λ→ C be the quasi-period homomorphism, and define λ : Λ→ {±1}
by

λ(ω) =
{

1 if ω ∈ 2Λ,
−1 if ω /∈ 2Λ.

Recall that the Weierstrass sigma function σ : C/Λ → C satisfies the following transformation
formula for all z ∈ C and ω ∈ Λ:

σ(z + ω; Λ) = λ(ω)eη(ω)(z+ 1
2
ω)σ(z; Λ) (3)

Definition 1 Fix a lattice Λ ∈ C corresponding to an elliptic curve E. For v = (v1, . . . , vn) ∈ Zn,
define a function Ψv on Cn in variables z = (z1, . . . , zn) as follows:

Ψv(z; Λ) =
σ(v1z1 + . . . + vnzn; Λ)

n∏
i=1

σ(zi; Λ)2v2
i −
Pn

j=1 vivj
∏

1≤k,j≤n
k 6=j

σ(zi + zj ; Λ)vivj

In particular, we have for each n ∈ Z, a function Ψn on C in the variable z:

Ψn(z; Λ) =
σ(nz; Λ)
σ(z; Λ)n2

and for each pair (m,n) ∈ Z× Z, a function Ψn,m on C× C in variables z and w:

Ψm,n(z, w; Λ) =
σ(mz + nw; Λ)

σ(z; Λ)m2−mnσ(z + w; Λ)mnσ(w; Λ)n2−mn

Proposition 3 Fix a lattice Λ ∈ C corresponding to an elliptic curve E. The functions Ψv are
elliptic functions in each variable.

Proof Let ω ∈ Λ. We show the function is elliptic in the first variable. Let v = (v1, . . . , vn) ∈ Zn

and z = (z1, . . . , zn),w = (ω, 0, . . . , 0) ∈ Cn. Using (3), we calculate

F =
Ψv(z + w; Λ)

Ψv(z; Λ)
=

λ(v1ω)
λ(ω)v2

1

If ω, v1ω /∈ 2Λ, then v1 is odd, and F = 1. If ω /∈ 2Λ but v1ω ∈ 2Λ, then v1 must be even, and so
F = 1 again. Finally, if ω ∈ 2Λ, then v1ω ∈ 2Λ, and F = 1. Thus Ψv is invariant under adding a
period to the variable z1. Similarly Ψv is elliptic in each variable on (C/Λ)n. �
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In view of this proposition, we will use the same notation Ψv for the associated map En → C,
and write, for example, Ψm,n(P1, P2;E).

Proposition 4 Fix a lattice Λ ∈ C. Let v ∈ Zn and z ∈ Cn. Let T be an n×n matrix with entries
in Z and transpose T tr. Then

Ψv(T tr(z); Λ) =
ΨT (v)(z; Λ)

n∏
i=1

ΨT (ei)(z; Λ)2v2
i −
Pn

j=1 vivj
∏

1≤i,j≤n
i6=j

ΨT (ei+ej)(z; Λ)vivj

.

Proof A straightforward calculation using (3). �

2.2 Some Notation

We set some notation for the remainder of the paper.

L number field contained in C δ : EL → Ekp reduction map modulo p

EL elliptic curve defined over L δ : R→ kp reduction map modulo p

R ring of integers of L q : C→ EL(C) complex uniformisation
p prime of R of good reduction for EL Λ lattice in C associated to EL

kp residue field of p ÊL q−1(EL(L))
Ekp EL reduced modulo p Êkp q−1 ◦ δ−1(Ekp(kp))

For a finite field K, and elliptic curve EK defined over K, there always exists a number field L ⊂ C,
prime p, and elliptic curve EL such that K = kp and EK = δ(EL). Therefore, for any number field
or finite field K, we may speak of ÊK . In either case, this is a free abelian group of finite rank with
a quotient map π : ÊK → EK(K).

2.3 Elliptic Nets

Since Ward’s definition in 1948, elliptic divisibility sequences have been an active area of research
(for an overview, see [10]). In her thesis in 2003 [26], Christine Swart studied a more general class of
Somos-4 sequences arising from elliptic curves. Her work, and related work of van der Poorten [27]
provided the clues that the following more general theory of nets existed. It has recently come to the
author’s attention that the possibility of such a definition was briefly discussed in correspondence
by Noam Elkies, James Propp and Michael Somos in 2001 [2]. Several of the proofs in this section
are omitted and can be found in [25].

Definition 2 Let A be an abelian group, and R be a ring. An elliptic net is any map W : A→ R
such that the following recurrence holds for all p, q, r, s ∈ A.

W(p + q + s) W(p− q) W(r + s) W(r)
+ W(q + r + s) W(q − r) W(p + s) W(p)

+ W(r + p + s) W(r − p) W(q + s) W(q) = 0 (4)

The set of such nets is denoted EN(A,R). If B is a subgroup of A, then W restricted to B is also
an elliptic net and is called an elliptic subnet of A.
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P →
Q
↑

0 1 1 -3 11 38 249
1 1 2 -5 7 89 -149
1 3 -1 -13 -36 181 -1535
-5 8 -19 -41 -151 989 -1466
-31 53 -33 -350 493 6627 48191
94 479 919 -2591 13751 68428 424345
4335 5959 12016 -55287 23921 1587077 -7159461

P →
Q
↑

over F5over Q
0 1 1 2 1 3 4
1 1 2 0 2 4 1
1 3 4 2 4 1 0
0 3 1 4 4 4 4
4 3 2 0 3 2 1
4 4 4 4 1 3 0
0 4 4 3 1 2 4

Figure 1: A portion of the elliptic net of E : y2 + y = x3 + x2 − 2x, P = (0, 0), Q = (1, 0).

We will now see that Ψv forms an elliptic net as a function of v ∈ Zn when the lattice Λ and
z ∈ Cn are fixed. Let the standard basis of Zn be denoted e1, . . . , en. As a means of fixing z, we
specify a homomorphism φ : Zn → ÊL.

Definition 3 Suppose φ : Zn → ÊL is a homomorphism such that the images of ±ei under π ◦ φ
are all distinct. Define Wφ : Zn → C by

Wφ(v) = Ψv(φ(e1), φ(e2), . . . , φ(en); Λ)

Theorem 5 Wφ ∈ EN(Zn, L).

Proof The proof involves some lengthy calculations. See [25]. �

In this way, we can associate an elliptic net to any choice of n points Pi ∈ E(L) which, along with
their negatives, are all distinct. We call Wφ ∈ EN(Zn, L) the elliptic net associated to E,P1, . . . , Pn.
Such an example net is shown in Figure 1. Let E be an elliptic curve defined over Q, and P ∈ E(Q).
Then, for an appropriate choice of φ in the definition above, the positive terms of the elliptic net
associated to E,P are integers and form an elliptic divisibility sequence as described by Ward. In
particular, the recurrence relation (4) implies Ward’s relation (1).

We wish to extend this idea to finite fields, but here we cannot use Weierstrass’ sigma function
to define appropriate functions. The following theorem allows us to push results on number fields
L over to residue fields kp. It says that we can find appropriate functions fv for Ekp by simply
considering (an appropriate normalisation of) the net Ψv modulo p. These fv will also form an
elliptic net. We will only need this theorem for n ≤ 3.

Theorem 6 Let 0 < n ≤ 3. Consider points P1, . . . , Pn defined over L such that the reductions
modulo p of the ±Pi are all distinct. Then there exists some c ∈ L and quadratic form f : Zn → Z
such that the map Ψ′

v = cf(v)−1Ψv : En
L → L takes values in R for all v ∈ Zn. There exists a

function fv : En
kp
→ kp such that the following diagram commutes.

En
L

Ψ′
v //

δ
��

R

δ
��

En
kp

fv // kp

Furthermore div(fv) = div(Ψv).
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Proof sketch. Consider the scheme En
L over Spec R. Replacing En

L with its Néron model, a map
to P1 on the generic fibre extends to a map over Spec R on the whole scheme. Let S be the set of
primes of bad reduction for E together with primes such that the set of ±Pi are not distinct on the
reduced curve. We must check that away from S, there are no vertical divisors in the fibres over 0
or ∞; this is a statement about the functions Ψ′

v which requires proof by multivariable induction.
See [25] for details. �

In light of this, we extend Definition 3 and state a fuller version of Theorem 5.

Definition 4 Let φ : Zn → Êkp be a homomorphism such that the images of ±ei under π ◦ φ are
all distinct. Let fv be defined according to Theorem 6. Define Wφ : Zn → kp by

Wφ(v) = fv(φ(e1), φ(e2), . . . , φ(en))

Theorem 7 Suppose K is either a number field or a finite field, and E is an elliptic curve defined
over K. Then Wφ ∈ EN(Zn,K).

Proof If K is a number field, this is Theorem 5. If K is a finite field, then this statement follows
from Theorem 6: note that Ψ′

v still forms an elliptic net, and that an elliptic net postcomposed
with a homomorphism is still an elliptic net. �

Figure 1 illustrates the relationship between an example elliptic net associated to E,P, Q over
Q and the elliptic net associated to their reductions modulo 5.

2.4 Equivalence of Nets

In this section, K will denote a finite field.

Definition 5 Let W1,W2 ∈ EN(A,K). Suppose α, β ∈ K∗, and f : A→ Z is a quadratic form. If
W1(v) = αβf(v)W2(v) for all v, then we say W1 is equivalent to W2 and write W1 ∼W2. If α and
β lie in a subfield L of K, then we say further that W1 and W2 are equivalent over L.

Clearly this definition gives an equivalence relation, and it is easily verified that an equivalence
applied to an elliptic net gives another elliptic net. We write EN0(A,K) = EN(A,K)/ ∼. If W1 is
a subnet of W2, then we may, by abuse of language, say that the equivalence class [W1] is a subnet
of the equivalence class [W2], since then any W ′

1 ∈ [W1] will be equivalent to some subnet of any
W ′

2 ∈ [W2].
For an m-torsion point P ∈ E(K), the elliptic net associated to E,P does not necessarily satisfy

Wφ(n+m) = Wφ(n). So we cannot hope to consider Wφ as an elliptic net on the group E(K) itself
(nor should we wish to, as this subtlety is where the Tate pairing lives, as we shall see). On the
other hand, we can consider it an elliptic net on ÊK in a non-canonical fashion. If we consider the
question only up to equivalence, however, the answer becomes canonical:

Theorem 8 Let Γ be a subgroup of ÊK of rank n. Let φ : Zn → Γ be an isomorphism. Define
fφ : Γ → K by fφ(z) = Wφ(φ−1(z)). Then fφ ∈ EN(Γ,K) and the equivalence class of fφ is
independent of the choice of the isomorphism φ.
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Proof Suppose T : Zn → Zn is a homomorphism. Then a restatement of Proposition 4 translated
to finite fields via Theorem 6 is that Wφ◦T ∼ Wφ ◦ T (note that every finite field has a primitive
element). Now choose another isomorphism φ′ : Zn → Γ. Then there exists an isomorphism
T : Zn → Zn such that φ ◦ T = φ′. Then

fφ′(z) = Wφ′(φ′−1(z)) = Wφ◦T (T−1(φ−1(z))) ∼Wφ(φ−1(z)) = fφ(z).

Note that this last equivalence is as a function of φ−1(z) ∈ Zn. But since φ−1 is linear, this implies
equivalence as a function of z. The linearity of φ−1 also shows that fφ is an elliptic net. So we have
defined a unique class [fφ] ∈ EN0(Γ,K). �

Definition 6 Let WÊK
denote the class [fφ] ∈ EN0(ÊK ,K) defined in Theorem 8.

The importance of the preceeding theorem is as follows. There are many choices of basis for
ÊK , and these may be specified either by choosing points p1, . . . , pn or by choosing an invertible
φ : Zn → ÊK . In either case, the resulting elliptic net associated to p1, . . . , pn considered as a
function not of Zn but of ÊK always lies in the unique equivalence class WÊK

. However, to perform
calculations, we must choose an isomorphism φ. Later, we will exploit this fact to allow ourselves
freedom in choosing an appropriate φ for calculations.

We note one useful proposition.

Proposition 9 Let W ∈WÊK
. Then W (p) = 0 implies π(p) = O.

Proof This follows from the definitions. �

2.5 The Tate Pairing

Choose m ∈ Z+. Let E be an elliptic curve defined over a field K containing the m-th roots of unity.
Suppose P ∈ E(K)[m] and Q ∈ E(K)/mE(K). Since P is an m-torsion point, m(P )−m(O) is a
principal divisor, say div(fP ). Choose another divisor DQ defined over K such that DQ ∼ (Q)−(O)
and with support disjoint from div(fP ). Then, we may define the Tate pairing

τm : E(K)[m]× E(K)/mE(K)→ K∗/(K∗)m

by
τm(P,Q) = fP (DQ)

This pairing is well-defined, bilinear and Galois invariant. For cryptographic applications, the Tate
pairing is usually considered over finite fields, where it is non-degenerate. For details, see [7, 13].

3 Tate Pairing Using Elliptic Nets

Proof of Theorem 2 By the assumptions on the choice of S and Proposition 9, any W in the
equivalence class of W is non-vanishing at the four arguments in (2). To verify that Tm is indepen-
dent of choice of representative of W, suppose that W1 and W2 are in the equivalence class of W.
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Then W2(v) = αβf(v)W1(v) for some α, β ∈ K∗ and quadratic form f . Then

W1(s + mp− q)W1(s)W2(s + mp)W2(s− q)
W1(s + mp)W1(s− q)W2(s + mp− q)W2(s)

= βf(s+mp)+f(s−q)−f(s+mp−q)−f(s)

= βf(mp+q)−f(mp)−f(q) = βm[f(p+q)−f(p)−f(q)] ∈ (K∗)m.

Let Γ ⊂ ÊK be the subgroup generated by s, p, and q. We may now choose φ : Z3 → Γ such
that (1, 0, 0) 7→ s, (0, 1, 0) 7→ p, and (0, 0, 1) 7→ q and consider Ls,p,q = Wφ ∈ EN(Z3,K). Let

fP = Ls,p,q

(
1
0
0

)
/Ls,p,q

(
1
m
0

)
,

which is a function in S = π(s), P = π(p) and Q = π(q), by Theorem 6.
Compute the divisor of fP as a function of S:

(fP ) = −([−m]P ) + (1−m)(O) + m(P ) = m(P )−m(O).

Let DQ be the divisor (Q + S)− (S).
Then, using Proposition 4 and Theorem 6,

fP (DQ) =
Ls+q,p,q

(
1
0
0

)
Ls,p,q

(
1
m
0

)
Ls+q,p,q

(
1
m
0

)
Ls,p,q

(
1
0
0

) =
Ls,p,q

(
1
0
1

)
Ls,p,q

(
1
m
0

)
Ls,p,q

(
1
m
1

)
Ls,p,q

(
1
0
0

) ,

which is just Tm(P,Q) by Theorem 8. So Tm(P,Q) = τm(P,Q). �

Corollary 10 Let E be an elliptic curve defined over a finite field K, m a positive integer, P ∈
E(K)[m] and Q ∈ E(K). If W is the elliptic net associated to E,P , then we have

τm(P, P ) =
W (m + 2)W (1)
W (m + 1)W (2)

(5)

Further, if W is the elliptic net associated to E,P,Q, then we have

τm(P,Q) =
W (m + 1, 1)W (1, 0)
W (m + 1, 0)W (1, 1)

(6)

Proof For the first formula, taking q = p and s = 2p, we obtain Tm(P, P ) =
W((m + 2)p)W(p)
W((m + 1)p)W(2p)

.

For the second, take s = p, obtaining Tm(P,Q) =
W((m + 1)p + q)W(p)
W((m + 1)p)W(p + q)

. �

4 Tate Pairing Computation

4.1 Computing the Values of an Elliptic Net

In her thesis [21], Rachel Shipsey gives a double-and-add algorithm for computing terms of an
elliptic divisibility sequence. In the case of interest to us now, given the initial values of an elliptic
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(k-3,0) (k-2,0) (k-1,0) (k,0) (k+1,0) (k+2,0) (k+3,0) (k+4,0)

(k-1,1) (k,1) (k+1,1)

Figure 2: A block centred on k.

divisibility sequence, the algorithm computes the n-th term of a sequence in log(n) time. Shipsey
applied her more general algorithm (which allows beginning elsewhere in the sequence) to give a
solution to the elliptic curve discrete logarithm problem in certain cases.

The algorithm described here is an adaptation and generalisation of Shipsey’s algorithm to
calculate terms W (m, 0) and W (m, 1) of an elliptic net. We define a block centred on k (shown in
Figure 2) to consist of a first vector of eight consecutive terms of the sequence W (n, 0) centred on
terms W (k, 0) and W (k + 1, 0) and a second vector of three consecutive terms W (n, 1) centred on
the term W (k, 1). We define two functions:

1. Double(V ): Given a block V centred on k, returns the block centred on 2k.

2. DoubleAdd(V ): Given a block V centred on k, returns the block centred on 2k + 1.

We assume the elliptic net satisfies W (1, 0) = W (0, 1) = 1. The first vectors of Double(V ) and
DoubleAdd(V ) are calculated according to the following special cases of (4) (or (1)).

W (2i− 1, 0) = W (i + 1, 0)W (i− 1, 0)3 −W (i− 2, 0)W (i, 0)3 (7)

W (2i, 0) = (W (i, 0)W (i + 2, 0)W (i− 1, 0)2 −W (i, 0)W (i− 2, 0)W (i + 1, 0)2)/W (2, 0) (8)

The formulæ needed for the computations of the second vectors are instances of (4) 1.

W (2k − 1, 1) = (W (k + 1, 1)W (k − 1, 1)W (k − 1, 0)2

−W (k, 0)W (k − 2, 0)W (k, 1)2)/W (1, 1) (9)

W (2k, 1) = W (k − 1, 1)W (k + 1, 1)W (k, 0)2 −W (k − 1, 0)W (k + 1, 0)W (k, 1)2 (10)

W (2k + 1, 1) = (W (k − 1, 1)W (k + 1, 1)W (k + 1, 0)2

−W (k, 0)W (k + 2, 0)W (k, 1)2)/W (−1, 1) (11)

W (2k + 2, 1) = (W (k + 1, 0)W (k + 3, 0)W (k, 1)2

−W (k − 1, 1)W (k + 1, 1)W (k + 2, 0)2)/W (2,−1) (12)

Equations (7) and (8), applied for i = k − 1, . . . , k + 3, allow calculation of the first vectors of
Double(V ) and DoubleAdd(V ) in terms of W (2, 0) and the terms of V . Equations (9)–(12) allow
calculation of the second vectors in terms of W (1, 1), W (−1, 1), W (2,−1) and the terms of V .

The algorithm to calculate W (m, 1) and W (m, 0) for any positive integer m is shown in Algo-
rithm 1. The last term of the first vector of V in line 1 is calculated using (1). Note also that elliptic
nets satisfy W (−n,−m) = −W (n, m). In Section 5.1 we will consider possible optimisations.

1The values p, q, r, s substituted into (4) to obtain equations (9) - (12) are [p, q, r, s] = [(k, 0), (k−1, 0), (1, 0), (0, 1)],
[(k + 1, 0), (k, 0), (1, 0), (−1, 1)], [(k + 1, 0), (k, 0), (−1, 0), (0, 1)], and [(k + 2, 0), (k, 1), (1, 0), (0, 0)] respectively.
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Algorithm 1 Elliptic Net Algorithm
Input: Initial terms a = W (2, 0), b = W (3, 0), c = W (4, 0), d = W (2, 1), e = W (−1, 1), f =

W (2,−1), g = W (1, 1) of an elliptic net satisfying W (1, 0) = W (0, 1) = 1 and integer m =
(dkdk−1 . . . d1)2 with dk = 1

Output: Elliptic net elements W (m, 0) and W (m, 1)

1: V ← [[−a,−1, 0, 1, a, b, c, a3c− b3]; [1, g, d]]
2: for i = k − 1 down to 1 do
3: if di = 0 then
4: V ← Double(V )
5: else
6: V ← DoubleAdd(V )
7: end if
8: end for
9: return V [0, 3] and V [1, 1] // terms W (m, 0) and W (m, 1) respectively

4.2 Computation of the Tate Pairing

We can now compute the Tate pairing via Corollary 10. Consider an elliptic curve E over a finite
field Fq of characteristic not 2 or 3, in Weierstrass form

y2 = x3 + Ax + B

and points P = (x1, y1) and Q = (x2, y2) on E(Fq) with Q 6= ±P . We must calculate the values
a, b, c, d, e, f, g required as input for the Elliptic Net Algorithm. These are terms of the elliptic net
associated to E,P,Q. The necessary formulæ are given by the functions Ψn,m. In the case that
m = 0, these are called division polynomials (see [22, p.105] and [23, p.477]). We have

W (1, 0) = 1 (13)
W (2, 0) = 2y1 (14)

W (3, 0) = 3x4
1 + 6Ax2

1 + 12Bx1 −A2 (15)

W (4, 0) = 4y1(x6
1 + 5Ax4

1 + 20Bx3
1 − 5A2x2

1 − 4ABx1 − 8B2 −A3) (16)

For the formulæ in case of characteristic 2 or 3, or the more general Weierstrass form, see [11, p.80].
Also using classical formulæ (see for example [5]), we have

W (0, 1) = W (1, 1) = 1 (17)

W (2, 1) = 2x1 + x2 −
(

y2 − y1

x2 − x1

)2

(18)

W (−1, 1) = x1 − x2 (19)

W (2,−1) = (y1 + y2)2 − (2x1 + x2)(x1 − x2)2 (20)

Suppose that P has order m. Then we use the Elliptic Net Algorithm, with input m + 1 and
a, b, c, d, e, f, g given by (14)–(20). The output is used to evaluate formula (6) of Corollary 10,
giving the Tate pairing.

A PARI/GP script is available implementing this Tate pairing computation. See [24] and [1].
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5 Analysis

5.1 Some Implementation Considerations

For an integer m and finite field Fq, we define the embedding degree k to be the least integer such
that m|(qk − 1), thus ensuring the m-th roots of unity are contained in F∗

qk . In cryptographic
applications of the Tate pairing, it is usual to use a curve defined over Fq of embedding degree
k > 1, and points P ∈ E(Fq), Q ∈ E(Fqk): throughout what follows we make this assumption.

First, note that no inversions are actually needed in equations (7)–(12), since the inverses of
W (2, 0), W (2, 1), W (−1, 1) and W (2,−1) may be precomputed before the double-and-add loop is
begun. Therefore these inversions are replaced by multiplications.

Now we consider optimisations in the functions Double and DoubleAdd. The largest savings
can be gained by first computing a number of products which appear frequently in the formulæ:

W (i, 0)2 and W (i− 1, 0)W (i + 1, 0) for i = k − 2, . . . , k + 3

W (k, 1)2 and W (k − 1, 1)W (k + 1, 1)

With these 14 pre-computations, each term of the 11 to be calculated requires only two multiplica-
tions and an addition (plus multiplications by W (2, 0)−1, W (2,−1)−1, W (1, 1)−1 and W (−1, 1)−1).

Finally, we may try to avoid some of these extra multiplications by W (2, 0)−1, W (1, 1)−1,
W (2, 1)−1 and W (2,−1)−1 entirely. Recall that by Theorem 2, applying an equivalence to the net
will not alter the Tate pairing result. Let η = W (−1, 1). Apply the equivalence given by α = 1,
β = η and f(n, m) = mn. Clearly, this preserves the conditions2 that W (1, 0) = W (0, 1) = 1 (and
leaves terms W (n, 0) unchanged, so they are still in Fq), but changes W (−1, 1) to 1, which saves
one multiplication in Fqk per iteration. If W (2, 0) has a cube root ν in Fq, then the equivalence
α = ν−1, β = ν and f(n, m) = m2 + n2 + mn will change W (2, 0) to 1, while preserving W (1, 0) =
W (0, 1) = W (−1, 1) = 1, saving four Fq multiplications per iteration.

5.2 Complexity

Since the algorithm involves a fixed number of precomputations, and a double-and-add loop with a
fixed number of computations per step, the algorithm is linear time in the size of m, as is Miller’s
algorithm. Miller’s algorithm also consists of a double-and-add loop, and we call the two internal
steps Double and DoubleAdd, as for the Elliptic Net Algorithm. In Miller’s algorithm the cost of
DoubleAdd is almost twice that of Double. By contrast, in the Elliptic Net Algorithm these steps
take the same time, so the complexity is independent of Hamming weight. This makes the choice
of appropriate curves for cryptographical implementations somewhat easier [9].

Denote squaring and multiplication in Fq by S and M . Denote squaring and multiplication in Fqk

by Sk and Mk. Assume that multiplying an element of Fq by one of Fqk takes k multiplications in Fq.
Recall that E is defined over Fq, P ∈ E(Fq), and Q ∈ E(Fqk). Then any term W (n, 0), being a term
in the elliptic divisibility sequence associated to E,P , has a value in Fq. Under the optimisations
discussed in Section 5.1, each Double or DoubleAdd step requires 6S + (6k + 26)M + Sk + 2Mk.
Furthermore, under the condition that 2yP ∈ Fq is a cube, then pre-computing its cube root will
save four multiplications in Fq per step.

2These were needed to derive formulæ (7)–(12).
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Algorithm Double DoubleAdd
Optimised Miller’s [16] 4S + (k + 7)M + Sk + Mk 7S + (2k + 19)M + Sk + 2Mk

Elliptic Net Algorithm 6S + (6k + 26)M + Sk + 3
2Mk 6S + (6k + 26)M + Sk + 2Mk

Table 1: Comparison of Operations for Double and DoubleAdd steps

Embedding degree 2 4 6 8 10 12
Optimised Miller’s 18-38 31-58 46-82 64-109 84-140 106-174
Elliptic Net 51-52 76-80 104-112 136-147 171-186 207-228

Table 2: Fq Multiplications per Step

The Elliptic Net Algorithm requires no inversions. Miller’s algorithm in affine coordinates
requires one or two Fq inversion per step. In situations where inversions are costly (depending on
implementation, they may cost anywhere from approximately 4 to 80 multiplications [6]), one may
implement Miller’s algorithm in homogeneous coordinates.

For the purpose of comparison, we consider an optimised implementation of Miller’s algorithm
in Jacobian coordinates analysed by Neal Koblitz and Alfred Menezes [16]. In their implementation,
they assume Q ∈ E(Fqk/2) (this is possible by using a twist of the curve). Applying this additional
assumption to the elliptic net algorithm, W (1, 1) will be an element of Fqk/2 , reducing one of the
multiplications in Double to one half the time. The comparison is summarised in Tables 1 and 2. In
the latter, a squaring is assumed to be comparable to a multiplication (although it is more usually
assumed to be 0.8 times as fast), and a multiplication in Fqk is assumed to take k1.5 multiplications
in Fq (see [16]). The number of steps constitutes a range because the Double and DoubleAdd steps
may differ in cost.

6 Conclusions

The Elliptic Net Algorithm has no significant restrictions on the points, curves or finite fields to
which it applies, requires no inversions, and is independent of the Hamming weight of m. The
efficiency of the algorithm is comparable to Miller’s algorithm. One expects that the Elliptic Net
Algorithm will yield to many further optimisations, and provide an efficient alternative to Miller’s
algorithm in many cases.
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